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Abstract 
Autonomous agents are beginning to play larger roles within team-oriented tasks and missions in 
various domains.  Many reasoning agents are designed to perform in or assist with a single, static 
goal or task within an environment.  Our aim is to design and develop an autonomous squad 
member that assists a squad with conducting a surveillance mission by identifying and reacting 
dynamically to changing situations and goals.  We present a goal reasoning system for this agent 
that integrates natural language processing, explanation generation, and plan recognition 
components to recognize these changing situations and the squad’s responses to them.  Our system 
uses goal selection and plan generation to respond to such changes.  We describe the architecture 
we use to integrate these components and provide a case study that demonstrates how they work 
together to make a robust and adaptive autonomous agent. 

1.  Introduction 
Robots are increasingly being added to teams to improve their ability to accomplish specific tasks 
and missions (ARL, 2011; Kott et al., 2010).  Most instances involve a single task or objective for 
the agent or team to complete that is static and uninterrupted.  This may suffice for simple tasks 
and environments, but in more realistic situations the team’s goals are dynamic and can be 
interrupted or changed at any time. 
 Our objective is to design and develop an autonomous squad member (ASM) that can 
accompany and assist a squad of soldiers on military missions.  These missions can be, and often 
are, conducted in hazardous and hostile areas.  In such environments, unexpected events (e.g., 
encountering enemy fire, explosives, and other obstacles) can occur at any moment without 
warning.  Therefore, the ASM must identify and react to highly dynamic and unpredictable 
environments to coordinate with its team.  Furthermore, as its human teammates will typically 
react quickly and instinctively to such changes, the ASM must also recognize rapid changes in 
team behaviors. 
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Meeting these needs requires the ASM to have multiple reasoning capabilities.  First, it must 
recognize any relevant situational and environmental changes that have occurred.  We address 
this need by bolstering standard observational capabilities (e.g., static environmental and map 
information, a priori mission knowledge) with natural language understanding (NLU).  Next, the 
agent must recognize local events and the actions its squad is performing based on this 
observational data.  We handle this problem by using explanation generation to abductively infer 
actions and events that may have been responsible for the ASM’s observations.  Using this 
information, the ASM can infer the current goals and plans of other squad members by 
performing plan recognition in situ using the history of recognized actions.  Based on the team's 
inferred goals, the ASM’s goal selection algorithm should then choose a new goal for the agent 
that coordinates with the team.  Plan generation then creates a sequence of actions to accomplish 
this goal.  Finally, the ASM should act in accordance with its plan.  We detail each of these steps 
and their supporting techniques in this paper. 

In Section 2 we examine related goal reasoning (GR) systems and discuss military programs 
that promote autonomous agents as teammates.  Section 3 provides a more detailed description of 
the ASM domain and its inherent challenges, while Section 4 describes our GR process and its 
major components.  Section 5 introduces our demonstration scenario and showcases an initial 
proof of concept in that domain.  We conclude and discuss future research plans in Section 6. 

2.  Related Work 
Numerous GR agents have been created and applied to control unmanned autonomous systems, 
some of which adapt to unexpected events and situations.  For example, Coddington et al. (2005) 
describe MADbot, an agent that can change its goals dynamically.  It offers insight into supplying 
agents with underlying drives and (primarily internal) motivations that can initiate goal change.  
We agree with the importance of motivated goal changes, but aim to generate goals based not 
only on internal motivations but also external factors such as the actions of team members and 
exogenous events in the environment. 
 Other GR agents have been designed to respond to dynamic problems and tasks (e.g., 
Talamadupula et al., 2011).  While these reason about situation changes, they do not always 
detect and recognize them in intuitive ways.  Instead, they often require structured interfaces to 
communicate goal changes with the agent.  For instance, Talamadupula et al. use a “Problem 
Update” structure to communicate new sensory information and goal changes to the agent, but in 
real-world situations such information is not always made available so easily and quickly. 

Work has been done, however, to extend these technologies with natural language processing 
and understanding techniques.  Cantrell et al. introduce a full architecture (DIARC) that is 
designed to handle natural language and dialogue processing (2012).  While this work does 
integrate natural language into a larger goal reasoning architecture, it mainly focuses on language 
and capability-related commands.  For instance, telling an agent it can open a door to enter a 
room (Cantrell et al., 2012).  We feel it is important for the ASM, in its military mission-related 
domain, to understand language not necessarily directed at it or in command form.  Consider a 
scenario where one of the agent’s teammates encounters an improvised explosive device (IED) 
near a convoy: the agent may simply sense the teammate yell “IED” or “Explosive.”  Therefore, 
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while there has been notable NLU work applied to GR, we feel that our domain requires handling 
more simple and overheard styles of language.  We respond to this challenge by forming domain-
appropriate NLU techniques to incorporate into the ASM. 

A related problem to explanation is diagnosis of discrete-event systems (Sampath et al., 
1995), also referred to as history-based diagnosis (Gspandl et al., 2011), which finds action or 
event histories that account for a series of observations including observed events.  Aside from 
representations, our formal model of explanations differs from the standard discrete-event system 
diagnosis model in the following ways: (1) we distinguish actions from events (which are 
deterministic), to better understand which actors are responsible for which actions and to predict 
unavoidable consequences; (2) we provide a formal model of ambiguous occurrences and a way 
to characterize their correctness, and (3) we assume that only partial states, and never actions or 
events, are observable.  Diagnosis efficiency is considered a major issue in this community; 
recent efficient systems convert diagnosis problems to satisfiability or planning problems and 
adopt efficient techniques for solving the new problem (Grastien et al., 2011; Sohrabi et al., 
2010). 

Aside from more general GR research, several military programs are investigating the use of 
autonomous agents alongside teams of humans.  One of these, the Safe Operations in Urban and 
Complex Environments (SOURCE) (Kott et al., 2010) Program, aims to develop collaborative 
autonomous agents to assist warfighters in dynamic environments in a safe and trustworthy 
manner. Similarly, the Robotic Collaborative Technology Alliance Army Program calls for the 
research and development of perceptive, intelligent autonomous vehicles that can interact with 
human teams (ARL, 2011).  However, many of the collaborative systems proposed by these 
programs have not progressed beyond single-objective tasks with little to no external interference 
or danger.  This presents a significant limitation, as more realistic missions like reconnaissance 
tasks (Section 5) are dynamic and can involve unexpected and dangerous events.  A primary 
objective of our work on the ASM is to address such events. 

We extend this diverse body of research on GR and autonomy by laying the groundwork for a 
more adaptive ASM. 

3.  Challenges in Real World Domains and Missions 
The domain and mission characteristics for our proposed ASM present realistic and difficult 
challenges to GR and autonomy in general.  When teams of warfighters undergo missions, such 
as reconnaissance, the mission environment is often hazardous and almost always dynamic. 

Dynamic environments pose a major threat to autonomous systems that cannot adapt on the 
fly to changing conditions.  For instance, a priori information about the world may be given in the 
form of maps and satellite images that may be inconsistent with the real-time state of the mission 
environment.  Unforeseen obstacles, such as downed trees and boulders, can block a mission 
route.  For an agent to collaborate effectively with its team it must react to dynamic environments 
such as these, and plan to act and assist in whatever way it can (e.g., help pull the tree out of the 
road or calculate a new route to the current destination). 

In addition to being dynamic, in these environments a team may encounter unexpected and 
anomalous situations throughout a given mission (e.g., a squad can encounter enemy mortar fire 
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while en route to a given destination).  An agent cannot always be expected to perceive or sense 
the physical mortar shells being fired, nor can its teammates be expected to stop what they are 
doing and tell the agent what is happening (e.g., via some structured user interface).  Instead, a 
robust autonomous agent must understand and explain what is happening around it based on 
observations and context clues, including those coming from its teammates in the form of natural 
language.  For example, recognizing that its squad leader has yelled “Mortar fire incoming” can 
provide insight into what is currently happening, as well as how the rest of the team is expected to 
respond.  The ASM can process these events without requiring focused operator input. 

While we do not claim to have a complete solution to these issues that are inherent in realistic 
mission scenarios, but our system takes steps towards handling such scenarios. 

4.  Autonomous Squad Member Goal Reasoning Process 
Our GR process includes five primary steps, represented by five distinct components: (1) a 
Natural Language Interpreter, (2) an Explanation Generator, (3) a Plan Recognizer, (4) a Goal 
Selector, and (5) a Plan Generator.  Figure 1 displays the ASM’s decision cycle, which involves 
using these components.  Observations originate from the world (or simulation) the agent 
inhabits, which we label as the Environment.  Ultimately, the agent’s actions feed back into the 
Environment, completing the decision cycle.  We outline and describe each of the five primary 
components in the remainder of this section. 

 
 

Figure 1. The Autonomous Squad Member’s Goal Reasoning Process. 
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4.1  Natural Language Interpreter 

The ability to interpret natural language uttered by teammates is a key capability for 
understanding nearby events, both expected and anomalous, in many domains.  We begin the 
interpretation process by parsing spoken utterances using a domain-specific grammar and a chart 
parser from the Natural Language Toolkit (NLTK) (Bird, 2006).  We keep the grammar small by 
considering only semantic categories related to the mission and potential anomalies that could be 
encountered (e.g., utterances regarding the recon mission, sniper encounters, teammate status).  
While a grammar is inherently limited in its vocabulary, the structured and well-known 
terminology of the military domain (e.g., NATO phonetic alphabet, device and role terminology) 
allows us to cover large portions of standard mission-related conversation and phrases in a 
compact manner.  This grammar, coupled with a chart parser from the NLTK, produces parses for 
the raw utterances heard by the ASM.  It reformulates these parses into semantically tagged 
structures that denote utterance types (e.g., mission-related, anomalous-event-related, squad-
related) and content.  Finally, these semantic structures are mapped to ontological information 
representing the implications and meanings of the utterance(s) being processed.  We refer to this 
generated information as interpreted utterances. 
 Table 1 displays a few example utterances that could be overheard during a mission, as well 
as some interpretations that could be generated from each.  For example, if the ASM senses a 
teammate saying “Enemy Sniper,” it can assume the teammate means that there exists an enemy 
in the world that is holding a sniper rifle.  Variables in Table 1 are indicated by a leading question 
mark (e.g., ?enemyA and ?teammateA), and are implicitly existentially quantified.  As output, 
the language understanding process generates semantic interpretations in the form of facts about 
the world, which are passed to the Explanation Generator for further processing. 

Table 1. Example semantic interpretations for several sample utterances. 

Utterance Example Interpretations 
“Enemy Sniper” (exists ?enemyA) 

(holding ?enemyA sniper-rifle) 
(is-self ?self) 
(on-team ?self ?teamA) 
(not (on-team ?enemy ?teamA)) 

“Incoming Mortar” (exists ?enemyB) 
(holding ?enemyB mortar) 
(fired ?enemyB mortar) 

“Man Down” (exists ?teammateA) 
(on-team ?teammateA ?teamA) 
(is-self ?self) 
(on-team ?self ?teamA) 
(status ?teammateA injured) 

4.2  Explanation Generator 

For the ASM to understand what its teammates are doing at any given moment, it needs to 
monitor its environment to recognize their individual actions.  The Explanation Generator is 
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responsible for this task; it accepts as input state information about the world in the form of 
observations and interpreted utterances from the Natural Language Interpreter.   

To perform this task, we use a modified version of the DiscoverHistory algorithm 
(Molineaux, Kuter, & Klenk, 2012).  DiscoverHistory is appropriate because it is designed to 
function in a partially observable environment and infer exogenous events and actions based on 
static observations (Molineaux & Aha, 2014).  Unlike most other algorithms for explanation 
generation, DiscoverHistory operates efficiently by incrementally constructing explanations, and 
by maintaining explanations as new observations arrive rather than processing large batches.  
Additionally, it recognizes the difference between actions and events, and can ascribe particular 
world changes to the actions of known actors.  This is important to support plan recognition in 
circumstances where individual actors may have different and even competing goals. 

DiscoverHistory detects and resolves inconsistencies in existing explanations by applying one 
of the following inconsistency resolution methods to update the explanation: 

• Hypothesize a new event or action 
• Bind an unbound variable 
• Remove an event or action 
• Assume a property of the initial state 
• Constrain the ordering of two unordered occurrences 

DiscoverHistory conducts a search through explanation space; at each step of the search, it selects 
an inconsistency and applies all possible inconsistency resolutions to find successor nodes in the 
search space.  This search terminates when a pre-specified number of explanations are found with 
only ambiguous inconsistencies, which are inconsistencies that can be resolved by binding a 
variable in multiple ways, and are considered trivial because the required conditions are met by 
several existing objects. 
 To properly integrate the partial knowledge discovered by the Natural Language Interpreter, 
we extended DiscoverHistory with the ability to incorporate existential quantifiers in its 
observations, which can in turn be bound during the explanation generation process.  This 
resolves, or grounds, the semantic interpretations generated by the Natural Language Interpreter.  
Binding steps in the explanation process unify the variables in the interpreted utterances with 
existing (or newly discovered) entities in the environment.  To illustrate this process, let’s revisit 
the example interpretation in Table 1, namely the “Enemy Sniper” utterance.  Suppose the ASM is 
aware of an enemy sniper nearby, and has labeled it person1.  DiscoverHistory would 
recognize that the assertion (holding ?enemyA sniper-rifle) is inconsistent with 
existing knowledge, and resolves that inconsistency by binding the variable ?enemyA to the 
value person1.  This reconciles the inconsistency, as (holding ?enemyA sniper-rifle) 
is supported by prior observations.  This contextualizes the remaining information, allowing the 
inference that person1, who holds a sniper-rifle, is not on the same team as self (i.e., 
the robot).  Thus, the situation-agnostic interpretation is integrated with other observations of the 
current environment. 
 The modified DiscoverHistory algorithm also uses the predicted plan from the Plan 
Recognizer (Section 4.3) to help infer actions.  Assuming that these predictions are correct, this 
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speeds up the explanation generation process by removing several otherwise unnecessary search 
steps to find correct actions. 

The primary output of the Explanation Generator is the set of actions that were inferred to be 
performed by the ASM’s teammates.  These actions are then given as input to the Plan 
Recognizer. 

4.3  Plan Recognizer 

Once the ASM has inferred the actions of its teammates, it can attempt to identify the higher-level 
plans and goals they are trying to accomplish via these actions.  The task of identifying an ASM’s 
plans based on their actions is referred to as plan recognition. 

We extend and use a plan recognizer called the Single-Agent Error-Tolerant Plan Recognizer 
(SET-PR) (Vattam, Aha, & Floyd, 2014; 2015) to infer the plans (and goals) of the ASM’s 
teammates.  SET-PR’s case-based approach to plan recognition is designed to robustly tolerate 
observational input errors, including missing, mislabeled and extraneous actions.  This capability 
is especially useful when partial and imperfect observability conditions exist that are typical in 
the simulations and scenarios that we use to test our GR agent. 

SET-PR learns to recognize plans from a given plan library 𝐶 (i.e., a set of cases), where each 
case is a tuple 𝑐 = 𝜋!,𝑔! , 𝜋! is a known plan, and 𝑔! is its corresponding goal.  Each case’s 
plan 𝑐.𝜋! is modeled as an action-state sequence  𝕤 = 𝒂𝟎, 𝒔𝟎 ,… , 𝒂𝒏, 𝒔𝒏 , where each action 
𝒂𝒊 is a ground operator in the planning domain, and 𝒔𝒊 is a ground state obtained by executing 𝒂𝒊 
in 𝒔𝒊!𝟏, with the additional caveat that 𝒔𝟎 is an initial state, 𝒂𝟎 is null, and 𝒔𝒏 is a goal state.  Plan 
𝑐.𝜋! does not store the propositional representation of 𝕤.  Instead, 𝕤 is encoded as an action 
sequence graph ℇ𝕤 and then stored in 𝑐.𝜋!.  Vattam et al. (2014; 2015) introduce the action 
sequence graph representation for plans and discuss the reasons for using this representation in 
SET-PR.  Inputs to SET-PR are sequences of actions performed by an observed agent and the 
resulting states.  Like plans in cases, these observed sequences are modeled as action-state 
sequences and represented as action sequence graphs.  Input graphs are then used to retrieve 
matching cases from the case base.  SET-PR uses approximate graph matching techniques, 
described to compare an input against each case’s plan 𝑐.𝜋! and assign a score to 𝑐.  The case 
with the highest score is returned; SET-PR predicts that the agent is following the plan 𝑐.𝜋! to 
achieve the goal 𝑐.𝑔!. 
 We adapted SET-PR, a general-purpose plan recognizer, to fit into the ASM agent 
architecture.  First, to operate in a multi-agent domain, we modified it to recognize a team’s plan 
(containing individual team members’ actions) and a team’s goal (containing individual team 
members’ goals).  In particular, we modified SET-PR’s plan representation by adding an actor to 
each action as its first argument.  Furthermore, 𝑐.𝑔! now represents a team goal and contains a 
set of goal propositions, one per team member.  Second, the input to SET-PR is no longer 
provided by the environment, but is instead provided by the Explanation Generator.  Explanations 
contain the set of all inferred actions and events, from which the subset of team members’ actions 
are extracted and used as input to SET-PR. 

From the Plan Recognizer we obtain the most likely plans and goals of the ASM’s 
teammates.  To illustrate, suppose that the output of the Explanation Generator consists of the 
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following three observed actions of the ASM’s teammates: (follow MEMBER2 MEMBER1), 
(follow MEMBER3 MEMBER1), and (move MEMBER1 ROUTE1)).  Using this an input, 
SET-PR returns the following recognized team goal: 

MEMBER1 -> (investigate-route MEMBER1 ROUTE1) 
MEMBER2 -> (investigate-route MEMBER2 ROUTE1) 
MEMBER3 -> (investigate-route MEMBER3 ROUTE1)   

SET-PR also returns the following recognized plan, which contains the predicted actions of team 
members: 

((follow MEMBER2 MEMBER1),(follow MEMBER3 MEMBER1), 
 (move MEMBER1 ROUTE1), 
 (DIRECT MEMBER1 (DIRECTIVE investigate-checkpoint)), 
 (gesture MEMBER1 POINT), 
 (move MEMBER2 LOCA), (move MEMBER3 LOCB),…). 

4.4  Goal Selector 

The Goal Selector determines a goal for the ASM based on the goals of its teammates.  If the 
robot has 𝑛 teammates, the goal tuple 𝑇 = (𝑔!,𝑔!,… ,𝑔!) contains the currently recognized goal 
𝑔! of each teammate.  Our current implementation uses a static goal (i.e., no goal selection is 
performed) but we are currently investigating several alternative goal selection strategies. 
 As future work, we plan to implement a goal selection strategy where the ASM selects its 
goal based on its teammates’ current goals (i.e., 𝑔𝑜𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛:  𝒯 → 𝒢, where 𝒯 is the set of all 
goal tuples and 𝒢 is the set of all goals).  However, we also plan to investigate a strategy that 
examines how the teammates’ goals have changed over time.  The ASM would use the currently 
observed goals 𝑇! at time 𝑡 and the sequence of previously observed goals 〈𝑇!!!,𝑇!!!,… 〉 to 
select a new goal (i.e., 𝑔𝑜𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛:  𝒯  ×    𝒯  ×…  ×  𝒯 → 𝒢).  For example, the ASM could 
observe a teammate that historically has scouting goals but now has a goal reserved for squad 
leaders.  This would allow the robot to infer that something has happened to the original squad 
leader and act accordingly (e.g., inform central command). 

Goal selection strategies require criteria governing when the ASM’s goal should be changed.  
Our initial plan is to use selection criteria provided by a domain expert.  We prefer this in our 
domain because it avoids introducing additional error into the ASM (e.g., if it attempted to learn 
goal selection criteria) and prevents switching to an incorrect goal.  If the ASM switches to an 
incorrect goal, it could impact the squad’s ability to complete their task or mission.  However, we 
also plan to explore strategies for learning goal change criteria in situations where criteria from an 
expert are not available or incomplete.  The majority of our Goal Selector remains future work.  

The selected goal is then sent as input to the Plan Generator, which uses the goal to generate a 
plan containing the ASM’s future actions. 

4.5  Plan Generator 

Plan Generation takes the intended goal of the ASM, changed or unchanged, and determines the 
best way of accomplishing it.  Whenever the goal is changed during goal selection, a new plan is 
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generated for the selected goal.  Replanning also occurs when an existing plan becomes 
inadmissible due to unexpected environment changes.  In this situation, the generated plan 
attempts to fulfill the goal of the prior plan.  In both cases, new plans are generated by the 
continuous time HTN planner SHOP2-PDDL+ (Molineaux, Klenk, & Aha, 2010).  This enables 
the ASM to react to both the changing goals of the squad, and unexpected changes to the 
environment, as guided by task decomposition knowledge. 
 SHOP2-PDDL+ is ideal for use as the Plan Generator in the ASM domain for several 
reasons.  First, it can represent continuous time and exogenous events that predictably occur after 
a time, such as a requested air strike or arrival of other agents at a location.  Most planners can 
represent continuous changes to an environment only through durative actions, which don't 
properly represent how the choices of others affect the world.  Second, SHOP2-PDDL+ is fast 
relative to other continuous-time planners, due to the task decomposition knowledge it uses 
internally to guide search and eliminate large areas of the search space.  This is important due to 
the need for frequent replanning introduced by goal changes and unexpected environment change.  
Third, SHOP2-PDDL+ is effective in partially observable domains.  The integration of SHOP2-
PDDL+ with DiscoverHistory, both of which use the same knowledge representation, has been 
demonstrated in past studies as an effective means of understanding hidden information and 
creating plans that rely on it (Molineaux et al., 2012; Wilson et al., 2013; Molineaux & Aha, 
2014).  To support this, agent beliefs about hidden states generated by the explanation system are 
combined with observations from the environment.  Together, these are sent to the Plan Generator 
as the initial state. 

The plan generated by the Plan Generator is the decision output by the decision cycle, and 
replaces any prior plan generated in a previous cycle.  Plans are enacted by sending actions to the 
environment at appropriate intervals.  Enacting a plan fulfills the goal found in goal selection, 
which in turn relies on the environment interpretation generated by the first three components in 
the cycle.  This entire cycle is continuously repeated, generating and enacting new plans as 
necessary, for as long as the agent inhabits its environment. 

5.  Integration Proof of Concept 
In this section, we describe our proof-of-concept system, focusing on our demonstration scenario 
and a discussion of the system’s performance. 

5.1  Integration Scenario 

To demonstrate the effectiveness of our GR agent, we created a scenario that encompasses both 
the standard mission-based objective that our domain normally contains and a characteristic 
anomalous event that disrupts mission execution. 
 The ASM accompanies a squad on a typical reconnaissance mission.  Figure 2 shows an 
example mission map with checkpoints and routes labeled.  A squad performs this mission by 
moving between checkpoints on a pre-specified route (e.g., Start Area, CP Alpha, CP Bravo).  At 
each checkpoint, the squad splits into smaller teams or sub-squads that perform investigations of 
nearby areas, each of which follows a pre-determined investigation route (e.g., RA1, RA2, RB1, 
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RB2).  The mission is complete when the final checkpoint on the main route has been 
investigated.  Our scripted scenario occurs as follows: 

1. Squad receives a reconnaissance mission 
2. Squad moves to checkpoint Alpha 
3. Squad members investigate routes RA1 and RA2, and then return to Alpha 
4. Squad begins moving to checkpoint Bravo 
5. Squad encounters an enemy sniper 
6. Squad members eliminate the enemy sniper 
7. If casualties have occurred, mission is aborted 
8. Squad continues on to checkpoint Bravo 
9. Squad members investigate routes RB1 and RB2, and then return to Bravo 
10. Mission complete 

The sniper encounter is an unplanned event that causes the squad to abandon their existing goals 
in favor of new ones, such as running for cover and attempting to locate the enemy.  The 
autonomous agent must recognize these changes based on observations and natural language and 
act accordingly.  Further, a member of the team will announce that the enemy has been 
neutralized, which the agent must recognize and use to update its understanding of the situation.  
Finally, the squad members continue on their mission and complete it, resuming their previously 
interrupted goal. 
 
 
 

Figure 2. Reconnaissance Scenario. 
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5.2  Demonstration Walkthrough 

Below we provide a walkthrough of our demonstration in the form of data snapshots (for one 
cycle through the GR process) as we progress through the scenario.  Explanation generation was 
requested to generate two explanations at each opportunity. 
 The initial goals of the team members are given as follows: 

 
At this point, member1 and member3 are at checkpoint alpha and member2 is about to 
investigate route-alpha1. 
 The Natural Language Interpreter receives the following utterance as input: 
 

 
…and generates the following interpretation as output: 
 

 
This interpretation tells us that there is a person ?teammate on the robot’s team ?myTeam that 
is injured, along with some information about the utterance ?utterance.  It is then passed 
along as input to the Explanation Generator. 

Before the utterance was made, the Explanation Generator had the following explanation 
about the environment: 
 

 
In this explanation, it is believed that teammate member2 was starting to move along route 
route-alpha1 when an unknown person #v795 fired a shot towards his/her location. 

(observe-environment s=392) 
(move route-alpha1 location-alpha member2 s=393) 
(gps-observe-location member2 location-alpha s=394) 
(observe-environment s=415) 
(shoot-toward location-alpha #v795 s=416) 
(observe-environment s=438) 

... 
(is-person ?teammate) 
(on-team ?teammate ?myTeam) 
(person-has-property ?teammate injured) 
(is-utterance ?utterance) 
((utterance-text ?utterance) “Man down”) 
((utterance-type ?utterance) statement) 

Utterance: "Man down" Time: 600.013 Speaker: member3 

Goal, member1: (investigate-route route-1) 
Goal, member2: (investigate-route route-1)  
Goal, member3: (investigate-route route-1) 
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 Adding the utterance interpretation from the Natural Language Interpreter (along with other 
observed information) to this existing explanation results in the following inconsistencies:  

 
The inconsistencies indicate that the new observations include information not explained by prior 
events: 

• A previously unknown person #v958 was injured 
• member3 uttered a sentence 
• A sound occurred at location-alpha 

It also generates the following ambiguities: 
 

 
The ambiguities indicate that new observations include information not bound to prior 
knowledge: 

• A previously unknown person #v958 is on some team #v957 
• The robot is on team #v957 

The Explanation Generator attempts to resolve these inconsistencies and ambiguities by deriving 
two possible explanations (new information is shown in bold). 
 
 
 
 
 

inconsistency  
 condition: person-has-property (#v958 injured) 
   prior: <none>  
   next: (observe-environment s=461) 
inconsistency  
 condition: utterance ("man down" 600.013 member3) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 
inconsistency  
 condition: sound-occurs (600.013 speech location-alpha) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 

ambiguity  
 condition on-team (#v958 #v957) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 
ambiguity  
 condition: on-team (robot1 #v957) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 
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Explanation 1  
This first explanation indicates that a previously unknown person at location-4 was shot. 

 
Explanation 2 
The second explanation indicates that someone was injured earlier, and member3 is commenting 
on it now. 
 

 
The Explanation Generator maintains these plausible explanations, and a single most-plausible 
explanation is given as input to the Plan Recognizer.   

At this time, the goals of member1 and member3 have changed.  However, the Plan 
Recognizer is unable to immediately detect these changes.  Further observations lead to 
refinements of these explanations.  Subsequently, the Plan Recognizer is provided with the 
following history of actions and events: 
 

(assume-initial-value (object-location #v958) location-4 s=1) 
... 
(observe-environment s=392) 
(move inv-routea1 loca member2 s=393) 
(gps-observe-location member2 inv-routea1 s=394) 
(observe-environment s=415) 
(shoot-toward loca #v795 s=416) 
(person-clipped #v958 s=(interval :start 417 :end 460)) 
(observe-environment s=438) 
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 

(assume-initial-value (person-has-property #v958 injured) s=1) 
... 
(observe-environment s=392) 
(move inv-routea1 loca member2 s=393) 
(gps-observe-location member2 inv-routea1 s=394) 
(observe-environment s=415) 
(shoot-toward loca #v795 s=416) 
(observe-environment s=438)  
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 

... 
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 
(assume-defensive-position tree1 member3 s=462) 
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…and is able to recognize the following changed goals: 
 

 
These statements reflect a correct recognition, namely that an enemy is sniping the team, and two 
team members are now responding to the sniper instead of their previous goal (i.e., to investigate 
the route). 

6.  Conclusions and Future Work 
We have demonstrated how a goal reasoning agent, the autonomous squad member (ASM), 
cooperates with teammates during a squad mission. The ASM recognizes and reacts to 
unexpected and anomalous events, processes natural language, infers and assumes unobserved 
facts about the world (via explanation generation), and recognizes the plans of its own teammates. 
In future work, goal selection will allow the agent to choose collaborative goals that are 
appropriate for its changing circumstances. Plan generation will then determine a means to 
accomplish these selected goals. 
 Our demonstration scenario suggests that the integration of these components is effective. In 
future work, we will conduct a formal empirical study to test this claim. These experiments will 
be distinguished into two categories, integration testing and individual component testing. In 
these experiments, we will measure the precision and recall of natural language interpretation, 
plan recognition, and explanation generation, as well as mission success criteria for determining 
overall performance. Integration testing experiments will measure whether the ASM performs 
best with all components present. For example, in an ablation study we will compare the precision 
and recall of explanation generation and plan recognition with and without natural language 
interpretation. Our objective is to show that the ASM performs better as a whole than any subset 
of its components. The other category, individual component testing, will test whether our 
implementation for each component is a good choice for the overall system.  For example, we 
will swap out our Explanation Generator for a simpler deductive reasoner and compare the 
performance of the overall system using each. 
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