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1 OBJECTIVES
Current social network analytic methods analyze a static aggregate graph, which at provides a limited view of the
structure and behavior of real-world social networks. Real-world networks are dynamic: they evolve over time as
new connections form between individuals, and networks themselves act as a substrate for the flow of information and
influence. Ignoring dynamics can produce a distorted, and even wrong, view of who the important individuals are in
a social network, what is the nature and strength of the connections between them, and what are the communities of
similar or similarly-behaving individuals. The erroneous conclusions reached by static network analysis will waste
analysts’ time and resources.

For these reasons, we proposed to develop network analysis methods that directly incorporate time. The research
had two major threads:

• Understand how networks evolve over time, and how changes in topology affect evolution of influence and
groups

• Understand the impact of dynamics and network flows on the measurement of network structure

Progress in dynamic network analysis was hampered by scarcity of large-scale network data sets with fine-grained
temporal resolution. We mainly worked with two dynamic network data sets: citations data, representing citations
between physics articles over a period of 100 years, and online social network data we collected from social media
sites such as Digg and Twitter. While some of the models and observations are limited to these particular network data
sets, we believe that the methods and approaches we developed using these data sets will generalize to other dynamic
networks.

Below we describe our technical approach to address these questions and significant accomplishments.

2 DYNAMIC NETWORK ANALYSIS

2.1 Measuring Influence in Dynamic Networks
Centrality measures a node’s importance or influence in a network. Over the years a variety of measures have been
proposed for node centrality, including degree centrality, Katz status score [1], alpha-centrality [2], eigenvector [3]
and betweenness centrality [4], and variants based on random walk, such as PageRank [5]. Consider, specifically,
alpha-centrality as defined by Bonacich, which measures the total number of paths of any length between two nodes
i and j, with longer paths contributing less to the centrality than shorter paths. Let A be the adjacency matrix of a
network, such that Aij = 1 if an edge exists from i to j and Aij = 0 otherwise. The alpha-centrality matrix is given
by:

C(α) = A+ αA2 + α2A3 + ...

where α is the attenuation factor along an edge. This parameters sets the length scale of interactions. For α = 0,
alpha-centrality takes into account direct edges only and reduces to degree centrality. As α increases, this becomes
a more global measure, taking into account more distant interactions. However, α is bounded by the inverse of the
largest eigenvalue of A. As α→ 1/λmax, alpha-centrality approaches eigenvector centrality [6]. In numerous works,
we showed that alpha-centrality is a useful measure of identifying important nodes in a network [7, 8, 9, 10]. In a
dynamic network, where edges may change over time, the notion of a path must be refined to include time. To this
end, we defined dynamic alpha-centrality matrix [11], which considers paths over time-dependent edges in a network.

In addition to dynamic alpha-centrality, we introduced two new measures of centrality for growing networks. The
first, effective contagion matrix [12], overcomes the recency bias of centrality measures that fail to recognize important
new nodes that have not had as much time to accumulate links as their older counterparts. The second approach to
dynamic centrality [13] extends the notion of a time-dependent paths introduced in our earlier work to consider all
paths, a cascade, emanating from a node in a dynamic network. Comparing the size and structure of cascades [14]
generated by two nodes enables us to compare them in importance.

Figure 1(a) illustrates our idea. A seed (red node) represents an established paper in a field of research. The paper’s
influence grows over time as new papers cite it and are later cited by other papers, creating a cascade of citations that
can be traced back to the seed. A challenger (blue node) is a paper that advocates a new paradigm. It attracts new
citations from papers shown as white nodes with blue background, leaving the complement cascade (green nodes)
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Table 1: Top ten challengers to the 1957 “Theory of Superconductivity” identified by (a) proposed method and (b)
baseline.

Year Cites Title
(a) our method: sorted by disruption score

1958 14 Meissner Effect
1958 307 Random-Phase Approximation ... Superconductivity
1959 40 Evidence for Anisotropy of the Superconducting Energy...
1989 574 Phenomenology of ...Cu-O high-temperature supercon...
1987 368 Antiferromagnetism in La2CuO4−y
1987 281 Two-dimensional antiferromagnetic quantum ...
1988 149 Ba2YCu3O7: Electrodynamics of Crystals ...
1990 156 High-resolution angle-resolved photoemission ...
1988 399 Low-temperature behavior of two-dimensional quantum ...
1995 95 Momentum Dependence of the Superconducting ...

(c) baseline: sorted by citations
1981 3191 Self-interaction correction to density-functional approx...
1996 3088 Generalized Gradient Approximation Made Simple
1980 2651 Ground State of the Electron Gas by a Stochastic Method
1976 2569 Special points for Brillouin-zone integrations
1996 2387 Efficient iterative schemes for ab initio total-energy...
1990 1951 Soft self-consistent pseudopotentials in a generalized...
1991 1950 Efficient pseudopotentials for plane-wave calculations
1975 1597 Linear methods in band theory
1992 1567 Atoms, molecules, solids, and surfaces:...
1992 1445 Accurate and simple analytic representation...

The disruption score can be visualized as the area between the red and green curves in Figure 1(b) from t0 to t0 + τ .
The disruption score allows us to identify and measure the impact of the challenger paper.

We applied the disruption score to identify transformative physics articles published by the American Physical
Society (APS). Through several case studies we showed that the proposed method is better able to identify successful
challengers than alternative baseline that considers the number of citations received by the paper. Further, we demon-
strated that our method identifies more relevant challengers than baseline. Moreover, challenger’s success is evident
early on, allowing for early detection of transformative research.

2.1.1 Case Study.

In 1957 Bardeen, Cooper and Schrieffer published a seminal paper titled “Theory of Superconductivity” which ex-
plained the mechanism by which some metals became perfect electrical conductors (i.e., they lost their electrical
resistance) at low temperatures. The authors were awarded a Nobel prize for this discovery in 1972. This paper is one
of the ten most cited papers in the APS dataset.

Table 1 lists the ten top-ranked challengers identified by our method and the baseline (number of citations). Com-
pared to baseline, our method identifies papers that are relevant to the topic of superconductivity. All ten of the top
challengers identified by baseline are papers dealing with calculations of electronic structure of materials, and include
other most-cited papers in the APS dataset. While this is a very important topic, it is only peripherally related to
superconductivity, in as much as this phenomenon is a result of correlated electron pairs.

The proposed method discovered papers on high temperature superconductivity (HTS). The discovery of HTS
was an important development in the study of superconductivity, recognized with a Nobel prize in 1987. Although
the original paper announcing the discovery is not in our dataset, presence of several other papers on HTS among
the top challengers demonstrates the efficacy of our method to identify disruptive papers. These challengers include
“Antiferromagnetism in La2CuO4−y”, “Two-dimensional antiferromagnetic quantum spin-fluid state in La2CuO4”,
“Ba2YCu3O7: Electrodynamics of Crystals with High Reflectivity” and “Momentum Dependence of the Supercon-
ducting Sr2CaCu2O8”.
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a virus spreading on it and illicit money exchange taking place, then the node we will want to vaccinate will almost
certainly not be the same as the one that would be targeted by law enforcement. Similarly, if we define a community
in a money exchange network as a group of nodes who frequently exchange money with each other, it most certainly
won’t be the same group that frequently infects each other with a virus. Below we clarify and formalize the impact of
dynamic processes on network structure.

3.1 Dynamics and Centrality
Existing centrality measures examine link structure of the network to identify key individuals within it. However, as
we argued previously, centrality is intimately related to dynamic processes taking place on the network, processes
which determine how information, disease or goods flow on the network. For example, by modeling Web surfing
as a random walk, PageRank assigns a score to each Web page based on its value in the equilibrium distribution of
the random walk. In contrast, central individual in a social network through which a disease is spreading is one who
infects most others. Such influential individuals are scored highly by the Katz index or Bonacich’s Alpha-Centrality,
both of which give the equilibrium distribution of an epidemic process on a network [9, 10].

Now consider information spreading through a population, for instance, by users sending messages or product
recommendations to their friends using email or social media. We have demonstrated recently that information spread
cannot be modeled as an epidemic diffusion. Instead, cognitive constraints, such as limited attention are important [16].
Attention is the psychological mechanism that controls how we process incoming stimuli and decide what activities to
engage in. Actions, such as reading a tweet, browsing a Web page, or reading a science article, require mental effort,
and since human brain’s capacity for mental effort is limited, so is attention. As a consequence, the more stimuli
people have to process, the smaller the probability they will respond to any one stimulus.

Cognitive constraints the nature of social interactions and therefore, how central nodes are identified. Now a node’s
capacity to infect others depends not only on how many connections it has but also on who and how many others
these nodes are connected to. We have recently introduce a new centrality for social networks — limited-attention
Alpha-Centrality (laAC) — that model attention-limited nature of social interactions and provide their mathematical
definitions. We also developed fast approximate algorithm to calculate this measure on large graphs and provided its
performance guarantees.

Alpha-Centrality measures the total number of paths from a node, exponentially attenuated by their length. Bonacich
introduced this measure as a generalization of the index of status proposed by Katz, and it is sometimes referred to
as Bonacich centrality. Alpha-Centrality vector cr(α, s) can be defined iteratively in terms of adjacency matrix of the
graph A:

cr(α, s) = s+ αA · cr(α, s), (3)

where the starting vector s = AeT is taken as out-degree centrality [2].
Alpha-Centrality gives the steady state distribution of an epidemic process on a network [10], where α is the

probability to transmit a message or influence along a link. Therefore, ith entry of cr can be interpreted as the number
of infections directly or indirectly caused by node i (see attached paper for more details).

(a) AC (b) laAC

Figure 4: Directed network with sizes of nodes weighed by their score according to (a) Alpha-centrality and (b)
limited-attention Alpha-centrality of the influence graph.
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Let us now consider the case in which a node’s capacity to receive incoming stimuli — whether messages or
viruses — is limited. While attention need not be distributed uniformly over friends — some friends may receive a
greater share of a person’s attention due to familiarity, trust, social closeness, or influence — for simplicity, we assume
that each friend receives the same fraction of a person’s attention. Therefore, the probability that node j will receive a
message broadcast by iwill be proportional to 1/din(j), where din(j) is the in-degree of node j. The limited-attention
Alpha-Centrality matrix can be written in terms of the modified adjacency matrix M = AD−1

in as:

Cla = M + αM2 + α2M3 + α3M4 + . . .

The limited-attention Alpha-Centrality vector lacr(α, s) can also be written in iterative form:

lacr(α, s) = s+ αAD−1
in ·

la cr(α, s), (4)

with the starting vector s = AD−1
in e

T . Figures 4 illustrates the differences between Alpha-Centrality and its limited-
attention variant.

Note that we have developed fast approximate algorithms to compute Alpha-Centrality and limited-attention
Alpha-Centrality.

(a) Digg (b) Twitter

Figure 5: Correlation of rankings of (a) Digg and (b) Twitter users found by different measures of centrality with the
empirical influence ranking.

We evaluated the performance of the centrality measures on the task of identifying influential users of large net-
works from social media sites containing hundreds of thousands of users. However, in order to evaluate the perfor-
mance of centrality, we need a relevant measure of influence. User activity provides us with an empirical measure of
influence. When a user posts a URL on Digg or Twitter, she broadcasts it to all her followers. We refer to this user as
the submitter. Whether or not her follower will re-broadcast the URL (i.e., retweet it on Twitter or vote for it on Digg)
depends on its quality and submitter’s influence. Assuming that URL’s quality is uncorrelated with the submitter, we
can average out its effect by aggregating over all URLs submitted by the same user. The residual difference in the
amount of attention the followers pay submitter by re-broadcasting her messages can be attributed to variations in
submitter’s influence. Therefore, we use the average number of times the URLs submitted by the user are re-broadcast
by her followers as the empirical measure of influence.

Figure 5 shows how well the rankings produced by different centralities correlate with the empirical influence
rankings of users who submitted at least two URLs which were rebroadcast at least ten times. We use Spearman rank
correlation because it is less sensitive to variations in scores, and we expect some variation to arise in approximate
centrality scores. Limited-attention Alpha-Centrality correlates better with the empirical measure of influence than
Alpha-Centrality over a broad range of α values, consistent with our claim that laAC is a better measure for predicting
central social media users, because it better models the dynamics of online communication than AC. On Digg, AC
appears to outperform laAC for small values of α. Since α can be thought of as the scale of interaction, this implies
that locally, AC better predicts influential users. This could be the consequence of the fact that our measure of
influence, i.e., number of re-broadcasts by followers, is a local measure. In the future, we plan to compare the
performance of centrality measures using a global measure of influence, for example, the average size of cascades
triggered by submitted URLs. We did not expect limited-attention PageRank (laPR) (described in the accompanying
paper) to predict influence rankings of Digg and Twitter users, since the dynamic process this centrality models does
not at all describe communication patterns of social media users, and we found no correlation.
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3.1.1 Relevant Publications.

• R. Ghosh and K. Lerman. Rethinking centrality: The role of dynamical processes in social network analysis.
Discrete and Continuous Dynamical Systems Series B, 19(5):1355 – 1372, July 2014.

• Lerman, K.; Jain, P.; Ghosh, R.; Kang, J.; and Kumaraguru, P. Limited Attention and Centrality in Social
Networks In Proceedings of International Conference on Social Intelligence and Technology (SOCIETY), 2013.

• R. Ghosh and K. Lerman. Parameterized centrality metric for network analysis. Physical Review E, 83(6):066118,
June 2011.

3.2 Dynamics and Communities
Dynamics processes also affect the emergent communities. We illustrate on a simple example of opinion formation.
Imagine a network of interacting agents, each holding an opinion. Each interaction causes agents’ opinions to become
more similar. As the network evolves over time, opinions of agents within the same community converge faster than
those of other agents. This framework allows us to study how network topology and interactions, which mediate
the transfer of opinions between agents, both affect the formation of communities. In traditional models of opinion
dynamics, agents interact via one-to-one opinion transfer. Such conservative interactions can be modeled as random
walks. However, social interactions are often non-conservative, resulting in one-to-many transfer of opinions. These
interactions result in different emergent patterns of consensus — or communities of agents holding the same opinion.

We simulated dynamics of opinion formation in the real-world networks of the Digg follower graph and Facebook
friendship graph. We simulated two different interaction models: one-to-one and one-to-many interactions. Both
types of models revealed similar “core and whiskers” community structure in each network, with a giant core and
small communities, or whiskers, loosely attached to the core. Furthermore, this structure was multi-scale. Isolating
the core, and simulating dynamics of opinion formation within it revealed finer-grained structure, with another core
and small “whiskers” attached to it. However, the composition of the giant cores identified by the two interaction
models were very different.

(a) (b)

Figure 6: Properties of small communities found in the Digg mutual follower graph by the two interaction models. (a)
Number of small communities at different resolutions scales. (b) Average number of co-votes made by community
members.

Figure 6(a) shows the number of small communities (whiskers) resolved by the two interaction models at different
resolution scales, measured by closeness to the center of the core. One-to-many (non-conservative) interaction model
assigned many more users to such communities than the one-to-one (conservative) interaction model. The rest of the
users fragmented into isolated pairs or singletons, who did not synchronize their opinions with any others. How does
the quality of the discovered communities differ? We measure similarity of two Digg users by the number of stories
for which they both voted, i.e., co-votes. Then, averaging over co-votes of all connected pairs of community members,
we obtain a measure of community “cohesiveness.” As seen in Figure 6(b), average number of co-votes increases at
finer resolution scales, producing more cohesive communities in the center of the core.

8
Approved for Public Release; Distribution Unlimited.



(a) (b)

(c) (d)

Figure 7: Properties of small communities found in the Facebook network of American University by the two inter-
action models. Each plot shows at different resolution scales the probability of occurrence of the most frequent value
of user features (a) major, (b) dorm, (c) year, (d) category of individual. Conservative and non-conservative refer to
one-to-one and one-to-many interactions respectively.

How do the small communities discovered at different resolution scales by the two interaction models in the Face-
book social network differ? We look at four features of users in the data set — major, dorm, year and category of
individual — and calculate the prevalence of feature values among community members. The community is char-
acterized by the prevalence of the most popular feature among its members, or its cohesiveness with respect to that
feature. For example, when using the dorm feature to characterize the community, dorm cohesiveness is the largest
fraction of community members that belong to the same dorm. Figure 7 shows the cohesiveness of communities
found by the two interaction models at different resolution scales with respect to some feature generally increase at
finer resolution scale. This suggests that individuals in the center of the core are far more similar to each other than
peripherally connected individuals. More importantly, the characteristics of the community structure discovered by
conservative and non-conservative interaction models vary significantly.

3.2.1 Relevant Publications.

• R. Ghosh and K. Lerman. The Impact of Network Flows on Community Formation in Models of Opinion
Dynamics. to appear in J. of Mathematical Sociology.

• L. M. Smith, K. Lerman, C. Garcia-Cardona, A. G. Percus, and R. Ghosh. Spectral clustering with epidemic
diffusion. Physical Review E, 88(4):042813, Oct. 2013.

• K. Lerman and R. Ghosh. Network Structure, Topology and Dynamics in Generalized Models of Synchroniza-
tion. Physical Review E, 86(026108), 2012.
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3.3 Dynamics and Link Prediction
As described above, predicting new links in networks is a critical capability, both for the military and for commercial
applications, such as product and social recommendation. Link prediction heuristics take network’s current structure
into account to predict new links that will form between existing nodes. A variety of link prediction heuristics have
been proposed, including neighborhood overlap, the Adamic-Adar score, which weighs the contribution of each com-
mon neighbor by the inverse of the logarithm of its degree, and number of paths connecting the two nodes. In general,
link prediction heuristics consider how close two nodes are in a network. In the money exchange network, for exam-
ple, two individuals can be considered to be close even if they don’t know each other, if the money distributed by one
is often received by the other. In other words, the probability that a random walk originating at one node reaches the
other measures the proximity of two nodes in the network.

We argue that proximity should take into account the ability to exchange information or to influence with each
other. This is determined by the dynamic processes taking place on the network, i.e., the processes by which informa-
tion or influence is transmitted from one node to another.

In this project, we unified link prediction heuristics by viewing them as instances of network proximity under
different dynamics, and introduced new ones based on other dynamic processes. The heuristics we examined are listed
in Table 2. Note, that these are defined for directed networks, where Γin(v) refers to the in-neighbors of node v, i.e.,
din(v) nodes whose edges are incident on v, where din(v) is the in-degree of v, and similarly for the out-neighbors.
In addition to existing ones, we introduced new heuristics based on node’s limited bandwidth. Consider a process
in which a node’s capacity to receive incoming messages is limited by its bandwidth. As a consequence, the more
incoming connections (in-links) a node has, the less likely it is to receive a message from an arbitrary connection,
e.g., because it has already reached the limit of its capacity by processing other incoming messages. This alters the
character of the flow and leads to novel measures of network proximity, that we call limited-bandwidth or limited-
attention epidemics or random walks.

Table 2: Heuristics used in link prediction applications. Popular existing link prediction heuristics appear above the
double line: number of common neighbors, Jaccard and Adamic-Adar score, and resource allocation. Below the
double line are link prediction heuristics introduced in this paper.

name symbol definition
common neighbors CN CN = 1

2

[
|∆|+ |∆′|

]
Jaccard score JC JC = 1

2

[
|Γout(u)∩Γin(v)|
|Γout(u)∪Γin(v)| + |Γout(v)∩Γin(u)|

|Γout(v)∪Γin(u)|

]
Adamic-Adar AA AA = 1

2

[∑
z∈∆

1
log(d(z)) +

∑
z′∈∆′

1
log(d(z′))

]
resource allocation RA RA = 1

2

[∑
z∈∆

1
d(z) +

∑
z′∈∆′

1
d(z′)

]
conservative CS CS = 1

2

∑
z∈∆

1
dout(u)dout(z)

(random walk) + 1
2

∑
z∈∆′

1
dout(v)dout(z)

limited-bandwidth lCS lCS = 1
2

∑
z∈∆

1
dout(u)din(z)dout(z)din(v)

conservative + 1
2

∑
z∈∆′

1
dout(v)din(z)dout(z)din(u)

non-conservative NC NC = 1
2

[
|∆|+ |∆′|

]
(epidemic)

limited-bandwidth lNC lNC = 1
2

∑
z∈∆

1
din(z)din(v)

non-conservative + 1
2

∑
z∈∆′

1
din(z)din(u)

hybrid conservative hCS hCS = 1
2

[∑
z∈∆

1
dout(z)

+
∑
z∈∆′

1
dout(z)

]
hybrid limited-bandwidth hlCS

conservative
hybrid non-conservative lNC

hybrid limited-bandwidth hlNC
non-conservative
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Table 3: Networks studied in the missing link prediction task and their properties.

network nodes edges missing density
social networks

dolphins 62 159 16 0.084
email 1133 5452 545 0.0085
jazz 198 2742 274 0.14

connect 1095 7825 783 0.014
hep-th 8710 14254 1425 0.0003

netscience 1461 2742 274 0.0013
imdb 6260 98235 9824 0.005

technological networks
us air 332 2126 212 0.0193

power grid 4941 6594 660 0.0004
biological networks

protein 1870 2277 228 0.0013
c. elegans 453 2040 204 0.02

We conducted experiments on a variety of networks belonging to three categories: Social, Technological and
Biological networks. Table 3 lists some of the statistics of the datasets. We evaluated the performance of link
prediction heuristics on the missing link prediction task in these networks. Since all the networks studied here are
undirected, some of the heuristics are mathematically equivalent: CS = lNC, RA = hCS = hlNC, and CN =
NC = hNC.

We ran several trials of the link prediction task for each network. In each trial, first, we randomly remove 10%
of all edges and assign them to the test set Etest. The remaining 90% of links comprise the training set, the graph
Gtrain = (V,Etrain). We then compute network proximity using a given link prediction heuristic for all pairs of
nodes |V × V − Etrain| and rank them in decreasing order. We score the prediction based on how many of top-M
predicted edges are correct. This allows us to compute a curve showing precision@M, the ratio of the number of
correctly predicted links within the M edges with the highest score.

social networks biological networks technological networks

Figure 8: Aggregated performance of different link prediction heuristics.

We compare the performance of different link prediction heuristics by measuring the area under the precision
curve. Figure 8 aggregates these measure across all datasets within each domain, giving us a sense of their relative
performance. First thing we note is that there is a wide variation in performance of different link prediction metrics, we
a popular Jaccard similarity performing poorly in many networks. However, some metrics perform consistently better:
RA, AA and hlCS are consistently among the top performing measures. RA measure is related to random-walk
based measure CS and limited-attention epidemic, and both AA and hlCS are variants of this measure. Though we
cannot confirm whether it is the random walk or the limited attention that leads to better performance (since random
walk is mathematically equivalent to a limited-attention epidemic in an undirected graph), this study indicates that a
practioner should be careful about choosing an appropriate metric for the task, one that reflects the phenomena taking
place in the network.

11
Approved for Public Release; Distribution Unlimited.



3.3.1 Relevant Publications.

• Narang, K.; Lerman, K.; and Kumaraguru, P. Network Flows and the Link Prediction Problem In Proceedings
of KDD workshop on Social Network Analysis (SNA-KDD), 2013.

3.4 Generalized Laplacian Framework
Our major accomplishment was the mathematical framework to model dynamics on networks. This framework unifies
several well known centrality and community measures under a single model. In this dynamics-oriented view, a node’s
centrality describes its participation in the dynamical process taking place on the network. Similarly, communities are
groups of nodes that interact more frequently with each other [9].

The mathematical framework we developed is general and flexible, able to represent a variety of dynamical pro-
cesses. At the core of this framework is the generalized Laplacian matrix:

L = (TDW )−1/2−ρ(DW −W )(DWT )−1/2+ρ. (5)

Compared with the traditional symmetric normalized Laplacian D−1/2(D − A)D−1/2, generalized Laplacian has
three additional parameters corresponding to different linear transformations. These transformations relate the differ-
ent dynamical processes to the random walk.

1. ρ: Similarity transformation. It is an equivalence relation on the space of square matrices, leading to seemingly
unrelated formulations which are in fact the same dynamics under different basis. While ρ technically can be
any real number, in this work we limit ourselves to three special cases: ρ = 1/2, 0,−1/2. These cases corre-
spond to three equivalent formulations we shall call “consensus”(LCON ), “symmetric”(LSYM ) and “random
walk”(LRW ) respectively. While we use LSYM for mathematical convenience, it is often more intuitive to
think from the random walk or consensus perspective.

2. T : Scaling transformation. T is the n× n diagonal matrix of vertex delay factors. Its ith element τi represents
the average delay of vertex i. Without loss of generality, we assume that τi ≥ 1, for all i ∈ V . Scaling
transformation can be understood as rescaling the local delay at each vertex i by τi, with the dynamical process’s
waiting times between jumps exponentially distributed as the PDF f(t, τ) = 1

τi
e
− t
τi .

3. W : Reweighing transformation that gives new weights to edges of the network. We use the interaction matrix
W instead of the adjacency matrixA. Note that the degree matrixDW is now also defined in terms ofW , that is
dW i =

∑
j wi,j . While the scaling transformation changes the delay at each vertex, reweighing transformation

changes the trajectory of a dynamic process. For example, a biased random walk with transition probability
Pij ∝ αiAij is equivalent to an unbiased random walk on the reweighed “interaction graph” W with entries
wij = αiAijαj .

The generalized Laplacian framework is flexible enough to capture a variety of well-known processes, such as
random walks and epidemics, but also describe less-studied processes.

Normalized Laplacian If the interaction matrix is the adjacency matrix W = A and vertex delay factor is the
identity T = I , with ρ = 0 we recover the symmetric normalized Laplacian:

LSYM = I −D−1/2AD−1/2.

Under similarity transformations, normalized Laplacian is equivalent to some well studied dynamical processes. For
example, by setting ρ = −1/2 we have the unbiased random walk

LRW = I −AD−1 ,

where AD−1 forms a stochastic matrix whose ijth entry is the transition probability Pij . Setting ρ = 1/2 we have
the consensus formulation

LCON = I −D−1A ,

where each vertex updates its “belief” based on the weighted average “beliefs” of its neighbors.
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(Scaled) Graph Laplacian When W = A, T = dmaxD
−1, the generalized Laplacian operator corresponds to the

(scaled) graph Laplacian
L = 1/dmax(D −A).

Notice that by setting T = dmaxD
−1, the diagonal matrix TDW becomes effectively a scalar. As a result, different

similarity transformation (changing ρ) lead to identical linear operators. This operator is often used to describe heat
diffusion processes and its LCON interpretation is used for distributed calculation of arithmetic means.

Replicator Let v be the eigenvector of A associated with its largest eigenvalue λmax: Av = λmaxv. We can then
construct a diagonal matrix V whose elements are the components of the eigenvector v. Let us consider the interaction
matrixW = V AV with T = I and ρ = 0:

LSYM = I −D−1/2
W WD

−1/2
W = I − 1/λmaxA

This operator is known as the replicator matrix R, and it models epidemic diffusion on a graph [17, 18]. Setting
ρ = −1/2 we get the maximum entropy random walk on the original graphA.

LRW = I −WD−1
W .

Unbiased Laplacian Normalized adjacency matrix is known asW = D−1/2AD−1/2. With T = dWmaxD
−1
W we

define the unbiased Laplacian matrix:
L = 1/dWmax(DW −W ).

Just like the graph Laplacian, different values of ρ for Unbiased Laplacian lead to the same operator. Its LRW

interpretation is a degree based biased random walk with Pij ∝ d−1/2
i Aij .

These four special cases are related to each other through scaling and reweighing transformations, captured by the
following diagram.

Normalized Laplacian Laplacian

Replicator Unbiased Laplacian

scaling

reweighing+scaling
reweighing reweighing+scaling

Our empirical study demonstrates that these special cases and different transformations in general can lead to
divergent views about who the central vertices are and what are the corresponding communities (see figures). The
above diagram helps us better understand how different measures of centrality and communities relate to each other
under the generalized Laplacian framework.

3.4.1 Generalized Centrality.

Centrality captures how important a node is in a network. Under the generalized Laplacian framework, different
centrality measures are related to solutions of different dynamical processes [10].

Similarity transformations (different values of ρ) lead to the same state vector θ at any time t up to a change of
basis. Based on the connection between centrality measures and the stationary distribution of a random walk, we
generalize the definition of centrality to:

ci = dW iτi . (6)

Generalized centrality reduces to some well known centrality measures by setting the parameters T and W .
They can now be systematically compared by scaling and reweighing transformations between special cases under
the generalized Laplacian framework. They include degree centrality di for Normalized Laplacian, and the square of
eigenvector centrality v2

i for Replicator. First column of the figures illustrate how generalized centrality differ in four
special cases on the same network.
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Figure 9: Different views of the structure of the House of Representatives network (centrality and communities)
resulting from the dynamics specified by different operators.
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Figure 10: Different views of the structure of the Political Blogs network (centrality and communities) resulting from
the dynamics specified by different operators.
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3.4.2 Generalized Conductance and Spectral Clustering.

With generalized Laplacian framework, we can also define a generalized conductance that measures the quality of a
subset S (of vertices) as a potential community. This measure is used in spectral clustering to find optimal cut of the
network into subgraphs representing different communities.

hL(S) =
cut(S, S̄)

min
(
volL(S), volL(S̄)

) =

∑
i∈S,j∈S̄ wi,j

min
(∑

i∈S dW iτi,
∑
i∈S̄ dW iτi

) . (7)

Notice that we have generalized the volume measure of a set S ⊆ V to volL(S) =
∑
i∈S dW iτi, which is the sum of

generalized centrality of member vertices.
With generalized conductance we can extend the classic Cheeger’s inequality, which relates the second smallest

eigenvalue of the normalized Laplacian to the conductance of the best bisection in the network, to their generalized
counterparts under our framework.

(min
S∈V

hL(S))2/2 ≤ λ1 ≤ 2 min
S∈V

hL(S) (8)

These theoretical results eventually lead to efficient spectral clustering algorithm for detecting communities asso-
ciated with different dynamics. Our framework also paves the way for efficient local graph partitioning. Last three
columns of the figures illustrate how generalized conductance of the good partitions found by our algorithm differ in
four special cases on the same network.

Figure 9 and 10 show the centrality profile and community profile obtained by different operators on two bench-
mark networks. The first network, House of Representatives, shows the network of congressmen, where a link rep-
resents a co-vote on a bill. The second network, political blogs, shows hyperlinks between blogs. Centrality profile
gives generalized centrality for each node given a dynamic operator. The community sweep profile in the second
column gives generalized conductance, for a potential community of size k using our spectral clustering algorithm [9].
To improve visualization, both are reordered on the x axis and rescaled on the y axis. The visualizations in the last
two columns are the best bisections found by our algorithm using the indicated special case. As can be seen from
the figures, the centrality profiles under different operators are very different, resulting in alternate visions of who the
important nodes are. In addition, community sweep profiles are also very different, and lead to different partitions of
the same network into communities.

3.4.3 Relevant Publications.

• R. Ghosh, K. Lerman, S.-H. Teng, and X. Yan. The interplay between dynamics and networks: Centrality,
communities, and cheeger inequality. In Proceedings of the 20th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’2014), 2014.

4 DELIVERABLES
Over the course of the project, we delivered code to AFRL. The first deliverable was Netkit, a network analysis toolbox
that includes several centrality computation methods.

The second deliverable was link prediction code that takes as input a network and returns a ranked list of links
more likely, but not yet observed, links.

5 PUBLICATIONS
The work conducted over the course of this project resulted in seven journal publications and many more papers in
conference proceedings.
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS
A adjacency matrix of a network
D diagonal out-degree matrix
DW out-degree matrix of the reweighted network
T node scaling (time delay) factor matrix
I identify matrix
C centrality matrix
cr centrality vector
α parameter in centrality calculations setting the length scale of interactions
laAC limited-attention Alpha-Centrality
CN link prediction heuristic: number of common neighbors
JC link prediction heuristic: Jaccard score
AA link prediction heuristic: Adamic-Adar score
CS link prediction heuristic: conservative score (random walk)
lCS link prediction heuristic: limited-bandwidth conservative score
NC link prediction heuristic: non-conservative score (epidemic)
lNC link prediction heuristic: limited-bandwidth non-conservative
hCS link prediction heuristic: hybrid conservative
hlCS link prediction heuristic: hybrid conservative
hNC link prediction heuristic: hybrid non-conservative
hlNC link prediction heuristic: hybrid limited-bandwidth non-conservative
L Laplacian matrix of the network specifying dynamics
LSYM normalized symmetric Laplacian
LRW random-walk Laplacian
LCON consensus Laplacian
hL conductance of the network with respect to dynamics L
volL volume of the network with respect to dynamics L
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