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Final Report 

Diagnostics of Unseeded Air and Nitrogen Flows by Molecular Tagging 

FA9550-12-1-0150  
Program Manager: Ivett Leyva 

Richard Miles and Mikhail Shneider 
Department of Mechanical and Aerospace Engineering 

Princeton University 

Abstract 

This research effort has focused on the development of Femtosecond Laser Electronic 
Excitation Tagging (FLEET), a new molecular tagging diagnostic for subsonic, 
supersonic and hypersonic flows. A femtosecond laser is focused into a nitrogen 
containing flow of interest and creates a line of dissociated nitrogen molecules through 
the focal zone. The subsequent recombination of those nitrogen atoms occurs over tens of 
microseconds through a fluorescing upper electronic state, so the displacement and 
distortion of the line with the flow can be imaged with a time-gated camera. No seeding 
is required. The use of point tagging for the acquisition of full three dimensional velocity 
and acceleration data, line tagging the measurement of cross stream correlations and 
structure functions in free jets, and the tracking of cross patterns for the measurement of 
velocity and vorticity have all been examined in this effort.  Megahertz rate imaging of 
patterns tagged at kilohertz rates have been demonstrated. The research has also 
addressed the perturbation that FLEET creates to the flow through the tagging 
mechanism.  

Introduction 

Measuring the transport properties of air is critical for the understanding of turbulence, 
for the understanding of boundary layer phenomena, for ground testing, and for 
computational model development and validation. Measurements need to be made in 
homogeneous turbulence, in turbulent near wall flows, in free shear layers, and in region 
where mixing is occurring. The challenge addressed in this research effort was the 
development of a method for molecular tagging in air and/or nitrogen which avoids 
seeding with either particles or foreign gases. The intention has been to establish a 
method that can follow the motion of the air or nitrogen in real time in order to establish 
transport properties and flow structure from the displacement and distortion of lines, 
crosses or more complex patterns.  
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The FLEET mechanism 

 
The FLEET tagging process involves the interaction of a high intensity, short 

pulsed laser with nitrogen molecules, leading to multiphoton dissociation. The laser pulse 
is short enough to avoid avalanche breakdown and creates a uniform line of dissociated 
molecules through the focal zone.   Figure 1 is a potential energy diagram for the nitrogen 
molecule. The energy of the laser photon is 1.55eV, and the emission following 
excitation can be broken into prompt emission (a few nanoseconds and primarily in the 
near ultraviolet) and delayed emission (tens of microseconds in primarily in the red to 
near infrared). The long time scale of the delayed emission is due to the time it takes for 
the dissociated nitrogen atoms to find each other and recombine. They combine into the 
nitrogen molecular B state, followed by fluorescence to the metastable A state. It is this 
delayed emission that is of use for FLEET. Figure 2 shows images of the lines tagged 
into air using a 30 cm focusing lens with various laser pulse energies at time delays of 
2.5, 7.5 and 12.5 microseconds. Note that with higher laser pulse energy the tagged line 
not only gets longer, but the line center moves toward the laser source.  

 
 

 
Figure 1: Potential energy diagram of nitrogen showing the “second positive” C to 

B state prompt emission and the recombination generated “first positive” B to A state 
delayed emission.  

 
 
 
 

800#nm#=#1.55#eV#

Second#Posi3ve#band#
(prompt)#
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(delayed)#
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Figure 2: FLEET lines at three delays written with different 50 fsec pulse energies 

focused into 1 atmosphere pressure air with a 300 mm lens. The emission shows the 
increased intensity and line emission displacement toward the laser source with laser 
pulse energy.  
 

Figure 3 presents normalized scatter plots of the total FLEET emission intensity 
as a function of laser pulse energy for nitrogen and air, showing an initial highly 
nonlinear increase in emission intensity at low laser pulse energy followed by a linear 
increase at higher pulse energies. The shift of the central position of the line toward the 
laser source is indicated by the color variation. The lines in nitrogen are approximately 20 
times brighter than in air and the line center location shift with energy is less than air. 
This shift may be due to Kerr self focusing effects that increase with laser pulse energy 
and lead to self guiding filamentation and fluorescence clamping at the higher energies.  

 
 

 
Figure 3: Scatter plots of FLEET in nitrogen (left) and air (right) with pulse 

energy. The color code indicates the displacement of the emission toward the laser 
source. 
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4.2.1 Morphology

Weak Focusing

A representative picture of the emission structure at short time delays can be found in figure 4.5.

Each frame shows the unfiltered emission profile at t = 2.5, 7.5, and 12.5µs for the listed laser

energy. All images were acquired in air at p0 = 1.00atm for an f = 300mm plano-convex focusing

lens. The intensity has been normalized for each time and energy setting.
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Figure 4.5: Energy dependence of the emission profile for p0 = 1.00 atm in air. All images
are unfiltered and normalized to their maximum intensity. Focusing was performed with an f =
300mm plano-convex lens. Laser propagation is in the upward direction.

As time increases from 2.5µs to 12.5µs, little change is observed in the emission profile across

all energy settings. The only noticeable changes are a slight decrease in the length and a slight

Nitrogen Air 
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The dynamics of the dissociation process are, as yet, not well understood. One or 

a combination of three mechanisms can be occurring: 1) multiphoton ionization of N2 
followed by dissociative recombination of N2

+, 2) direct multiphoton dissociation through 
a multiphoton transition to a dissociative or predissociative electronic state, and 3) 
multiphoton excitation of a stable electronic state of N2 followed by dissociation by 
collisions of two of these excited molecules (energy pooling).  The dissociation energy of 
nitrogen is 9.79 eV, more than six times the energy of the 800 nm photon from the 
femtosecond laser, so all of there process involve a highly nonlinear interaction and only 
occur in the region of the laser focus where the intensity is high enough to drive such 
processes.  The ionization threshold lies 15.5 eV above the ground state.  The dissociative 
and predissociative states of N2 lie more than 12 eV, above the ground state, and the 
energy pooling A state is about 6.5 eV above the ground state. Thus we would expect that 
dissociation by dissociative recombination of N2+ requires at least ten photons to be 
absorbed simultaneously, direct dissociation can occur with 8 or more photons, and 
energy pooling may be achieved with 5 or more photons. Of course, once some transfer 
of energy to the molecule has occurred, the dissociation process itself may involve 
multiple steps, possibly including dissociation to excited atomic species or relaxation to 
energy pooling states.  

Some understanding of the dissociation process can be inferred from 
measurements of the FLEET line strength along with simultaneous measurements of 
planar Rayleigh scattering in the low pulse energy regime, where negligible Kerr self 
focusing is occurring. Figure 4 shows the FLEET signal intensity along the center of a 
line tagged with 320 µJ laser pulse as well as the apparent temperature along that 
centerline determined using Planar Rayleigh Scattering and assuming atmospheric 
pressure and no dissociation. The FLEET intensity profile follows the apparent 
temperature profile almost exactly, and this property is maintained for at least the next 50 
microseconds. Both of these curves fit well to the laser intensity through the focal zone if 
that intensity is raised to the 20th power, as indicated in the figure. This relationship 
between the FLEET intensity and the laser intensity suggests a 10 photon interaction, 
assuming the nitrogen atom recombination is a three body interaction, which is 
proportional to the square of the atomic number density. This is consistent with 
dissociative recombination of N2+ as the primary mechanism for the generation of the 
atomic species.  
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Figure 4: FLEET emission intensity along the tagged line along with the apparent 

temperature profile and the laser intensity profile raised to the 20th power.  
 
 
Further understanding of the tagging and recombination processes can be 

accomplished using both planar Rayleigh scattering and line images of depolarication 
Rayleigh scattering. The experimental set up for depolarization Rayleigh imaging is 
shown in Figure 5.  A frequency doubled, well polarized Nd:YAG laser beam passes 
through the FLEET tagged volume and both polarization components of the Rayleigh 
scattering from that beam are imaged by the camera, slightly offset from each other so 
both can be simultaneously recorded. Rayleigh scattering from molecules is weakly 
depolarized, whereas Rayleigh scattering from atoms is fully polarized, so by measuring 
the ratio of depolarized to polarized Rayleigh scattering, the depolarization fraction can 
be determined. Figure 6 shows the FLEET luminosity, the planar Rayleigh and the 
depolarized Rayleigh for a FLEET line written into 1 atm of pure nitrogen with a 320 µJ, 
50 fsec laser pulse, taken one µsec after tagging. The two polarization components have 
been normalized to the same scale. Note that at the center of the line the perpendicular 
component is significantly reduced relative to the parallel component, indicating a large 
dissociation fraction.   

Emission Intensity 
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Figure 5: Experimental set up for simultaneous measurement of orthogonal 

polarizations of the Rayleigh scattering across the FLEET tagged line.  

 
 
 
Figure 6: FLEET emission, Rayleigh planar image, and the transverse 

measurement of the polarization components across the FLEET line and the computed 
molecular density and dissociation fraction.  
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These measurements yield insight into the evolution of the center point of the 
tagging volume.  A plot of the molecular nitrogen density, the dissociation fraction, the 
atomic nitrogen density and the FLEET emission is presented in figure 7.  The 
mechanism for the emission at times below one microsecond appears to be different from 
the longer time emission, and may arise from energy transitions in molecular nitrogen. 

 
 

 
 
 
Figure 7: Time evolution of the density, dissociation fraction, nitrogen atomic 

number density and dissociation fraction.  
 

Heating of the sample volume 
 
A concern for the application of FLEET is the heating that occurs associated with 

the dissociation process. If too much heat is generated, that may perturb the sample and 
cause the tagging to no longer be an accurate measure of the flow transport properties. 
This has been studied using Rayleigh scattering and Rayleigh scattering polarimetry. 
Figure 8 shows the evolution of the Rayleigh scattering profile across a FLEET line 
formed by tightly focused 320 and 780 µJ, 50 nanosecond laser pulses in 1 atmosphere of 
air. The images record the evolution from 200 nsec to 100 µsec, and show the reduction 
in Rayleigh scattering at the center where the heating reduces the density as well as the 
increased Rayleigh scattering associated with the shock wave propagating away from the 
tagged region. If it is assumed that the air is not dissociated and that the pressure is 
uniform, then the temperature can be determined from the ideal gas law. With that 
assumption, the evolution of the temperature with time is plotted for pure nitrogen at 1 
atmosphere for 320 and 780 µJ pulses as the dotted lines in Figure 9. That estimate must 
be corrected to take into account the reduced Rayleigh cross section of the atomic 
nitrogen, which is measured using the depolarization Rayleigh. That corrected 
temperature is shown in Figure 8 as the solid lines. The values at times below 2 
microseconds are probably not correct because the pressure has not yet equilibrated. 
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Figure 8: Time sequenced Rayleigh scattering profiles across the FLEET tagging 

region in air created with 320 and 780 µJ, 50 nanosecond laser pulses focused with a 175 
mm lens.  
 
 

 
 
Figure 9: Apparent (dotted lines) and corrected (solid lines) temperature evolution from 
FLEET tagged regions created in nitrogen with 320 and 780 µJ, 50 nanosecond laser 
pulses focused with a 175 mm lens.  
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Figure 4.11: Scattering intensity through the plane of maximum shockwave intensity. a) E
i

=
320µJ, t = 0.2 � 2µs. b) E

i

= 320µJ, t = 5 � 100µs. c) E
i

= 780µJ, t = 0.2 � 2µs. d)
E

i

= 780µJ, t = 5� 200µs.

examination of the t = 2µs data shows the density profile obtaining a local minimum between

the shock front and the global minimum, approximately at r = 0.6mm. Such a profile was not

observed for nanosecond plasmas, or in panel (c). One hypothesis is that the shockwave might

be temporarily strengthened by vibrational energy release on the ⇠ 1µs timescale. Generating

such a density profile through modeling of the heat release process may illuminate its physical

origins. Panel (b) shows the density perturbation continuing to diffuse over the following 100µs

while maintaining a minimum at r = 0.
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Figure 4.22: Temperature history for E
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= 320µJ and E
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= 780µJ in nitrogen, with and without
corrections for dissociation. Experimental conditions are f = 175mm and p0 = 1.00atm.

decreases to the same value of ⇠ 300K at 100µs. At the later time delays, the measurements may

be influenced to some degree by the convection and diffusion processes documented in figures 4.14

and 4.16. These results show that molecular dissociation can have a huge effect on the derived

temperature.

Second, the effect of f and E
i

on the maximum temperature is examined. Measurements were

obtained for f = 175mm, f = 300mm and f = 500mm. The beam was directed through the

plane of maximum emission/shockwave intensity in all cases. For the f = 300, 500mm data, the

derived temperature could not be corrected for dissociation. The combined results are shown in

figure 4.23a.

The data shows a non-linear trend with increasing E
i

. For the f = 300mm data, the first three

points at E
i

= 0.3, 0.5, 1.0mJ show an accelerating increase in �Tmax with E
i

. An inflection
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An alternative method of measuring the temperature is through the prompt emission. That 
emission occurs in the near ultraviolet within about ten nanoseconds of the tagging. The 
spectral features of that emission include rotational and vibrational transitions from the 
nitrogen C state to the nitrogen B state, which are called second positive emission. 
Although the distribution of states created by the femtosecond laser excitation is not 
related to the gas temperature in any easily predictable way, the rotational states in the 
upper electronic manifold equilibrate within a few hundred picoseconds, so the spectral 
signature of that band reflects the local gas temperature.  Figure 10 shows the measured 
spectrum of the FLEET prompt emission in the 354-358 nm spectra region compared 
with the computed spectrum for various air temperatures. The 500K temperature curve 
most closely matches the FLEET spectrum. The FLEET tagging was done in air at 300K, 
so these data indicate an increase in temperature of 200K. Clearly an increase in 
temperature occurs and it is highly dependent on the laser pulse energy and the focusing.  
 

 
 
Figure 10: Prompt emission profile from FLEET showing the rotational structure 
measured and computed for 360K, 500K, and 800K.  
 
 

Turbulence Measurements 
 
The use of FLEET to measure turbulent flows is an important capability. An example of 
this is the measurement of turbulent properties of a free jet. At the exit of the jet, the 
fluctuations are very different at the center than they are near the edges. This can be seen 
by analyzing the transverse correlation functions at sequential locations across the jet. 
The transverse correlation function compares the velocity fluctuations at a chosen point 
with other points along a tagged line across the flow. It is normalized with 1 
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corresponding to 100% correlation, 0 corresponding to no correlation. Figure 11 shows 
the correlation function at various locations across the flow just downstream of the jet 
exit. The sharp peak corresponds to the presence of uncorrelated detection noise, which is 
an indication of the detector resolution. The wider region can shows that the correlation 
region near the edges of the jet is asymmetric and broad relative to the symmetric 
correlation at the core of the jet. Outside of the jet the correlations are spikes, indicating 
that the fluctuations are primarily due to the detection noise.  By 40 diameters 
downstream the turbulence has become more homogeneous, and the fluctuations are 
uniform across the jet, as seen in Figure 12.  
 
 
 

 
 
Figure 11: Transverse correlation functions at locations across the exit of an air free jet.. 
 
 

 
Figure 12: Transverse correlation functions 40 exit diameters downstream of the air jet 
exit.  
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Another representation of the properties of the turbulence is the transverse structure 
function.  
 

 
 
where u(y) is the stream wise velocity at the point y along the line and p is the order of 
the structure function. For homogeneous turbulence the second order structure function 
has a slope of 2/3 assuming Kolmogorov scaling or 0.7 if intermittency is included. 
Figure 13 shows the measurement of the second order structure function 40 diameters 
downstream in the free jet. The FLEET measurement follows the Kolmogorov scaling 
until about 4mm, below which the curve diverges. This small scale region may be 
affected by the increased temperature. Further research on this topic is underway.  
 
 

 
 
 Figure 13: Second order structure function for turbulent free jet taken 40 diameters 
downstream.  
 

Pattern Tracking 
 
One of the useful properties of FLEET is the ability to write more complex patterns into a 
flow that provide further information regarding transport properties. An example of the is 
the writing of a cross into the flow. In this case the motion of the crossing point yields the 
vector velocity and the rotation of the cross gives the vorticity. Work on this capability 
has been undertaken in supersonic free jet and wind tunnel configurations Figure 14 
shows the motion of a cross tagged into Mach 2.6 air in a small in-draft supersonic 
facility. These images show a single cross as it propagates in the core of the flow taken 
by multiple gating of the camera intensifier. 
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Figure 14: FLEET cross tagged into a Mach 2.6 in-draft air flow showing sequential time 
gated images of the motion of the cross from which the velocity vector and the vorticity 
can be determined.  
 

Collaborations 
 
Air Force Research Laboratory (Dr. James Gord) 
 
Princeton student Nick DeLuca visited that laboratory and conducted that work together 
with staff from AFRL and Spectral Energies. Work there employed the high-energy 
femtosecond laser at that laboratory for characterization of the FLEET tagging with 
increasing energy and the use of FLEET for the measurement of the exit velocity from a 
pulsed detonation test duct.  
That work also addressed the use of the boresight configuration for the measurement of 
point displacement. Figure 15 shows the configuration for those tests and the time 
delayed images. This configuration is of interest for the application of FLEET as an air 
data system for flight vehicles.  
 

 
Figure 15: Boresight FLEET configuration and displacement measurement experiment at 
AFRL 
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NASA Langley (Dr. Paul Danehy) 
 
Princeton student Christopher Peters is supported by a NASA Space Technology 
Research Fellowship and worked at NASA Langley on this collaboration. This 
collaboration has focused on the application of FLEET to measurements in the National 
Trans-sonic Facility, which operates with cold nitrogen. Tests have been undertaken with 
cold atmospheric pressure nitrogen and include work on the evaluation of commercial 
camera capabilities for capturing the flow features.  Experiments with NASA personnel 
at Princeton provided the first measurement of three dimensional motion of a flow using 
simultaneous orthogonal projections of the motion of FLEET velocity and acceleration 
by following small points whose displacement is captured by imaging both projection 
onto a single camera image with multiple time delayed gating. A pair  of those time 
sequenced images is shown in Figure 16. 

 

 
 
Figure 16: Time sequenced orthogonal images of the motion of a FLEET generated point 
in an air jet showing the capability to follow in real time the motion of the point in three 
dimensions for the determination of vector velocity and acceleration.  
 
 
Arnold Engineering Development Center and Plasma TEC (Dr. Eric Marineau) 
 
A Phase I SBIR effort under Plasma Tec, Inc, has been undertaken with the AEDC 
Tunnel 9 in Maryland. That effort has addressed the measurement of core and boundary 
layer properties in supersonic and hypersonic nitrogen flows. For this work the Princeton 
kHz laser system was transported to AEDC and operated to image flows in their nitrogen 
indraft tunnel. Figure 17 shows the camera location relative to the tunnel and a small 
subset of the images captured in those experiments. Images were taken at 1 kHz rates and 
each image contained multiple images of the same line across the boundary layer imaged 
multiple times at 3 microsecond intervals. The center image is the non displaced line that 
is used to determine the initial location for the measurement of displacement.  
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Figure 17: FLEET measurements of the flow from the wall to the core of the in-draft 
Mach 2.8 nitrogen facility at AEDC.  
 
 
Kharkiv National Automobile and Highway University, Department of Applied 
Mathematics, Ukraine (Prof. Albina Tropina) 
 
This collaboration seeks to understand the effects of energy addition on the properties of 
turbulence. The FLEET tagging process generates heating at a scale that falls within the 
inertial Kolmogorov range of fully developed turbulence. The modeling uses a Fourier 
analysis to examine the evolution of that energy with time. Figure 18 presents 
preliminary results of that modeling effort, showing the evolution of the second order 
structure function at times after energy is added at 20 times the Kolmogorov scale. Note 
that the perturbation that occurs proceeds toward the smaller scale with time, and the 
distortion of the structure function resembles the distortion measured by FLEET and 
shown in figure 13.  
 

 
Figure 18: Modeled evolution of energy added to turbulent flow at 20 time the 
Kolmogorov scale.  
 
 

800nm,"50cm"lens"
Gate"width:"200ns"
Images"at"200ns"and"every"3µs"a:er"
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MetroLaser (Dr. Jacob George) 
 
A Phase I SBIR with NASA Ames has been initiated to examine the use of FLEET and 
other approaches for the measurement of flow properties in a hypersonic arc jet facility. 
 

Summary 
 
FLEET has been further developed under this research project, with results providing 
quantitative information on the dissociation mechanisms and thermal impact of FLEET 
on the sample volume and the potential for FLEET to measure properties of turbulence in 
both air and nitrogen flows. The work has been extended to collaborative efforts with 
AFRL and NASA, providing further insight on the use of FLEET for a variety of 
applications including application to national ground test facilities and establishing the 
potential for applications for flight data. 
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