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CONSOLIDATED AUTOMATED SUPPORT SYSTEM (CASS) 
EFFICIENCY AND ALLOCATION COST IMPROVEMENT 

 
ABSTRACT 

 
 
 

In this research project, we provide a method in which we incorporated a nonlinear model 

to allocate consolidated automated support system (CASS) stations utilizing real demand. 

In reviewing available literature, we frame the allocation of CASS stations as a problem 

of discrete capacity allocation with stochastic demand, and note that similar problems 

exist in the allocation of other types of service capacity (e.g., hospital beds). We 

employed a nonlinear model to present a better method for allocation. Currently, 

NAVAIR PMA 260 uses an algebraic formula to determine CASS station allocation. The 

nonlinear model takes into account factors that the algebraic formula does not, such as 

aircraft readiness and CASS station utilization. With the model, we generated an 

optimized allocation of CASS stations based on average demand from aircraft 

maintenance action forms received at a Fleet Readiness Center over a given period of 

time. Then, we demonstrate that the optimized allocation can account for monthly, non-

stationary demand inputs, as potentially seen in a fleet response plan. Compared to the 

current allocation of the Fleet Readiness Center analyzed, the optimized allocation 

improves CASS station utilization rates with a decreased overall number of CASS 

stations, without an adverse change in aircraft readiness. 
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I. INTRODUCTION  

A. BACKGROUND 

The U.S. Navy supply chain system faces the same challenges that any other 

supply chain system may encounter. However, demand is the most challenging aspect of 

a supply chain system; its unpredictability generates fluctuations that stimulate the 

development of strategies that aim to achieve a sustainable supply chain system. Battling 

demand’s variability requires organizations to maintain an adequate inventory of safety 

stock which will significantly help prevent a stockout. A stockout has the potential to 

produce costly outcomes that may impact the Navy’s mission.  

In the U.S. Navy, command activities do not always have the option to acquire the 

services of an alternate merchant should a stockout occur. In some situations the 

incapability to acquire a component or service means that the command must wait and 

put on hold its current operation, but in other circumstances placing a mission on hold is 

not a possibility. 

Naval Air Systems Command (NAVAIR) provides full life-cycle support of naval 

aviation aircraft, weapons and systems. Within the NAVAIR command structure is the 

Program Manager Air (PMA) 260, Aviation Support Equipment office. PMA-260’s 

mission is to manage common aviation support equipment and automated test systems 

throughout the entire acquisition process for the U.S. Navy and U.S. Marine Corps. 

Additionally, PMA 260 ensures sufficient capacity of support equipment and automated 

test systems exists to maintain every type/model/series aircraft in the naval aviation 

inventory. 

In our research, we will concentrate on the consolidated automated support 

systems (CASS) test equipment that diagnoses electronic equipment for weapons systems 

ranging from aircrafts, ships and submarines. In this instance, a stockout may be caused 

by the unavailability of required CASS test equipment station to fix a reparable part. The 

utilization of these stations follows the pattern formed by the operation cycle of aviation  

 



 2 

squadrons which generate variability in demand peaks. Generally, these demand peaks 

harmonize with a command’s preparation to an unforeseen or modified deployment 

schedule.  

B. THE CASS TEST EQUIPMENT FAMILY 

The Navy currently possesses 713 stations of CASS, which operate in 

intermediate, depot and factory maintenance levels (Naval Air Systems Command, n.d.). 

The prominence of these stations ashore and afloat is critical in order to achieve mission 

readiness. To provide a better understanding of each of these CASS stations, a brief 

description is provided. 

Hybrid–this station provides the core test capabilities needed for general 
purpose electronics, computers, instruments and flight controls. 

Electro-optic (EO)–Provides hybrid station capabilities plus support 
capabilities for the forward looking infrared, lasers/designators, laser 
range finders and visual systems. 

Radio frequency (RF)–Provides the same capabilities of the hybrid station 
in addition to the ECM, ECCM, EW support measures, the fire control, 
navigation &tracking radars, as well as radar altimeter support capability. 

High power–provides RF station capabilities plus the capability to test 
high power RADAR systems (i.e., APG-65 & APG-73). 

Communications/ navigation/ interrogation (CNI)–Provides RF station 
capabilities plus communication, navigation, interrogation and spread 
spectrum system support capability. 

Reconfigurable Transportable CASS (RTCASS)–Provides as man-
portable CASS configuration using COTS hardware and software to meet 
USMC V-22 and H-1 support requirements as well as to replace 
mainframe CASS stations at USMC fixed wing aircraft (EA-6B, F/A-18 & 
AV-8B) support sites.  

eCASS–This station will replace the five mainframe CASS configurations 
(Hybrid, , EO, RF, CNI and HP). This station entered system design and 
development in 2009 and Low Rate Initial production started in 2012, its 
full rate production decision is scheduled for 2014. (Naval Air Systems 
Command, n.d.) 
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C. UNANTICIPATED FACTORS 

The unpredictability of world events has a great impact on the dynamics, or 

changing variability of demand. The increased involvement of the United States with 

these world events produces a surge in battle group deployments that quickly disturb the 

programmed operation cycles of many commands. This disruption places a stress that 

generates overuse of current CASS test equipment.  

The sequestration challenges caused the U.S. Navy to encounter unforeseen 

challenges while trying to support these battle groups. These struggles forced NAVAIR 

offices to reexamine the allocation methodologies required to ensure that CASS stations 

are utilized to the maximum extent. 
 

D. RESEARCH OBJECTIVE 

In 2010, Akturk and Beckham analyzed the allocation of CASS test equipment. 

They compared NAVAIR PMA-260’s current method of allocating CASS stations to a 

method utilizing linear and nonlinear mathematical models. In their models, they 

compared demand at two thresholds of 50% and a peak period of 95%. The approach of 

using a peak demand of 95% allowed them to allocate a sufficient number of CASS 

stations that significantly reduced the probability of stockout at most demand levels 

(Akturk & Beckham, 2010). 

This project will focus on the U.S. Navy’s CASS test equipment and its allocation 

to Intermediate maintenance level repair sites. We will specifically look at the impact of 

the deployment cycle on utilization rates, extending the static analysis of Akturk and 

Beckham (2010). The project goals are to offer improvements to the allocation process, 

as measured by both the allocation cost and the impact the allocation has on readiness. 

E. ELEMENTS TO BE CONSIDERED 

Naval aviation assets take on many forms; these assets have an intrinsic value and 

carry an operating cost. Assets that are underutilized still incur preventive maintenance, 

operating and manpower costs. In the instance of support equipment, aviation managers 

may choose to place an underutilized asset into a preservation condition to reduce cost. In 
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either scenario, this underutilized piece of support equipment drains scarce funding 

resources. A better way to maintain its significant value may be to utilize it at another 

command where it will generate the productivity and value intended for the equipment.  

Since the number of CASS stations is limited, identifying the underutilized 

stations is a key element that will facilitate the goal to support an intermediate 

maintenance level command before it will encounter an upcoming high demand peak. 

Once this classification of work stations by utilization level is obtained, the station 

allocation process will need to be taken into consideration, leading to the achievement of 

our proposed project objective of leveling utilization and increasing the value of scarce 

stations. 

F. RESEARCH QUESTIONS 

CASS provides a critical capability to ensure the readiness of air forces in the 

Navy. As demand for CASS stations fluctuates over time, moving CASS stations in 

anticipation of demand changes can improve overall utilization despite the costs to move 

the stations.  

1. Primary Research Question 
 What is the most efficient allocation method for CASS test equipment to 

Intermediate maintenance level repair facilities located within the United 
States? 

2. Secondary Research Question 
 How can those allocations be made to be more robust against a Fleet 

Response Plan (deployment cycle)?  

 

  



 5 

II. LITERATURE REVIEW 

We have reviewed articles from both inside and outside the DoD that deal with 

discrete stochastic capacity allocation. In discrete capacity allocation problems, capacity 

must be added in discrete amounts (a certain number of CASS stations, a certain number 

of hospital beds, etc.). In stochastic capacity allocation problems, either the demand for 

capacity, or the amount of capacity, is random. Many of the models reviewed dealt with 

goal programming or multi-objective models. Although we will not examine the multi-

criteria nature of the CASS station allocation in this paper (we will treat cost as the sole 

and primary criteria), our model is a type of goal program, in which two of the objectives 

(utilization and operational availability) are constrained (from above and below, 

respectively), and the model could be used in an iterative fashion to examine the efficient 

frontier between criteria, or to achieve any feasible cost/utilization/readiness tradeoff. 

Finally, we used knowledge obtained from several courses taught at NPS, specifically 

Operations Management, Business Modeling and Analysis, Logistics Risk Assessment 

and Control and Logistics Engineering. The concepts acquired helped us to explore other 

methods of CASS station allocation.  

There have been a few studies that examined CASS station allocation. Allocation 

of CASS stations has remained an issue since the Navy began using CASS stations. Test 

equipment originally was designed for specific platforms. As such, allocation was not an 

issue; test equipment went where the weapon systems assets were located. CASS stations 

were designed to operate across different types of aircraft.  

The question the Navy faced in 1996 was how many CASS stations did the Navy 

need to purchase to meet its requirements at a shore-based facility (Lynn, 1996)? The 

research also examined which specific types of CASS stations to purchase and allocate. 

In developing initial allocation numbers for shore based maintenance activities, the Navy 

utilized a system that did not account for actual failure rates. Additionally, the Navy used 

a high operational tempo rate, in other words a very high demand rate. In Lynn’s study,  
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Lynn proposed utilizing data from maintenance action forms (MAFs) that not only 

tracked actual failure rates, but gave the analysis a more realistic operational tempo rate 

for a shore based activity.  

In Lynn’s study, it was found that at an Ao of 80%, the Navy had overestimated 

by as many as seven CASS stations (Lynn, 1996). The study estimated that the Navy 

would save $11 million over the course of a 20-year life-cycle. Additionally, instead of 

assuming Ao to be only 80%, the study was able to conclude through the MAFs that Ao 

was actually in the range of 80–90%. Running the data for analysis at Ao of 90% the 

study determined that the Navy overestimated by 11 CASS stations. 

Akturk and Beckham (2010) presented research on optimizing CASS station 

allocation. They focused on mathematical models utilizing integer, linear and non-linear 

programing. Akturk and Beckham examined an optimal solution to allocate CASS 

stations based on several factors; demand, cost of the station, and aircraft availability. A 

significant contribution from their research showed that the Navy’s current method of 

allocation using a workload formula was static and did not account for variation. 

Applying management science and operations research methodology gave the Navy 

better utilization of the stations, specifically where to allocate any spare stations. 

However, their research was limited with regards to demand. Akturk and Beckham 

(2010) utilized predetermined demand thresholds as their input, for example 50% and 

95% of demand.  

Akturk and Beckham (2010) argued that the Navy’s method of using a basic 

linear algebraic equation to solve a more complex problem led to possible under or 

overutilization of CASS stations. Overutilization of CASS stations meant that a queue 

would develop and potential customers would have to wait for repairable parts. Waiting 

for a repairable part, sometimes forces an organizational unit to cannibalize a part, which 

increases maintenance man-hours and decreases morale (GAO, 2001). On the other hand, 

underutilization causes idle time on test equipment, which makes expensive assets 

unused. We contend that although using a static demand rate of 95% ensures a high 

service level, that demand is cyclic. Demand rarely reaches 95% and by portraying a 

more accurate demand level in the model a better allocation of CASS stations can be 



 7 

determined. In this study, we replicate the Akturk and Beckham (2010) study, but apply 

actual demand data derived from MAFs to their model.  

Ross (2003) wrote an article on the subject of the future of automated test 

equipment. As the DoD moves towards joint capabilities and weapons systems, test 

equipment must also be inter-operable among the services but maintain low acquisition 

and support costs. A critical factor of future test equipment is that the test equipment 

must usable from the field to the factory (Ross, 2003). CASS stations, normally utilized 

on a ship or naval air station were deployed in expeditionary logistics units (ELUs). The 

ELUs allowed Navy E/A-6B Prowler squadrons to support a forward deployed NATO 

mission away from naval maintenance facilities. The article failed to mention how many 

CASS stations were used for this specific example or how that specific number was 

derived. The article concludes with the summary that test equipment will operate 

throughout all levels of maintenance organization and in a joint environment.  

A paper written by Armstrong and Cook (1979) addressed the allocation of search 

and rescue (SAR) aircraft to Canadian military bases. Armstrong and Cook (1979) used a 

goal programming model but specifically determined the number of aircraft that should 

be sent to each type of base. As they developed the model, they understood that historical 

data was the best predictor to making an assessment to demand, since a SAR event was 

completely random. A complaint of historical data was that the data was not completely 

or accurately tracked (Armstrong & Cook, 1979). In 1979, automated data collection 

systems were rare. Despite the historical demand data or sophisticated computational 

equipment capable of running the massive calculations required for such a model, the 

solutions Armstrong and Cook obtained received positive feedback from managers of the 

bases.  

Numerous nonmilitary applications of discrete stochastic capacity allocation 

models exist in literature. Mild and Salo’s (2009) research centered on building a model 

to allocate resources across different road and highway maintenance activities. The local 

government’s fixed budget had to be properly allocated across multiple divisions. Within  
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the local department, each division had specific needs to satisfy. One of the mangers’ 

concerns in conducting this research was the interest in allocating funds outside the 

constraints of past budgets.  

As Mild and Salo (2009) began the project, a serious challenge was not to make 

the model too big or too difficult. Adding constraints to a project of this magnitude could 

quickly overcome the capabilities of the software readily available. Also, the model had 

to remain simple enough for the managers to manipulate for the model to be a useful tool. 

Finally, the managers had to understand the results of the model and the steps on how 

those results were calculated. The output of the model cannot be the final solution to the 

decision on how to allocate funds.  

The resultant model was actually three models, a preference model, a life-cycle 

model and an optimization model (Mild & Salo, 2009). In the end, the model was capable 

of producing useful analysis. The model developed was capable of producing diagrams 

that showed a yearly allocation based on changes over time, instead of one fixed number 

year after year (Mild & Salo, 2009). Each specific activity received a minimum amount 

of funding to ensure operation throughout the fiscal year. Once intact, the model showed 

how changes in budget cuts would affect allocation. The model’s outputs allowed 

managers to better predict how the cuts would affect the future of the divisions; thereby 

resulting in better planning decisions (Mild & Salo, 2009).  

Hospitals require a standard solution to properly assign beds for surgery and 

minimize length of stay of patients. Insurance providers scrutinize over patients charts 

and will not pay for time wasted due to inefficiency of the hospital. In research conducted 

by Zhang, Murali, Dessouky and Belson (2009) a mixed integer programming model was 

developed to maximize the allocation of operating room capacity across various medical 

specialties. As a result hospital costs were reduced because the queue wait for operating 

room space was reduced, improving the overall efficiency of the hospital.  

Typically, hospitals utilize a block scheduling method of scheduling operating 

time. Time slots are developed at the start of a week. Doctors decide which patients in 

their specific specialty will have surgery the following day. Outpatients are given a few 
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slots, but the majority of the slots are given to inpatients due to the penalty of inefficiency 

placed on inpatient wait time (Zhang et al., 2009). Emergency room patients represented 

unknown demand. Due to the urgency of the necessity of surgery, emergency room 

patients tended to move to the head of line in front of the known waiting patients. In the 

model developed by Zhang et al. (2009) the focus was specifically on reducing the 

inpatients’ length of stay in the hospital. Severe penalties were incorporated into the 

model to reflect postponement of surgery.  

Zhang et al. (2009) used simulation modeling to assess the quality of their mixed 

integer programming model. In this case, Zhang et al. (2009) determined that surgery 

demand is discrete since the surgeries are not measure by the amount of time they take 

but the actual number of surgeries. However, in the template of the model created by 

Zhang et al. (2009) surgery was measured in hours. Simulation hoped to demonstrate the 

effectiveness of the model despite this difference.  

The Zhang et al. (2009) study concluded that a model could reduce overall patient 

wait time by efficient allocation of operating room space. They did note that the model 

may not obtain accurate optimization in situations where surgery length and patient 

arrival rates widely fluctuated. They further note that “future research can focus on 

incorporating uncertainty” into the model they designed (Zhang et al., 2009, p. 671). 

Research conducted by Abdelaziz and Masmoudi (2012) examined allocation of 

hospital beds between hospitals. They focused on a goal programming model that 

minimized the cost of creating new beds and the cost of medical staff, specifically nurses 

and doctors. As stated in their review, the current research had not explored the idea that 

in moving beds between hospitals, nurses and doctors may need to be added to 

accommodate the increase in demand (Abdelaziz & Masmoudi, 2012). This article 

provided us with an interesting thought, CASS stations could be moved between naval air 

stations but manpower would be needed to operate those stations. Manpower may be 

acquired from within a command, possibly from an underutilized work center within the 

division. If that manpower did not exist, it would be unlikely to gain additional 

manpower from outside the command and therefore an added CASS station would 

remain idle. Finally, Abdelaziz and Masmoudi (2012) identified that they considered 
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yearly demand, which they admittedly assume to be uniform throughout the year. They 

acknowledge that demand can vary throughout the year and in some cases be seasonal.  

Further examples of advantages to the type of mathematical model that we 

propose for CASS station allocation can be found in a paper written on allocation of test 

equipment of circuit cards (Goentzel, Manzione, Pibernik, Pruett, & Thiessen, 2007). 

This article described a company that explored three different options for testing circuit 

cards; allocating test equipment to manufacturing sites based on demand, developing a 

central test site, or investing in research and development programs into an idea of circuit 

cards capable of self-testing (Goentzel et al., 2007). Despite the complexity of the 

problem, the researchers created a mathematical model that produced an optimal solution. 

Similar to our research, the model provided leaders with a tool to formulate strategy. The 

model accomplished this solution, considering all the variables and constraints in a quick, 

unbiased manner. 

Another example that the Goentzel et al. (2007) article relates to our research is 

that with a predictable cyclic demand schedule, allocation plans executed prior to 

changes in the demand cycle will maximize utilization of the available test benches 

(Goentzel et al., 2007). However, two critical factors exist in the decision making process 

that was a part of the Goentzel et al. (2007) model. First, a defined time-period is 

required for installation of test equipment prior to the desired operational time and must 

reflect in the organization’s planning schedule. Next, the organization incurs a fixed cost 

during the disassembly, transport and reassembly of the test equipment assigned for 

allocation. The article suggested that budgeting of the capital required to move the 

identified equipment occur in advance of the move. 
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III. METHODOLOGY 

Our methodology will center on extensions to a model built by Akturk and 

Beckham. Our model will examine how dynamic demand (demand which is both variable 

and non-stationary), affects a capacity plan. In particular, we will examine two capacity 

plans: the current solution based on the PMA260 model, and the solution proposed by 

Akturk and Beckham. Both these solutions are based on stationary demand. The PMA260 

model is based on average demand. The Akturk and Beckham model attempts to control 

for variability via a set of constraints on peak utilization, and another set of constraints on 

minimum availability. But the variability in the Akturk and Beckham model is assumed 

to be stationary, and hence, may not be robust to changes in demand structure caused by 

the fleet readiness plan or unforeseen conflicts.  

Finally, the Akturk and Beckham methodology centered on the development of a 

‘proof of concept’ model. The limited testing they performed was based on hypothetical 

data, loosely based on field data for demand at Oceana and Norfolk, but entirely 

hypothetical in terms of the existing capacity plan at those sites. Our testing will use 

actual demand and capacity data from Lemoore, and constitutes the first empirical test of 

their model on field data. 

A. PMA 260 ALLOCATION FORMULA 

This formula is currently used to calculate the number of CASS stations along 

with the required test program set (TPS) and operational test program set (OTPS) needed 

for a specific unit under test (UUT). The formula was generated to calculate the 

requirements per the work unit code (WUC) of each UUT. Currently, there are 2,884 

unique part numbers over the 52 Navy and Marine Corps command activities that consist 

of 40 different aircraft combinations (Cervenak, 2010). The formula states that: 

 
o

(Number of aircraft)  (Monthly flight hours)  (MTOS)Workload
(CASS A )  (Site monthly operational hours)  (MTBUM)

X X
X X

=    

• Number of aircraft: The number of specific type/model/series aircraft at a 
specific site. 
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• Monthly flight hours: Average monthly flight hours for each aircraft. 

• MTOS: Mean time on station. The end to end run time (ETE) and other 
times for WRA. 

• CASS Ao: Operational availability of the CASS station in a given month 

• Site monthly operational hours: Operational hours at a maintenance 
facility for a given month. 

• MTBUM: Mean time between unscheduled maintenance (Cervenak, 
2010).  

Two major discrepancies of this model is that it does not account for a queuing 

congestion or variability in demand (Akturk & Beckham, 2010). 

B. AKTURK AND BECKHAM MODEL 

As previously mentioned, Akturk and Beckham’s research centered around four 

mathematical models that attempted to account for the lack of queuing theory or 

variability in demand from the PMA-260 formula. Our research will apply changes to 

their fourth model, a non-linear program model that constrains demand, utilization, 

readiness and congestion (Akturk & Beckham, 2010). Additionally, the Akturk and 

Beckham model examined four sites, we will focus only on one I-Level site, but will 

examine the impact of changes to demand over time at that one site. Consolidation of the 

I-level sites by the U.S. Navy (USN) to Fleet Readiness Centers (FRC) has significantly 

reduced the number of available sites. Also, by focusing on only a single site, we can 

examine the quality of the capacity plans in more detail. These are the reasons we chose 

to examine data from one FRC.  

1. Queuing Congestion 

The application of arrival and service rates made the basis for the queuing theory 

calculations. The arrival rate is simply the number of UUTs arriving to the FRC in one 

hour. The service rate consists of the combination of all the CASS stations that a 

particular FRC has available. Since CASS station service times vary, Akturk and 

Beckham utilized “the mean and standard deviation of all UUTs for the CASS 

configuration network” (Akturk & Beckham, 2010, p. 26). Finally, an I-level adopts 
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many different queue disciplines. For simplicity purposes, Akturk and Beckham (2010) 

focused only on the first come, first serve queue discipline. 

2. Demand Constraints 

Akturk and Beckham utilized the expected number of failure formula to calculate 

the demand of WRAs at a given site. This demand represents a calculated mean.  

Number of failures k tλ= ⋅ ⋅   

where: 

k=number of total components requiring same CASS 

1
MTBF

λ =   

t=monthly flight hours 

Many of the CASS stations provide the capability to share testing functions. The 

hybrid (HYB) CASS station provides core test capabilities. All of the four remaining test 

stations can also preform the core test capabilities that the HYB station provides. The 

radio frequency (RF) test station provides RF test capabilities. Both the CNI and RFHP 

test stations provide RF test capabilities. For some UUTs in some work centers, a 

technician has the ability to decide which station to use. To account for the sharing 

capability, Akturk and Beckham added 60% of the CNI and RFHP CASS excess 

capabilities to the HYB CASS capacity. Also, they added 40% of the CNI and RFHP 

CASS excess capacities to the RF CASS with the additional constraint that excess 

capacity “must be greater than or equal to RF CASS station demand” (Akturk & 

Beckham, 2010, p. 29). CNI, EO3 and RFHP CASS capacity had to be greater than or 

equal to their respective CASS station demand (Akturk & Beckham, 2010). 

3. Utilization Constraints 

Akturk and Beckham’s model included a utilization constraint to reduce the 

impact of congestion which might be caused by bottlenecks in the system. Since we are 

only examining one site, we have modified their original formula to the following: 
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Total demand for CASSAverage utilization= 
Total available CASS hours

  

4. Readiness Constraints 

Introduction of the readiness constraints into the model forced Akturk and 

Beckham to use a nonlinear program. Simply stated, the queuing delay provides a change 

in the turn-around time in a nonlinear manner as the number of CASS stations change 

(Akturk & Beckham, 2010). 

Readiness in warfighting equipment remains a top priority of USN leadership. 

The Chief of Naval Operations (CNO) has established an aircraft material readiness goal 

of 73% for all of USN aviation (Commander, Naval Air Forces (COMNAVAIRFOR), 

2013). Aviation readiness is essentially the same idea as operational availability (Ao). In 

examining Ao, there are two main factors; total time available, and non-mission capable 

time (NMCT). NMCT is a function of three variables; the mean corrective time (MCT), 

the mean preventative time (MPT), and the administrative and logistics delay time 

(ALDT) (Jones, 2006).  

MCT accounts for the amount of time on average an aircraft is unavailable to 

perform a mission due to a failure of a component (Jones, 2006). In Akturk and 

Beckham’s model, the MCT was based upon the calculated number of failures (Akturk & 

Beckham, 2010). The MPT estimates the number of hours that an aircraft is unavailable 

for a mission due to preventative maintenance. Finally, the ALDT tracks the amount of 

time spent that the aircraft is unavailable but due to non-maintenance related issues 

(Jones, 2006). This is the equation used to calculate Ao. 

o
Total time - (MCT+MPT+ALDT)Operational availability (A )=

Total time
 (Jones, 2006) 

Availability of spares plays a factor in calculating overall Ao. When a component 

fails, the length of time in obtaining the spare depends on whether or not supply has that 

part. Spare parts that are retrieved from off-station take considerably more time than parts 

that are on-hand. Akturk and Beckham accounted for this time by establishing ready for 

issue levels (RFI) for spare UUTs. The numbers were based on their experience and not 
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on actual data. They concluded that the RFI rates were beyond the scope of their research 

(Akturk & Beckham, 2010). We will conduct our research within the same scope and 

assumptions, and hence use the same rates, as listed in Table 1.  

 
Table 1.   Spare Part Factor for UUTs (from Akturk & Beckham, 2010) 

In the table, a spare probability means for that CASS station, the spare UUT will 

be available and not obtained from off-station. For example, 90% of the time the spare 

components for HYB are on-station. Otherwise, the component has to incur the off-base 

fill time (Akturk & Beckham, 2010). Note that this assumption means that lead time will 

be treated as a single number, the weighted average of RFI and back-order lead times; 

hence the impact of variability in lead time, the impact that variability can have on Ao, is 

not fully represented in the model.  

5. Congestion Constraints 

In Akturk and Beckham’s model, UUTs arrive for service at the various CASS 

stations. As the UUTs enter the FRC, the UUTs enter a distinct line structures based on 

the type CASS station, a multichannel single phase line. Akturk and Beckham made an 

assumption that all the CASS stations operate under one organizational unit. In using a 

UUT failure number based on a calculation, Akturk and Beckham determined that their 

arrival and service rate numbers followed a unknown distribution. In their analysis, they 

followed a waiting time approximation for a G/G/s queue, in which the “G” stands for 

general and the “s” stands for servers. 

2( 1) 2 2

1 2
( ) ( )

s
a s

q
C CL ρ

ρ

+ +
=

−
×   

Lq=Expected number of UUTs waiting 

Demand/ArrivalUtilization of the CASS stations = = 
s Capacity
λρ
µ

=   

HYB RF CNI EO3 RFHP
Site 0.9 0.9 0.8 0.85 0.9
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1UUT failure rate = 
aX

λ =   

= Mean UUT interarrival timeaX   

1 UUT service rate=
Xs

µ =   

= Mean UUT service timesX   

Ca = Coefficient of variation of UUT interarrival time = aS
sX
  

Sa = Standard deviation of the UUT interarrival time sample 

Cs = Coefficient of variation of UUT service time = sS
sX
  

Ss = Standard deviation of the UUT service time sample 

Wq = Expected time UUT waits for an available CASS station = qL
λ

 (Akturk & 

Beckham, 2010) 

In order to obtain total Wq, Akturk and Beckham needed to use the expected 

failure formula to multiply with the Wq (2010). 

q qTotal W ( )  Wk tλ= ⋅ ⋅ ⋅  

C. CONSTRUCTION OF ADJUSTED MODEL UTILIZING ACTUAL 
DEMAND 

Using the previously described model as a basis, we will construct a variation of 

that model so that we could apply actual demand data from an I-Level FRC.  

1. Notation 

i = CASS station type (HYB, RF, CNI, EO3, and RFHP) 

j = WRA type (HYB, RF, CNI, EO3, and RFHP) 

Xi = number of CASS stations of type i to install at the FRC 
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dj = demand by WRA type j 

r = readiness level at the site 

ui = utilization of CASS station type i 

Ci = unit cost of each type of CASS station 

Z = Available CASS station hours per month 

2. Assumptions 

• CASS stations are assigned to one FRC and not dispersed in multiple work 
centers. (This reflects the reality of the installation at Lemoore.) 

• Aircraft numbers do not fluctuate month to month. 

• Aircraft flying hours do not fluctuate month to month. 

3. Nonlinear Program 

Min ii
i

X C∗∑    (1) 

Subject to: 

1
1 2 2 3 3 5 5 4 4

dX  + (X - d ) + 0.60 * [(X  - d ) + (X  - d )] + (X  - d )  
Z

≥   (2) 

2
2 3 3 5 5

dX  + 0.40 * [(X  - d ) + (X  - d )]  
Z

≥   (3) 

3
3

dX   
Z

≥    (4) 

4
4

dX   
Z

≥    (5) 

5
5

dX   
Z

≥    (6) 

(1) The objective function is to minimize the total cost of the CASS stations given 

that all constraints are satisfied. 
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4. Application of Non-stationary Demand 

UTTs tested on a CASS station require an issued maintenance action form 

(MAF). To account for demand on each CASS station, this project will focus on using 

actual demand as indicated by MAFs as recorded in the Naval Aviation Logistics 

Command Management Information System (NALCOMIS). A shore based I-level FRC 

provided 18 months of MAFs from a period of January 2012 to June 2013. Unfortunately, 

MAFs do not identify the type of CASS station utilized to test or repair the component. 

To attempt to identify the type of CASS station, we will use the master UUT list. The 

master UUT list provides a list of the part numbers and type of station required for each 

UUT. We will isolate only the MAFs that had corresponding part numbers to the master 

UUT list.  

CASS stations for the facility are distributed among five work centers. The Naval 

Aviation Maintenance Program (NAMP) determines the work center designation and as a 

result, this sends groups of UUTs to a work center based on the UUT associated system. 

The five work centers that utilize CASS stations are: APG-65/73 CASS WRAs and 

Related TPS (63E), Fire Control Radar Branch (63X), Electronic Warfare Deceptive 

Electronic Countermeasures (DECM) Shop (64C), Forward Looking Infrared 

(FLIR)/Optical Shop (64D) and Integrated Weapons System Branch (650) 

(COMNAVAIRFOR, 2013). The maintenance facility studied in this project allocates 

available CASS stations as per Table 2.  

 
Table 2.   Distribution of CASS Stations at Examined FRC 

63E 63X 64C 64D 650 Total
HYB 0 0 1 0 3 4
RF 3 1 1 0 9 14

CNI 0 0 1 0 0 1
EO3 0 0 0 5 0 5

RFHP 5 0 0 0 0 5

Work Center

Type of 
CASS 

Station

Distribution of CASS Stations at examined FRC
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Only the MAFs issued to the five work centers were examined, since those are the 

only work centers that have CASS stations. We assumed that if a MAF was written for 

one of the five work centers, and that UUT had a part number listed on the master UUT 

list, then that UUT was tested and repaired using that specific CASS station, as 

designated by the master UUT list. As previously discussed, some CASS stations have 

the capability to perform multiple functions. For some UUTs in some work centers, a 

technician has the ability to decide which station to use. For example, if a technician in 

work center 64C has a part that the master UUT lists as “HYB,” the technician has the 

option of testing the part on any one of the three types of test stations in that work center.  

(2) HYB CASS station capacity in addition to the 60% of the CNI and RFHP 

CASS station excess capacities and 100% of the EO3 and RF CASS station excess 

capacities must be greater than or equal to the HYB CASS station demand (Akturk & 

Beckham, 2010). 

(3) RF CASS station capacity in addition to 40% of CNI and RFHP CASS station 

capacities must be greater than or equal to the RF CASS station demand (Akturk & 

Beckham, 2010). 

(4) CNI CASS station capacity must be greater than or equal to the CNI CASS 

station demand (Akturk & Beckham, 2010). 

(5) EO3 CASS station capacity must be greater than or equal to the EO3 CASS 

station demand (Akturk & Beckham, 2010). 

(6) RFHP CASS station capacity must be greater than or equal to the RFHP 

CASS station demand (Akturk & Beckham, 2010). 

Numbers of MAFs in a given month will be summed and averaged according to 

CASS station type. Those numbers will provide the inputs for the demand numbers 

instead of the calculated failure number that Akturk and Beckham used.  

5. Unit Cost of Each Individual CASS Station 

Akturk and Beckham (2010) identified that no current cost data for the CASS 

benches is available since the CASS program acquisition was finalized in 2006. In their 
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model, they utilized an inflation factor index to estimate the CASS station costs in FY10. 

We applied the same formula to estimate costs for FY14 dollars.  

 1 Inflation index was calculated using the Joint Inflation Calculator (JIC) prepared by the Naval Center 
for Cost Analysis, and the index is Other Procurement Navy (OPN). 

2 RFHP unit cost for FY10 was estimated in the Akturk and Beckham project (from Akturk & 
Beckham, 2010). 

Table 3.   Cost per CASS Station 

6. Utilization Constraints 

Utilization in this model is a primary metric. CASS stations are assets that hold a 

monetary value to the Navy. Naval aviation managers need to know utilization rates on 

CASS stations to ensure sufficient allocation. If CASS station utilization is low, idle 

stations will ensue. On the other hand, high CASS station utilization rates may cause 

congestion. In this model, we will use the Akturk and Beckham formula for calculating 

utilization. 

Total demand for CASSAverage Utilization= 
Total available CASS hours

 (Akturk & Beckham, 2010) 

To ensure the utilizations rates are kept low enough to prevent bottlenecks, the 

average CASS station utilization will be constrained. 

j

i

d
  80%, j and i = 1 through 5

( X )*Z
≤∑

∑
  (7) 

(7) Average CASS station utilization must be less than or equal to 80%. 

 

Average unit cost Estimated unit cost Average unit cost
FY95 FY10 FY14

HYB $1,000,000.00 N/A 1.39188192 $1,391,881.92
RF $1,500,000.00 N/A 1.39188192 $2,087,822.88
EO $4,500,000.00 N/A 1.39188192 $6,263,468.64
CNI $1,700,000.00 N/A 1.39188192 $2,366,199.26

RFHP N/A $3,500,000.00 1.080308706 $3,781,080.47

Type of CASS Station Inflation factor index1
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7. Readiness Constraints 

The general calculations used to calculate readiness in the Akturk and Beckham 

research project will be utilized in this model. However, since we will use demand data, 

we have the ability to apply those numbers instead of the failure calculation. Our arrival 

rates will consist of the number of MAFs recorded in a month divided by total hours. 

Number of UUT MAFs for a given CASS stationArrival rate = 
Total Time

   

Service rate calculation will remain the same as the Akturk and Beckham model. 

MCT is another calculation where we will utilize the number of MAFs recorded in a 

given month. Finally, the number of failure actions will be calculated using the number of 

failures in a month as recorded by the amount of MAFs written against a particular CASS 

station. These changes in the calculations will represent a more realistic total waiting time 

for UUTs. This will give us better insight to the effects of aircraft down time and 

therefore aircraft readiness.  

As per the NAMP, overall aircraft readiness shall not fall below 73% 

(COMNAVAIRFOR, 2013). 

oA   r, where r is 73%≥    (8) 

(8) Readiness must be greater than or equal to 73%. 

As part of our research, the current CASS station configuration of the studied 

FRC will be inputted into the model to examine utilization and readiness rates based on 

current MAF input. A general assumption is that the higher number of CASS stations, the 

higher aircraft readiness (Akturk & Beckham, 2010). As such, the readiness of the FRC 

should be higher based on this assumption. An additional constraint will be applied to a 

second run of the model in which the Ao of the optimal solution must be greater than or 

equal to the FRC Ao. 

Optimal r  FRC r≥    (9) 

(9) Optimal readiness must be greater than or equal to FRC readiness as 

calculated by the model. 
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8. Integer and Non-negativity Constraints 

CASS stations require delivery in whole units. To prevent the model from 

returning CASS stations that are not whole units, the integer constraint will be applied in 

the model.  

(10) All decision variables must be integers. 

(11) All decision variables must be greater than or equal to zero (Non-negativity 

constraint). 

D. EXECUTION OF THE MODEL 

After the completion of the model, the average monthly demand data will be 

inputted into the model as failed UUTs. The model will be run once using the solver add-

in feature embedded in Microsoft Excel, where readiness must be greater than or equal to 

73%. Total cost of the allocated benches will be compared to the cost of the current 

allocation at the FRC. With an optimal allocation of CASS stations, we will input each 

month’s data into the model as failures. For each month, we will record both the 

utilization and the readiness for the optimal solution and the FRC site.  

Next, the model will be run a second time using the solver add-in. This time the 

readiness constraint will be changed to reflect such that the optimal readiness must be 

greater than or equal to the FRC readiness. Total cost for the optimization of this 

configuration of CASS stations will be recorded. As before, each month of available 

MAF data will be inputted as failure data and we will record the calculated utilization and 

readiness for each month. 

Finally, we plan to manipulate the optimal CASS station allocation in a heuristic 

fashion, using the following logic: In the event, the optimal CASS station allocation 

cannot sufficiently account for the actual given demand in a month (that is, in the event 

that a constraint is violated), we will examine the given impact of adding or subtracting a 

single CASS station. In this analysis, we will compare the total cost of the CASS stations.  

 

 



 23 

Our intent in this post-hoc analysis is to examine the benefit of a small amount of 

flexibility (obtained, for example, by bringing in an additional bench when demand is 

high).  
  



 24 

THIS PAGE INTENTIONALLY LEFT BLANK 



 25 

IV. RESULTS AND ANALYSIS 

This chapter will provide the results of applying the models described in the last 

chapter to our field dataset, and a post-hoc analysis of those results. This project 

performed three specific runs of the modified model presented in the Akturk and 

Beckham project.  

Akturk and Beckham’s project calculated demand from notional data based on a 

series of assumptions, but this project uses field data for demand; therefore it is necessary 

to describe how the demand data for this project was obtained.  

A. DEMAND RESULTS 

In each work center, we isolated CASS station demand by specific MAFs. The 

MAFs were identified by part number as listed in the master UUT database. The number 

of MAFs for each work center was combined to represent a total for each station in one 

month. A plot of demand as demonstrated by the number of MAFs is shown in Figure 1. 

 
Figure 1.  FRC CASS Station Demand in Number of MAFs 
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After summing the MAFs for each of the 18 months of available data, an average 

was calculated for each CASS station. Table 4 lists the average demand for the period 

provided. 

 
Table 4.   Demand Average per CASS Station 

B. OPTIMIZED MODEL 

1. Model Results 

In the first model run, we applied only average demand to the model. The data 

solver add-in tool in Microsoft Excel was used to calculate to determine the best 

allocation of CASS stations given the constraints. The results along with the examined 

FRC’s current allocation are listed in Table 5. 

 
Table 5.   Optimized and Current Allocations of CASS Stations 

Once we had the model with the optimized allocation, we applied each month’s 

data to the model and recorded the results for Ao and utilization. That is, rather than using 

Ao and utilization as constraints as we did in obtaining the optimal solution, we use the 

model to predict Ao and utilization, as we vary the data from the average. The results for 

CY 2012 are shown in Table 6. Table 7 shows the results of Ao and utilization rates for 

CY 2013. 

CASS Station HYB RF CNI EO3 RFHP
MAF Avg 85 210 5 20 41

CASS Station HYB RF CNI EO3 RFHP Cost
Optimized Allocation 1 3 1 1 1 $20.066M

Current Allocation 4 14 1 5 5 $87.386M
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Table 6.   2012 CASS Station Ao and Utilization Rates 

1 3 1 1 1
HYB RF CNI EO3 RFHP Ao

O 27.2% 71.4% 61.1% 61.1% 61.1% 85.2%
A 3.5% 15.5% 14.8% 14.8% 14.8% 85.4%
O 60.1% 78.0% 73.7% 73.7% 73.7% 84.6%
A 7.7% 17.5% 17.8% 17.8% 17.8% 85.2%
O 58.4% 89.5% 78.5% 78.5% 78.5% 84.0%
A 5.8% 19.7% 19.0% 19.0% 19.0% 85.1%
O 62.3% 93.0% 81.6% 81.6% 81.6% 83.5%
A 5.0% 20.7% 19.7% 19.7% 19.7% 85.0%
O 74.4% 99.5% 86.2% 86.2% 86.2% 71.2%
A 6.8% 21.3% 20.8% 20.8% 20.8% 84.9%
O 75.5% 113.1% 86.5% 86.5% 86.5% -
A 5.2% 25.0% 20.9% 20.9% 20.9% 84.9%
O 60.6% 93.3% 80.4% 80.4% 80.4% 83.6%
A 5.4% 20.7% 19.4% 19.4% 19.4% 85.0%
O 75.9% 98.2% 87.0% 87.0% 87.0% 80.4%
A 5.9% 21.3% 21.0% 21.0% 21.0% 84.9%
O 77.5% 101.4% 89.7% 89.7% 89.7% -
A 4.5% 21.7% 21.7% 21.7% 21.7% 84.8%
O 75.1% 100.0% 84.8% 84.8% 84.8% -
A 6.6% 22.1% 20.5% 20.5% 20.5% 84.9%
O 25.5% 62.6% 56.8% 56.8% 56.8% 85.4%
A 3.5% 13.9% 13.7% 13.7% 13.7% 85.5%
O 34.2% 68.6% 63.1% 63.1% 63.1% 85.1%
A 4.4% 15.3% 15.2% 15.2% 15.2% 85.4%

AUG

SEP

OCT

NOV

DEC

JUL

JAN

FEB

MAR

APR

MAY

JUN

Optimal Quantity

2012 CASS station Ao and utilization rates
Actual (A) versus Optimal (O)
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Table 7.   2013 CASS Station Ao and Utilization Rates 

In examining Ao, the current Ao was always greater than the optimized Ao. As 

previously mentioned, a higher number of CASS stations will cause Ao to be higher due 

because there will be less waiting for needed parts. This reduces both the length of the 

queue and the waiting time in the queue. In six of the months analyzed, Ao in the optimal 

solution is substantially lower than Ao in the actual solution; in four of the months Ao 

cannot be captured for the optimal solution (this is represented by dashes in the table) 

because a least once bench-type has a utilization over 100%—hence there is no steady 

state average for Ao in that month. This is represented in Figure 2. 

1 3 1 1 1
HYB RF CNI EO3 RFHP Ao

O 78.6% 107.9% 89.6% 89.6% 89.6% -
A 5.7% 22.8% 21.6% 21.6% 21.6% 84.8%
O 60.4% 93.8% 80.5% 80.5% 80.5% 83.5%
A 5.7% 20.5% 19.4% 19.4% 19.4% 85.0%
O 81.8% 99.3% 87.1% 87.1% 87.1% 75.2%
A 6.8% 21.9% 21.0% 21.0% 21.0% 84.9%
O 82.5% 91.9% 91.6% 91.6% 91.6% 82.0%
A 5.1% 19.3% 22.1% 22.1% 22.1% 84.8%
O 54.4% 81.5% 77.2% 77.2% 77.2% 84.4%
A 4.9% 18.4% 18.6% 18.6% 18.6% 85.1%
O 40.8% 92.8% 73.9% 73.9% 73.9% 84.1%
A 3.9% 20.3% 17.8% 17.8% 17.8% 85.1%

JUN

Optimal Quantity

2013 CASS station Ao and utilization rates
Actual (A) versus Optimal (O)

JAN

FEB

MAR

APR

MAY
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Figure 2.  Overall Ao for Optimized and Current Allocations 

2. Model Analysis 

The discrepancy in the six months where Ao for the optimal solution is undefined, 

or is substantially lower than current Ao occurs because the RF CASS station’s utilization 

is either close to or above 100%. In months where bench utilization exceeds 100%, the 

wait for parts to use the bench will continue to grow across that month—there will be no 

steady state average wait that month, and hence, no steady-state average Ao. In months 

where bench utilization is close to 100%, the non-linear impact of queuing congestion 

means that the wait for parts will become very long, significantly degrading Ao. 

(Effectively, Ao will decline across the month, until capacity can catch up with demand in 

the next month.) This is depicted in Figure 3. 
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Figure 3.  RF CASS Station Optimized Utilization Rates 

The remaining CASS stations’ utilization remained low enough to prevent an 

excessive queue from forming at those benches. It is important to note that these higher 

utilization rates occurred after inputting demand for each individual month. In peak 

months, additional RF CASS station capacity us needed to ensure that the monthly 

demand can be satisfied.  

C. RF CASS STATION ADJUSTMENT–POST HOC ANALYSIS 

The optimization model attempts to prevent the kind of peak overload we observe 

in our month-to-month data by constraining utilization percentage from above, and Ao 

percentage from below. However, the data used for the optimization model was based on 

averages, assumed implicitly to follow Markovian distributions (Poisson arrivals, 

Exponential repair times). When the solution of the optimal model is tested against the 

actual month-to-month variability in the data, capacity is insufficient to handle demand in 

six out of eighteen months. However, in obtaining these results, it became apparent that a 

small addition to capacity of a single bench type might ameliorate the problem. 
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1. Model Results 

In this analysis, we attempted to ensure that demand could be satisfied during the 

entire evaluated period. This goal was accomplished by adding a single RF CASS station 

to the optimized model results; bringing the total RF CASS stations from 3 to 4. Once 

that was done, we inputted demand data from each month and examined both utilization 

and Ao rates. The resultant utilization rates for the RF CASS stations are listed in Figure 

4. The outcome of utilization rates for all the CASS stations by adding one additional RF 

CASS station is shown in Figure 5. 

 
Figure 4.  RF Utilization Rates with Four RF CASS Stations 
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Figure 5.  Overall Utilization Rates with Four RF CASS Stations 

2. Model Analysis 

Utilization rates for the RF CASS stations decreased substantially. However, the 

utilization rates for the other remaining CASS stations also decreased. This outcome is 

explained by the sharing capability of the CASS stations. 

 
Table 8.   Utilization and Ao Difference for Average Demand with Increase of One 

RF CASS station 

Demand for the RF CASS station is greater than demand in any of the other four 

CASS stations. In the optimized solution, the other CASS stations that can serve RF 

demand make up for the excess RF demand. Adding one more RF CASS station reduces 

utilization across all the other CASS stations. The cost of the additional RF CASS station 

increases the total cost to $22.154M. Compared to the current allocation cost of 

$87.386M, the adjusted optimized cost still reflects a savings of $65.232M. Additionally, 

under this configuration the current average Ao is greater than the model average Ao by 

only 0.39%. 

HYB RF CNI EO3 RFHP Ao
3 RF CASS 58.3% 91.1% 79.9% 79.9% 79.9% 83.9%
4 RF CASS 39.4% 71.0% 69.9% 69.9% 69.9% 84.6%
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The ability to add just one RF CASS station ensures demand for the entire 18-

month period is satisfied. However, the decrease in utilization means that CASS stations 

remain idle for a greater amount of time. Ideally, the ability to move a CASS station 

ahead of a forecasted peak demand provides the Navy with the maximum utilization rate 

without a significant decrease in Ao. 

D. OPTIMIZED AO EQUALS CURRENT AO MODEL 

In the previous model, current Ao remained greater than the optimized Ao (though 

only slightly). In this last analysis, we examine the cost of constraining Ao on a month-to-

month basis, so that operational readiness should not suffer as a result of this model. 

Under that context, this model will examine the results if the optimized model Ao must 

equal current Ao.  

1. Model Results 

The major difference in this model is that the model is constrained to find a 

solution while maintaining an Ao greater than or equal to the current Ao. This new 

solution was obtained by using average monthly data to solve the model, and adding  

the constraint that Ao could never fall below the Ao that would be obtained with the  

actual solution. The number of CASS stations increased under this constraint, as shown 

in Table 9. 

 
Table 9.   CASS Station Allocation where Optimized Ao Equals Current Ao 

The increased number of CASS stations changes utilization rates. In this result, 

many of the stations have an increased amount of time where the stations remain idle. 

This is shown in Figure 6. 

CASS Station HYB RF CNI EO3 RFHP Cost
Optimized Allocation 9 8 5 2 3 $64.931M
Current Allocation 4 14 1 5 5 $87.386M
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Figure 6.  Utilization Rates where Ao Equals Current Ao 

2. Model Analysis 

Ultimately, this model demonstrates the costs of changing Ao from 84.6% to 

85.0%. This change represents an additional 2.8 hours of ready for tasking (up time) time 

for each aircraft per month. With this change, the FRC examined has to incur an 

additional cost of $42.777m in CASS stations. As CASS stations continue to increase, the 

return diminishes in waiting time for the UUT. As a result, the gain achieved in Ao is 

reduced as CASS stations are added. 

The CNO Guidance requires aircraft readiness of 73% (COMNAVAIRFOR, 

2013). Naval leaders need to assess if the additional costs are worth the change in Ao, 

especially since the calculated Ao from the optimized solution is already 84.6%.  

E. LIMITATIONS 

In this project, there exist several limitations that are worth noting. First, CASS 

stations are divided amongst five separate work centers. This project assumes that the 

CASS stations are located under one work center, or equivalently, that work bench 

capacity can be shared freely between work centers. As such, the model can maximize on 

the ability of some of the CASS stations to perform different types of testing. Under the 
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current configuration at the FRC, the ability to share demand across all the CASS stations 

allocated to the command is limited.  

CASS stations are just one component required to repair UUTs. In order to repair 

a UUT, there needs to be an available CASS station, a TPS and a technician qualified to 

work on that specific UUT. Technicians are trained in a formal school to repair UUTs. 

Upon completion of school, the technician is awarded a specific Navy Enlisted 

Classification (NEC) that forms the basis of the certification required to repair a given 

UUT. The NEC will determine which work center a technician is assigned to once the 

technician arrives at the FRC. A technician trained and assigned to work center 63E 

cannot repair a UUT in work center 64D. CASS stations may remain idle due to the lack 

of a qualified technician. 

As previously stated, a TPS is also required to repair a UUT. TPS availability was 

not studied during this project. However, this remains a factor in determining overall 

capability to repair UUTs. CASS stations may remain idle due to a lack of available or 

operational TPSs.  

The concept of moving CASS stations in anticipation of a change in forecasted 

demand was discussed. In the context of this research, moving CASS stations ahead of 

demand changes improves overall utilization of the CASS stations and minimizes cost 

realized in holding excess assets. However, moving CASS stations bear additional 

operating costs; such as installation, removal, and transportation costs. Additionally, there 

is an assumed risk to removing, transporting and installing CASS stations. This project 

did not focus on the costs moving CASS stations or the involved risks.  

Availability of data limited the scope of this research. In conducting the research, 

UUT service time was applied from the Akturk and Beckham research. For a better 

output of the model, service time should have been a mean of the actual service time for a 

given month. This would have provided a more accurate indication of the utilization rates 

currently observed at the FRC. In the data we received, service time was not recorded.  

Finally, this project examined a time in a unit of months. Time is actually 

continuous, of course. In the four months where demand was not satisfied in the 
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optimized allocation, the excess demand could have been satisfied in a following month 

when overall utilization was lower. The argument could be made that the finding that 

monthly Ao was significantly degraded is artifactual: over a longer time period (a quarter, 

or a year) the average Ao obtained by the optimal solution would be satisfactory. On the 

other hand, the fleet operates on a continuous basis. The results show that demand for 

CASS stations in some periods is significantly different from demand in other periods. 

The fact that ‘on average’ there is going to be enough capacity to meet quarterly demand 

may be of little comfort to an operations officer who has to meet monthly (or daily) 

targets.  
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V. RECOMMENDATIONS 

A. CONCLUSION 

In the past, the DON fiscal budget may have been robust enough for the Navy to 

purchase assets for the worst case scenario. The Navy purchased and allocated assets 

based on the ability to support a peak demand contingency. In today's fiscally constrained 

environment, that goal may be unattainable. As fiscal budget cuts continue, naval leaders 

need a better understanding of how actual demand and variability in that demand affects 

the allocation of assets.  

An allocation plan built to satisfy a constant level of peak demand only results in 

an underutilized system. Demand analysis allows a better understanding in the allocation 

of scarce resources. As demonstrated in the model, the optimized configuration satisfied 

demand for an entire 18-month period except for four months. An addition of just one RF 

CASS station satisfies demand for those four months where RF CASS station capacity 

was exceeded. Managers have to decide if the benefits of meeting demand in a given 

month are worth the cost of moving a CASS station, or the cost of permanently adding a 

bench that may only be needed six months out of 18. 

In the current operational environment, the number of aircraft, the number of 

UUTs and the number of flight hours are relatively known figures. Naval planners have 

training and deployment cycles planned in advance. Peaks and troughs in demand cycles 

can be predicted with relative reliability. The capability exists to forecast this demand and 

apply that forecast to a non-linear model to determine if a change in the CASS station 

allocation is required. Also, in the event of an increased demand and managers decide not 

to move CASS stations; managers have better idea of the potential risks of not meeting 

that demand or can redirect that demand to a moored aircraft carrier if desired.  

The composition of aircraft in the Navy’s inventory has changed significantly 

since the purchase and development of the current CASS stations. Technological 

advances in aviation components have increased the MTBF of these components since 

the initial purchase of CASS stations. Advances in maintenance practices have also 
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improved the MTBF and other factors such as reduced service time. Changes in these 

factors greatly affect utilization rates. Management needs to be aware of these 

improvements in order to make the most accurate decisions.  

Operational readiness is a scrutinized metric in naval aviation. Operational 

readiness ensures that the DON has the available assets to carry out its assigned mission. 

However, this model demonstrates that as Ao increases, the return on the capital 

investment diminishes. The optimized Ao was less than the actual Ao of the FRC as 

calculated by the model. When the model was forced to produce an Ao that equaled the 

examined FRC calculated Ao, a significantly greater number of CASS stations had to be 

added. Although the optimized result in the equal Ao configuration was still less than the 

amount of CASS Stations currently in place at the examined FRC, costs rose 

substantially. The large increase of CASS stations required  

B. RECOMMENDATIONS 

The CASS station is near the end of its life cycle. The replacement ATE is the 

eCASS system. The eCASS system will combine the capabilities of the five CASS 

stations into one ATE. As eCASS stations deploy to the fleet, this project exposes some 

ideas to the allocation and use of the eCASS stations. 

First, it is recommended that eCASS is allocated using a non-linear mathematical 

model based on actual demand. Using the CASS station as an example in the project, 

millions of dollars are saved using a non-linear mathematical model instead of the 

algebraic method currently in use. Additionally, as spaces in the FRC are converted to 

accommodate eCASS, it is recommended that spare eCASS “slots” are built. In the event 

that demand signals show a future increase failure rate beyond the capacity of the current 

eCASS stations on-hand, additional eCASS stations can easily be installed to account for 

the additional demand.  

As eCASS stations are incorporated into FRCs and AIMDs, a centralized work 

center needs to be incorporated instead of the five work centers currently in place. In this 

project, the sharing ability of the CASS stations provides a more efficient method of 

repairing UUTs. In eCASS, all of the testing capabilities will be shared in one unit. A 
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centralized work center means lower costs in the form of eCASS stations, personnel, 

training and TPS equipment. Other barriers may exist that preclude incorporation of a 

centralized eCASS work center; it is recommended that a thorough examination occur 

prior the incorporation of eCASS.  

Finally, collection of data needs improvement. Advances and applications in the 

theories of Operational Research and Lean management require accurate, relevant, and 

readily obtainable data. Much of this data is available; however it resides in multiple 

databases that do not interface with each other. Standardization of data under the fewest 

databases possible needs to be a priority in the continual process improvement of the 

Navy.  
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