
Cache Sharing and Isolation Tradeoffs in Multicore
Mixed-Criticality Systems ∗

Micaiah Chisholm, Bryan C. Ward, Namhoon Kim, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
In mixed-critical applications, tension exists between shar-
ing and isolation with respect to hardware resources: while
strong isolation might be required for highly critical tasks,
somewhat permissive sharing might be reasonable for less
critical tasks to improve throughput or average-case per-
formance. In this paper, this tension is examined as it per-
tains to shared last-level caches (LLCs) on multicore plat-
forms. In particular, criticality-aware optimization tech-
niques based on linear programming are presented for allo-
cating LLC areas in the context of the previously proposed
MC2 (mixed-criticality on multicore) framework. Experi-
ments are also presented that show that these techniques
can result in significant schedulability improvements.

1 Introduction
The adoption of multicore machines in safety-critical do-
mains is being hampered by aspects of such machines that
reflect a throughput-oriented design philosophy. For exam-
ple, it is common practice today to allow hardware com-
ponents such as last-level caches (LLCs) and memory con-
trollers to be shared across cores; this can be beneficial as
long as any detrimental effects due to sharing are not typi-
cally seen on average. Unfortunately, such sharing can result
in timing behaviors that are exceedingly difficult to charac-
terize in the worst case without excessive pessimism. This
is problematic for safety-critical domains, where correct ex-
ecution must be validated even in worst-case scenarios.

Excessive pessimism due to shared hardware is a key
contributing factor to a problem termed here the “one-out-
of-m” problem: when checking real-time constraints on a
multicore platform with m cores, analysis pessimism can
easily negate the processing capacity of the additionalm−1
cores. In effect, only “one core’s worth” of capacity can be
utilized even though m cores are available. In domains such
as avionics, this problem has led to the common practice of
simply disabling all but one core.1 This problem is the most
serious unresolved obstacle in work on real-time multicore
resource allocation today.

The desire to reduce the pessimism caused by unman-
aged shared hardware has led to intense recent interest in
hardware management techniques [1, 9, 10, 11, 14, 18, 19].

∗Work supported by NSF grants CNS 1115284, CNS 1218693, CPS
1239135, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors.
The second author was also supported by an NSF graduate fellowship.

1In fact, the U.S. Federal Aviation Administration is currently consid-
ering the possibility of mandating such an approach when multicore plat-
forms are used in avionic systems.

A common goal here is to provide isolation by partitioning
hardware resources among cores and/or tasks to eliminate
sharing altogether. However, this can be an overly strong so-
lution in many contexts: even safety-critical applications of-
ten have system components that are not highly critical and
that could therefore benefit from less constrained sharing.
A better way forward might be to achieve some appropriate
balance between sharing and isolation based on the critical-
ities of the software components involved. In this paper, we
investigate this issue of balance as it relates to shared LLCs.
Mixed-criticality systems. Our work fits within the larger
body of research on mixed-criticality (MC) resource allo-
cation spawned by a seminal paper of Vestal [17]. He pro-
posed analyzing the real-time requirements of less critical
tasks under less pessimistic analysis assumptions. Specifi-
cally, to analyze a system with L criticality levels, he pro-
posed specifying a provisioned execution time (PET) for
each task at every level and analyzing L different system
variants: in the Level-` variant, the real-time requirements
of all Level-` tasks are verified with Level-` PETs assumed
for all tasks (at any level). The degree of pessimism in de-
termining PETs is level-dependent: if Level ` is of higher
criticality than Level `′, then Level-` PETs will generally
be greater than Level-`′ PETs. Vestal’s work led to approx-
imately 200 follow-up papers on MC scheduling by a va-
riety of authors. An excellent survey of this work has been
prepared by Davis and Burns [4]. They note that the funda-
mental research question in this area as “reconcil[ing] the
conflicting requirements of partitioning for (safety) assur-
ance and sharing for efficient resource usage.” This is the
very issue investigated herein (as it relates to shared LLCs).
Cache partitioning. Under cache partitioning, designated
cache areas are assigned to certain tasks, sets of tasks,
or cores. Assuming a set associative cache, this can be
achieved through some combination of page coloring, to
provide set-based partitioning, or the use of hardware sup-
port in the form of lockdown registers, to provide way-based
partitioning. These alternatives are illustrated in Fig. 1 with
respect to a quad-core ARM Cortex A9 machine, which is
the canonical hardware platform considered herein. As seen
in inset (a), each core on this machine has a lockdown reg-
ister, the bits of which can be cleared to steer LLC accesses
from this core to certain ways of the LLC. Under page color-
ing, pages of physical memory are assigned colors, and sets
of the LLC are colored corresponding to how such pages
map to them. As seen in inset (b), this technique ensures
that differently colored pages cannot cause conflicts in the
LLC.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of North Carolina at Chapel Hill,Department of Computer
Science ,Chapel Hill,NC,27514

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In mixed-critical applications, tension exists between sharing and isolation with respect to hardware
resources: while strong isolation might be required for highly critical tasks somewhat permissive sharing
might be reasonable for less critical tasks to improve throughput or average-case performance. In this
paper, this tension is examined as it pertains to shared last-level caches (LLCs) on multicore platforms. In
particular, criticality-aware optimization techniques based on linear programming are presented for
allocating LLC areas in the context of the previously proposed MC2 (mixed-criticality on multicore)
framework. Experiments are also presented that show that these techniques can result in significant
schedulability improvements.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Way
0

Way
1

Way
2 … Way

15

Color
0

Color
1

Color
2

Color
15

…

L2 Cache Lockdown Register

[1111 1111 1111 1011]
Lockdown bits [15:0]

CPU 0 Lockdown Register

CPU 0
CPU 0

CPU 0CPU 0

(a) Way-based partitioning.

(b) Set-based partitioning.

(c) Combined approach.

Figure 1: Allocating LLC areas by way, or set, or both. On this
machine, the LLC is an L2 cache shared by four cores.

MC2. Our examination of LLC allocation tradeoffs in
MC systems is based upon the MC2 (mixed-criticality on
multicore) framework [8, 16, 18], which has been the sub-
ject of continuing research by our group.2 In MC2, four
criticality levels exist, denoted A (highest) through D (low-
est), as shown in Fig. 2. Higher-criticality tasks are stati-
cally prioritized over lower-criticality ones. Level-A tasks
are partitioned and scheduled on each core using a time-
triggered table-driven cyclic executive.3 Level-B tasks are
also partitioned but are scheduled using a rate-monotonic
(RM) scheduler on each core.3 On each core, the Level-A
and -B tasks are required to be simply periodic (all tasks
commence execution at time 0 and periods are harmonic),
with the Level-B task periods being integer multiples of
the Level-A hyper-period. These tasks have hard real-time
(HRT) constraints. Level-C tasks have soft real-time (SRT)
constraints and are scheduled via a global earliest-deadline-
first (G-EDF) scheduler;3 the considered SRT constraint is
that deadline tardiness is provably bounded. Level-D tasks

2MC2 should not be confused with a similarly named European project
that began several years after work on MC2 commenced.

3A RM (EDF) scheduler can be optionally used at Level A (B). Ad-
ditionally, any G-EDF-like (GEL) scheduler [7] can be used at Level C.
Furthermore, Level-C tasks can be defined according to the sporadic task
model. For simplicity, we do not consider these options further herein.
Other facets of MC2, such as slack reallocation, schedulability conditions,
and execution-time budgeting are discussed in prior papers [8, 16, 18].

CE CE CE CE

RM RM RM RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Figure 2: Scheduling in MC2 on a quad-core machine.

are scheduled with no real-time guarantees (so we do not
consider them further). MC2 is a flexible framework from a
research point-of-view. For example, it can be configured to
have only two HRT criticality levels (as in most theoretical
work on MC scheduling) or to fully assign the Level-A and
-B subsystems to distinct, dedicated cores.

In recent work, we extended MC2 to support partitioning
with respect to the LLC and DRAM banks and to isolate the
operating system from application tasks. In a companion pa-
per [12], we describe how these features were implemented
and present experiments that demonstrate the virtues of the
supported isolation mechanisms in MC systems. In that ef-
fort, we considered a single generic LLC allocation strategy.
Contributions. In this paper, we consider the problem of
optimizing LLC allocations in the context of MC2 for a spe-
cific task system. We consider a general criticality-aware
LLC allocation framework that allows leeway in precisely
determining allocated LLC areas for a specific task system.
We study the problem of determining such allocations for-
mally. We first discuss how to model the impacts of a given
allocation strategy on LLC-related overheads and task exe-
cution times. We then adopt a particular model that allows
us to determine LLC allocations by solving a linear pro-
gram (LP). To analyze the effectiveness of this approach,
we present a schedulability study involving randomly gen-
erated task systems where generated task execution times
were based on measurement data. In this study, the usage
of our techniques enabled schedulability improvements of
up to 100% for some task-system categories in comparison
to two generic task-system-oblivious LLC allocation strate-
gies, including that considered in [12]. The presented LP
can be solved as either an ordinary LP or a mixed-integer LP
(MILP). In our experiments, both variants exhibited simi-
lar runtime performance, both often yielded nearly identical
schedulability results, but for some task systems, schedula-
bility was noticeably better under the MILP variant.

To our knowledge, LLC allocation strategies for MC sys-
tems have not been considered before, particularly in a con-
text with as many interesting tradeoffs as MC2. Nonethe-
less, there has been much prior work on cache partitioning.
We review this work later in Sec. 2 to more properly posi-
tion our contributions.
Organization. In the remainder of the paper, we provide
relevant background (Sec. 2), describe our LLC allocation
techniques (Secs. 3 and 4), present our experimental evalu-
ation (Sec. 5), and conclude (Sec. 6).

2

2 Background
In this section, we present relevant notation, formally define
the problem solved in this paper, and discuss related work.
Task system notation. We consider a set of implicit-
deadline periodic tasks Γ ≡ {τ1, τ2, τ3, ..., τN} to be sched-
uled under the MC2 framework on m cores. We only con-
sider Levels A–C in MC2, as Level D is non-real-time. Each
task τi has a period Ti, and three PETs, eAi , eBi , and eCi ,
where e`i denotes its Level-` PET (recall the discussion con-
cerning MC schedulability analysis in Sec. 1). We let ΓA,
ΓB , and ΓC denote the subset of tasks in Γ at Levels A, B,
and C, respectively. Also, we let ΓA,p and ΓB,p denote the
subset of tasks in ΓA and ΓB , respectively, that are assigned
to core p. We denote the total utilization of all Level-` tasks

assuming Level-`′ execution times as U `
′

` ≡
∑
τi∈Γ`

e`
′

i

Ti
.

We denote the total utilization of all Level-A or -B tasks
assigned to core p assuming Level-`′ execution times as

U `
′

A,p ≡
∑
τi∈ΓA,p

e`
′

i

Ti
and U `

′

B,p ≡
∑
τi∈ΓB,p

e`
′

i

Ti
, respec-

tively. The schedulability condition for Level C is depen-
dent on the largest utilization of any task at Level C, which
we denote as h, and the sum of them−1 largest task utiliza-
tions at Level C, which we denote as H . The following are
sufficient conditions for ensuring schedulability at all three
criticality levels [16].

∀p :: UAA,p ≤ 1 ∧ (1)

∀p :: UBA,p + UBB,p ≤ 1 ∧ (2)

UCA + UCB + UCC ≤ m ∧ (3)

UCA + UCB + (m− 1)h+H < m (4)

We assume that PETs are determined through a measure-
ment process, as often done in practice (indeed, on multi-
core platforms adequate static timing-analysis tools do not
yet exist). Specifically, we assume that Level-C PETs re-
flect measured average-case execution times4 (since Level
C is SRT) and that Level-B PETs reflect measured worst-
case execution times (since Level B is HRT). Further, we
assume that Level-A PETs are defined by inflating Level-
B PETs by 50% (since Level A is of highest criticality).
Such an inflation is in keeping with inflation factors de-
rived from industrial use cases considered by Vestal [17].
These measurement-based PETs will generally depend on
allocated LLC areas.5 We denote the Level-` PET of task
τi when its allocated LLC area consists of W ways and S
colors (refer to Fig. 1) as e`i(W,S). (We use “S” in denoting
colors because colors determine LLC sets, and the term “C”
has a predefined meaning in the context of MC2.)

4In MC2, a Level-` task’s Level-` PET is treated as an enforced exe-
cution budget. As explained in [15], tardiness bounds with respect to de-
terministic budget allocations at Level C can be used to bound tardiness in
expectation when average-case task execution times are assumed.

5We often use the term “area” instead of “partition” because we allow
for the possibility that such areas overlap.

4 Colors

4 Colors

4 Colors

4 Colors

16 Ways

LLC (L2)

CPU 0
Level A

CPU 0
Level B

CPU 1
Level A

CPU 1
Level B

CPU 2
Level A

CPU 2
Level B

CPU 3
Level A

CPU 3
Level B

Level C

Figure 3: Canonical LLC allocation.

Canonical LLC allocation and problem to be solved. We
consider a canonical LLC allocation, which is illustrated in
Fig. 3 with respect to our quad-core ARM platform, the
LLC of which has 16 colors and 16 ways. Assuming an
LLC with Wmax ways in total, all Level-C tasks together
are allocated an LLC area that consists of all colors (sets)
associated with waysWC throughWmax −1 for someWC .
All LLC areas for Level-A and -B tasks are taken from the
colors (sets) associated with ways 0 through WC − 1. The
Level-A and -B tasks on each core use an LLC area consist-
ing of 1/m (m = 4 on our platform) of the colors (sets) as-
sociated with these ways, as depicted. Each per-core Level-
A and -B LLC area is subdivided into potentially overlap-
ping Level-A and -B areas. This allocation scheme provides
the following notions of spatial and temporal isolation with
respect to the LLC (spatial isolation is guaranteed when ac-
cess to common LLC areas is categorically prevented, and
temporal isolation is guaranteed when a task’s lines in a
common LLC area cannot be evicted while it is using them).

• Level-C tasks are spatially isolated from Level-A and
-B tasks.

• Level-A and -B tasks on one core are spatially isolated
from Level-A and -B tasks on other cores.

• Level-A and -B tasks on the same core are spatially
isolated with respect to the ways that they do not
share. Additionally, Level-A tasks are temporally iso-
lated from Level-B tasks with respect to the ways they
share because Level-A tasks have higher priority.

This general allocation strategy reflects two assumptions:
Level-C tasks, being SRT and provisioned on the average
case, might benefit from rather unrestricted LLC sharing;
Level-A and -B tasks, being HRT and more critical, might
require stronger LLC isolation guarantees. With regard to
the latter, note that the set of Level-A tasks on one core is
completely isolated (either spatially or temporally) from all
other tasks in the system with respect to the LLC.

The technical problem considered in this paper is to de-
termine how to precisely size these LLC areas so as to en-
hance schedulability given the characteristics of the task
system in question. That is, we seek to determine how the
bold lines in Fig. 3 should be set. In addressing this prob-
lem, we assume that an assignment of all Level-A and -B
tasks to cores has already been determined.

3

release deadline inflation

(a) Task-centric accounting.

(b) Preemption-centric accounting.

Figure 4: Forms of overhead accounting.

Overhead accounting. Depending on how task systems
are analyzed, execution times and schedulability conditions
may not include the impact of system overheads. In this
paper, we consider one such overhead, cache-related pre-
emption delays (CRPDs), and how this overhead is affected
by our LLC allocation methods. CRPDs are delays a task
may incur to reload lines evicted from the LLC (and other
caches) due to a preemption. We discuss how to quantify
CRPDs with respect to LLC allocation sizes, so that these
delays can be integrated into schedulability analysis.

There are two basic ways to account for CRPD costs,
as shown in Fig. 4. Under task-centric accounting, the ex-
ecution time of the preempted job is inflated to account for
the preemption. Under preemption-centric accounting, the
execution time of the preempting job is inflated to “pay”
for the CPRD cost of any preempted job that resumes ex-
ecution when the preempting job completes. We consider
preemption-centric accounting here, because it usually in-
troduces less pessimism in schedulability analysis, and be-
cause it can be linearly modeled by simply adding an infla-
tion term to each execution cost. (Task-centric accounting
entails the introduction of non-linear ceiling and/or floor op-
erators.)
Related work. Having fully specified the problem to be
solved in this paper, and some of the assumptions we make
in solving it, we now discuss related work.

The use of cache partitioning in real-time systems has
been investigated before. A good overview of early work
on this topic has been given by Kirk [13]. In more re-
cent work, Kim et al. [11] presented a cache-partitioning
scheme that allows multiple tasks to share the same cache
partition on a single processor (as we do for Level-A and
-B tasks), but they did not consider MC systems. Altmeyer
et al. [1] considered uniprocessor scheduling on a system
with a direct-mapped cache and examined worst-case exe-
cution time (WCET) estimates as a function of cache size.

They also presented a cache-partitioning algorithm that is
optimal under certain cache-modeling assumptions. As an
alternative to cache partitioning, a technique called cache
lockdown can be used that prevents designated cached data
or instructions from being evicted [5]. Also, it is possible to
redesign the cache allocator itself to provide a replacement
policy that enables greater predictability [9].

3 MC2 LLC-Managed Overhead Accounting
In Sec. 2, we discussed preemption-centric CRPD account-
ing. In this section, we discuss our methods for determining
required overhead inflations for task execution times under
a managed LLC. These methods for overhead accounting
ensure task execution-time properties used by our LP pro-
grams, discussed in Sec. 4, hold for both inflated and non-
inflated execution times.

The inflation term we add is generally a function of a
task’s allocated LLC area size. For example, we can inflate
the Level-` execution time of any Level-B or -C task that has
an LLC area consisting of W ways and S colors as follows:

∀i : τi ∈ ΓB ∪ ΓC :: e′
`
i(W,S) ≡ e`i(W,S) + E`(W,S),

(5)
where E`(W,S) is the time required, according to Level-`
analysis, to reload all cache lines within a region of the LLC
consisting of W ways and S colors. Note that this is the
LLC area of both the preempting and preempted task: for
preemptions of Level-B tasks by Level-B tasks (or Level-C
tasks by Level-C tasks), the preempting job shares the same
LLC area as the preempted job. We assume a constant time
b` is required under Level-` analysis assumptions to load
the lines within an LLC area consisting of only one way
and one color. Under this assumption, our inflation term is

E`(W,S) = W · S · b`. (6)

We now explain how to introduce inflations into the
schedulability conditions (1)–(4) discussed earlier. To do so,
we can substitute for each utilization term a corresponding
inflated utilization term. We denote the inflated Level-` uti-
lizations of each task τi as u′`i ≡

e′`i
Ti
. We can then define

inflated Level-B and -C utilizations as follows.

∀p :: U ′
B
B,p ≡

∑
τi∈ΓB,p

u′
B
i

∀p :: U ′
C
B,p ≡

∑
τi∈ΓB,p

u′
C
i

U ′
C
C ≡

∑
τi∈ΓC

u′
C
i

We also replace h andH in condition (4) with inflated terms
h′ and H ′. h′ is the highest inflated Level-C utilization of
any Level-C task, and H ′ is the sum of the m − 1 highest
inflated Level-C utilizations at Level C.

Note that we do not apply the inflation described in

4

τ1 τ2 τ3 τ4 τ5

τ7

τ6

B

A

inflationframe boundaryrelease

Figure 5: Per-frame Level-B inflation for Level A.

Equation (5) to Level-A jobs. That is, we have

∀i : τi ∈ ΓA :: e′
`
i(W,S) ≡ e`i(W,S),

∀p :: U ′
A
A,p = UAA,p.

Under the cyclic-executive model [2], scheduling is based
on fixed-length frames. Each Level-A job runs non-
preemptively within a frame unless it is sliced. Job slicing
allocates different portions of a job (job slices) to different
frames. We assume the execution time of each job slice is
measured independently of other slices when PETs are ini-
tially determined. This ensures the PETs of one slice are not
affected by cache lines loaded by other job slices.

Level-A jobs may still produce other CRPD overheads.
In the event that the LLC areas for Levels A and B on core
p overlap, the Level-A tasks on core p may evict all of the
cache lines of Level-B tasks within the overlap. This might
suggest that the Level-B execution time of each Level-A
job requires inflation. However, the required inflation can be
less pessimistically determined. As shown in Fig. 5, Level-
A jobs allocated to a frame f run sequentially at the begin-
ning of each frame. In this scenario, Level B is only pre-
empted by Level A at most once per frame.

Depending on the replacement policy of the cache, evic-
tions by Level-A tasks within overlapping sets may cause
Level-B tasks to evict additional lines throughout the ways
allocated to Level-B in the overlapping sets. For Level B, we
make the pessimistic assumption that the number of evic-
tions directly or indirectly caused by a Level-A task is equal
to the area allocated to Level B in sets it shares with Level A.
For Level-C, we make the more optimistic assumption that,
on average, the number of evicted cache blocks is equal to
the size of the overlap.

The frame size for the cyclic executive of Level-A tasks
on core p is equal to the smallest period of any task in ΓA,p,
which we denote TminA,p . If the overlap on core p consists
of WO

p ways and SOp colors and Level-B is allocated WB,p

ways, we can model the overhead associated with reloading
cache lines allocated to Level-B once per frame by inflating
the Level-B and -C utilizations of Level A.

∀p :: U ′
B
A,p = UBA,p +

EB(WB,p, S
O
p)

TminA,p

∀p :: U ′
C
A,p = UCA,p +

EC(WO
p , S

O
p)

TminA,p

Our schedulability conditions with CRPD overheads ac-
counted for are the following.

∀p :: U ′
A
A,p ≤ 1 (7)

∀p :: U ′
B
A,p + U ′

B
B,p ≤ 1 (8)

m∑
p=1

(
U ′

C
A,p + U ′

C
B,p

)
+ U ′

C
C ≤ m (9)

m∑
p=1

(
U ′

C
A,p + U ′

C
B,p

)
+ (m− 1)h′ +H ′ < m (10)

4 Linear Programming
In this section, we show how to solve the canonical LLC
allocation problem described in Sec. 2 via a linear program
(LP). The LP we obtain determines a choice of ways for
each allocated LLC area such that the schedulability con-
ditions (7)–(10) are maintained. This requires treating ways
as continuous variables. We explain later how to ultimately
obtain an integral solution. We now describe the various sets
of constraints in our final LP.
LLC size constraints. The simplest constraint set ensures
that there is no overlap between Level-C’s partition and any
allocated LLC areas at higher criticality levels. We let ŴA,p

and ŴB,p denote continuous LP variables indicating the
number of ways allocated to Levels A and B, respectively,
on core p. We let ŴC denote a continuous LP variable indi-
cating the number of ways allocated to Level C.

LLC size constraints also determine the overlap between
Levels-A and -B LLC areas. ŴO

p denotes a continuous LP
variable modeling the overlap on core p. Recall that Wmax

is the total number of ways in the considered LLC cache. If
Level-A and -B LLC areas overlap on core p, the overlap is

WO
p = WA,p +WB,p +WC −Wmax.

Constraint Set 1. The LLC size constraints are as follows.

∀p :: ŴA,p + ŴC ≤Wmax

∀p :: ŴB,p + ŴC ≤Wmax

ŴO
p ≥ ŴA,p + ŴB,p +WC −Wmax.

Modeling execution times. The manner in which we
model the impact of allocated LLC area sizes on execution
times affects the choice of algorithms that can be applied to
determine such sizes. Without a clear relationship between
execution times and area sizes, there may be no way to de-
termine how adjustments to such sizes impact schedulability
except through brute force trial and error. Given the man-
ner in which tasks are prioritized in MC2, and the canoni-
cal LLC allocation framework described above, we require
both worst- and average-case execution-time measurements
of Level-A and -B tasks, and average-case measurements
for Level-C tasks. The Level-A and -B measurements may

5

be taken in a system under load but with isolation provided
with respect to the LLC, as described above. The Level-
C measurements also need to be taken in a system under
load to account for the impact of concurrent evictions and
memory-bus contention at Level-C (although it may be ap-
propriate to obtain average-case measurements under a less
heavy load than for worst-case measurements).

Such execution-time measurements often exhibit a prop-
erty we will exploit:
Execution Time Assumption. The derivative of a task’s ex-
ecution time (at any level) with respect to its allocated LLC
area size is non-increasing. That is, the execution time func-
tion is non-convex.

Bui et al. [3] presented graphs for execution times of sev-
eral avionics applications that approximately meet this con-
dition, suggesting that this behavior is not uncommon. Our
measurements for several benchmark programs on our Cor-
tex A9 platform exhibit similar behavior [12]. We note three
properties that directly follow from this assumption.
Lemma 1. The derivative of a task’s inflated execution time
(at any level) with respect to its allocated LLC area size is
non-increasing.

Proof: For our LLC allocation problem, colors are fixed
at each level, such that the execution time function for each
task τi is a function over the number of ways allocated to
τi. By (6), the inflation function E` varies linearly with al-
located ways, and is thus non-convex. The sum of two non-
convex functions is non-convex.
Lemma 2. The derivative of a task’s inflated utilization (at
any level) with respect to its allocated LLC area size is non-
increasing.

Proof: This follows from the fact that task utilizations are
directly proportional to task execution times.

We could proceed with the construction of our LP by
treating individual task utilizations as variables, but this
would entail having O(N) variables. We can limit the num-
ber of variables to O(m) by instead considering the com-
bined utilizations of sets of tasks. This is supported by one
final property.
Lemma 3. The derivative of the inflated utilizations (at any
level) of a set of tasks with respect to their allocated LLC
area size is non-increasing.

Proof: As stated earlier, the sum of non-convex functions
is non-convex.

While some of the assumptions made here concerning
execution times may result in over-approximations of such
execution times so that these assumptions are met, we show
later via a schedulability study that our LLC allocation
methods yield substantial schedulability improvements.
PET- and overhead-based constraints. Consider the hy-
pothetical utilization plot shown in Fig. 6 for U ′CC with re-
spect to some integer number of allocated LLC ways W .
We can construct such a plot from execution-time measure-
ments, known task periods, and known values for bB and
bC . In Fig. 6, we create a set of lines from each pair of adja-
cent data points, using the standard two-point line formula

Figure 6: Converting utilizations derived from execution time
data to linear constraints. The shaded region is the continuous re-
gion in which utilization will be constrained in our LP.

f(x) = f(x0) + (x − x0)(f(x0 + 1) − f(x0)). This is
the formula for the line that contains the points f(x0 + 1)
and f(x0). We can describe the value of f over a continu-
ous domain with LP variables f̂ and x̂ constrained by such
lines. Let xmax denote the maximum value of x for which
we have a data point for f(x). A value can be determined
for f̂ by solving the following LP.

minimize f̂
subject to:
∀x ∈ {0, 1, ..., xmax − 1} :

f̂ ≥ f(x) + (x̂− x)(f(x+ 1)− f(x))

f̂ ≥ 0

0 ≤ x̂ ≤ xmax

If this LP produces an integer value for x̂, then f̂ will
equal f(x̂). In the case considered in Fig. 6, our discrete
function is U ′CC(W), for which we define the LP variable
ÛCC to describe U ′CC(W) over a continuous domain.

ÛCC ≥ U ′
C
C(W) + (ŴC −W)(U ′

C
C(W + 1)− U ′CC(W))

Note that ŴC is the only variable in the right-hand-side ex-
pression above, i.e., this is a linear expression. We define
similar LP variables ÛAA,p, ÛBA,p, ÛCA,p, ÛBB,p, and ÛCB,p for
the inflated utilizations of Levels A and B for each core p.
To simplify the constraints presented for these variables, we
introduce the following shorthand functions for lines con-
structed from data points for utilizations.

U`A,p(ŴA,p,W) ≡

U `A,p(W) + (ŴA,p −W)(U `A,p(W + 1)− U `A,p(W))

U`B,p(ŴB,p,W) ≡

U ′
`
B,p(W) + (ŴB,p −W)(U ′

`
B,p(W + 1)− U ′`B,p(W))

UCC(ŴC ,W) ≡

U ′
C
C(W) + (ŴC −W)(U ′

C
C(W + 1)− U ′CC(W))

6

Note that U`B,p(ŴB,p,W) and UCC(ŴC ,W) depend on in-
flated utilizations, while U`A,p(ŴA,p,W) does not. This is
because of the different manner in which CRPDs are dealt
with at Level A, as discussed earlier.

To handle Level-A inflations, we incorporate them into
the constraints for utilization variables separately from data
points, as shown in the following constraint set. Letting
Smax denote the total number of colors of the considered
LLC (Smax = 16 on our ARM platform), we let IBA,p and
ICA,p denote the needed Level-A inflations on core p at Lev-
els B and C, respectively, with respect to our LP variables
for ways.

IBA,p ≡
EB(ŴB,p, S

max/m)

TminA,p

ICA,p ≡
EC(ŴO

p , S
max/m)

TminA,p

Smax/m gives the total number of colors allocated to Lev-
els A and B on each core. Note, that at Level B, an inflation
is applied even without overlap. This conservatively mod-
els Level-A inflations at Level B to avoid non-linear con-
straints. This completes the LP variable relations needed
to describe constraints derived from measured execution
times.
Constraint Set 2. The linear constraints for utilization vari-
ables based on task execution-time data with CRPD over-
heads added are as follows.

∀W ∈ {0, 1, ...,Wmax − 1} ::

ÛCC ≥ UCC(ŴC ,W)

∀p ∈ {1, ...,m} ::

ÛBB,p ≥ UBB,p(ŴB,p,W)

ÛCB,p ≥ UCB,p(ŴB,p,W)

ÛAA,p ≥ UAA,p(ŴA,p,W)

ÛBA,p ≥ UBA,p(ŴA,p,W) + IBA,p

ÛCA,p ≥ UCA,p(ŴA,p,W) + ICA,p

Modeling h and H . To construct an LP that applies all
schedulability conditions to task systems, linear constraints
are also required for quantities specific to Expression (10).
We let ĥ and Ĥ be our LP variables for h′(W) and H ′(W),
respectively. Our constraints for these variables are con-
structed in a similar fashion to the constraints for utiliza-
tion variables. Values for h′(W) andH ′(W) are determined
from measured execution times for each integer number of
ways W allocated to Level C after inflation. Linear con-
straints are then constructed from adjacent data points.

This requires h′(W) and H ′(W) to be non-convex as
well. These data functions, in fact, are non-convex under
our Execution Time Assumption. Let τh(W) denote the
Level-C task with highest inflated utilization when W ways
are allocated to Level C. If τh(W) does not change withW ,

then the non-convexity of h′(W) follows trivially, because
the utilizaton of τh is non-convex. Non-convexity still holds
if τh(W) changes with W . Consider way values W and
W + 1 such that τh(W) 6= τh(W + 1). This implies that
the derivative of τh(W + 1)’s utilization is greater than the
derivative of τh(W)’s utilization at W . Hence, the deriva-
tive of h′ is greater at W + 1 than W , and h remains non-
convex at W + 1. By similar logic, H ′(W) is guaranteed to
be non-convex.
Constraint Set 3. The linear constraints for ĥ and Ĥ based
on measured task-set utilizations with CRPD overheads are
as follows.

∀W ∈ {0, 1, ...,Wmax − 1} ::

Ĥ ≥ h′(W) + (ŴC −W)(h′(W + 1)− h′(W))

ĥ ≥ H ′(W) + (ŴC −W)(H ′(W + 1)−H ′(W))

Schedulability constraints. To fully characterize all con-
straints on utilizations and ways, we must include the
schedulability constraints based on Expressions (7)–(10).
Expression (10) is a strict inequality. We apply a small de-
crease, ε = 10−6 to its right-hand side to change this.
Constraint Set 4. The linear constraints based on the
schedulability conditions (7)–(10) are as follows.

∀p :: ÛAA,p ≤ 1

∀p :: ÛBA,p + ÛBB,p ≤ 1
m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ ÛCC ≤ m

m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ (m− 1)ĥ+ Ĥ ≤ m− ε

Linear program for LLC allocation. From Lemmas 1-3
and the discussion above, we have the following.
LP Allocation Theorem. An allocation scheme that pro-
duces the minimum Level-C utilization for a task set while
maintaining all schedulability conditions can be determined
by solving the following LP.

minimize
m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ ÛCC ≤ m

subject to: Constraint Sets 1-4
Non-negativity constraints on all variables.

The objective of minimizing total Level-C utilization is
used here as a greedy heuristic because this reduces tardi-
ness bounds for Level-C tasks [6]. However, this objective
function serves a secondary purpose. Recall from our dis-
cussion of the LP variable f̂ that if f̂ is minimized, then
it will equal f(x̂) at integer values of x̂. Minimizing to-
tal Level-C utilization ensures that utilization variables re-
flect actual system utilization values determined from PETs
when LLC area variables are at integer values.

7

Approximations. Under certain scenarios, the LP above
will converge to integer way values for many task systems.
Consider the LP with Constraint Set 4 removed. The re-
maining constraints on Level-C utilizations from Constraint
Set 2 intersect at integer way values. Level-C utilization is
minimized at the intersection of linear constraints, and the
LP will thus converge to integer values. However, the way-
parameter values that minimize Level-C utilization may vi-
olate schedulability conditions (7), (8), or (10). In this sce-
nario, the LP with Constraint Set 4 may not converge to in-
teger way values.

If the program solution does not return integer values,
we can round way values, or convert the LP to a mixed-
integer LP (MILP). In Sec. 5, we compare schedulability
for rounded LP-based LLC allocation sizes to schedulabil-
ity for MILP-based LLC allocation sizes. Note that non-
integral LP-based LLC allocation sizes are not necessarily
guaranteed to be nearest to integral LLC allocations that are
schedulable when schedulable allocations exist. As shown
in Sec. 5, however, the schedulability loss due to rounded
LP-based programming is fairly small in many cases.

5 Evaluation
We now discuss experiments we conducted to assess the im-
pact of our LP-based LLC allocation approach on task-set
schedulability.
Experimental framework. We randomly generated task
sets and determined the fraction that were schedulable on
our target hardware platform, the quad-core ARM Cortex
A9 machine mentioned earlier, the LLC of which has 16
ways and 16 colors. To determine the benefit of LP-based
LLC allocation relative to other alternatives, we compared
our approach to two fixed LLC allocation schemes. We call
the first alternative the default scheme because it is the one
considered in the companion paper mentioned earlier [12].
For any task set, it allocates eight ways and 16 colors (half
the LLC space) to Level C, and splits the remaining LLC
space evenly into per-core areas; core p’s area consists of
four colors and four ways (1/8 the LLC space) and is shared
by all Level-A and -B tasks on core p. We call the second
alternative the bypass scheme. Under it, all Level-A and -B
tasks bypass the LLC entirely (they have a zero-area LLC
allocation), and the Level-C tasks share the entire LLC with-
out restriction. This scheme is reflective of the intuition that
the provisioning of Level-A and -B tasks might be so con-
servative that they derive almost no benefit from the LLC.

We consider both the original LP formulation of our ap-
proach, where the returned ways must be rounded if non-
integral, and the corresponding MILP formulation. We com-
pare these two formulations both in terms of accuracy and
runtime performance.
Task-set categories. Our schedulability study consisted of
81 separate experiments, each pertaining to a distinct cate-
gory of task sets. For each experiment, task sets were gen-
erated first for the bypass scheme and then per-task execu-
tion times were altered to obtain corresponding task sets for

Type A B C
Level-C C-heavy [10, 30) [10, 30) remainder
Util. B-heavy [20, 30) [40, 60) remainder
Alloc. (%) AB-moderate [35, 45) [35, 45) remainder

Period (ms)
Light {3,6} {6,12} [3,33)
Contrasting {3,6} {96,192} [10,100)
Heavy {48,96} {96,192} [50,250)

Task Util.
Light [0.001,0.03) [0.001,0.05) [0.001,0.1)
Moderate [0.02,0.1) [0.05,0.2) [0.1,0.4)
Heavy [0.1,0.3) [0.3,0.5) [0.5,0.9)

WS Light [0.01, 0.1) [0.01, 0.1) [0.01, 0.1)
Load Moderate [0.1, 0.25) [0.1, 0.25) [0.1, 0.25)
Time Heavy [0.25, 0.5) [0.25, 0.5) [0.25, 0.5)

Table 1: Task set categories.

the other considered schemes. Task sets were generated for
the bypass scheme by first selecting the distributions to use
in generating task parameters. These distribution choices,
which are listed in Table 1, are as follows.

• Selection 1: Choose the distributions to use in deter-
mining the fraction of the overall Level-C utilization
that is consumed at each criticality level. There are
three overall choices here, as shown in Table 1. For
example, under the C-heavy choice, the Level-C uti-
lization of each of Levels A and B will be between
10% and 30% (exclusive) of the total Level-C utiliza-
tion, with the remainder going to Level C.

• Selection 2: Choose the distributions to use in generat-
ing task periods. Again, there are three overall choices
here, as shown in the table.

• Selection 3: Choose the distributions to use in gener-
ating Level-C utilizations for individual tasks. Again,
there are three overall choices.

• Selection 4: Choose the distributions to use in deter-
mining the time required to load a task’s working set
(WS) from memory. The load time is expressed as a
percentage of the task’s Level-C execution time. As be-
fore, there are three overall choices, as shown in the ta-
ble. For example, under the Light choice, the load time
for any task will be between 1% and 10% (exclusive)
of its overall Level-C execution time.

Generating task sets. In generating task sets for the bypass
scheme, we allowed the total Level-C utilization to vary
from 0.1 to 6.1 in steps of 0.2. For each total Level-C uti-
lization in this range, we evaluated between 100 and 2,000
randomly generated task sets to estimate mean schedulabil-
ity with 95% confidence to within a confidence interval of
0.05. Each individual task set was generated by randomly
selecting relevant parameters using the distributions cho-
sen above. If a given task is a Level-A (Level-B) task, then
it also requires a Level-A and -B (Level-B) utilization. A
task’s Level-B utilization (if required) was defined to be
s times its Level-C utilization, where the scaling factor s
ranges uniformly within [10/3, 20/3]. This choice of scal-
ing factor was based on measurement data from our ARM
platform. A task’s Level-A utilization (if required) was de-
fined to be 1.5 times its Level-B utilization. This reflects

8

2 4 6 8 10 12 14
Ways

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 P

ET
s

(a) Measured PETs.

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 P

ET
s

(b) Generated PETs.

Figure 7: Measured vs. generated PETs with respect to ways.

the previously mentioned 50% inflating of Level-B PETs to
obtain Level-A PETs. Each task’s per-level PETs are im-
plicitly determined by its period and per-level utilizations.
Given these PETs, and the WS load times selected using
the distribution discussed under Selection 4 above, we de-
termined a task’s actual WS size (WSS) using documented
memory-access latencies for our ARM machine. WSSs af-
fect how PETs vary with LLC-allocation schemes, which
we discuss next.

The above process yields a task set for the bypass
scheme. To obtain a corresponding task set for the other
schemes, we merely have to scale PETs (and hence utiliza-
tions) to reflect allocated LLC areas. The scaling factors
we used in determining PETs for the non-bypass schemes
were based on measurement data obtained from our ARM
platform, with an adjustment applied for WSS-related rea-
sons. In particular, a task’s WSS determines the maximum
amount of cache space it uses. As we allocate additional
LLC space for a task beyond its WSS, its execution time
should not change significantly. We account for this when
determining scaled PETs.

Fig. 7(a) shows some of the measured Level-B PET
data we collected on our ARM platform, and Fig. 7(b)
shows some of the PETs obtained via our generation pro-
cess. Note that our generated PETs are only approximately
non-convex. To apply our LP techniques, any non-convexity
must be masked by upper bounding. Such upper bounding
introduces pessimism in the analysis.

In order to complete the specification of a task set, its
Level-A and -B tasks must be assigned to cores. We ob-
tained such an assignment by using the worst-fit-decreasing
bin-packing heuristic to first assign Level-A tasks, based
on their Level-A utilizations under the bypass scheme, and

then to assign Level-B tasks using the remaining capacities,
based on the Level-B utilizations under the bypass scheme.

This concludes our overview of the task-set generation
process we used. This process is described in much greater
detail in an appendix.
Results. Our study resulted in 81 schedulability plots.
Due to space constraints, we discuss only the plots
shown in Fig. 8, which reflect generally seen trends
across all plots; the other plots can be found in an on-
line appendix (available at http://www.cs.unc.edu/
˜anderson/papers.html). In insets (a)–(c) of Fig. 8,
schedulability plots are given for three categories of task
systems; these plots depict the fraction of the generated task
systems deemed schedulable, as a function of overall Level-
C utilization under the bypass scheme, for each considered
LLC allocation method. Insets (d)–(f) give corresponding
probability distributions for the number of allocated ways
at each level under a MILP-based allocation. For example,
inset (f) indicates that for the task-system category consid-
ered in inset (c), 10–14 ways tended to be allocated to Level
C, 3–7 to Level B, and 3–7 to Level A. We make the follow-
ing observations from this data.
Obs. 1. Using MILP- and LP-based LLC allocations signif-
icantly improved schedulability in approximately a third of
the tested task-system categories, increasing schedulability
by 20-50% in some cases, and by a factor of two in oth-
ers. For the other categories, only moderate improvements
resulted.

Fig. 8(a) depicts one of several categories that exhibited
significant improvements. Fig. 8(d) suggests that, for this
category, the usage of LP techniques adapts LLC allocations
to account for the high CPRD overheads expected in this
case. As seen, little to no LLC cache space is given to any
level, suggesting that CRPD overheads outweigh any per-
formance gains provided by the LLC. Fig. 8(b) depicts one
of several categories that yielded only mild improvements.
Fig. 8(e) suggests that, for this category, the usage of LP
techniques results in LLC allocations that vary dramatically.
The low impact of LLC allocation choice on schedulability
is not surprising, since this is a light memory utilization task
set, and therefore task utilizations are not very sensitive to
LLC area size.
Obs. 2. The usage of LP-based allocations resulted in little
to no degradation in schedulability in comparison to MILP-
based allocations in all tested task-system categories.

Insets (a)–(c) of Fig. 8 show very little difference in
schedulability results for these two algorithms. Due to the
similarities of the LP and MILP algorithms, both produce
similar LLC-allocation schemes for each task set. These
schemes have similar effects on schedulability as a result.
Obs. 3. While MILPs have exponential time complexity,
the actual runtime performance of our MILP allocation
scheme was roughly equivalent to that of our LP scheme.

Across all task systems in all experiments, our MILP
scheme took 151 ms on average and 1377 ms in the worst

9

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
HR

T
Sc

he
du

la
bi

lit
y

MILP-Determined
LP-Determined
Default
Bypass

(a) C-Heavy, Contrasting, Light, Light.

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

(b) AB-Moderate, Long, Medium, Light.

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

(c) C-Heavy, Long, Medium, Medium.

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

(d) Figure (a) allocation.

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

(e) Figure (b) allocation.

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

(f) Figure (c) allocation.

Figure 8: Schedulability and LP-based LLC allocation results for three categories of task sets. Category choices are listed in order of
categories.

case, while or LP scheme took 148 ms on average and 315
ms in the worst case.

6 Conclusion
To our knowledge, this is the first paper to consider the op-
timization problem of allocating LLC areas among tasks of
different criticality levels in a mixed-criticality multicore
system. We addressed this problem in the context of MC2

through the use of LP techniques that take into account both
schedulability and CRPD overheads. We demonstrated the
efficacy of these techniques by presenting an experimen-
tal evaluation that shows that their usage can have signifi-
cant benefits from a schedulability viewpoint. Our LP tech-
niques achieved similar schedulability improvements as our
MILP variant. In our experiments, the LP and MILP vari-
ants proved to have similar runtime overheads.

In the LLC allocation problem considered herein, only
the number of allocated ways is viewed as a variable. The
number of allocated colors (which determine the allocated
sets) can be varied as well. However, varying both parame-
ters creates an optimization problem that is difficult to ad-
dress using LP techniques. Nonetheless, this more general
optimization problem warrants further study.

References
[1] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of

cache partitioning for hard real-time systems. In ECRTS ’14.
[2] T. Baker and A. Shaw. The cyclic executive model and ada. In RTSS

’88.
[3] B. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache par-

titioning on multi-tasking real time embedded systems. In RTCSA
’08.

[4] A. Burns and R. Davis. Mixed criticality systems – a review. Tech-
nical report, Department of Computer Science, University of York,
2014.

[5] M. Campoy, A. Ivars, and J. Mataix. Static use of locking caches

in multitask preemptive real-time systems. In Real-Time Embedded
Sys. Workshop ’01.

[6] U. Devi and J. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. The Journal of Real-Time Systems,
38:133–189, Feb. 2008.

[7] J. Erickson, B. Ward, and J. Anderson. Fair lateness scheduling: Re-
ducing maximum lateness in G-EDF-like scheduling. Real-Time Sys-
tems, 50(1):5–47, 2014.

[8] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
RTOS support for multicore mixed-criticality systems. In RTAS ’12.

[9] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In ECRTS ’11.

[10] R. Kessler and M. Hill. Page placement algorithms for large real-
indexed caches. ACM Trans. on Comp. Sys., 10:338–359, 1992.

[11] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach
for practical OS-level cache management in multi-core real-time sys-
tems. In ECRTS ’13.

[12] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D.
Smith. Attacking the one-out-of-m multicore problem by combin-
ing hardware management with mixed-criticality provisioning. In
submission.

[13] D. Kirk. SMART (strategic memory allocation for real-time) cache
design. In RTSS ’89.

[14] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In ICPACT ’12.

[15] A. Mills and J. Anderson. A multiprocessor server-based scheduler
for soft real-time tasks with stochastic execution demand. In RTCSA
’11.

[16] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Score-
dos. Mixed criticality real-time scheduling for multicore systems.
In ICESS ’10.

[17] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS ’07.

[18] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS ’13.

[19] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multi-
coore platforms. In RTAS ’14.

10

Appendix A
In this appendix we describe our process for generating
LLC-area dependencies for task utilization at each critical-
ity level. We start by generating task systems with a single
execution time cost, τ .cost, for each task. To simulate LLC-
area dependencies, we applied a separate non-increasing,
non-concave function, F`i (W), over the number of allo-
cated ways W to the utilization of task τ for criticality level
`:

u`i(W) ≡ τi.cost

Ti
· F`i (W).

We also have an upper-bounding function F`i(W) ≥
F`i (W) that is non-convex. This upper-bounding function
is used for our linear programs.

Task execution times may have varying sensitivities to
LLC area size based on a task’s memory use behavior. To
describe more precisely different categories of LLC area
size dependencies, we must first describe how the function
F`i (W) was generated. We start by generating a non-convex
function F `i (W) for each task τi at criticality level `, where
Fi(0) = 1.0, where ` is Level B or C. The Level-A function
is generated last using our Level-B function, since Level-A
utilizations should be 50% greater than Level-B costs for
each number of ways W .

To constrain the initial decrease in the function from
ways 0 to 1, we define parameters Ď` ≤ 1 and D̂` < Ď` for
each criticality level `. Letting rand(x, y) denote a function
that returns a random value in the interval [x, y], we define

F `i (1) = rand(D̂`, Ď`).

We assume that, prior to overhead inflation, task execution
times should not increase as LLC-allocation size increases.
Hence, we ensure F `i is non-increasing by upper-bounding
each value F `i (W) where W > 1 by F

`

i(W), defined as
follows:

F
`

i(W) ≡ F `i (W − 1).

For the function to be non-convex, each value F `i (W)
where W > 2 must be lower-bounded by another func-
tion F `i(W). This function is determined by taking the de-
crease in function value from W − 2 to W − 1 - that is,
F `i (W − 2)− F `i (W − 1) - and ensuring that the decrease
from W − 1 to W is not greater

F `i(W) ≡ F `i (W − 1)− (F `i (W − 2)− F `i (W − 1)).

We may additionally want to limit these bounds further such
that the function “flattens out” slower or faster. We use pa-
rameters ω̌ ≤ 1 and ω̂` < ω̌` to define more restricted
bounds F̌ `i (W) and F̂ `i (W). The parameters ω̂` and ω̌`

are used to calculate interpolations between the values of
F̌ `i (W) and F̂ `i (W)

F̌ `i (W) ≡ F `i(W) + ω̌`(F
`

i(W)− F `i(W)),

F̂ `i (W) ≡ F `i(W) + ω̂`(F
`

i(W)− F `i(W)).

We now define all remaining values of Fi(W) as follows:

F `i (W) = rand(F̂ `i (W), F̌ `i (W)), W > 1.

F`i (W) is derived from F `i (W) by considering two modifi-
cations to the curves generated so far.
Modificaton 1. These curves have no lower bound. Our
scaling function for a task’s utilization should have a lower
bound (we would not expect the LLC to ever reduce utiliza-
tions by 95%, for instance). For each criticality level, we
define a lower bound on utilization scaling F`min.
Modification 2. Each task τ has a WSS τ.wss. As stated
in Sec. 5, we expect execution times, and thus utilizations,
to not decrease significantly as a task is allocated addition
LLC space beyond its WSS. We denoteWwss

i to be the least
number of ways required for a task to fit its entire working
set into the allocated area. This completes the functions and
parameters we need to derive a non-convex function with
which to upper-bound task utilizations. For Level B, we de-
fine

FBi (W) = max(FBi (W),FBmin), for W ≤Wwss
i

FBi (W) = FBi (W − 1), for W > Wwss
i

At each level, we want τ .cost for τ ∈ Γ` to represent
the bypass-scheme utilization at level `. Remember, in this
scheme, Level B is given 0 ways on all cores and Level C is
given Wmax ways. Hence, for τi ∈ ΓB , FBi (0) should be
1.0, but for τi ∈ ΓC , FCi (Wmax) should be 1.0. For Level
C, we first define a helper function MC

i (W) derived in a
similar fashion as FBi (W) and then normalize this function
with respect toMC

i (Wmax).

MC

i (W) = max(FCi (W),FCmin), for W ≤Wwss
i

MC

i (W) = max(FCi (W),FCmin), for W > Wwss
i

FCi (W) =
MC

i (W)

MC
i (Wmax)

F`i (W) is derived by applying slight variations to val-
ues of F`i(W). We randomly pick up to eight different way
values {W1, ...Wtot},Wtot ≤ 8 between one and fifteen.
We determine the range R ≡ F`i(0) − F`i(16) over which
the non-convex function varies, and for each way value
W ∈ {W1, ...Wtot}, we assign F`i (W) the following:

F`i (W) = F`i(W)− rand(0, 0.05) ·R

For all other way values, F`i (W) = F`i(W).
At this point, we have a unique set of parameters

PB ≡ {D̂B , ĎB , ω̂B , ω̌B ,FminB}

for generating worst-case execution time behavior at Level
B and a similar set of parameters

PC ≡ {D̂C , ĎC , ω̂C , ω̌C ,FminC}

11

for describing average-case execution time behavior at
Level C. For our paper, we chose D̂` and Ď` values in
the range [0.9,0.97) to produce utilizations that initially de-
clined steadily as ways increase from 0. We chose ω̂` and
ω̌` in the range [0, 0.15) to ensure initially steady declines
in utilization tend to not flatten out as way sizes increase.

12

Appendix B: Schedulability and LLC Allocations Results

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
HR

T
Sc

he
du

la
bi

lit
y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Light, Moderate

13

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Heavy, Heavy

14

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Moderate, Light

15

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Light, Heavy

16

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Heavy, Moderate

17

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Moderate, Moderate

18

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Light, Light

19

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Moderate, Heavy

20

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Heavy, Light

21

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Heavy, Heavy

22

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Light, Heavy

23

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Moderate, Heavy

24

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Heavy, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Light, Light

25

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Short, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Short, Light, Light

26

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Light, Moderate

27

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Moderate, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Light, Moderate

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Heavy, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Moderate, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Moderate, Heavy

28

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Long, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Heavy, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Light, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Long, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Light, Moderate

29

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Heavy, Moderate

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Heavy, Moderate

30

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Light, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Contrasting, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Short, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Light, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Contrasting, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Short, Heavy, Light

31

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Short, Moderate, Light

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

AB-Moderate, Contrasting, Moderate, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

C-Heavy, Long, Light, Heavy

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Contrasting, Heavy, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.2

0.4

0.6

0.8

1.0

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Short, Moderate, Light

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 D

is
tr

ib
ut

io
n

A
B
C

AB-Moderate, Contrasting, Moderate, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

C-Heavy, Long, Light, Heavy

0 2 4 6 8 10 12 14 16
Ways

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Contrasting, Heavy, Heavy

32

0 1 2 3 4 5 6
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

MILP-Determined
LP-Determined
Default
Bypass

B-Heavy, Long, Heavy, Light

0 2 4 6 8 10 12 14 16
Ways

0.00

0.05

0.10

0.15

0.20

0.25

%
 D

is
tr

ib
ut

io
n

A
B
C

B-Heavy, Long, Heavy, Light

33

