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Abstract

Mitigating human errors is a priority in the design of complex systems, especially through the
use of body area networks. This paper describes early developments of a dynamic data driven
platform to predict operator error and trigger appropriate intervention before the error happens.
Using a two-stage process, data was collected using several sensors (e.g. electroencephalography,
pupil dilation measures, and skin conductance) during an established protocol - the Stroop
test. The experimental design began with a relaxation period, 40 questions (congruent, then
incongruent) without a timer, a rest period followed by another two rounds of questions, but
under increased time pressure. Measures such as workload and engagement showed responses
consistent with what is known for Stroop tests. Dynamic system analysis methods were then
used to analyze the raw data through principal components analysis and least squares complex
exponential method. The results show that this algorithm has the potential to capture mental
states in a mathematical fashion, thus enabling the possibility of prediction.

Keywords: bio-sensors, dynamic data-driven application systems (DDDAS), least squares complex
exponential (LSCE), error detection

1 Introduction

Human factor studies have shown that nearly 80% of the root causes contributing to major
accidents affecting safety, the environment, and/or economics can be attributed to human
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operator error [18]. Causes for the human operator error are many. In a report for the TNO
Institute for Perception, Raaijmakers [19] discussed the impact of mental and physical stress
on human performance in decision-making situations, specifically for time critical decisions.
Raaijmakers argued, “ ... effects of various stressors (fatigue, sleep loss, time pressure, anxiety,
and cognitive strain) are shown to be task-dependent. At lower levels, fatigue and sleep loss
seem to be the most important stressors; at higher levels, the largest effects are expected to be
time pressure and cognitive strain.” (p. 1).

This paper describes preliminary developments of a dynamic data driven platform to predict
operator error and trigger appropriate intervention before the error happens. Taking advantage
of the advances in commercial grade psychophysiological sensors such as electroencephalogra-
phy(EEG), electrocardiogram(ECG), galvanic skin response (GSR), and eye-tracking systems,
a human operator’s mental and physical states before, during, and after each cognitive activity
is captured in an android device which doubles as the server for a wireless body area network
(WBAN). Thus the operator becomes an integral part of the system through a brain computer
interface(BCI). WBAN server assimilates and fuses data from multiple sensors and streams it
to a stress-intensity simulation model, which, in turn may trigger appropriate intervention.

The rest of the paper is organized as follows: Section 2 describes the methodology, Section 3
presents the preliminary results, Section 4 discusses approaches to raw data analysis; Section 5
presents the results and analysis; and Section 6 concludes the paper.

2 Background Literature

By virtue of being human, it is understood that people will make errors [21]. The field of aviation
has been the most prominent in developing methods for evaluating and preventing human error
through processes and protocols [13, 17]. In recent years, a number of interventions have been
developed to help mitigate human errors. In the automotive industry, new technologies have
been introduced that automatically slow vehicles down prior to rear-ending a car or potentially
hitting a pedestrian [6]. Such methods work through technologies embedded in physical systems.

Psychophysiological measurements provide a means for gathering data directly from people.
These data are physiological measurements that correspond to psychological states. EEG is a
common sensor that has been used in studies to predict future and present cognitive perfor-
mance [20] and to develop a driver drowsiness monitoring system [12]. In [9] a body-mounted
system is developed to prioritize incoming data streams based on the users workload, which is
measured using EEG and ECG signals.

Recent advances in wireless communication and wearable devices have led to the develop-
ment of wireless body-area networked systems. Fletcher et al. developed a wearable sensor
platform for integrating data from skin conductance and heart rate to monitor emotion and
behavior for clinical use. Cognitive Behavioral Therapy could be given automatically based on
bio-signals [11]. Choi et al. established a wearable mental stress monitoring system based on
heart rate, respiration, electromyography (EMG), and electrodermal activity (EDA) [5]. Kumar
et al. further introduced a mobile health system structure to recognize behaviors and deliver
timely interventions [15]. Although several studies have proposed wearable biosensor systems
to track stress or behavior, the method for preventing errors based on these measures is not
well-established.
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(a) (b)

Figure 1: Screen shots of the computer-based Stroop test. (a) A congruent question with a
3-second timer. (b) An incongruent question. The participant has ran out of time.

3 Methodology

3.1 Subjects

The study protocol was approved by the Institutional Review Board on human investigation.
A total of 10 adults volunteered to join the study after passing the prescreening and providing
a written consent form. The first 5 participants were in an initial characterization tests to help
us refine the experimental procedure. We only report the data from the second 5 participants
(2 women and 3 men) who joined the formal study.

3.2 Computer-Based Stroop Test

In order to better record response time and synchronize it with biosignals, a computer-based
Stroop test developed on Qt 5.3 (Qt Project Housing, Norway) was used in the study (Figure 1).
To make the question colors easy to distinguish, we only include primary colors: red, blue, and
green, which is consisted with established Stroop test protocols [7]. Moreover, participants used
arrow keys (left, down, and right) to answer questions. It was intuitive, so participants could
answer as quickly as possible when they figured out the answer. The result of each question
showed on the screen for 0.5 second. If the participant did not answer in time, it showed
”timeout” and was recorded as a wrong answer on the question.

3.3 Equipment

The main approach of this research is to develop a body area network to capture signals from bio-
sensors. In order to obtain holistic psychophysiological responses of participants during decision
making (and various kinds of cognitive activities), 3 types of sensors were used in the proposed
experiment. A B-Alert X10 EEG headset system (Advanced Brain Monitoring, Inc., USA), a
Shimmer3 GSR+ Unit (Shimmer, USA), and a Tobii X60 eye tracker (Tobii Technology, USA)
were utilized to collect brain waves, galvanic skin response, and pupil dilation, respectively. All
data collection was performed and synchronized through iMotions Attention Tool (iMotions,
Inc., USA) on Windows 7 operation system.

B-Alert X10 is a 9-channel EEG system, which records brain waves from mid-line and lateral
sites on the scalp including Fz, Cz, POz, F3, C3, P3, F4, C4, P4 (Figure 2). In addition to raw
waves measured from the above 9 sites in 256 Hz sampling rate, B-Alert X10 generates 4 kinds

3
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Figure 2: Locations and labels of data channels acquired using the B-Alert system [1].

Figure 3: A participant wears the GSR sensor on the left (nondominant) wrist and the EEG
head set, and uses the keyboard to do the computer-based Stroop test. The eye-tracking system
is mounted under the screen monitor for tracking the participants pupils.

of metrics in an epoch of one second for representing cognitive states, which are engagement,
workload, distraction, and drowsy.

Participants skin resistances between 2 electrodes attached to the index and the middle
fingers of the nondominant hand were monitored by the Shimmer 3 GSR+ Unit in 52 Hz
sampling frequency. Skin resistance fluctuates in response to external or internal stimuli [10].
We introduced GSR to the body area network to detect mental stress response.

The proposed experiment is a computer-based test, so a Tobii X60 eye tracker was mounted
on the screen to track how participants pupil dilation responded to stimuli on the screen monitor.
Figure 3 shows the experimental setup of the EEG headset, the GSR sensor, and the eye-tracking
system.

Our ultimate goal is to build a cost-efficient, compact, and portable error early warning
system, and NeuroSky MindWave Mobile (NeuroSky, Inc., USA) will be a possible solution.
NeuroSky is a non-invasive EEG that connects the user to iOS and Android platforms, and
transfers all signal information through Bluetooth as opposed to radio. It can detect brainwaves
ranged from 0.1 Hz to 30 Hz, and divide them into delta, theta, low/ high alpha, low/ high

4
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Figure 4: Example Ul of HelloEEG. Part 1 represents the signal strength Part 2 is the sampled
data of 8 wave ranges. Part 3 is the timestamp. Part 4 is the attention and meditation level
based on NeuroSky algorithm.

beta, and low/high gamma parts. An app called HelloEEG was developed to dump out the
data from Neurosky as in Figure 4. All data are sampled once per second. The attention and
meditation level are calculated based on the 8 wave bands. Attention indicates the user level
of focus and meditation indicates the user level of relaxation.

3.4 Procedure

Participants were briefed with the experimental procedure and signed the consent form at the
beginning of the experiment. After setting up the EEG and GSR sensors, participants were
asked to follow instructions to perform a series of tasks for establishing the EEG baseline.
The personalized baseline was used to generate and normalize cognitive metrics: workload,
engagement, distraction, and drowsy measures. Then participants were asked to follow a dot
on the screen to calibrate the eye tracker. The preparation process took approximate 50 minutes.

The experimental procedure is shown in Figure 5. After finishing calibrations, participants
started to do the experiment with a 3-minute baselining session. They were rested and listened
to the music Bachs Harpsichord Concerto No. 5 in F Minor BWV 1056, which meets the
criterion for being of a relaxing nature [4], and their biosignals recorded from this session were
seen as a relaxed state. Followed by the baseline session was 20 congruent questions without
timer. Within these 20 questions, text and color were the same and participants were able
to answer questions at their own pace. Next was 20 incongruent questions without timer.
Participants were then given a 2-minute rest session, and did 20 congruent and 20 incongruent
questions with 3-second timers. This was followed by another 2-minute rest session, and did
one more set of 20 congruent and 20 incongruent questions, but with 1.5-second timers. Stroop
effect interferes with the reaction time of a task, thus we expected participants were going to
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Figure 5: The proposed experimental procedure. C: congruent; IC: incongruent.

make more errors in incongruent questions with time pressure.
Finally, participants answered a short survey about their previous experience in Stroop test
and their feelings of the timers.

4 Preliminary Results

For obtaining an overview of each cognitive state, the average values of each metric over the
time spent on each session were calculated. Therefore, there were 10 data points of each metric
for each participant. Figure 6 and Figure 7 show the level of engagement and workload of
all participants through the test. Although there were differences between participants, they
tended to show lower engagement during rest sessions including the baseline session, and had
higher engagement when getting familiar with the test (i.e., the first 20 congruent questions)
and under considerable time pressure (i.e., the last 20 incongruent questions with 1.5-second
timers). S003 had a relatively low engagement level in the first test session. This participant
had prior experience with doing the Stroop test, which may have influenced this result. The
workload level did not change as much as engagement, but we noticed that native English
speakers (S004, S005, S007) had higher average workload when doing tests. S007 showed a
somewhat different trend from other participants in both engagement and workload. Based on
the survey result, she/ he did not have enough sleep in the previous night (about 5 hours) and
did not feel stressed when the timer has started.

Figure 8 shows GSR of all participants. The range of skin resistance is individual dependent,
so every participant has her/ his own baseline. The unit of this figure is S; a higher conductance
indicates a higher arousal. In the experiment, the arousal level was associated with the stress
level. Thus, the curves were fitted for the difficulty level, and were similar to the change in
engagement.

In the interest of how biosignals change with the outcome of each question, signals measured
from the EEG headset, the GSR sensor, the eye tracker, and the time spent on each question
were stacked up with the mark of questions answered incorrectly. For example, Figure 9 is the
plot of S005. She/ he showed very low engagement,/ very high distraction in some questions
in the last session, where many errors occurred (9/20). Further experiments and analyses are
needed for identifying the causality. In addition, when she/ he noticed an error was made, or

6
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Figure 6: The overview of the engagement level of all participants through the test. Engagement
is a scale-normalized metric.

Figure 7: The overview of the workload level of all participants through the test. Workload is
a scale-normalized metric.
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Figure 8: The overview of the mental stress level of all participants through the test. The range
or skin resistance varies with people.

adjusted her/ his state from rest to answer questions, the stress level increased. One of the
most common reasons for incorrect responses was to run out of time. participants tended to
answer in a very short period for the question that followed a wrongly answered one.

In the next section, we are going to further look into the 9 raw brain waves. More details
about what we could understand from EEG will be discussed.

5 Approach to Raw Data Analysis

In addition to analyzing the GSR, eye movement and EEG metrics, two methods traditionally
applied to time series data of dynamic systems were applied to the EEG data sets. First
principal component analysis (PCA) was applied to identify differences across data sets acquired
under different testing conditions. Independent component analysis (ICA) is often used in EEG
analysis instead of PCA because of its ability to detect and remove artifacts in the data such as
eye-blinks [8]. ICA has also been shown able to correlate brain activity to behavioral phenomena
including workload [14] and drowsiness [16]. PCA is chosen here in order to investigate its ability
to distinguish relatively long time histories acquired under different test conditions. Further,
training data is not necessary to perform the PCA analysis presented here.

The second method is the least squares complex exponential (LSCE) parameter estimation
technique. The purpose of applying this technique to the EEG data is to investigate the ability
of the LSCE algorithm to identify a model for the data and then to use that model to make a
one-step-ahead prediction of the data. Both the PCA and the LSCE analysis are described in
the following sections.

8
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Figure 9: EEG, GSR, and pupil dilation measured from one participant (S005) while doing the
test. The last raw shows the time spent on each question and rest sessions.

5.1 Principal Component Analysis

Principal component analysis (PCA) uses singular value decomposition to identify principal
values and vectors of a data set. The magnitude of the principal values indicate the contribution
of the corresponding vector in describing the data. In this work, PCA was applied to the set
of EEG time histories acquired from the bAlert system. Data from the nine data channels
(F3,Fz,Fy,C5,Cz,Cq,Py, PO, Py) shown in Figure 2 were compiled into a single matrix, @, as
follows:

Fg(tl) Fz(tl) F4(t1) Cg(tl) Cz(tl) C4(t1) P3(t1) POZ(tl) P4(t1)
F3(ta)  Fz(ta) Fa(ta) Cs(ta) Cz(ta) Cultz) Ps(tz) POgz(tz) Pa(ta)

F3(tN) Fz(tN) F4(tN) Cg(tN) Cz(tN) C4(tN) Pg(tN) POz(tN) P4(tN)
(1)
where N is the number of data points in the selected data set. Singular value decomposition
was then applied to matrix @ to identify the left (vy,) and right(vg) singular (principal) vectors
and the singular (principal) values (SV):

[vr, SV, vg] = svd(Q). (2)

The singular values were used to identify which vectors contribute most to the overall
measured response. The corresponding vectors were then studied to identify the data channels
which were most affected by the changing conditions of the test. This study focused on the
effect of the presence of a timer while subjects answered questions, as described in Section 3.
Therefore, the data from a chosen subject was partitioned into three sets. The first set contained

9
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the data from the first forty questions, in which no timer was present. The second set contained
the data from the second forty questions, in which a timer of 3 seconds was imposed on the
subject. Finally, the third set contained data from the last forty questions, in which a timer
of 1.5 seconds was imposed. The hypothesis explored with this analysis is that changes in
the singular values and vectors from the different data sets correspond to changes in the brain
function caused by the change in test conditions.

5.2 Least Squares Complex Exponential Method

In dynamic systems analysis, the least squares complex exponential (LSCE) method [2] is used
to identify modal parameters from time histories acquired from multiple input-output pairs.
A parallel exists between dynamic data acquired using a single excitation source and multiple
sensors to measure a system’s response and the EEG data acquired here. In both cases, the
system is excited by a source. For traditional dynamic systems, the source is typically an
applied force to the system. In the experiment presented here, a subject’s brain is excited
by the presentation of a question. In traditional dynamics applications, the system’s response
will be affected by its physical properties, boundary conditions, and environmental factors.
Similarly, the response of the subject’s brain will be affected by his or her current mental state
(levels of fatigue, engagement, etc.), the difficulty of the task, and environmental conditions.
With these parallels in mind, the LSCE method was applied to the EEG data.

The purpose of the LSCE method is to identify the parameters, ay, such that
> ahn(tisr) =0 (3)
k=0

where m is the model order, h,,(t) is an impulse response function, n indicates the data channel
of interest, and 7 is an arbitrary starting index within the time vector, . Note that the index
1 must be selected such that i + m is within the bounds of the data. Because an impulse
response function could not be directly determined from the data acquired from the EEG sensors
(impulse response function calculations require the input force to be measured), an operational
impulse response function was used instead. As detailed in [3], the operational impulse response
function of a time history, x(t), is the positive lags of the autocorrelation function, R,.. The
operational impulse response function will be denoted as fl(t), with the ~ distinguishing it from
the standard impulse response function. After substituting in the operational impulse response
function, normalizing the oy terms by «,,, and rearranging, Equation 3 becomes

OéohAn(tmo) + OélhAn(ti—i-l) + -+ Oém—lhAn(ti—i-m—l) = —hp(titm) 4)

Equation 4 has m — 1 unknowns, and, therefore, more equations are necessary in order to
determine the values for the ay’s. The additional equations come from the N different data

10
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channels as well as altering the starting index ¢ within the same data stream:

h(to)  m(t) .o ha(tmo) ] [ It

hy(t1) hi(t2) ... hy(tm) hy(tma1)

hAlA(t;n—l) H} (tm) . h:l(tQ.m—Q) hAlEt2.m+1)

ha(to) ho(ty) ... ha(tm—1) ha(tm)

ho (tl) ho (tz) Ce ho (tm) ZO ho (thrl)

A . A ) . A . .1 - : )
ho(tm—1) ha(tm) ...  ha(tam—2) N '_1 ha(tom+1)

h:N.(to) h:N.(tl) N h}\i(t.m,l) p}v{tm)

hN(tl) hN(tg) hN(tm) hN(tm+1)
iv(tns) Bx(tn) oo Bv(toms)) i (tamn),

After solving Equation 5, the «y and h., values were substituted into Equation 3 and the
mean and standard deviation of the model error were calculated. The results of these analyses
will be presented in Section 6.

6 Results

6.1 Principal Component Analysis

To explore the potential of using PCA to assess brain function, data from one subject (S005)
was analyzed in depth. Future work will expand this approach to include data from multiple
subjects.

Figure 10 shows the singular values for the data from the three test sections (i.e. no timer,
3 second timer, 1.5 second timer) acquired from the chosen subject. In general, the trends for
all three data sets is similar. For all three data sets, the first singular value is significantly
larger than the other eight indicating that the first component contributes most strongly to
the overall response. The singular values of components two through five form a cluster of
components that contribute less than the first, but are distinct from components six through
nine. The dropoff in magnitude of the singular values after component five indicates that the
contributions of components six through nine are not as significant as those of the first five.
Therefore, only the first five components will be used in subsequent analyses.

Figure 11 shows the amplitudes of the first right singular vectors for the three data sets.
Singular vectors determined by singular value decomposition form an orthogonal set of vectors
and are analogous to operational mode shapes in traditional vibrations analysis. The singular
vectors indicate the relative amplitude of response of each of the electrodes for the selected
component. Changes in the amplitude, or ”shape”, of the vector indicates a change in the
measured response for that data set. In Figure 11, the three vectors have distinct shapes. A
possible explanation for these differences is that the addition of a timer affected the subject’s
brain function due to perceived stress caused by the time pressure.

Figure 12 shows the right singular vectors for components two through five for the three data
sets. Component two (vge) is fairly consistent across data sets, but the other three components

11
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Figure 10

Figure 11: First right singular vectors for the data acquired with no timer (blue), 3 second
timer (green) and 1.5 second timer (red).

exhibit distinct differences. In general, the trends exhibited by the vectors associated with the
other three components (vgrs, Vr4, Vrs) progress from the un-timed data set (blue), to the data
set with a 3 second time (green), to the data set with the 1.5 second timer. For example, the
plot of the vgs vectors shows that the shape flattens out near the C3 node as the time-to-
answer is decreased. Conversely, the shape peaks more near the C'4 node as the time-to-answer
decreases. Although these trends are for a single subject, they show the potential for this type
of analysis to distinguish mental states. Future work will be needed to establish statistically
significant correlations between the trends observed here and the human state.

6.2 Least Squares Complex Exponential Analysis

A long term goal of this work is develop predictive capabilities that include determining when
a person is susceptible to poor decision making. Model development is a key component of
that effort. To determine the effectiveness of the model presented in Equation 3, Equation 5
was solved using data from the nine electrode channels and a model order of 16. Data was
first partitioned by question, and a model was determined for the data from each question
individually. This partitioning allowed for comparisons to be made across testing conditions,
since the time-to-answer was decreased for the three sets of questions. To determine how well

12
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Figure 12: Second through fourth right singular vectors for the data acquired with no timer
(blue), 3 second timer (green) and 1.5 second timer (red).

the model describes the data, the distributions of the mean and standard deviation of the
percent error for each question were determined and are shown in Figure 13. These results
show that the model is most accurate when the time pressure is greatest. Figure 13 A shows
that for 26 of the 40 questions presented with the shortest timer, the model error is less than
12% error. Eighty-five percent of all of the data was modeled with less than 25% error. This
model represents one-step-ahead predictive capability. Ongoing work is being conducted to
improve both its accuracy and predictive capability.

7 Conclusions

In this paper we describe a dynamic data driven approach to predict operator error taking
advantage of the advances in commercial grade neuro-physiological sensors. Some elements of
our overall approach described in this paper are: (1) a human system DDDAS is implemented
as a classical dynamic data driven application system. The human operator is wired with
commercial grade B-alert, shimmer, and eye-tracking sensors. Data from these sensors are
assimilated in an android body area network and stream into the stress-intensity simulation
model. The simulation model assesses the stress and intensity of stress in the operator and
generates one period prediction; (2) an experimental method to collect data on human subject;
and (3) analysis and prediction approach based on principal component analysis with singular
value decomposition. The preliminary result of this study is promising. We have shown that

13
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Figure 13: Distributions of (A) mean percent error and (B) standard deviation of percent error
for the LSCE model calculated using data acquired with no timer (blue), 3 second timer (green)
and 1.5 second timer (red).

under stressful conditions, the model can, with reasonable certainty, predict the occurrence of
an error one period in advance. This is significant and with improvement of prediction and
sensor fusion algorithms, we hope to make predictions of errors earlier.
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