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ABSTRACT 

This thesis presents a computational fluid dynamics (CFD) study on the effects of turning 

vanes and their placement in an exhaust duct with a sharp bend of ninety degrees and the 

application toward waste heat recovery devices.  

CFD models were implemented in ANSYS/CFX to handle flow in both laminar 

and turbulent regimes. Applying the principles from the Reynolds-averaging Navier-

Stokes governing equations as well as the k-ε turbulent model, accurate simulations were 

performed to explore the behavior of exhaust gas flow field, pressure drops and 

recirculation zone sizes for various flow Reynolds (Re) numbers. The effects of turning 

vane location, vane setting angle, and number of vanes were evaluated. Flow 

visualization was used as a means of determining ideal locations for future installation of 

WHR devices.   

Results for 5000<Re<2x105 showed significant improvement in pressure drop 

across the 90-degree duct with a single turning vane, showing ranges of 50–70% 

reduction in overall pressure drop across the duct. This pressure reduction could yield 

significant fuel savings compared to an engine or generator without a turning vane. 

Increasing the number of vanes neither reduced the pressure drop further, nor did it 

reduce the size of the primary recirculation zone. 
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I. INTRODUCTION 

A. MOTIVATION 

Most of the focus on overall engine efficiency concerns itself with the actual 

engine cycle. However, much is to be gained by researching and studying the effects of 

reducing backpressure on the engine by the exhaust gases. In many of today’s Navy-

Marine Corps engine designs, the exhaust duct or pipe design is constrained by a limited 

amount of space due to the complexity of ships and generators and their function-over-

form design criteria, and therefore may have sharp bends. 

Significant effort has been put into developing ways to harvest waste energy from 

combustion engines (Sathe & Beale, 2013). The most obvious and applicable area from 

which to harvest waste- heat energy is in the exhaust duct region. Arbitrary placement of 

a waste-heat recovery system (WHRS) may in the end be more detrimental to an 

operating engine system due to possible increases in back-pressure and could also result 

in an inefficient heat exchange due to placement of the system in a possible “dead” or 

recirculation zone in the exhaust gas flow (Sathe & Beale, 2013). To mitigate this, a 

study on duct bends of 90-degrees was necessary to properly evaluate the fluid flow  

in this regime and to properly assess and predicts its behavior and performance. The  

90-degree geometry was chosen because it most accurately represented the geometry 

used in Navy and Marine Corps engine and generator systems currently in used. The 

introduction of a turning vane in the 90-degree bend was a means of reducing 

backpressure as well as a method for more accurately determining the most optimal 

location for WHRS placement.  

An interesting phenomenon occurs in exhaust ducts with 90-degree elbows. In 

bends of 90-degrees or more, an eddy is formed in the corner and creates a recirculating 

flow that opposes the primary direction of the exhaust gases. In order to reduce the 

backpressure caused by recirculation zones and reduce soot accumulation. The eddy 

recirculation zones tend to accumulate soot, thereby increasing pressure drop. It is of 

interest to reduce the size of this zone. To further understand the recirculation zone 
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phenomenon, a study of the effects of various flow conditions in an exhaust ducts by 

varying flow conditions, vane orientation, quantity of vanes and vane placement was 

conducted.    

B. BACKGROUND 

The use of turning vanes in industry is not a new concept. The heating, venting 

and air conditioning industry uses turning vanes to redirect flow in 90-degree bends and 

in other applications to provide the most efficient means of cooling or heating a space. 

The use of turning vanes is used in gas-turbine engine design, and while they are called 

guide vanes they serve a similar purpose to those turning vanes used by the heating, 

venting and air-conditioning (HVAC) industry; redirect flow for optimal use. Keeping 

these two examples in mind, the purpose of installing one, or a series of, turning vane(s) 

in a 90-degree exhaust duct bend will serve two-fold: to reduce engine back-pressure and 

thus improve fuel economy, and to predict flow patterns in the outlet portion of the 

exhaust duct. This study focused on the optimal placement for a single turning vane 

within a 90o bend. 

The effect of an idealized placement of a turning vane within a sharp-cornered  

90o bend has not been studied (sharp corners occur in naval systems due to compartment 

restrictions). There is research into the effect of turning vanes on 90o bends with rounded 

corners, as explained in Idelchik’s Handbook of Hydraulic Resistance (Idelchik, 1994). 

Another area where research is lacking is into the effect of a turning vane on the 

recirculation zone size. Recirculation zones tend to accumulate soot and other particles, 

increase pressure drop as well as increase the frequency of required maintenance needed 

to reduce flow blockage. A connection can be made from the size of the recirculation 

zone to the life of the duct, time and money spent in maintenance on the exhaust duct, 

and the effectiveness of WHR devices downstream of the 90o bend. 

To evaluate the problem of backpressure in common USN/USMC generators and 

propulsion engines, Bernoulli’s equation was applied to the initial problem. For a pipe 

with a single, 90-degree bend, the pressure drop across that pipe will be a known value 

larger than a pipe of the same length but continuous in its control volume (that is to say 
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without a 90-degree bend). Figure 1 shows the geometry of the case that I evaluated as a 

part of this thesis. Figure 2 shows a straight duct without any bends.  

 

Figure 1.  Exhaust duct geometry with 90o bend. 

 

Figure 2.  Exhaust duct geometry without a bend. 

L 

H 

D 
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Demonstrating why the pressure drop is higher in Figure 1 than in Figure 2, 

Bernoulli’s equation was evaluated: 

 

2 2
1 1 2 2

1 22 2

P V P V
h h

g g 
     .

 (1) 

For the straight pipe in Figure 2, h1 = h2 and therefore these terms cancel each other. For 

the 90-degree bend in Figure 1, h1 = 0 and h2 = y2, where y2 is some height above the 

reference plane. However, in the case of gases since the densities of the fluid are much 

smaller than the density of a liquid, the head loss (h) terms become negligible. To 

account for the increased pressure drop in a pipe with a sharp-angled bend, four key 

characteristics must be considered. First, there is a momentum change experienced by the 

flow when it changes direction by 90-degrees. Second, there is an increase in friction 

along the walls of the duct as the flow is forced to change directions. Third, there is a 

wake created by the flow particles as they go through the bend. Fourth and finally, the 

hydraulic diameter (Dh) of the pipe is effectively reduced by the creation of a 

recirculation zone in the duct bend. Thus, the case of Figure 1 will show an additional 

pressure drop term over the length of the duct compared to the duct in Figure 2  

(Idelchik, 1994).  

From the simple analysis of Bernoulli’s equation and the application of the four 

characteristics described above it can be seen that pressure drop over a duct can become 

very large and ultimately affect the performance of an internal combustion engine. To 

further study the effects of pressure drop across the duct and the effects of a turning vane, 

I made use of computational fluid dynamics (CFD) software available at NPS.  

C. LITERATURE SEARCH 

Though vast amounts of resources have been put into developing ways to better 

improve engine efficiency and fuel economy on the front-end of the engine (air intake 

and the actual combustion cycle itself), the amount of resources for studying exhaust gas 

flow was smaller.   
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From the literature search conducted, the effect of turning vanes in sharp cornered 

ducts (as encountered in naval systems with size restrictions) has not been fully studied. 

Several cases have been studied for flow in ninety-degree bends; however, each of these 

cases studied flow in ninety degree bends with rounded corners. This thesis will study the 

effect of a ninety-degree bend with sharp, or non-rounded, corners. Also, the effect of 

turning vanes on the reduction of primary and secondary recirculation zones, which will 

affect soot and particle accumulation sites, has not been studied. Furthermore, from the 

research conducted there are not any studies that evaluate the flow field for a turning 

vane in a 90o bend with the intent to optimize waste heat recovery device placement in an 

exhaust duct. 

Most of the sources encountered were of great assistance in modeling turbulent 

flows and establishing the correct parameters needed to ensure that the models being run 

were accurate and did not require extraordinary computational time. The information that 

did refer to turning vane use consisted of recommended size and number of vanes, 

courtesy of I. E. Idelchik’s Handbook of Hydraulic Resistance (Idelchik, 1994). From the 

knowledge gathered from this source optimal vane sizing was attained. Joshi and Sathe, 

in their parametric study on natural convection cooling, discussed numerical methods for 

a fluid regime (Sathe & Joshi, 1992). Hobson’s lecture on turbulence modeling was 

greatly useful in establishing boundary conditions and overall problem set-up for 

evaluation using ANSYS/CFX software (Hobson, 2013). For model validation, Molki 

discusses the development of a fully developed laminar flow (Molki & et al, 2013), 

Anand discusses the fully developed flow for both laminar and turbulent models (Anand, 

2006), and Kiijarvi provided methods for computing Darcy friction factors given various 

parameters to validate the turbulent model used (Kiijarvi, 2011). Modeling turbulent flow 

using the k-  model, as discussed in Patankar’s text, The Turbulence-Kinetic-Energy 

Equation (Patankar, 1980), was crucial in understanding the effects of turbulence in a 

simulated model.  

These references provided a solid baseline from which the work outlined in this 

thesis was conducted. Specifically, the reduction of backpressure in an exhaust duct and 

its application to WHR devices was of major importance. As a result, new work was 
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conducted on studying the effect of vane placement within a duct, as well as a study on 

the effect of the turning vane on the recirculation zone size and potential implications on 

WHR device placement.  

D. PROBLEM STATEMENT 

The U.S. Marine Corps Expeditionary Energy Office (E2O), in partnership with 

the Naval Postgraduate School, has been conducting studies on the impact of WHR 

devices installed in diesel generator sets (GENSET) and has been looking for alternative 

solutions to reducing fuel costs while maintaining operational standards of current field 

generators. To effectively study the impact of WHR devices on current field GENSETs, 

as well as to find a means to reduce fuel consumption (and thus fuel cost) through 

backpressure reduction, an idea to install a vane inside the exhaust duct was proposed. By 

reducing backpressure up to 50% in some instances it would be possible to save between 

3–5% fuel consumption; this would project to possibly millions of dollars a year in 

savings for the USMC and USN.  

The idea of installing turning vanes into exhaust ducts inside of 90-degree bends 

was approved by E2O, and said research was funded accordingly for future 

improvements in the areas of energy recovery.  The quad-chart proposal submitted by the 

author and thesis advisor, Dr. Sanjeev Sathe, is shown in Figure 3. The proposal 

considered altering various parameters to be examined and evaluated during the course of 

the work.  
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Figure 3.  Energy recovery and pressure mitigation proposal from LT Mark 
Beale and Dr. Sanjeev Sathe to U.S. Marine Corps Expeditionary 

Energy Office (E2O) (from Sathe & Beale, 2013;  
Sathe & Millsaps, 2014) 

From the acceptance of this proposal, current and future work has been added to 

the E2O-NPS incentive. While this thesis focuses on the CFD model, additional work is 

being done on thermal CFD models, infrared (IR) signature reduction, heat exchanger 

CFD models, design and maintenance of heat exchangers, the supporting infrastructure 

required for current and additional research, as well as the evaluation of new thermal 

properties and materials. It is important to note that the exit velocity profiles coming out 

of the 90o bend studied in this thesis can potentially affect IR signature due to soot 

loading in the velocity profiles. Also, flow visualization techniques used while studying 

the effects of turning vane placement offer optimal placement locations for WHR 
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devices. Figure 4 is the WHRS roadmap outlined by faculty in the Mechanical 

Engineering Department at NPS.  

 

Figure 4.  NPS, U.S. Navy and U.S. Marine Corps Waste-Heat Recovery 
System Roadmap (from Sathe & Millsaps, 2014).  

E. OBJECTIVES 

The objectives of this thesis were: 

 A two-dimensional model that physically represents the real problem. 

 Validate the two-dimensional model for both laminar and turbulent flows. 

 Vary parameters such as turning vane location, turning vane number and 
turning vane orientation for optimal results– record and evaluate results 
related to pressure drop mitigation, recirculation zone size and flow 
visualization for optimal placement of WHR devices. 
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II. GOVERNING EQUATIONS AND PARAMETERS 

A. CONTINUITY 

For the continuity equation used throughout this thesis a two-dimensional 

approach was taken. The 2D approach simplified the solution and was solved for a 

“centerline” approximation of a typical three-dimensional circular duct. Cartesian 

coordinates were used in the 2D case.  

   0V
t

 
 



 
  (2) 

B. NAVIER-STOKES EQUATIONS 

As with the continuity equation, the momentum equations were solved for the 

two-dimensional “centerline” case. The incompressible Navier-Stokes equations are 

represented in the Cartesian coordinate frame as a result of working in two dimensions. 

The incompressible momentum equations for Cartesian coordinates are given below, 

designated by their primary directions (X, Y and Z) for constant density and viscosity. 

 
2 2 2

2 2 2
     : x

u u u u p u u u
u v w gX d

t x y z x x y
ir

z
  

         
                   

  (3) 

 
2 2 2

2 2 2
     : y
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Several assumptions were made for the two-dimensional model, including 

dropping the Z-terms and neglecting the buoyancy terms in the Navier-Stokes equations. 

Additionally, time-averaged terms were introduced to model the turbulent flow. These 

terms, the Reynolds-averaged Navier-Stokes (RANS) terms, are indicated as follows: 
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The RANS equations account for the added shear forces induced by turbulent 

flow, and these equations are an average value of said shear forces due to the highly 

variable nature of turbulent flows. 

C. DERIVED EQUATIONS FOR MODEL VALIDATION AND NON-

DIMENSIONAL PARAMETERS 

Non-dimensional parameters are extremely useful due to their wide application 

across various fluid domains as well as geometric scaling. Reynolds number is used to 

provide a parameter from which models can be created based on actual flow data for real 

systems. Comparing non-dimensional pressure drop, velocity and friction factor results 

against given Reynolds numbers was used to validate both the laminar and turbulent 

models used in this thesis.   

1. Equations for Laminar Model Validation 

In order to ensure accuracy with a CFD model and fully understand the nuances 

of a commercial code, it is necessary to validate all parameters associated with the model 

and compare to some theoretical or analytical standard. For a two-dimensional flow in 

which the flow passes between two parallel plates, assuming a no-slip condition at the 

walls (V


= 0), we determine that u = u(y) only (thus no X, Z, t dependence). The velocity 

profile of the fully developed laminar flow between two parallel plates can therefore be 

shown by the following relationship (White, Fluid Mechanics, 2011):  
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The variable D is defined as the maximum distance from the centerline of the 

parallel plates to the plate itself. Figure 5 shows a nominal representation of the 

development of a laminar flow through two parallel plates with a slug inlet velocity 

profile (Molki & et al, 2013).  

 

Figure 5.  Schematic of flow through two parallel plates, showing laminar fully 
developed flow (from Anand, 2006). 

 

The entrance length of the duct is a function of Reynolds number and for laminar 

flow is defined in Equation 14. 

 0.06 Ree hL D    (10) 

Another form of Reynolds number that was useful for calculations using the two-

dimensional model is given by, 

 Re h
h

mD

A



 (11) 

Where m is defined as the mass flow rate in [kg/s], hD  is defined as the hydraulic 

diameter of the duct in [m] given by 2hD D ,  is the viscosity of the fluid in [kg/m*s] 

and A is the cross-sectional area of the inlet to the duct. Reynolds number is a measure of 

the ratio of inertial to viscous forces in any fluid. For the laminar flow regime, Reynolds 

number is within the range 100<Re<2300. Between 2000<Re<5000 the flow is 
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characterized as being in the transitional zone between laminar and turbulent flows. 

Turbulent eddies begin to form as Reynolds number increases. For turbulent flow, 

Reynolds number is given in the range of 5000<Re< .  For flow where Reynolds 

number is in the range of Re>~106, Reynolds number dependence in the flow 

characterization is diminished (White, 2006; Anand, 2006; White, 2011).  The results 

discussion will show that both the USMC field generator and USN LM2500 show 

characteristics of turbulent flow. 

2. Equations for Turbulent Model Validation 

Turbulent flow model validation was built from the results gathered in the laminar 

model validation stage. In order to validate the turbulent model, a comparison against the 

Darcy friction factor values given on a Moody diagram proved an accurate way to assess 

whether or not the model would produce accurate results (Idelchik, 1994; Anand, 2006; 

White, 2006; Kiijarvi, 2011).  The Darcy friction factor was calculated using the 

following relationship: 

 1

4

0.316

Re

f   (12) 

Entrance length for turbulent flows is given by: 

 
1

64.4 Ree hL D    (13) 

Of particular importance is the realization that for turbulent flows the entrance 

length to achieve a fully developed profile is significantly less than the entrance length 

for laminar flows. By comparison, for laminar flow Le is proportional to Re while in 

turbulent flow Le is proportional to Re1/6. Throughout this thesis, a slug velocity inlet 

profile was assumed, thus entrance length calculations were necessary to ensure the inlet 

portion of the exhaust duct that was modeled in ANSYS/CFX was long enough for the 

flow to fully develop. For the entrance length calculations to be accurate, the flow had to 

be fully developed prior to a distance of 3–5 hydraulic diameters from the beginning of 

the ninety-degree bend.    
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3. Non-dimensional Parameters 

Non-dimensional results are useful in that such results can be applied for a wide 

range of sizes and velocities. That is to say, a computational model’s results are 

applicable to a real physical system. Pressure drop was calculated in two different ways. 

The first and more common method is given by: 

 *
2

P
P

U


  . (14) 

This non-dimensional parameter is a proportional ratio of pressure differential to pressure 

head and is useful for noting the effects of kinetic energy on pressure drop. 

A second, less-common but very useful means of expressing a non-dimensional 

pressure drop is given by (Munson, Young, Okiishi, & Huebsch, 2009): 

 ** hPD
P

U


  . (15) 

This term is effectively a ratio of pressure force to viscous force, and draws comparison 

to Reynolds number. 

To study the effects of the recirculation zone caused by the geometry of the 90o 

duct bend, the following non-dimensional parameter was utilized. 

 *

h

b
b

D
  (16) 

In this relationship, the term b is defined as the average radius of the recirculation zone 

“bubble.” Non-dimensional terms for velocity were given by u* 

 * u
u

U
 , (17) 

where u  is defined as the average velocity at a given location along the duct and U is 

defined as the inlet velocity. 
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Other interesting non-dimensional parameters associated with the turning vane 

include non-dimensional chord length, where chord length is defined as the length from 

tip-to-tail of an airfoil: 

 *

h

c
c

D
  (18) 

Additionally, non-dimensional radius, r* and non-dimensional thickness, t* are defined 

below: 

 *

h

r
r

D
  (19) 

 * maxt
t

c
  (20) 

For the non-dimensional radius, r is the nominal radius of curvature of the turning vane 

and Dh is the hydraulic diameter. For the non-dimensional thickness, tmax is the maximum 

thickness of the turning vane and c is the chord length. 

For scaling purposes, it is necessary to non-dimensionalize parameters such as 

length and diameter in order to provide a wide range of applicability of results from 

model runs. For this reason, D* is defined as: 

 * hD
D

L
  (21) 

Other geometric parameters are given below: 

 * x
x

L
  (22) 

Here, x represents distance in [m] from the origin along the horizontal and L is the 

overall length of the inlet portion of the exhaust duct in [m]. 

 * y
y

H
  (23) 

Here, y represents the distance in [m] from the origin along the vertical and H is 

the overall height of the outlet portion of the exhaust duct. 
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4. Non-dimensional Parameter Ranges for Navy and Marine Corps 

Systems 

Table 1 illustrates the range of non-dimensional values expected for the U.S. 

Navy’s LM2500 main propulsion engine as well as the U.S. Marine Corps’ MEP-803A 

field generator set.  This information is taken from the data sheets for both the MEP-

803A and the LM2500.   

 

Table 1.   Range of non-dimensional parameter values for the Navy and 
Marine Corps systems. 
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III. NON-DIMENSIONAL MODEL GEOMETRY 

The purpose of using non-dimensional geometric factors throughout this thesis 

study is to allow a wide application of the gathered results over a broad spectrum of 

applications. Since much of this study is for application in WHR devices in various Navy 

and Marine Corps systems, it was prudent to use non-dimensional features in order to 

evaluate different systems simultaneously and with minimal computing time. The non-

dimensional parameters discussed in Chapter II are illustrated in Figure 6. 

 

Figure 6.  Non-dimensional geometry of 90o exhaust duct with one turning 
vane in XY plane. 

The exhaust ducts utilized by the Navy and Marine Corps systems are typically 

circular in shape, thus a cylindrical approach to the continuity and momentum equations 

r* 

x* 

y* 
c* 

D* 

1 

1 

D* 

t* 
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would have been appropriate for such a case. However, as mentioned in previous 

sections, the purpose of using a two-dimensional Cartesian approach was to simplify the 

real-world three-dimensional problem. The two-dimensional Cartesian approach greatly 

simplified computational time as well as simplified convergence of the model results. 

Attaining convergence in ANSYS/CFX was necessary to ensure accuracy of results, 

which in turn was necessary to validate the model used.   

The non-dimensional parameters shown in Figure 6, and defined in Chapter II-C-

4, were useful in comparing results for the various runs conducted for model validation, 

as well as for the collection of results. Because of the use of non-dimensional geometric 

parameters varying geometry did not infer starting the problem over from scratch. Rather, 

by varying specific parameters one at a time optimal results were attained by building 

upon the results of previous runs.  
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IV. LAMINAR MODEL VALIDATION 

A. MESH SIZING 

Proper mesh sizing was critically important in ensuring model convergence. 

Having too coarse of a mesh resulted in divergent solutions, while too fine of a mesh 

oftentimes did not yield any more accurate of a solution than a mesh that was not 

extremely fine. The computing time required for an extremely fine mesh was excessive. 

In addition, for extremely fine meshes it was found that the solution did not properly 

average the eddy formation phenomenon, which is observed using an appropriately sized 

mesh. The turbulence models used in this thesis rely on a false time step and use an 

average value function; the smaller the time step and the more fine the mesh the more 

closely the problem resembled a real-world situation, for which there is not an applicable 

model. However, for the laminar model used in this thesis turbulence was neglected and 

solutions were deemed accurate on whether or not they satisfied a fully developed profile. 

In order to determine the proper geometry from which to run the laminar (and 

eventually the turbulent) models, measured data from the Marine Corps’ MEP-803A field 

generator was used. This data included temperature and mass flow rate measured in the 

exhaust. Scaling this flow for a model that would run efficiently and effectively, 

Reynolds number relationships were used to scale the model. Appendix A contains the 

details of the geometry set-up used in SolidWorks and ANSYS. Appendix B contains 

ANSYS/CFX set up for mesh sizing and CFX-PRE input parameters for laminar and 

turbulent runs. 

B. EVALUATION OF VALIDATION RESULTS 

Velocity profile data was extracted from the laminar model by selecting data 

along the inlet portion of the exhaust duct. This velocity profile was compared to nominal 

values calculated using the input criteria for the run. A nominal value for the maximum 
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velocity of the fully developed laminar profile was determined to be 0.586 [m/s]. Figure 7 

shows a plot of velocity data at specific locations along the x-direction.  

 

Figure 7.  Velocity developing profiles for laminar model validation runs. 

What the plot in Figure 7 shows is the development of the flow from a slug inlet 

profile (where velocity is uniform across the cross-section of the duct inlet) to a fully 

developed laminar profile. The maximum value for the flow velocity at the calculated 

entrance length of x* = 0.6 was determined to be u* = 1.5. The values collected from the 

laminar model runs match the expected theoretical values, thus resulting in a positive step 

in laminar model validation.  
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The dynamic viscosity of the working fluid (air) was modified as an additional 

step in model validation. In doing so, the expected values for the maximum flow velocity 

for the fully developed laminar profile also increased and decreased by a factor of ten, 

respectively. By adjusting mass flow rate for the newer viscosities, Reynolds number was 

maintained at a value of 1000 for laminar flow. The velocity profiles for each run were 

compared to known theoretical values based on the input velocity for each flow condition 

and validated against said known values. From these runs the model was determined to 

be valid. By validating the model in the laminar flow regime, a base of results could be 

used to further validate the model in the turbulent flow regime.  
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V. TURBULENT MODEL VALIDATION 

A. MESH SIZING 

As a result of validating the laminar model, the geometry and mesh used were 

applied to the turbulence model. Appendix A references the values used for geometric 

and mesh set up for turbulence validation. Appendix B contains the input parameters for 

ANSYS/CFX-PRE used.   

B. ANSYS/CFX SET-UP 

The turbulent validation depended highly on varying Reynolds number and 

comparing friction factor results against a Moody Diagram. In order to achieve accurate 

results, the setup in CFX-PRE was critical. Appendix B contains the set-up inputs for the 

model runs. An important discussion arose when determining which turbulent model to 

use. The k-ε model is widely accepted as an accurate method of applying RANS 

equations to a turbulent model (Patankar, 1980). In this thesis, the k-  model was used as 

the turbulence model, while turbulence intensity values were used to determine the 

intensity of the actual flow being simulated. The k and   values were determined from 

the input turbulence intensity level prior to commencing simulation runs.  

C. EVALUATION OF VALIDATION RESULTS 

To validate the turbulent model several runs were conducted at various Reynolds 

numbers to determine the Darcy friction factor for each run. These values were taken 

from the straight inlet portion of the exhaust duct and are tabulated in Table 2. Graphical 

results are plotted on a Moody diagram in Figure 8.  
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Table 2.   CFD Darcy friction factor calculations at  
varying Reynolds numbers. 

 

Figure 8.  Moody diagram showing plotted Darcy friction factor value lines, 
with point value data for CFD results (from Kiijarvi, 2001) 
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The Moody diagram in Figure 8 is a plot showing the effect of increasing the Darcy 

friction factor, f over a range of Reynolds numbers. For a smooth pipe, where relative 

roughness is 0, the Blausius equation can be used to approximate the value of the friction 

factor, which shows that 
1

4Ref


 . The exact equation used is shown by Equation (12). 

The results plotted show that as Reynolds number increases, the friction factor decreases. 

This result can be explained by the definition of Reynolds number. Reynolds number 

physically represents the ratio of inertial forces to viscous forces. By increasing the 

velocity of the flow, represented in the inertial forces, the ratio of the inertial to viscous 

forces increases. 
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VI. DISCUSSION OF RESULTS 

A. VELOCITY PLOT FOR NO TURNING VANE CASE 

Figure 9, shown below, represents the baseline model used in this thesis. There 

are no turning vanes located in the ninety-degree bend, and a discussion of these results 

follows. The velocity scale used shows values of v*. 

 

Figure 9.  Non-dimensional velocity profile of 90o bend without a turning vane 
for Re = 76,800, D* = 0.04. 

In Figure 9, the non-dimensional velocity plot provides a great deal of insight 

with regard to backpressure reduction, WHR device placement as well as recirculation 

zone size, which is related to soot deposition and accumulation. Proceeding along the 

Primary recirc. zone 

Secondary recirc. zone 
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inlet portion from left to right, a uniform, fully developed turbulent profile is shown. 

Once the flow encountered the 90o bend, it appeared as if the flow became constricted, as 

if the hydraulic diameter was artificially reduced due to the geometry presented by the 

bend. This is the case, as noted in by Idelchik (Idelchik, 1994). As mentioned in Chapter 

I, the flow experienced a drastic shift in momentum in the bend due to changing of flow 

direction, and viscous forces increased in this region as a result of said momentum shift. 

As the flow proceeded out of the bend and along the outlet portion of the exhaust duct a 

non-uniform velocity profile characterized the flow. Recirculation zones appeared in the 

bottom-right corner of the bend as well as in the left side of the initial portion of the 

outlet of the exhaust duct.  

A few key takeaways from Figure 9 will be used throughout the remainder of the 

discussion. First, the primary recirculation zone located in the bottom right portion of the 

90o bend may cause flow blockage and could also be a possible site for soot and particle 

deposition, which will further add to blockage and increase time and money spent in 

maintenance of the exhaust duct. Shown in Chapter VI-B is the effect of the application 

of a turning vane placed in the 90o bend for the same inlet and outlet boundary conditions 

that were applied to give the results in Figure 9; the primary recirculation zone does 

diminish in size but does not completely disappear. Second, the optimal placement of a 

WHR device, from initial observation and flow visualization, is to place the device in a 

location further away from the bend so as to experience more uniform flow distribution. 

Exit velocity profiles are shown in Chapter VI-C and show that the flow developed from 

a non-uniform exit velocity profile to a more uniform profile. Third, the secondary 

recirculation zone located in the left side of the initial portion of the outlet of the exhaust 

duct will drive the shape of the exit velocity profile and could be the epicenter for 

unwanted vibrations due to large pressure and velocity differentials confined to a 

localized region in the outlet.  
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B. VELOCITY PLOT FOR ONE TURNING VANE CASE 

Figure 10 shows the results for a single large vane placed centrally in the exhaust 

duct ninety-degree bend. A discussion of these results follows. The velocity scale used 

shows values of v*. 

In Figure 10, a turning vane is introduced in the 90o bend. When compared to 

Figure 9, some immediate differences are noted. First, both the primary and secondary 

recirculation zones have diminished in size, and their effect on the flow is reduced. 

Second, improved flow velocity distribution occurs more rapidly in the one vane case 

compared to that of the no vane case; that is to say, the flow becomes more uniform more 

rapidly in the case of one turning vane compared to that of the no vane case. The reason 

for the occurrence of both primary and secondary recirculation zones can best be 

described as an effect of boundary layer separation caused by a drastic change in the wall 

geometry (Idelchik, 1994; Schlichting, 1979).  

 

Figure 10.  Non-dimensional velocity profile of 90o bend with one turning vane 
for Re = 76,800, D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 
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Significant improvement in the flow is shown by the addition to a simply shaped 

turning vane as shown in Figure 10. Despite drastic improvements compared to the 

results plotted in Figure 9, additional improvements in the flow were characterized by 

shifting the location of the turning vane toward the upper left corner of the bend, thus 

reducing the secondary recirculation zone significantly and showing even greater 

pressure drop values. Chapter VI-D shows the effect of a turning vane placed in the upper 

left corner of the 90o bend.  

C. EXIT VELOCITY PROFILE FOR OUTLET PORTION OF EXHAUST DUCT 

Figures 11–12 show the results of the velocity vectors for a single large vane 

placed centrally in the exhaust duct ninety-degree bend. A comparison of the velocity 

vectors located nearest the ninety-degree bend to the velocity vectors further from the 

ninety-degree bend is noted in the discussion, which follows. The velocity scale used 

shows values of v*. 

 

Figure 11.  Non-dimensional exit velocity profile for 90o bend, showing effect 
on velocity profile near the bend for Re = 76,800, D* = 0.04, c* = 0.35, 

r* = 0.4, t* = 0.07. 
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Figure 12.  Non-dimensional exit velocity profile for 90o bend, showing effect 
on velocity profile far downstream for Re = 76,800, D* = 0.04, c* = 

0.35, r* = 0.4, t* = 0.07. 

Figures 11 and 12 are plotted non-dimensional exit velocity profiles at two 

separate locations with respect to the 90o bend. Figure 11 shows the effect on the velocity 

profile nearest the bend, while Figure 12 shows the effect on the velocity profile further 

away from the bend. The non-uniform profile as discussed in Chapter VI-B is clearly 

evident in Figure 11. The portion of the profile closest to the left side of the duct outlet 

demonstrated a negative velocity gradient, indicating counter-flow in this region. This 

counter-flow explains the effect of the secondary recirculation zone on the flow and also 

provides and insight into the source of possible backpressure in this region. Figure 12 is 

indicative of a more uniformly distributed velocity profile further downstream, though 

the effects of the 90o bend geometry are still evident in its shape. Results from Figure 12 

in particular provided a great insight into optimal WHR device placement, and also may 
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provide insight into future work with IR signature reduction and possible soot loading of 

the exhaust gases shown as a probability density function with respect to u* and Dh.  

D. VELOCITY PLOT FOR A TURNING VANE PLACED IN THE UPPER 

LEFT CORNER OF 90O DUCT  

Figure 13, illustrated below, shows the results for a single small vane placed 

optimally in the upper left corner of the exhaust duct ninety-degree bend. A discussion of 

these results follows. The velocity scale used shows values of v*. 

 

Figure 13.  Non-dimensional velocity profile of 90o bend with one turning vane 
located near the upper left corner for Re = 76,800, D* = 0.04, c* = 0.18, 

r* = 0.2, t* = 0.07. 

The results from Figure 13 illustrated the epitome of the study conducted in this 

thesis. By optimally placing the turning vane in the upper left corner of the 90o bend, 

noticeable difference in the velocity profile is seen between this result and the results 
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shown in Figure 10. Some remarkable observations were made with regard to Figure 13. 

First, the magnitude of the velocity is nearly constant throughout the bend, resulting in a 

significantly diminished secondary recirculation zone as well as a slight reduction in the 

primary recirculation zone as compared to the case of no vane in Figure 9. Second, the 

velocity exit profiles are more uniform in the outlet portion of the duct, thus allowing for 

more leeway in WHR device placement. Third, and as discussed in Chapter VI-H, 

reduction in pressure drop is on average 10% better than the case of a single turning vane 

placed centrally in the 90o bend.  

The CFD results shown in Figure 13 are extremely important moving forward in 

the energy recovery and energy harvesting programs. Not only is contemplation of a 

turning vane a factor in design considerations, but a decision on vane placement is now a 

critical factor in the design process for optimal location of WHR devices, as well as for 

significant reduction in backpressure leading to improved fuel economy and decreased 

money spent on fuel.   

E. PRESSURE CONTOUR FOR NO TURNING VANE CASE 

The results from Figure 14, below, show the nominal pressure drop that occurs 

due to the 90o geometry without the effect of a turning vane. The recirculation zones 

played a vital role in determining the value of the pressure drop across the duct. Of note, 

all sources consulted for estimated head loss over a simple 90o bend assumed that the 

inlet profile was a slug inlet velocity profile, thus estimating head loss coefficients under 

this assumption. Since the velocity profile entering the inlet portion of the 90o bend in 

this case was determined to be a fully developed turbulent profile, head loss values and 

coefficients were determined to be proportionally greater than expected head losses. 

When head loss was calculated over the entire domain for the 90o bend (that is to say, 

from x* = 0 to y* = 1) the calculated values were within 12% of the values of the head 

loss coefficient, KL, reported in Idelchik’s Handbook of Hydraulic Resistance (Idelchik, 

1994) for sharp bends.  



 34

 

Figure 14.  Non-dimensional pressure profile for 90o bend without a turning 
vane for Re = 76,800, D* = 0.04. 

F. PRESSURE CONTOUR FOR ONE TURNING VANE CASE 

The effect of one turning vane demonstrated in Figure 15, below, on the pressure 

drop across the bend is drastic in comparison with Figure 14. Both the primary and 

secondary recirculation zone pressure effects have been minimized and the overall drop 

in pressure across the bend is on average 50–60% less with one turning vane that without 

a turning vane. The significance of this is that backpressure will be greatly reduced in the 

exhaust duct, allowing for greater fuel economy and a less-restricted flow available to 

WHR devices.  
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Figure 15.  Non-dimensional pressure profile for 90o bend with a turning vane 
for Re = 76,800, D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 

G. PRESSURE CONTOUR FOR ONE TURNING VANE PLACED IN THE 

UPPER LEFT CORNER OF A 90O DUCT 

In comparison with Figure 15, the results from Figure 16 illustrated below appear 

to show an increased pressure drop by placing the turning vane in the upper left corner of 

the exhaust duct bend. However, as shown in Chapter VI-H in the plotted data for the 

pressure drop comparison, the reduction in pressure drop in the case of Figure 16 is 

actually 10% greater than that of the case of Figure 15. What these results show is that 

the primary impact on backpressure is attributed to the magnitude of the secondary 

recirculation zone rather than the primary recirculation zone. This conclusion is appears 

to be counter-intuitive, however upon further investigation this conclusion is sound for a 

few reasons. 
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Figure 16.  Non-dimensional pressure profile for 90o bend with a turning vane 
placed in upper left corner of duct bend for Re = 76,800, D* = 0.04, c* = 

0.18, r* = 0.2, t* = 0.07. 

First, the variation in size of the primary recirculation zone does not immediately 

show any correlation to increase in backpressure. Rather, the primary recirculation zone 

can be thought of as a “dead zone” where flow velocity approaches zero and at no time 

has an overall negative gradient against the primary direction of the flow. Second, the 

secondary recirculation zone does show a negative gradient against the primary direction 

of the flow as indicated in the exit velocity profiles shown in Figure 11. Third, the effect 

of the secondary recirculation zone on constricting the flow by reducing the effective 

hydraulic diameter proportionally more than the primary recirculation zone leads to the 

conclusion that backpressure can most consistently be attributed to the secondary 

recirculation zone size for the 90o sharp-cornered bend. Since the effective hydraulic 

diameter along the diagonal from the upper left to bottom right of the bend is greater than 

the actual hydraulic diameter of the duct itself, the size of the primary recirculation zone 
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did not fully impede the flow from passing through the inlet portion of the bend. Once the 

flow encountered the outlet portion of the bend, boundary layer separation that occurred 

at the upper left corner of the bend resulted in the creation of the secondary recirculation 

zone and thus restricted the passage of the flow through this portion of the outlet of the 

exhaust duct.  

H. EFFECT OF VARIOUS VANE CONFIGURATIONS ON PRESSURE 

DROP IN A 90O EXHAUST DUCT BEND 

Several vane configurations were evaluated through the course of this thesis.  

Vane orientation, size and location were altered to study the effects of the pressure drop 

across the sharp 90o turning bend.  In order to optimize pressure drop through the bend 

the results of changing the vane configuration were plotted against each other in order to 

evaluate the results and draw conclusions on which vane configuration would be best 

suited for energy efficiency. 

The pressure drop was calculated as an average across the sharp-cornered 90o duct 

bend at a distance of one non-dimensional hydraulic diameter from the beginning and end 

of the sharp bend.  Figure 18 shows this pictorially.  The results from the averaged 

pressure drop across the 90o bend were plotted in Figure 17, shown below in subsection 

1.  Figures 19–22 show the different vane configurations that were studied in this thesis, 

ranging from a centered vane to a three-vane configuration.   

For simplification of evaluating the results, the results for P* and P** are organized 

into Chapter VI-H-1 for P* and Chapter VI-H-2 for P**.  As a consequence of plotting 

pressure drop using two different calculation methods, different conclusions can be 

drawn as explained in each subsection.  Additionally, the effect of the various turning 

vane configurations on the recirculation zone size is explained in Chapter VI-H-3.  

Figures 24, 25 and Table 5 aid in this discussion. 
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1. Plotted Results for *P  

 

Figure 17.  Non-dimensional pressure drop values for  P* in an exhaust duct 
with a 90o bend. 
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Figure 18.  Non-dimensional locations of pressure drop calculations  
for 90o bend. 

The effect of placing a single vane in a 90o bend is illustrated in Figure 17. Figure 

18 shows the non-dimensional location from which *P  and **P  were calculated. 

Several vane configurations were considered when comparing to the no vane case, to 

include a turning vane translated into the upper left corner of the bend, a turning vane that 

was rotated counter-clockwise, a three-vane configuration, and a single vane placed 

centrally in the bend. Figures 19–22 show these vane configurations: 

D* 

D* 

∆P* 
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Figure 19.  Profile view of one vane configuration for D* = 0.04, c* = 0.35, r* = 
0.4, t* = 0.07. 

 

Figure 20.  Profile view of one vane rotated counter-clockwise from horizontal 
configuration for D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 

8 deg 
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Figure 21.  Profile view of one vane placed in upper left corner of 90o bend 
configuration for D* = 0.04, c* = 0.18, r* = 0.2, t* = 0.07. 

 

Figure 22.  Profile view of three smaller vane configuration for D* = 0.04, c* = 
0.18, r* = 0.2, t* = 0.07. Note: Multiple small vanes have been used in 

rounded ducts. 
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What the plotted values in Figure 17 shows are the drastic decrease in pressure 

drop over the vane for the varying vane configurations. Table 3 (below) compared the 

non-dimensional pressure drop of the single, centrally placed vane against the no vane 

configuration. 

 

Table 3.   Non-dimensional pressure drop values and percentage 
reduction between single vane and no vane configurations. 

When the pressure drop values for a single vane and no vane configuration are 

compared, as shown in Table 3, a decrease in pressure drop by 50–60% was observed. 

This drop in backpressure proved to be a significant result and demonstrated the great 

effectiveness that a simple turning vane has on the flow through a sharp-cornered bend. 

The application of the results found over the course of the research conducted in this 

thesis will greatly aid future work in WHR device placement and will provide a basis 

from which accurate pressure drop measurements can be recorded.  

% 

Reduction 

from no 

vane to 1 

vane

No vane 1 Vane 

1.364 0.524 61.6%

1.263 0.510 59.7%

1.347 0.516 61.7%

1.336 0.515 61.5%

1.495 0.517 65.4%

1.434 0.622 56.6%

1.390 0.663 52.3%

1.358 0.662 51.2%

ΔP* (ΔP/ρU2
) [1]
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The significant drop in backpressure demonstrated in Figure 17 and in  

Table 3 show computationally calculated results for expected pressure drop in a real 

system. Moving forward with the application of this result will play a major role in 

increasing fuel economy, thus saving costs on the front end of operating a generator or an 

engine.  

2. Plotted Results for **P  

 

Figure 23.  Non-dimensional pressure drop values for  P** in an exhaust duct 
with a 90o bend for D* = 0.04. 

The plot of **P shows plotted values of the pressure drop for three 

configurations: no vane, 1 vane located in the center of the bend (refer to Figure 19) and 

1 vane located in the upper left corner of the bend (refer to Figure 21). The three-vane 

(Figure 22) and rotated vane (Figure 20) were omitted in order to more clearly see the 

effects of the vane placed in the upper left corner. The results in Figure 23 are significant 

in several ways. First, a noticeable pressure drop decrease is again noted from the no 
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vane configuration to the one-vane configurations. Second, there is an additional decrease 

of 10–15% in pressure drop from one vane to one vane placed in the upper left corner of 

the bend for Re>2x104. Third, a linear relationship is shown between pressure drop and 

Reynolds number.  

The observed linear relationship between pressure drop and Reynolds number was 

a significant result. What this result proved is that as Reynolds increased, pressure drop 

increased proportionally. This relationship can be explained by the proportionality 

between Nusselt number and Reynolds number, which is used in heat transfer problems: 

 Re Pra bNu   (24) 

As Reynolds number increases and the flow becomes turbulent, Pr 1 and this term 

reduces the relationship in Equation 24 to the following: 

 ReaNu   (25) 

A linear correlation exists when Nusselt and Reynolds numbers are plotted on a log-log 

plot. Shown in Figure 23 is a log-log plot of pressure drop and Reynolds number; from 

the results gathered by CFD modeling it is reasonable to accept that there exists a 

proportional relationship between pressure drop and Nusselt number. This proportionality 

will prove to be crucial in determining proper WHR device placement, as well as for 

measuring IR signature and overall heat transfer coefficients, which need to be predicted 

as accurately as possible in order to extract the most energy as possible from the exhaust 

gas flow.  

Another key aspect in Figure 23 is the jump in the pressure drop when Re > 104. 

Both one-vane configurations follow nearly the same linear approximation for Re < 104, 

however once the flow evolved past Re = 104 a perceptible decrease in the pressure drop 

for the vane located in the upper left corner of the bend was observed. As shown in Table 

1, the operating parameters for both the USMC GENSET and the USN LM2500 are 

above the Re = 104 range and thus having a vane placement closer to the corner where 

flow will initially shift its momentum would be more beneficial than a vane placed 

centrally in the bend.  
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Table 4.   Non-dimensional pressure drop values and percentage 
reduction between a single vane in the upper left corner of the bend and 

no vane configurations. Refer to Figure 21 for geometry of 1 vane in 
upper left corner. 

The data accumulated in Table 4 substantiates the data plotted in Figure 23 as 

well as the discussion noted above. Calculated decrease in pressure drop values ranged 

from 65–75% of the expected values for a 90o bend without a turning vane. This is a 10–

15% improvement over placing a turning vane in the center of the 90o bend; significant 

enough to warrant discussion about proper vane placement within a bend for the sake of 

engine efficiency, fuel economy, and waste heat recovery.  

% 

Reduction 

from no 

vane to 1 

vane

No vane

1 Vane Upper 

Left Corner

1.364 0.472 68.4%

1.495 0.442 67.6%

1.434 0.329 77.1%

1.182 0.340 77.3%

1.390 0.333 76.0%

ΔP* (ΔP/ρU2
) [1]
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3. Plotted Results for Recirculation Zone Size 

 

Figure 24.  Non-dimensional recirculation zone size in an exhaust duct with 90o 
bend for D* = 0.04. 
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Figure 25.  Non-dimensional primary recirculation zone size. 

The non-dimensional recirculation data plotted in Figure 24 is relevant for several 

reasons (the non-dimensional recirculation zone size b* is computed by measuring the 

distance from the outer corner at a 45o angle until a u* value of 0.4 is reached). First, it 

validated the assumption that in the 90o bend without a turning vane the recirculation 

zone will be the largest. Second, it asserted the claim that a single turning vane will show 

drastic size reduction in the primary recirculation zone size, thereby decreasing soot 

accumulation. Third, it showed that an increase in the number of vanes is not entirely 

beneficial, and when compared to the results plotted for just a single vane, an increase in 

vane number actually increases the recirculation zone size. The relevance of this third 

argument is that in several sources referenced in this thesis the effect of the number of 

turning vanes on the recirculation zone size is not studied. 

b* 
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Table 5.   Non-dimensional b* values for various vane configurations 
for D* = 0.04. 

 

 

 

 

 

Re No Vane

1 Vane 

(Figure 19)

1 Vane, rotated 

(Figure 20)

3 Vanes 

Figure 22)

4900 0.469 0.170 0.125 0.375

6000 0.469 0.170 0.188 0.375

7000 0.475 0.168 0.213 0.325

8100 0.475 0.175 0.213 0.375

9200 0.475 0.175 0.225 0.425

25600 0.575 0.250 0.263 0.425

76800 0.700 0.375 0.275 0.500

128000 0.713 0.375 0.300 0.563

b* Values
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VII. CONCLUSION 

The use of CFD software was a necessary tool used to study methods to reduce 

backpressure in an exhaust duct with a 90o sharp-cornered bend. The effectiveness of 

placing a turning vane in the flow showed results that ranged from 50–75% reduction in 

backpressure across the bend. This significant reduction in backpressure will prove to be 

a significant factor in improving fuel economy of generators and engines used by the 

Marine Corps and Navy. Also, placement of a waste heat recovery device in the exhaust 

duct will increase backpressure, thus having ways to reduce this added backpressure must 

be found. In addition to reducing backpressure, turning vanes smoothed the turbulent 

flow as it encountered a shift in flow direction. This result will assist future developments 

in waste heat recovery device placement and will play a significant role in predicting and 

reducing infrared signature of the exhaust duct.  

The objectives listed in Chapter I were accomplished, as shown in the chapters on 

model validation and in the results discussion. Specifically, with regard to creating a two-

dimensional model that accurately represented real systems, this was accomplished using 

non-dimensional parameters and scaling said parameters to meet the dimensions of the 

model used. In terms of validating the model in both laminar and turbulent flow 

conditions, this was achieved and proved through various methods by comparing the 

CFD results to theoretical and expected values for the input conditions given. Finally, 

turning vane parameters were varied and their effects were studied; these results 

supported the claim that by translating a turning vane in a 90o bend toward the area of 

initial momentum and flow direction change an improvement in pressure drop reduction 

will be observed.  

With regard to the objectives listed in Chapter I, the following answers are given. 

A two-dimensional model was created, satisfied the equations of continuity and 

momentum for an incompressible fluid using Cartesian coordinates.   The model was 

validated for both laminar and turbulent regimes against expected fully developed 

laminar flow profiles for the laminar regime, and against expected Darcy friction factors 
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for the turbulent model. The model was varied for several parameters, to include turning 

vane location, turning vane number and turning vane orientation. The results from 

varying said parameters were collected, tabulated and plotted. These results were used to 

estimate pressure drop values compared to a ninety-degree sharp-angled exhaust duct 

bend.   

The results of this thesis showed that the use of one centrally placed turning vane 

or three equally spaced turning vanes produced anywhere from 50–60% reduction in 

overall backpressure through the sharp-cornered 90o exhaust duct bend. In contrast, a 

single turning vane placed near the inner corner of the same bend resulted in 65–75% 

reduction in backpressure. The effect of translating a single turning vane toward the inner 

corner of a sharp-angled exhaust duct bend showed great results, which will tie in to 

future developments and research in the energy harvesting programs. The recirculation 

zone size, which was very prevalent in the exhaust duct bend without any turning vanes, 

showed a dramatic decrease in size once a single turning vane configuration was 

considered. However, with addition of more turning vanes the recirculation zone did not 

decrease further in size; rather, it increased in size compared to the results from the single 

vane cases.  

The application of this study toward the overall energy program coordinated 

between the Naval Postgraduate School and the U.S. Marine Corps Expeditionary Energy 

Office will provide a solid foundation for future endeavors in waste heat recovery and 

energy harvesting, as well as in infrared signature reduction. This research will also be 

applicable in the academic sense where follow-on work can be done in optimizing vane 

placement for a series of applications, and it also provides the groundwork for further 

studies in the effect of turning vane placement. The correlation between Nusselt number 

and pressure drop is an area of particular interest, and future studies will reveal 

significant correlations for application in current and future energy harvesting systems. 
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APPENDIX A.  MODEL GEOMETRY 

Created in SOLIDWORKS (mm, kg, s, K): 
Inlet length: 1000 mm 
Duct Height: 20 mm 
Duct Width: 0.2 mm 
Outlet length: 1000 mm 
Boss extrude 0.2 mm (duct width) 
Saved as parasolid, imported into ANSYS/CFX domain 
Vane Dimensions 
Chord Length: 14.14 mm 
Turning Angle: 90o 

 
Model Meshing 
Named boundaries: 
Exhaust_In: This is the inlet to the 90-degree bend exhaust duct, located in the XY plane 
along the –X axis. 
Exhaust_Out: this is the outlet to the 90-degree bend exhaust duct, located in the XY 
plane along the +Y axis. 
Sym1: this is a symmetry boundary condition set up in the +Z direction to establish a 
semi-infinitely parallel plate in the +Z direction. 
Sym2: this is a symmetry boundary condition set up in the -Z direction to establish a 
semi-infinitely parallel plate in the -Z direction. 
Sym1, Sym2 combine to create two infinitely parallel plates, thus neglecting any wall 
effects in the +/-Z directions. This set up was used to evaluate a three-dimensional 
geometry in two dimensions.  

 
Mesh 
Method: Sweep Method 
Free Face Mesh Type: Quad/Tri 
Type: Number of Divisions: Sweep Number Divisions = 1 
Relevance Center: Fine 
Minimum Size: 0.2 mm 
Maximum Face Size: 1.0 mm 
Maximum Size: 1.0 mm 
Curvature Normal Angle: 1.0o 
Growth Rate: Default (1.20) 
Inflation 
Use Automatic Inflation: All Faces in Chosen Named Selection 
Named Selection: TurnVane 
Default values for all other Inflation Settings 
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APPENDIX B.  MODEL SETUP 

LAMINAR SETUP 
Default Domain 
Basic Settings 
Location: Exhaust duct body 
Domain Type: Fluid Domain 
Coordinate Frame: Coord 0 
Fluid and Particle Definitions: Fluid 1 
Fluid 1 
Option: Material Library 
Material: Air at 25 C 
Morphology: Continuous Fluid 
Domain Models 
Pressure 
Reference Pressure: 1 [atm] 
Buoyancy Model: Non Buoyant 
Domain Motion: Stationary 
Mesh Deformation: None 
Fluid Models 
Heat Transfer 
Option: Isothermal 
Turbulence 
Option: None 
Wall Function: N/A 
Fluid Temperature: 25 [C] 
 
Inlet  
Basic Settings 
Boundary Type: Inlet 
Location: Exhaust_In 
Boundary Details 
Flow Regime: Subsonic 
Mass and Momentum 
Option: Mass Flow Rate 
Mass Flow Rate: 1.85E-6 [kg/s] (for Re = 1000) 
Flow Direction: Normal to Boundary Condition 
Turbulence: None 
 
Outlet 
Basic Settings 
Boundary Type: Outlet 
Location: Exhaust_Out 
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Boundary Details 
Flow Regime: Subsonic 
Mass and Momentum 
Option: Static Pressure 
Relative Pressure: 0 [atm] 
 
Sym1 
Basic Settings 
Boundary Type: Symmetry  
Location: Sym1 
 
Sym2 
Basic Settings 
Boundary Type: Symmetry  
Location: Sym2 
 
Solver Control 
Basic Settings 
Advection Scheme: High Resolution 
Turbulence Numerics: First Order 
Convergence Control 
Min. Iterations: 1 
Max. Iterations: 200 
Fluid Timescale Control 
Timescale Control: Auto Timescale 
Length Scale Option: Conservative 
Timescale Factor: 1.0 
Convergence Criteria 
Residual Type: RMS 
Residual Target: 1E-6 
Equation Class Settings 
Equation Class: Continuity 
Advanced Options 
Dynamic Model Control 
Global Dynamic Model Control 
 
Air at 25 C 
Basic Settings 
Option: Pure Substance 
Material Group: Air Data, Constant Property Gases 
Material Description: Air at 25 C and 1 atm (dry) 
Thermodynamic State: Gas 
Material Properties 
Option: General Material 
Thermodynamic Properties 
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Equation of State 
Option: Value 
Molar Mass: 28.96 [kg kmol-1] 
Density: 1.185 [kg m-3] 
Specific Heat Capacity 
Option: Value 
Specific Heat Capacity: 1.0044E3 [J kg-1 K-1] 
Reference State 
Option: Specified Point 
Ref. Temperature: 25 [C] 
Reference Pressure: 1 [atm] 
Reference Specific Enthalpy 
Ref. Spec. Enthalpy: 0 [J/kg] 
Reference Specific Entropy 
Ref. Spec. Entropy: 0 [J/kg/K] 
Transport Properties 
Dynamic Viscosity 
Option: Value 
Dynamic Viscosity: 1.831E-5 [kg m-1 s-1] 
Thermal Conductivity 
Option: Value 
Thermal Conductivity: 2.61E-2 [W m-1 K-1] 
Radiation Properties 
Refractive Index 
Option: Value 
Refractive Index: 1.0 [m m-1] 
Scattering Coefficient 
Option: Value 
Scattering Coefficient: 0.0 [m-1] 
Buoyancy Properties 
Option: Value 
Thermal Expansivity: 0.003356 [K-1] 
Electromagnetic Properties: None 
 
TURBULENT SETUP 
All input conditions for turbulent models are similar to the laminar setup, with the 
exception of turbulence intensity, Re scaling and turbulence models that were selected 
appropriately below: 
Default Domain 
Fluid Models 
Heat Transfer 
Option: Isothermal 
Turbulence 
Option: k-Epsilon 
Wall Function: Scalable 
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Inlet  
Boundary Details 
Turbulence: Medium (Intensity = 5%) 
 
Note: A change in turbulence intensity from 3–10% changed pressure drop by less than 
5% and had no significant effect on the flow patterns.  
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APPENDIX C.  VELOCITY VECTOR PROFILE PLOTS FOR A 90O 

EXHAUST BEND 

 

Figure 26.  Non-dimensional velocity vectors in primary recirculation zone for 
Re = 76,800, D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 
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Figure 27.  Non-dimensional velocity vectors in secondary recirculation zone 
for Re = 76,800, D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 
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Figure 28.  Non-dimensional velocity vectors along turning vane for Re = 
76,800, D* = 0.04, c* = 0.35, r* = 0.4, t* = 0.07. 
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