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A Discussion of Dempster-Shafer Theory and its
Application to Identification Fusion

Executive Summary

Sensor Fusion is the combination of sensor data obtained from different sources to reduce
uncertainty and/or obtain more complete or accurate information than that available from
any individual source. In some cases, two or more sensors with complementary capabilities
may be used together to obtain a target estimate that is better than when any individual
sensor is used alone.

The scenario addressed by this paper is that of fusing the data from two or more sen-
sors to support an operator’s decision making ability about the identity of a target. This
paper outlines some of the basics of Dempster-Shafer Theory (DST), which is a mathe-
matical theory for combining evidence from different sources to obtain a degree of belief
in a proposition. It overcomes the Bayesian constraint of needing precise fixed priors by
assigning mass values which may or may not obey the classical probability axioms. This
means DST is able to accommodate uncertain knowledge in a manner which proponents
believe Bayesian probability cannot do, or at the very least is unable to in an obvious and
straight-forward manner.

The aim of this paper is to describe the fusion of target identification data within the DST
framework. Dempster’s rule of combination is the most common DST approach for fusing
data. Alternative rules of combination include Smets’ Transferable Belief Model (TBM),
Yager’s Rule, Inagaki’s Unified Combination Rule (UCR), and Dubois and Prade’s rule.
Each of the different rules of combination yields a distribution of belief or mass and the
distribution may be different depending on the approach adopted. An examination of
different rules of combination is presented and their underlying assumptions described.
Simple examples are used to illustrate how the different rules of combination are im-
plemented and to highlight the treatment of uncertainty in the sensor data. However,
typically, evidence that is presented in the form of a distribution of belief does not directly
enable decisions to be made. Alternative transformations from a belief to a probability
distribution are described and illustrative examples presented.
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1 Introduction

Sensor Fusion is the combination of sensor data obtained from different sources to reduce
uncertainty and/or obtain more complete or accurate information than that available from
any individual source. In some cases, two or more sensors with complementary capabilities
may be used together to obtain a target estimate that is better than when any individual
sensor is used alone. The scenario addressed by this paper is that of fusing the data from
two or more sensors to support an operator’s decision making ability about the identity
of a target.

The most popular methods for combining information from multiple sensors are Bayesian
in nature, including Bayesian networks and Kalman filters. Bayesian networks are models
that represent variables and their related probabilities and are used to perform inference
based on probability distributions provided by the sensor or other data sources [1]. Halpert
extended target identification (ID) used Bayesian techniques for more than two targets [2],
however Mortiss noted that this model does not work well for identifying neutral targets
unless information on the nature and number of these targets is available prior to en-
gagement [3]. Krieg showed how Bayesian Belief Networks could be used as a framework
for linking target kinematics with attribute states [4], whilst a comprehensive tutorial in
Bayesian Belief Networks was also given by the same author [5]. Maskell [6] addressed a
well-known problem of handling conflicting information by setting appropriate values for
the probability distributions. A key requirement for all Bayesian techniques is that the
prior probability distributions must be specified in advance.

Dempster-Shafer Theory (DST) overcomes the Bayesian constraint of needing precise fixed
priors by assigning mass values which may or may not obey the classical probability
axioms. This means DST is able to accommodate uncertain knowledge in a manner which
proponents believe Bayesian probability cannot, or at the very least is unable to do in an
obvious and straight-forward manner.

As an example, suppose that p(α1) and p(α2) denote the probability of there being rain
in a day or not respectively. Then clearly, p(α1)+p(α2)=1. However, if we let m(α1)
and m(α2) depict the masses for there being rain or not, then under the DST framework
m(α1) +m(α2) +m(α1 ∪ α2) = 1, where m(α1 ∪ α2) denotes the uncertainty mass of not
knowing whether it will rain or not. Note that if m(α1 ∪ α2) = 0, then this is no more
than the classical probability axiom, but this is not a requirement in DST. However, the
computational complexity of DST can quickly escalate and while Bayesian probability is
universally accepted, the same cannot be said of DST; partly due to it being relatively
new (only a few decades old). Further, the concept of belief masses and what this means
is still contested by some statisticians and mathematicians working in this area.

In effect, Dempster-Shafer Theory (DST) is another method for combining information
from multiple sensors [7, 8, 9] and may be regarded as a collection of different theories
with the same underlying uncertainty calculus and has its origins in the representation of
and reasoning under partial probability distributions over a finite set of elements, called
Θ. It encodes uncertainty by assigning normalised non-negative quantities (basic belief
masses) to the elements of the power set of Θ (which are of order 2|Θ|. Notwithstanding
the fact that Random Set Theory has been proposed by Mahler as a unifying framework
between different types of fusion rules [10, 11], the main benefits of DST are that it
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specifically caters to the handling of ambiguity in systems that provides a more flexible
means of representing ignorance than probability theory, and it is able to handle random
variables with uncertain belief masses. Furthermore, DST has also recently been used
with other techniques [12, 13, 14, 15, 16] for such purposes as rule-based inferencing and
group decision-making among others.

In this paper, particular emphasis is placed on the fusion of information and sensor data
from multiple sources which contains uncertainty. Bogler [17] detailed a use of Dempster’s
rule of combination using data from sensors such as a Radar Warning Receiver (RWR),
a Television Sighting Unit (TVSU) and an Infra-Red Search and Track (IRST) sensor.
DST has also been applied to multitarget tracking in clutter [18], whilst another approach
which uses DST for joint tracking and classification/intent-detection can be found in [19].
Also recently, there has been some work done in trying to fuse soft data [20, 21, 22]. This
is data that has a qualitative nature to it and is typically used in every day speech, for
example “that car is near the city” or “that person is walking really fast”. Apart from
the fact that fixed priors must be known, or at best, it is sometimes argued that Bayesian
methods can be too restrictive a fashion, Bogler also notes that Bayesian techniques do
not explicity address the problem where the sensor data presents conflicting information.
A recent survey of techniques that seek the address the problem of uncertainty from
a theoretical and practical perspective is provided in [23]. More specifically, Hadzagic et
al. [24] considered the relevance and reliability in assessing evidence for the implementation
of DST to Electronic Support Measures. Koks and Challa [25] compared Bayesian fusion
with DST, whilst Smets, as will be discussed later, also wrote extensively on the issue
of comparing DST techniques with other methods for fusion, including specifically to the
problem of target detection and ID.

Other recent interesting applications of DST involve the behaviour and decision-making
aspect of travellers [26] and for the quantification and uncertainty propagation of AIS ship
data [27]. The application considered in this paper is the problem of determining the ID, or
identification, for a target of interest given data from multiple sensors. In this context, ID
can be simply described as the task of determining or classifying the identity of unknown
targets of interest. Depending on the specific requirements for the application, the target
ID may refer to the unique platform (e.g. a specific ship such as HMAS Anzac: FFH150),
the platform type (eg Anzac Class Frigate), the platform category (eg Frigate) and/or
the platform allegiance (eg Friend). Data about the ID of a target may be received from
heterogeneous sources including imaging, acoustic and RF sensors and even intelligence.
The source data may relate to different levels of the target ID so that one sensor may be
able to determine the allegiance while another may be able to determine platform type
details.

The objective of sensor fusion is to estimate the states of targets given data from multiple
sensors. For a given sensor, the target ID may be ambiguous, for example a sensor may
not be able to resolve between several possible platform types. For many applications,
the target state comprises kinematic and attribute components, that are estimated using
Tracking and ID Fusion functions, respectively. A sequential process for sensor fusion
whereby a tracking function is followed by ID fusion as shown in Figure 1 is considered.
Data from each of the sensors is initially processed by a tracking function which performs
data association to determine the sensor data that corresponds to the same target. Typ-
ically, a kinematic target state estimate is computed by the tracking function based on

2
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kinematic components of the sensor data.

The focus of this paper is on ID fusion which has the goal of fusing ID data from multiple
sensors to estimate the ID of targets. In the DST framework an ID Combination function
processes the target ID evidence and obtains a belief or mass distribution. A Probability
Transformation is then performed to determine a discrete probability distribution of the
target ID. The output of Sensor Fusion is a track corresponding to each target with
estimates of the kinematic state and of the target ID.

Sensor fusion supports decision making by processing uncertain sensor data to arrive at
target state estimates. If a track on a target corresponds to a large freighter, then the
decisions of an operator may be quite different than if the track corresponds to a small,
fast vessel. Furthermore, a decision maker may be informed by the uncertainty in the
target ID. For example, if it is equally likely that the target is a large freighter or a
small, fast vessel then a decision maker might choose to make a conservative decision that
is appropriate to their mission. Another course of action might be for the user to task
sensors in an attempt to reduce the uncertainty in the estimate of the target ID.

ID Fusion

Tracking
Combination

ID
Transformation
Probability

Sensor Fusion

- - - -User

�
�
��7

S
S
SSw

Sensor N

Sensor 2

...

Sensor 1

Figure 1: Functional flow for Sensor Fusion

The aim of this paper is to describe the fusion of target ID data within the DST frame-
work. Dempster’s rule of combination is the most common DST approach for fusing data.
Alternative rules of combination include Smets’ Transferable Belief Model (TBM), Yager’s
Rule, Inagaki’s Unified Combination Rule (UCR), and Dubois and Prade’s rule. Each of
the different rules of combination yields a distribution of belief or mass and the distribution
may be different depending on the approach adopted. An examination of different rules
of combination is presented and their underlying assumptions described. Simple examples
are used to illustrate how the different rules of combination are implemented and to high-
light the treatment of uncertainty in the sensor data. However, typically, evidence that is
presented in the form of a distribution of belief does not directly enable decisions to be
made. Alternative transformations from a belief distribution to a probability distribution
are described and illustrative examples presented.
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2 Basic Concepts of Dempster-Shafer Theory

In this section, some of the basic concepts of DST are described. The set of possible
target types that might be present is known as the frame of discernment (FoD). The
construction of the FoD is outlined together with the belief function assignment, which
is the designation of values or beliefs regarding target ID. Other issues like whether this
FoD should be closed or open are also discussed.

2.1 Frame of Discernment (FoD)

At the heart of DST is the Frame of Discernment (FoD) which is typically denoted by ΘD

and is a model that describes the set of possible hypotheses.

Suppose that the FoD is

ΘD = {θ1, θ2, . . . , θk},

where the θi, 1 ≤ i ≤ k, are mutually exclusive and contained in the set labelled ΘD.

A Closed World Assumption (CWA) implies that ΘD is exhaustive, so that at least one
of the θi must be true. If it is known that θ1 is not true, then the CWA implies that the
conclusion must correspond to one of the other k − 1 possibilities.

2.2 Expanding the Frame of Discernment (FoD)

It is possible to extend the FoD by combining it with another [28]. For instance, if we
have a frame that describes the platform type so that

Θ1 = {θ1, θ2, θ3}.

then this FoD for platform type can be combined with another that describes the platform
allegiance,

Φ = {ϕ1, ϕ2, ϕ3, ϕ4},

A fully expanded FoD is obtained from the cross product:

Θ
(f)
2 = Θ1 × Φ

{(θ1, ϕ1), (θ1, ϕ2), . . . , (θ3, ϕ4)},

which contains 12 elements. However, in many cases it may be known with certainty that

not all elements in Θ
(f)
2 will be present. For instance, the true FoD could be the subset of

5 elements:

Θ2 = {(θ1, ϕ1), (θ1, ϕ2), (θ2, ϕ2), (θ2, ϕ3), (θ2, ϕ4)}.

Further, there might be different levels of resolution so that

Θ3 = {(θ1, ϕ1, ψ1), (θ1, ϕ1, ψ2), (θ1, ϕ2), (θ2, ϕ2), (θ2, ϕ3), (θ4, ϕ4, ψ3), (θ4, ϕ4, ψ4)}.

4
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Figure 2: The FoD Θ3 represented as an irregular tree

A depiction of this FoD in the form of an irregular tree is shown in Figure 2.

Turning to the problem of ID fusion, a key question is: How can masses from sensors
which have different levels of resolution be fused? An answer to this question lies in
forming appropriate subsets of the FoD that are applicable to Θ2’s FoD. For example, Θ2

can be expressed as

Θ2 = {((θ1, ϕ1, ψ1) ∪ (θ1, ϕ1, ψ2)), (θ1, ϕ2), (θ2, ϕ2), (θ2, ϕ3), ((θ2, ϕ4, ψ3) ∪ (θ2, ϕ4, ψ4))}

so that if there is evidence for (θ1, ϕ1) then that evidence can be applied to the set union
(θ1, ϕ1, ψ1) ∪ (θ1, ϕ1, ψ2), where A ∪B means set of those elements which are either in A,
B or in both.

2.3 Belief Function Assignment

In DST, uncertain evidence is encoded as a belief function or sometimes referred to as a
potential function (this is at times distinctly used to distinguish it from Bayesian proba-
bility theory [29, 30]) which can be expressed in a variety of equivalent ways. There are
several ways of encoding this uncertain evidence which include: mass, belief, plausibility
and commonality. Denoting the function [ϕ]m, [ϕ]b, [ϕ]pl, [ϕ]q, etc can be used to indicate
which representation of the potential is being used.

UNCLASSIFIED
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The most common means of encoding is via the basic belief assignment (bba) which is a
function m defined on the power set of the frame of discernment ΘD as follows:

m : ℘(ΘD) → [0, 1]

X 7→ m(X)

subject to the constraint that
∑

X⊆ΘD
m(X) = 1, where

∑n
k=1 ak = a1 + a2 . . .+ an. The

power set of a set of elements is simply the set of all possible subsets of elements from that
set. For instance, for a FoD Θ1 = {θ1, θ2, θ3} consisting of |Θ1| = 3 elements, the power
set is simply

℘(Θ1) = 2Θ1

= {{∅}, {θ1}, {θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}}.

For a given set X ⊆ ΘD, the belief mass m(X) represents the proportion of all relevant
and available evidence that supports the claim that a particular element of ΘD belongs to
the set X, but to no particular subset of X. We remark that mathematically, m is akin to
a probability distribution when the only non-zero belief masses are all assigned to subsets
containing a single element, also known as a singleton. As already noted, no interpretation
of the belief masses as probabilities is made in some interpretations of the DST.

To combine evidence from two independent belief functions represented as bbas m1 and
m2, Dempster’s rule of combination is typically used and the resulting belief function,
denoted by m1,2 = m1 ⊕m2.

2.4 Belief, Plausibility and Commonality

Two other useful encodings in one-to-one correspondence with the basic belief assignment
m are the belief and plausibility functions which are defined in the following manner:

bel(X) =
∑

∅̸=Y⊆X

m(Y ) and pl(X) =
∑

Y ∩X ̸=∅

m(Y ).

For a given subset X, bel(X) quantifies the extent to which the evidence supports X,
while pl(X) quantifies the extent to which the evidence does not contradict X.

Another encoding frequently used is commonality. It can be defined as the quantity of
the agent’s belief which may eventually be assigned to X. Mathematically, it can be
represented as follows:

q(X) =
∑
X⊆Y

m(Y ),

where A ⊂ B means the set that contains all those elements that A and B have in common.
Its real value, however, lies in the fact that it can lead to much faster computation of
masses (see [31]) due to the following property:

6
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q12(X) = q1(X).q2(X),

where qi, i = 1, 2 are the commonality values assigned to X from two different sources and
q12(X) is the fused commonality value of the qis.

Note that DST can handle probabilities in the traditional manner, but this is not a re-
quirement in order to use DST. However, a link can be made to standard probability
measures by noting that belief and plausibility may be interpreted as lower and upper
bounds on the probability, respectively. Note that in the remainder of this tutorial we
adopt the conventional terminology where the term belief function is used to refer to the
bba rather than bel(X).

2.5 Closed World Assumption (CWA)

Recall that the Closed World Assumption (CWA) implies that the FoD is exhaustive so
that the solution must correspond to one of the elements in ΘD. In other words, there is
zero probability or chance that the true solution might lie outside of ΘD.

Consider two situations where a CWA might be made. Firstly, the FoD may be known
to be complete so that all possible solutions are listed. For target ID applications, such
an assumption means that the sensors all have fully encoded knowledge of the possible
platform types and are able to produce a belief mass distribution based on a library of
possible platform types for subsequent ID Fusion. Secondly, the FoD may be known to be
incomplete but is treated as complete so that the actual solution may lie outside of the
FoD. In this situation, misidentification of a target may result from evidential reasoning
applied to a FoD that is not exhaustive. Misidentification could lead to a target allegiance
being declared hostile when in fact it should have been declared friend leading to fratricide
or “friendly fire”. It is clearly important to be aware of the underlying assumption about
the FoD.

2.6 Open World Assumption (OWA)

Lack of complete knowledge about the complete or entire solution space is known as having
an Open World Assumption (OWA). Under the CWA a statement about a set element
leads to inferences about the remaining set elements in the FoD. However, for an OWA,
no such inference can be made. While the CWA may lead to inference errors if the frame
of discernment is incomplete, the OWA places restrictions on the deductions that can be
made from the available information.

Assuming a FoD ΘD, the OWA assumption implies that if an inference is made about
θ1, . . . , θk−1 then we cannot conclude anything about θk. The true FoD is actually

ΘF = ΘD ∪ΘE ,

where ΘE is another frame of unknown size so that ΘD ∩ ΘE = ∅. That is, both frames
have distinct elements and there is no “doubling-up” across each FoD.

UNCLASSIFIED
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3 Dempster’s Rule of Combination

3.1 Definition

To combine evidence from two independent belief functions represented as bbas m1 and
m2, Dempster’s rule of combination is typically used and the resulting belief function,
denoted by m1,2 = m1 ⊕m2, is given by the following direct sum:

(m1 ⊕m2)(X) =
1

(1− κ)

∑
Y ∩Z=X

m1(Y )m2(Z), (1)

where the conflict mass κ is given by

κ =
∑

Y ∩Z=∅

m1(Y )m2(Z). (2)

In Dempster’s rule of combination, the empty set mass is zero, i.e. m(∅) = 0 [32]. It should
be noted that Dempster’s rule is commutative, i.e. m1 ⊕m2 = m2 ⊕m1 and associative,
i.e. (m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3), when the basic belief masses are compatible, i.e.
are not in complete conflict.

3.2 Conflict

A conflict between two beliefs in DST is where one source strongly supports one hypoth-
esis and the other strongly supports another hypothesis, so that the two hypotheses are
not compatible. The conflict mass κ quantifies the disparity of information between two
sources and is non-zero whenever there is an incompatibility in the hypotheses correspond-
ing to each source [33]. The closer that κ is to 1, the more we should reconsider how the
evidence influences the beliefs [34]. If fusing two pieces of information (so that one has a
belief in X and the other in X̄) result in κ = 1 then it is clear that this fusion does not
justify any support for either option (viz either X or X̄).

Zadeh [35] showed that normalization in Dempster’s rule would apparently resolve conflict
but might result in misleading final values, whilst [36] describes a novel technique for
discounting evidence in proportion to the degree of conflict it provides. An example
was presented where two medical doctors (h1 and h2) inspected a patient and provided
diagnoses for meningitis (M), concussion (C) and tumor (T). Their advice is listed in
Table 1.

Table 1: Medical Diagnoses of Two Doctors

Medical Diagnosis
Doctor M C T

h1 0.99 0.00 0.01
h2 0.00 0.99 0.01

In this example when all masses are combined according to Dempster’s rule, we have the
counter-intuitive result that the fused masses give a value of 1 for tumor. This result

8
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arises because the only common non-zero masses are those that correspond to tumor.
Other difficulties with DST have been discussed by Dezert et.al. [37, 38, 39]. Bayesian
fusion techniques give a similar result to DST approaches when prior information is not
carefully defined [6].

4 Alternative Rules of Combination

Dempster’s Rule of Combination is the most common DST approach for fusing information
from multiple sources. In this section we describe the following approaches in which
evidence from multiple sources is fused:

• Smets’ Transferable Belief Model (TBM)

• Yager’s rule

• Inagaki’s Unified Combination Rule (UCR)

• Dubois and Prade’s rule

Note that these are probably the most well-known transformations and each make subtle
assumptions about the nature of the FoD as will be discussed shortly. Furthermore, a
different approach for treating evidence implies that there is a different approach for the
management of conflicting information in the source data. The management of conflict is
described for each of the different rules of combination.

4.1 Smets’ Transferable Belief Model

The most well-known rule for explicitly accounting for conflict is the Transferable Belief
Model (TBM) [40]. In this case, the combination rule is given by

ms(X) = (m1 ⊕m2)(X) =
∑

Y ∩Z=X

m1(Y )m2(Z), (3)

where the mass for the empty set m(∅) ≥ 0 in contrast to Dempster’s rule of combination
and many other rules of combination where m(∅) = 0.

The effect of normalisation with the conflict mass κ in Dempster’s rule of combination
is that a closed world is assumed. However, by allowing the possibility of the empty set
mass to be non-zero in Smets’ TBM, this implies that an open world is assumed. The
TBM is commutative and associative, just like Dempster’s rule of combination. It is worth
noting that Smets has co-authored a number of papers regarding the application of TBM
to target detection [41, 42, 43, 44, 45, 46, 47, 48].
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4.2 Yager’s Rule

Yager’s rule of combination is similar to Shafer and Smets’ TBM but it differs in the treat-
ment of mass that is assigned to the empty set [49]. Yager defines the ground probability
assignment associated with X as

r(X) =
∑

Y ∩Z=X

m1(Y )m2(Z).

The bba arising from Yager’s rule of combination is given by

my(X) = r(X) (4)

my(ΘD) = r(ΘD) + r(∅) (5)

so that any conflict κ = r(∅) is assigned to the FoD ΘD. That is, Yager’s rule implies a
CWA because the possible solutions are contained in the FoD ΘD.

We can relate Yager’s rule to Dempster’s rule in the following manner

md(∅) = 0

md(ΘD) =
r(ΘD)

1− r(∅)

md(X) =
r(X)

1− r(∅)
.

Note that Yager’s rule is commutative but not associative. Rather, Yager’s rule is con-
sidered to have a “quasi-associative” property, which means that the operator can be
broken down into associative suboperations [32]. Yager justified this property on the basis
that sometimes the order of operation does matter; in particular when new information is
available and this is incorporated into an already combined structure [49].

4.3 Inagaki’s Unified Combination Rule

Inagaki’s UCR is a parametrized class of combination operations that incorporates both
Dempster’ rule and Yager’s rule. Specifically, Inagaki [50] argues that every combination
rule can be expressed in the form:

mi(X) = r(X) + f(X)r(∅),

where X ̸= ∅, with mi(∅) = 0, and∑
X⊂℘(ΘD),X ̸=∅

f(X) = 1, f(X) ≥ 0.

From these equations Inagaki’s unified combination rule can be derived so that:

mi
α(X) = [1 + αr(∅)]q(X), where X ̸= ℘(ΘD), ∅ (6)

mi
α(ΘD) = [1 + αq(∅)]q(ΘD) + [1 + αr(∅)− α]r(∅) (7)

0 ≤ α ≤ 1

1− r(∅)− r(ΘD)
(8)

If α = 0 then the results are equivalent to Yager’s rule and if α = 1/[1 − r(∅)], then
the masses are equivalent to those obtained using Dempster’s rule. The Inagaki’s UCR is
commutative, but quasi-associative.

10
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4.4 Dubois and Prade’s Rule

Dubois and Prade [51] took a set-theoretic approach in arriving at their rule

(m1 ⊕m2)
dp(X) =

∑
Y ∪Z=X

m1(Y )m2(Z). (9)

The use of the set union in Dubois and Prade’s rule avoids consideration of the conflict
mass and so there is no requirement for normalisation. The Dubois and Prade rule of
combination is commutative and associative.

4.5 Other Rules of Combination

There are other rules of combination which have been developed within the DST frame-
work such as Zhang’s Center Combination Rule (CCR) [52], Mixing or Averaging [53], the
Adaptive Combination Rule (ACR) [56], Convolutive X-Averaging [53], the Cumulatative
rule [54], the Cautious rule [55], the collection of Proportion Conflict Resolution (PCR)
rules [37, 56] and Zhang’s Center Combination Rule (CCR) is the same as Dempster’s
for some cases and scaling problems may arise in some instances ([32]). The Mixing or
Averaging, the Cumulative and the ACRs rely on weights being assigned to the mass dis-
tributions, whilst the Convolutive X-Averaging deals with information given as intervals.
The Cautious rule assumes dependency among the evidence sources which is not consid-
ered here, while the PCR set of rules are 5 rules proposed use a variant or variants of the
conjunctive rule to redistribute the conflicting mass on non-empty sets according to in-
tegrity constraints. Finally, Dubois and Prade [57] proposed another rule which combines
both their original disjunctive rule with Smets’ TBM. These are not described further in
this paper but thorough reviews of various DST rules of combination have been provided
elsewhere such as in [56], [58] and especially [32]. Lastly, most of these rules are also more
thoroughly reviewed by Nguyen and Docking ([59]).

5 Probability Transformations

The bba distribution of the DST framework does not readily support decisions to be
undertaken. Transformations are required to convert from the bba function to a probability
distribution, however other approaches to decision-making not involving transformations
have also been proposed [12, 15, 16]. This ID fusion approach where ID combination is
followed by a probability transformation corresponds to two levels of reasoning within the
DST framework. At the credal level, evidence is represented and manipulated using rules
of combination, while at the pignistic level, evidence is manipulated into a probability
distribution to support decision-making.

In a similar manner to the rules of combination, there are several probability transforma-
tions within the DST framework. Four different probability transformations are described
here:

• Aggregate Uncertainty Approach (AU)

UNCLASSIFIED
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• Plausibility Transformation (PlT)

• Pignistic Transformation (PiT)

• Generalised Pignistic Transformation (GPT)

Each of the probability transformations result in a distribution of probability P (X) over
singleton elements, where |X| = 1, of the FoD ΘD. A decision may then be made by, for
example, declaring the target type that is most highly supported by the amassed evidence
to be Xk, where Xk = argmax(i=1,...,k) P (Xi).

The probability transformations listed above are among the most popular and they obey
the minimal criterion which essentially states that the result of applying the transform
to the vacuous belief function should be the uniform probability distribution [60]. A
vacuous belief function is where the ignorance mass, or the mass over the entire FoD is 1.
Other probability transformations not considered here include those of Sudano [61] and
Cuzzolin [62].

5.1 Aggregate Uncertainty Approach

The Aggregate Uncertainty (AU) approach method distributes the masses of non-singleton
elements to the constituent singletons and then normalises to arrive at a probability
mass [63]. For instance, the mass m(Y ∪ Z) is distributed to m(Y ) and m(Z), where
|Y | = |Z| = 1. The AU method selects the proportion of m(Y ∪ Z) distributed to each of
the singletons in such a way as to minimise the entropy of the resulting probability distri-
bution [8]. Again, for a binary frame (i.e. Two elements), this process is straightforward:
if m(X) ≥ 0.5, the transform yields P1(X) = m(X) and P1(Y ) = m(Y ) + m(X ∪ Y ),
otherwise P1(X) = P1(Y ) = 0.5.

5.2 Plausibility Transformation

Also known as the Bayesian approximation method,the Plausibility Transformation (PlT)
has been argued that this transformation is the most consistent technique for translating
Dempster’s rule of combination to the Bayesian probability domain [64]. For a binary
frame, if X ∈ ΘD, where a ∈ A indicates that the element a belongs to the set A, the
probabilities given by this transformation become

P2(X) = K−1pl(X),

where K =
∑

Y ∈ΘD
pl(Y ).

5.3 Pignistic Transformation

The Pignistic Transformation (PiT) [40] moves the belief mass from the union elements
of the power set and distributes it equally amongst the corresponding singleton members.

12
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For an element X ∈ ΘD, the PiT gives

P3(X) =
∑

∅̸=Y⊆℘(ΘD):X∈Y

m(Y )

(1− κ)|Y |
, (10)

where κ is defined as before.

An OWA is made under TBM. However, once the pignistic transform is required to make
a decision it is then really apportioning masses to the singletons as though a CWA is being
made.

5.4 Generalized Pignistic Transformation

The Generalized Pignistic Transformation (GPT) aims to maximise the Probabilistic In-
formation Content (PIC). Here it suffices to say that maximization of the PIC is equivalent
to minimization of Shannon’s entropy [37]. For an element X ∈ ΘD, the transformation
is given by

P4(X) = m(X) + (m(X) + ε)
∑

Y ∈℘(ΘD)

X⊂Y,|Y |≥2

m(Y )∑
Z∈℘(ΘD)

Z⊂Y,|Z|=1

m(Z) + ε|Y |
, (11)

for some small arbitrary ε ≥ 0.

6 Example Sensor Data

In this section we describe several different cases that are used to illustrate the application
of DST to target ID.

First, we consider a FoD that describes allegiance so that

ΘA = {F,H,N},

where F,H andN represent friendly, hostile or neutral allegiance, respectively. Further, for
each allegiance type, there are certain associated platform types. This can be represented
by another FoD:

ΘP = {A,B,C,D,E}.

Next, combining these frames of discernment a fully expanded FoD with 15 platform types
(that include allegiance) is obtained. These are:

Θ
(f)
D = {FA,FB, . . . , NE},

where the first letter represents the allegiance and the second indicates the platform type.
In addition, if it is known with certainty that the true target ID does not correspond to
certain elements within the FoD, then these may be pruned from further consideration so
that the FoD is reduced to a smaller set of elements, as in the example of ΘD below:
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ΘD = {FA,FC, FD,HB,HC,NA,NC,NE}.

Figure 3 shows the FoD for target ID depicted as a tree of two layers with allegiance and
platform type, respectively. Reducing the FoD in this manner is one option to reduce the
computation complexity. However, from a modelling perspective, preserving the original
frame with 15 elements might be preferable in case there is evidence that could be used to
break the deadlock. Also, from the point of view of maintaining the underlying database
or ontology, this might provide a cleaner solution.

Figure 3: A tree representing the FoD for the example listed above

As an aside, on occasions, platform types may be combined so that FAC may be used
in the instance where sensors may not be able to discern between platform types FA
and FC. In a similar manner, other classification labels could be added to include target
environment such as air, surface and land.

We assume that there is a single target of interest and that sensor data relating to the
target ID is to be processed. Five different cases are considered in which uncertain data
about the target ID is received from two or more sensors. Table 2 shows the example
sensor input data for ID fusion. There are two sensors under consideration for cases 1 to 4
while for case 5 there are three sensors. The sensor input data is represented as a discrete
mass distribution over the FoD where the sum of the masses for each sensor is unity. A
blank entry in Table 2 implies that the corresponding mass is zero.

14
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Table 2: Example sensor input data for ID fusion

Case Sensor Target ID
FA HB NA NC FA ∪NA F H N ΘD

1
S1 0.7 0.2 0.1
S2 0.6 0.2 0.2

2
S1 0.7 0.2 0.1
S2 0.4 0.6

3
S1 0.7 0.2 0.1
S2 0.6 0.2 0.2

4
S1 0.7 0.2 0.1
S2 0.6 0.4

5
S1 0.7 0.2 0.1
S2 0.6 0.2 0.2
S3 0.6 0.4

In case 1, the two sensors provide belief masses for singleton elements. Sensor S1 provides
non-zero masses for the elements FA, HB and NA while the data for sensor S2 differs in
the values for FA, HB and the mass for NA is zero while the mass for NC is non-zero.

In case 2, sensor S1 provides the same mass distribution as for case 1. However sensor S2
provides non-zero mass for element HB and for the union (FA ∪ NA). In other words,
sensor S2 is able to discern that the platform type is either HB or one of FA or NA,
without being more specific about the latter two types.

Some sensors may only be able to discern data at the allegiance level. In case 3 sensor
S1 provides the same mass distribution as for cases 1 and 2, but sensor S2 provides data
at the allegiance level only so the mass distribution is for the elements of F , H and N .
The allegiance elements may be expanded in terms of their constituent platform types, ie.
F = {FA ∪ FC ∪ FD}, H = {HB ∪HC} and N = {NA ∪NC ∪NE}.

In case 4 each sensor attributes some of the mass to elements of the FoD and the remaining
mass is attributed to the FoD ΘD. This is a means of handling missing information.

In case 5 there are three sensors. Sensors S1 and S2 provide mass distributions for
singletons while sensor S3 provides mass for NA and ΘD.

7 Results

In this section we present the results of applying ID fusion to the example sensor data
described in the preceding section. We consider ID combination first where the DST rules
of combination are applied to obtain a combined bba from multiple bbas provided by each
sensor. Then, a probability transformation is applied to transform the combined bba into
a probability distribution.

UNCLASSIFIED
15



DST-Group–TN–1443
UNCLASSIFIED

7.1 ID Combination results

For the purposes of illustrating how the ID combination rules are applied, we adopt a
tabular representation similar to that of Sentz et al [32], as shown in Table 3. The
following steps show how Dempster’s rule of combination in equations (1) and (2) may be
implemented for the example data corresponding to case 2. The fused mass is assigned to
the intersection of the elements of both masses being fused. The second line in each entry
in Table 3 indicates the resulting element to which the fused mass is assigned.

1. Compute the combined mass for an element as the product of the masses from the
corresponding row and column. For instance,

m1(FA)m2(HB) = 0.28,

contributes to κ since {FA} ∩ {HB} = ∅. Or

m1(FA)m2(FA ∪NA) = 0.42,

contributes to the m1 ⊕m2(FA) since {FA} ∩ {FA ∪NA} = {FA}.

2. Conflicting evidence arises when the intersection is empty, eg. FA ∩HB = ∅. The
product of the masses from the corresponding row and column contributes to the
summation for the conflict κ in equation 2.

3. Sum the masses for the conflict:

κ =
∑

Y ∩Z=∅

m1(Y )m2(Z)

= m1(FA)m2(HB) +m1(NA)m2(HB) +m1(HB)m2(FA ∪NA)
= 0.28 + 0.04 + 0.12 = 0.44

4. Where the intersection is not empty, this represents supporting evidence for the set
intersection. The product of the masses from the corresponding row and column
contributes to the summation for the mass of the relevant set in equation 1, eg.
{FA} ∩ {FA ∪NA} = {FA}.

5. Sum the masses for each element, eg:

(m1 ⊕m2)(FA) =
1

(1− κ)

∑
Y ∩Z=FA

m1(Y )m2(Z),

=
1

(1− 0.44)
m1(FA)m2(FA ∪NA)

=
0.42

0.56
= 0.75

The results for ID combination using the different DST rules of combination for each of
the 5 cases are presented in Table 4 with the notation m(Y,Z) = m(Y ∪ Z). The value of
the parameter α in Inagaki’s Unified Combination Rule was selected to be 1/[2(1− r(∅)],
which is the halfway point between Yager’s rule and Dempster’s rule.

16
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Table 3: Example of Dempster’s rule of combination applied to case 2

Sensor 2

ID HB FA ∪NA

m1 0.4 0.6

S
e
n
so

r
1

ID m2

FA 0.7
m1(FA)m2(HB) = 0.28, m1(FA)m2(FA ∪NA) = 0.42,

FA ∩HB = ∅ FA ∩ (FA ∪NA) = FA

HB 0.2
m1(HB)m2(HB) = 0.08, m1(HB)m2(FA ∪NA) = 0.12,
HB ∩HB = HB HB ∩ (FA ∪NA) = ∅

NA 0.1
m1(NA)m2(HB) = 0.04, m1(NA)m2(FA ∪NA) = 0.06,

NA ∩HB = ∅ NA ∩ (FA ∪NA) = NA

It can be seen in Table 4 that the belief masses arising from each of the ID combination rules
sum to one, as required. A coarse inspection reveals that Dubois and Prade’s disjunctive
rule typically yields a belief mass distribution for a greater number of elements than the
other rules of combination. On the other hand, Dempster’s rule usually produces non-zero
belief masses for the least number of set elements because it generally does not assign
mass to the empty set, ∅ or to the FoD ΘD, like Dubois and Prade’s rule. The exception
to this is in case 4 when ΘD appears in the sensor input data.

7.2 Probability Transformation results

Probability transformations are applied to compute probability values from the belief mass
distributions obtained from the ID combination function. The belief masses obtained by
applying the Dubois and Prade rule of combination to case 2 are used to illustrate the
different probability transformations. The reason for selecting the results of the Dubois
and Prade rule of combination is simply that the corresponding bba for case 2 has nonzero
masses for elements with cardinality of one, two and three. In Table 5, P1, P2, P3 and P4

denote the AU, the PiT, the PlT and the GPT respectively as applied to the bba arising
from the Dubois and Prade rule of combination for case 2. For the GPT the value of ϵ
was set to 0.001.

8 Discussion

Several interesting features of ID fusion using DST can be observed from the results
tabulated in Tables 4 and 5. A comparison of the results in Table 4 for Smets’ and
Yager’s rules shows that the belief mass distribution are usually similar in that conflict is
distributed to the empty set mass in the former and to the ignorance or universal mass
in the latter. Dubois and Prade’s rule yields similar results to Yager’s rule. This is not
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Case Rule of Combination
Dempster Smets Yager Inagaki Dubois & Prade

1

0.91(FA) 0.42(FA) 0.42(FA) 0.67(FA) 0.42(FA)

0.09(HB) 0.04(HB) 0.04(HB) 0.06(HB) 0.26(FA,HB)

0.54(∅) 0.54(ΘD) 0.27(ΘD) 0.04(HB)

0.06(FA,NA)

0.02(HB,NA)

0.04(HB,NC)

0.04(NA,NC)

0.14(FA,NC)

2

0.75(FA) 0.42(FA) 0.42(FA) 0.59(FA) 0.04(HB,NA)

0.14(HB) 0.08(HB) 0.08(HB) 0.11(HB) 0.28(FA,HB)

0.11(NA) 0.06(NA) 0.06(NA) 0.08(NA) 0.08(HB)

0.44(∅) 0.44(ΘD) 0.22(ΘD) 0.48(FA,NA)

0.12(FA,HB,NA)

3

0.88(FA) 0.42(FA) 0.42(FA) 0.65(FA) 0.42(FA,FC,FD)

0.08(HB) 0.04(HB) 0.04(HB) 0.06(HB) 0.04(HB,HC)

0.04(NA) 0.02(NA) 0.02(NA) 0.03(NA) 0.06(NA,FA,FC,FD)

0.52(∅) 0.52(ΘD) 0.26(ΘD) 0.04(HB,NA,NC,NE)

0.02(NA,HB,HC)

0.12(HB,FA,FC,FD)

0.14(FA,NA,NC,NE)

0.14(FA,HB,HC)

0.02(NA,NC,NE)

4

0.80(FA) 0.70(FA) 0.70(FA) 0.75(FA) 0.42(FA,NA)

0.09(HB) 0.08(HB) 0.08(HB) 0.09(HB) 0.12(FA,HB,NA)

0.07(FA,NA) 0.06(FA,NA) 0.06(FA,NA) 0.06(FA∪NA) 0.46(ΘD)

0.05(ΘD) 0.12(∅) 0.16(ΘD) 0.10(ΘD)

0.04(ΘD)

5

0.91(FA) 0.17(FA) 0.17(FA) 0.37(FA) 0.29(FA,NA)

0.09(HB) 0.02(HB) 0.02(HB) 0.04(HB) 0.16(FA,HB,NA)

0.82(∅) 0.32(NA) 0.23(NA) 0.08(FA,NA,NE)

0.49(ΘD) 0.37(ΘD) 0.02(HB,NA,NE)

0.01(NA,NE)

0.04(HB,NA)

0.40(ΘD)

Table 4: Belief mass distributions obtained using different DST combination rules for five
cases of sensor data input.

surprising given that they both assume a closed world. However, whilst Yager’s rule assigns
any conflict to the universal mass, Dubois and Prade’s rule assigns its conflict to the union
of the elements of the fused masses.
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Table 5: Results using the different probability transformations applied to the belief mass
distribution obtained from Dubois and Prade’s rule of combination for case 2.

ID
Probability Transformation

Aggregate Plausibility Pignistic Generalized Pignistic
Uncertainty, P1 Transformation, P2 Transformation, P3 Transformation, P4

FA 0.33 0.43 0.42 0.25

HB 0.33 0.26 0.28 0.51

NA 0.33 0.31 0.3 0.24

But, as can be observed from the last example, this method yields the trivial result when
the output from one source is completely ignorant. It is interesting to note for all the rules,
except Dubois and Prade’s, if even one sensor does not contain a value for an element of
the power set (say hi), but all the other sensors or sources do, then when fused no mass
will be allocated to hi. This is in effect what occurred with Zadeh’s example; even though
a doctor gave a large confidence value for a particular diagnosis, a value of zero from the
other doctor effectively “overpowers” that diagnosis. Indeed, a value of zero or one, is
very profound and is something to bear in mind when using the aforementioned rules.
Hence, it is better to assign at least some amount of non-zero mass to the FoD to offset
this phenomenon. This is analogous to the rule of practice of using a non-zero likelihood
function in Bayesian reasoning. The other interesting example is case 5 using Dubois and
Prade’s rule. Here, we see that even though sensor 3 does not in effect add or take away
any information, fusing it with the other 2 sensors renders maximum ignorance. In this
case, the ignorance of this sensor overpowers any other information provided by the other
two.

The results for the probability transformations in Table 5 demonstrate that the AU rule
and the GPT have quite different outcomes. The AU rule aims to maximise the entropy,
whilst the GPT aims to minimise it. In terms of uncertainty, the AU transformation is the
most pessimistic, while the GPT is the most optimistic. The PiT and PlT sit somewhere
in between. Advocates of the PiT claim that it takes the most prudent betting criterion.
Advocates of the PlT claim that it most closely resembles Bayesian probability.

Typically the platform type with the largest probability might be reported to a user, how-
ever for AU this is not possible. Note that the platform type with the highest probability
for P4 differs from that of P2 and P3. The occurrence of different decisions suggests that
careful selection of the probability transform is needed. In many target ID applications,
exceedance of a specified threshold is required before any decision on the platform type
is made. Further, if a decision is made so that the declared platform type is that which
is given by the maximum probability then just from this example above, this will vary
according to the probability transformation. For the AU, all platform types are equally
probable and it would be interesting to find out if this rather dramatic result is due to the
AU transformation itself or rather as a result of Dubois and Prade’s transformation. For
the PlT and the PiT, FA is the most likely platform type, whilst for the GPT, HB is the
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most likely platform type. As an example, if a threshold of 0.5 was applied for a decision,
then only the GPT would yield a decision for the platform type, even though out of all
the transformations, this is the only one that would conclude that HB was the most likely
target.

9 Conclusion

In this paper, an overview of DST and its application to the problem of ID fusion using
data from multiple sensors have been presented. Several examples have been provided
to demonstrate various rules of combination and probability transformations in the DST
framework. Underlying assumptions for open and closed worlds are paramount in guiding
the selection of the most appropiate ID combination rule. With this in mind, further work
will concentrate on the significance of assuming an open versus a closed world assumption
with regards to target identification and classification and, by implication, the different
ways in which conflicting reports are resolved at a decision-making level. In addition, an
understanding on when perhaps one rule might be preferred in this type of application
will also be the subject of future study, as is the investigation of how evidence received at
different time instants may be updated in the DST framework. Future work will focus on
comparing DST to Bayesian fusion for target ID.
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