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1. Introduction/Background 

Patch antennas gained popularity in the 1970s as advancements in size and 

performance became useful in communication systems. Compared to its 

predecessors, such as traditional parabolic reflectors and large-scale antennas, the 

flat shape and reduced weight of the patch antenna allowed for great flexibility in 

various space and airborne applications. The use of dielectric materials to further 

reduce the size of the antenna has allowed technological advancements in global 

positioning system (GPS) and other wireless devices.1 Recently, studies on dual-

band antennas have emerged to eliminate the restriction on using just 1 frequency 

band. Empirical work via the High Frequency Structural Simulator (HFSS) has 

allowed engineers to create scalable multiband microstrip antennas. Several 

factors were taken into consideration when creating a dual-band antenna to ensure 

optimal performance in this study. These factors include optimizing the patch 

length, adjusting the feed point along the patch, varying the height of the 

dielectric substrates, and using a “notching” technique to incorporate circular 

polarization (CP). 

1.1 Frequency Ranges 

When comparing X- and S-band ranges, many differences can be noted as the 2 

operate at special frequencies and have variations in their respective parameters. 

While the X-band operates at 8–12 GHz, the S-band operates at 2–4 GHz in radar 

engineering. Due to the shorter wavelengths, which, in turn, allow for high 

resolution imagery, the antennas operating at X-band are small and very portable. 

On the other hand, antennas operating at the S-band are larger in size. The 

motivation behind creating a dual-band antenna came from the idea of eliminating 

the restriction of picking just 1 frequency band, and instead, combining the 2 to 

form a single element.  

1.2 Basic Patch Antenna Design 

The patch antenna, also known as the microstrip antenna, is commonly used at 

frequencies greater than 1 GHz (microwave frequencies). The most common 

configurations of patch antennas are found in square, rectangular, or circular 

shapes made out of conductive material. They are approximately /2 in size and 

placed a small fraction above the ground plane with dielectric material in 

between. The electrical half-wavelength length of the patch also includes the 

shortening effect of the material’s dielectric constant (r), as follows 
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 L=
λ0

2√ϵr
 (1) 

These low volume and lightweight devices are highly advantageous as the flat 

structure permits a large aperture with a corresponding high gain value. Their  

2-dimensional structure allows for manipulation to fit different applications.3 

Once it is tuned to the operating frequency, the patch will achieve maximum 

radiation efficiency, which is normal to the plane of the patch. A coaxial probe 

will be used in this study to feed the microstrip antenna; the inner conductor of 

the coaxial cable is shorted to the patch while the outer conductor is attached to 

the ground plane.  

1.3 Dielectric Materials 

As r increases, the frequency at which the patch resonates at will decrease, and 

vice versa. Thinner substrates demonstrate benefits as they minimize excessive 

radiation and coupling due to the tightly bound fields.2 In this study of the CP 

patch antenna, the X-band element will include a patch and ground plane 

separated by Rogers 5870 dielectric with r=2.33. The S-band will include a patch 

and ground plane separated by Rogers 6010 dielectric with r=10.2. 

1.4 Circular Polarization 

Antennas that are linearly polarized can transmit and receive linearly polarized 

signals. Consider a telephone pole that sends out and receives messages. In order 

for the receiving pole to obtain a vertically polarized signal, the transmitting pole 

must send out a signal that is vertically polarized. If the receiving pole is 

horizontally polarized and the transmitting pole is vertically polarized, the 

message will not convey. CP enables the use of both horizontal and vertical 

antennas for receiving, as the polarization continuously rotates during 

transmission. The CP wave does not experience any changes other than a change 

in direction in a rotational manner. In Fig. 1, we see that the electric-field vector 

produces a circle in the XY plane. 
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Fig. 1 Linear polarization vs. CP 

The square and circular shaped patch antennas discussed thus far radiate linearly 

polarized waves. Modifications can be made on these elements to obtain CP. One 

of the methods include trimming the opposite corners of the patch, also known as 

the notching technique, to create diagonal resonances, which then leads to 

degeneration. As a result, this allows the antenna to radiate a CP wave. In this 

study, we used the following formula to solve for the notching value by applying 

a scaling factor (SF) to the patch. 

 Notching Value =
L

2
(1 − SF) (2) 

In Figs. 2 through 5, it can be seen that as SF increases, the size of the notch at 

each corner increases as well. 

 

Fig. 2 SF = 0 
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Fig. 3 SF = 0.25 

 

Fig. 4 SF = 0.75 
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Fig. 5 SF = 1.25 

2. Experiment and Calculations 

For simulation purposes, the 2 patches with varying dielectric materials were 

tested separately for initial comparison. Figures 6 through 8 exhibit the variables 

used in this study to calculate the various antenna parameters. The coaxial probe, 

which acts as a feed point, is designed to have a 50-Ω impedance. The variable 

list is shown in Tables 1 and 2 for the S-band patch and the X-band patch, 

respectively. 
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Fig. 6 Transverse plane (XY plane) of patch 
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Fig. 7 Normal (YZ) plane of patch antenna 

 

Fig. 8 HFSS patch antenna model, 3-dimensional view 
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Table 1 Variable list for Rogers 5870 

Name Description Value/Unit 

L Length of Patch Antenna 10.5 mm 

Cx X-direction of coax 0 

Cy Y-direction of coax 0 

Cz Z-direction of coax 0 

H Height of dielectric 1.5 mm 

NV Notching Value 0 

Table 2 Variable list for Rogers 6010 

Name Description Value/Unit 

L Length of Patch Antenna 16.5 mm 

Cx X-direction of coax 0 

Cy Y-direction of coax 0 

Cz Z-direction of coax 0 

h Height of dielectric 2 mm 

NV Notching Value 0 

2.1 Patch on Rogers 5870 

We wanted the X-band element to radiate at 9.35 GHz on the Rogers 5870 

material. As a result, the patch length was calculated as follows 

𝜆 =
c (Speed of Light)

f ∗ (√ϵrμr)
=

3 ∗ 108

(9.35 ∗ 109) ∗ (√2.33)
≈ 0.021 m; 

𝑳 =
λ

2
=
0.021

2
≈ 𝟏𝟎. 𝟓 𝐦𝐦 

Table 1 displays the variables used to design the antenna to verify the HFSS 

simulation setup. 

The feed point was swept from the center of the patch (0,0,0) to the outer edge 

(0,3.2,0) to locate the position at which the patch resonated best. As shown in  

Fig. 9, the S11 plot shows that the best curve corresponds to a 9.26-GHz 

frequency with a –25.71-dB null. This occurs when the probe is 2 mm away from 

the center position of the patch, as shown in Fig. 10.  
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Fig. 9 Return loss for varying feed points in Rogers 5870. Best S11 curve corresponds to 

Cy = 2 mm. 
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Fig. 10 Probe 2 mm away from center position, which corresponds to a 9.26-GHz 

frequency 

Next, the notching technique was implemented by trimming opposite corners of 

the patch. A parameter sweep was performed on HFSS from a 0.36 to 0.51 SF. As 

shown in Fig. 11, the best S11 curve is found when the scaling factor was equal to 

0.46 resulting in a notching value of 2.83 mm shown in Fig. 12. 
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Fig. 11 Return loss for varying SF in Rogers 5870 
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Fig. 12 SF = 0.46 on Rogers 5870 substrate with feed point 2 mm from center position 

After finding the best SF to notch the patch, an axial ratio calculation was 

performed, as shown in Fig. 13. With the coax probe 2 mm away from the center 

of the patch, the best SF value of 0.46 corresponds to 9.35 GHz with an optimal 

axial ratio at 1.11 dB.  
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Fig. 13 Axial ratio for the best SF—corresponds to 9.35 GHz with an optimal axial ratio of 

1.11 dB 

Lastly, the realized gain was calculated to confirm the S11 curves and axial ratio 

results as shown in Fig. 14. The patch experienced a 6.19 dB peak realized gain to 

boresight at 9.35 GHz for optimal axial ratio. 
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Fig. 14 Radiation plot at 9.35 GHz for optimal axial ratio. Boresight pattern with a  

6.19-dB gain. 

2.2 Patch Rogers 6010 

We wanted the S-band element to radiate at 2.83 GHz. The calculations below 

show the length of the patch if the S-band patch was placed on the Rogers 5870:  

𝜆 =
c (Speed of Light)

f ∗ (√ϵrμr)
=

3 ∗ 108

(2.83 ∗ 109) ∗ (√2.33)
≈ 0.069 m; 

𝑳 =
λ

2
=
0.069

2
≈ 𝟑𝟒. 𝟕 𝐦𝐦 

We can see that the S-band patch shrinks by approximately 18.2 mm or 52.4% by 

placing it on the Rogers 6010 substrate instead per the calculations below:  

𝜆 =
c (Speed of Light)

f ∗ (√ϵrμr)
=

3 ∗ 108

(2.83 ∗ 109) ∗ (√10.2)
≈ 0.033 m; 

𝑳 =
λ

2
=
0.033

2
≈ 𝟏𝟔. 𝟓 𝐦𝐦 

The feed point was swept from the center of the patch (0,0,0) to the outer edge 

(0,7.2,0) to locate the position at which the patch resonated best. As shown in  

Fig. 15, the S11 plot shows that the best curve corresponds to a 2.83-GHz 

frequency with a –12.76-dB null. This occurs when the probe is 2.4 mm away 

from the center position of the patch, as shown in Fig. 16.  
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Fig. 15 Return loss for varying feed points in Rogers 6010. Best S11 curve corresponds to 

Cy=2.4 mm. 
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Fig. 16 Probe 2.4 mm away from center position, which corresponds to a 2.83-GHz 

frequency 

As performed on the Rogers 5870, the notching technique was implemented by 

trimming the opposite corners of the patch. A parameter sweep was performed on 

HFSS of a 0.01 to a 1.11 SF. As shown in Fig. 17, the best S11 curve is found 

when SF was equal to 0.21 resulting in a notching value of 6.52 mm as shown in 

Fig. 18. 
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Fig. 17 Return loss for varying SF in Rogers 6010 
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Fig. 18 SF = 0.21 on Rogers 6010 substrate with feed point 2.4 mm from center position 

After executing the axial ratio test as shown in Fig. 19, it was found that the 

SF=0.21 corresponds to 2.83 GHz with an optimal axial ratio of 1.61 dB. 
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Fig. 19 Rogers 6010 axial ratio for the best SF—corresponds to 2.83 GHz with an optimal 

axial ratio of 1.61 dB 

Figure 20 exhibits that the patch containing the Rogers 6010 substrate experiences 

a 4.62-dB peak realized gain to boresight at 2.83 GHz for optimal axial ratio. 
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Fig. 20 Rogers 6010 radiation plot at 2.83 GHz for optimal axial ratio. Boresight pattern 

with a 4.62-dB gain. 

3. Results and Discussion 

We were able to effectively obtain an optimal impedance match, axial ratio, and 

realized gain for 2 antennas designed at 2 frequency bands on 2 different 

substrates. Testing the feed point in various locations on the patch allows the 

designer to improve the S11 and radiation pattern. The best return loss does not 

necessarily correspond to the best axial ratio, therefore, the engineer must account 

for the tradeoffs in S11, axial ratio, and the radiation pattern.  

A dielectric with high permittivity lowers the resonant frequency of the patch, 

allowing the designer to shrink the size of the patch. We were able to shrink the 

size of the S-band patch by 52.4% due to placing it on a Rogers 6010 substrate 

instead of a Rogers 5870 substrate. Optimizing the axial ratio by using a 

“notching” technique allows the antenna to achieve CP with a single feed point.  

4. Future Work 

We wish to demonstrate that we can combine a high frequency and low frequency 

elements in the same antenna for dual-band performance. We believe that 

combining a high frequency and low frequency element in the same antenna for 
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dual-band performance will be an agile, adaptable, and cost-effective solution for 

future US Army Research Laboratory (ARL) projects. Figures 21 and 22 show the 

envisioned geometry of such an antenna. This antenna would achieve both right-

hand CP (RHCP) and left-hand CP (LHCP) at 2 frequency bands.  

 

Fig. 21 Transverse (XY) plane of the proposed dual-band antenna design 
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Fig. 22 HFSS model of the dual-band antenna, 3-dimensional view 
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