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CHAPTER 6 

Information Processing in Dynamical Systems: 
Foundations of Harmony Theory 

P. SMOLENSKY 

INTRODUCTION 

The Theory of Information Processing 

At this early stage in the development of cognitive science, methodo­
logical issues are both open and central. There may have been times 
when developments in neuroscience, artificial intelligence, or cognitive 
psychology seduced researchers into believing that their discipline was 
on the verge of discovering the secret of intelligence. But a humbling 
history of hopes disappointed has produced the realization that under­
standing the mind will challenge the power of all these methodologies 
combined. 

The work reported in this chapter rests on the conviction that a 
methodology that has a crucial role to play in the development of cog­
nitive science is mathematical analysis. The success of cognitive sci­
ence, like that of many other sciences, will, I believe, depend upon the 
construction of a solid body of theoretical results: results that express in 
·a mathematical language the conceptual insights of the field~ results 
that squeeze all possible implications out of those insights by exploiting 
powerful mathematical techniques. 1 

This body of results, which I will call the theory of illformation process­
ing, exists because information is a concept that lends itself to 
mathematical formalization. One part of the theory of information pro­
cessing is already well-developed. The classical theory of computation 
provides powerful and elegant resulls about the notion of ejfective 
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procedure, including languages for precisely expressing them and 
theoretical machines for realizing them. This body of theory grew out 
of mathematical logic, and in turn contributed to computer science, 
physical computing systems, and the theoretical paradigm in cognitive 
science often called the (von Neumann) computer metaphor. 1 

In his paper II Physical Symbol Systems," Allen Newell (1980) articu­
lated the role of the mathematical theory of symbolic computation in 
cognitive science and furnished a manifesto for what I will call the sym­
bolic paradigm. The present book offers an alternative paradigm for 
cognitive science, the subsymbolic paradigm, in which the most powerful 
level of description of cognitive systems is hypothesized to be lower 
than the level that is naturally described by symbol manipulation. 

The fundamental insights into cognition explored by the subsymbolic 
paradigm· do not involve effective procedures and symbol manipulation. 
Instead they involve the "spread of activation," relaxation, and statistical 
correlation. The mathematical language in which these concepts are 
naturally expressed are probability theory and the theory of dynamical 
systems. By dynamical systems theory I mean the study of sets of 
numerical variables (e.g., activation levels) that evolve in time in paral­
lel and interact through differential equations. The classical theory of 
dynamical systems includes the study of natural physical systems (e.g., 
mathematical physics) and artificially designed systems (e.g., control 
theory). Mathematical characterizations of dynamical systems that for­
malize the insights of the subsymbolic paradigm would be most helpful 
in developing the paradigm. 

This chapter introduces harmony theory, a mathematical framework 
for studying a class of dynamical systems that perform cognitive tasks 
according to the account of the subsymbolic paradigm. These dynami­
cal systems can serve as models of human cognition or as designs for 
artificial cognitive systems. The ultimate goal of the enterprise is to 
develop a body of mathematical results for the theory of information 
processing that complements the results of the classical theory of (sym­
bolic) computation. These results would serve as the basis for a mani­
festo for the subsymbolic paradigm comparable to Newell's manifesto 
for the symbolic paradigm. The promise offered by this goal will, I 
hope, be suggested by the results of this chapter, despite their very lim-

. ited scope. 

1 Mathematical logic has recently given rise to another approach to formalizing infor­
mation: siwation semantics <Barwise & Perry, 1983). This is related to Shannon's 
(1948/1903) measure of information through the work of Dretske (1981). The approach 
of this chapter is more faithful to the probabilistic formulation of Shannon than is the 
symboli( approach of situation semantics. (This results from Dretske's move of identify­

ing information with conditional proh•abilities of 1.) 
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It should be noted that harmony theory is a "theory" in the 
mathematical sense, not the sciemijic sense. By a .. mathematical 
theory" -e.g., number theory, group theory, probability theory, the 
theory of computation- I mean a body of knowledge about a part of the 
ideal mathematical world; a set of definitions, axioms, theorems, and 
analytic techniques that are tightly interrelated. Such mathematical 
theories are distinct from scientific theories, which are of course bodies 
of knowledge about a part of the "real" world. Mathematical theories 
provide a language for expressing scientific theories~ a given mathemat­
ical theory can be used to express a large class of scientific theories. 
Group theory, for example, provides a language for expressing many 
competing theories of elementary particles. Similarly, harmony theory 
can be used to express many alternative theories about various cogni­
tive phenomena. The point is that without the concepts and techniques 
of the mathematical language of group theory, the formulation of any 
of the current scientific theories of elementary particles would be essen­
tially impossible. 

The goal of harmony theory is to provide a powerful language for 
expressing cognitive theories in the subsymbolic paradigm, a language 
that complements the existing languages for symbol manipulation. 
Since harmony theory is conceived as a language for using the subsym­
bolic paradigm to describe cognition, it embodies the fundamental 
scientific claims of that paradigm. But on many important issues, such 
as how knowledge is represented in detail for particular cases, harmony 
theory does not itself make commitments. Rather, it provides a 
language for stating alternative hypotheses and techniques for studying 
their consequences. 

A Top-Down Theoretical Strategy 

How can mathematical analysis be used to study the processing 
mechanisms underlying the performance of some cognitive task? 

One strategy, often associated with David Marr ( 1982), is to charac­
terize the task in a way that allows mathematical derivation of mechan­
isms that perform it. This top-down theoretical strategy is pursued in 
harmony theory. My claim is not that the strategy leads to descriptions 
that are necessarily applicable to all cognitive systems, but rather that 
the strategy leads to new insights, mathematical results, computer 
architectures, and computer models that fill in the relatively unexplotFd 
conceptual world of parallel, massively distributed systems that perform 
cognitive tasks. Filling in this conceptual world is a necessary subtask, 
I believe, for understanding how brains and minds are capable of intel­
ligence and for assessing whether computers with novel architectures 
might share this capability. 
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The Centrality of Perceptual Processing 

The cognitive task I will study in this chapter is an abstraction of the 
task of perception. This abstraction includes many cognitive tasks that 
are customarily regarded as much "higher level" than perception (e.g., 
intuiting answers to physics problems). A few comments on the role of 
perceptual processing in the subsymbolic paradigm are useful at this 
point. 

The vast majority of cognitive processing lies between ·the highest 
cognitive levels of explicit logical reasoning and the lowest levels of 
sensory processing. Descriptions of processing at the extremes are rela· 
lively well-informed-on the high end by formal logic and on the low 
end by natural science. In the middle lies a conceptual abyss. How are 
we to conceptualize cognitive processing in this abyss? 

The strategy of the symbolic paradigm is to conceptualize processing 
in the intermediate levels as symbol manipulation. Other kinds of pro­
cessing are viewed as limited to extremely low levels of sensory and 
motor processing. Thus symbolic theorists climb down into the abyss, 
clutching a rope of symbolic logic anchored at the top, hoping it will 
stretch all the way to the bottom of the abyss. 

The subsymbolic paradigm takes the opposite view, that intermediate 
processing mechanisms are of the same kind as perceptual processing 
mechanisms. Logic and symbol manipulation are viewed as appropriate 
descriptions only of the few cognitive processes that explicitly involve 
logical reasoning. Subsymbolic theorists climb up into the abyss on a 
perceptual ladder anchored at the bottom, hoping it will extend all the 
way to the top of the abyss. 2 

2 There is no contradiction between working from lower level, perceptual processes up 
towards higher processes, and pursuing a top-down theoretical strategy. It is important to 
distinguish levels of processing emiries from levels of theoretical emities. Higher level 
proces'ies involve compmarional entities that are computationally distant from the peri­
pheral, sensorimotor entities that comprise the "lowest level" of processing. These pro­
cessing levels taken /ogether form the processing system as a whole~ they causally interact 
with each other through bottom-up and top-down processing. Higher level theories 
involvl! descripli~·e entities that are descriptively distant from entities that are directly part 

of an aclllal processing mechanism; these comprise the "lowest level" description. Each 
theoretical level imli1•idually describes the processing system as a whole; the interaction of 
descriptive levels is not causal, but de}initional. (For example, changes in individual 
neural tiring rates at the retina cause changes in individual firing rates in visual cortex 
afler a uday related to causal information propagation. The same changes in individual 
retinal neuron tiring rates by cle}inition change the m•erage firing rates of pools of retinal 
neurons; these higher level descriptive entities change instantly, without any causal infor­
mation propagntion from the lower level description.) Thus in harmony theory, models 
of higher level proreues are derived from models of lower level, perceptual, processes, 
while lower level descriptions of these models are derived from higher level descriptions. 
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In this chapter, I will analyze an abstraction of the task of perception 
that encompasses many tasks, from low, through intermediate, to high 
cognitive levels. The analysis leads to a general kind of "perceptual" 
processing mechanism that is a powerful potential component of an 
information processing system. The abstract task I analyze captures a 
common part of the tasks of passing from an intensity pattern to a set 
of objects in three-dimensional space, from a sound pattern to a 
sequence of words, from a sequence of words to a semantic description, 
from a set of patient symptOms to a set of disease states, from a set of 
givens in a physics problem to a set of unknowns. Each of these 
processes is viewed as completing an internal representation of a static 
state of an external world. By suitably abstracting the task of interpreting 
a static sensory input, we can arrive at a theory of interpretation of static 
input generally, a theory of the completion task that applies to many cog­
nitive phenomena in the gulf between perception and logical reasoning. 
An application that will be described in some detail is qualitative prob­
lem solving in circuit analysis. 3 

The central idea of the top-down theoretical strategy is that properties 
of the task are powerfully constraining on mechanisms. This idea can 
be well exploited within a perceptual approach to cognition, where the 
constraints on the perceptual task are characterized through the con­
straints operative in the external environment from which the inputs 
come. This permits an analysis of how internal representation of these 
constraints within the cognitive system itself allows it to perform its 
task. These kinds of considerations have been emphasized in the 
psychological literature prominently by Gibson and Shepard (see 
Shepard, 1984) ~ they are fundamental to harmony theory. 

Structure of the Chapter 

The goal of harmony theory is to develop a mathematical theory of 
information processing in the subsymbolic paradigm. However, the 
theory grows out of ideas that can be stated with little or no mathemat­
ics. The organization of this chapter reflects an attempt to ensure that 
the central concepts are not obscured by mathematical opacity. The 
analysis will be presented in three parts, each part increasing in the 
level of formality and detail. My hope is that the slight redundanqy 

3 Many cognitive tasks involve interpreting or controlling events that unfold over an 
extenlled period of time. To deal properly with such tasks, harmony theory must be 

extended from the interpretation of suuic environments to tht! int~rpretalion of t(~·namic 
environments. 
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introduced by this expository organization will be repaid by greater 
accessibility. 

Section I is a top-down presentation of how the perceptual perspec­
tive on cognition leads to the basic features of harmony theory. This 
presentation starts with a particular perceptual model, the letter­
perception model of McClelland and Rumelhart (1981), and abstracts 
from it general features that can apply to modeling of higher cognitive 
processes. Crucial to the development is a particular formulation of 
aspects of schema theory, along the lines of Rumelhart (1980). 

Section 2, the majority of the chapter, is a bottom-up presentation of 
harmony theory that starts with the primitives of the knowledge 
representation. Theorems are informally described that provide a com­
petence theory for a cognitive system that performs the completion 
task, a machine that realizes this theory, and a learning procedure 
through which the machine can absorb the necessary information from 
its environment. Then an application of the general theory is 
described: a model of intuitive, qualitative problem-solving in elemen­
tary electric circuits. This model illustrates several points about the 
relation between symbolic and subsymbolic descriptions of cognitive 
phenomena~ for example, it furnishes a sharp contrast between the 
description at these two levels of the nature and acquisition of 
expertise. 

The final part of the chapter is an Appendix containing a concise but 
self-contained formal presentation of the definitions and theorems. 

SECTION 1: SCHEMA THEORY AND 
SELF-CONSISTENCY 

THE LOGICAL STRUCTURE OF HARMONY THEORY 

The logiqal structure of harmony theory is shown schematically in 
Figure l. The box labeled !Yiathematical Theory represents the use of 
mathematical analysis and computer simulation for drawing out the 
implications of the fundamental principles. These principles comprise a 
mathematical characterization of computational requirements of a cog­
nitive system that performs the completion task. From these principles 
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FIGURE I. The logical structure of harmony theory. 
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it is possible to mathematically analyze aspects of the resulting perform­
ance as well as rigorously derive the rules for a machine implementing 
the computational requirements. The rules defining this machine have 
a different status from those defining most other computer models of 
cognition: They are not ad hoc, or post hoc~ rather they are logically 
derived from a set of computational requirements. This is one sense in 
which harmony theory has a top-down theoretical development. 

Where do the "mathematically characterized computational require­
ments" of Figure 1 come from? They are a formalization of a descrip­
tive characterization of cognitive processing, a simple form of schema 
theory. In Section 1 of this chapter, I will give a description of this 
form of schema theory and show how to transform the descriptive char­
acterization into a mathematical one-how to get from the concepwal 
box of Figure 1 into the mathemmical box. Once we are in the formal 
world, mathematical analysis and computer simulation can be put to 
work. 

Throughout Section 1, the main points of the development will qe 
explicitly enumerated. 

Point I. The mathematics of harmony theory is founded on familiar 
concepts of cognitive science: inference through activation of schemata. 

., 
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DYNAMIC CONSTRUCTION OF SCHEMATA 

The basic problem can be posed a Ia Schank (1980). While eating at 
a fancy restaurant, you get a headache. Without effort, you ask the 
waitress if she could possibly get you an aspirin. How is this plan 
created? You have never had a headache in a restaurant before. Ordi­
narily, when you get a headache your plan is to go to your medicine 
cabinet and get yourself some aspirin. In the current situation, this 
plan must be modified by the knowledge that in good restaurants, the 
management is willing to expend effort to please its customers, and that 
the waitress is a liaison to that management. 

The cognitive demands of this situation are schematically illustrated 
in Figure 2. Ordinarily, the restaurant context calls for a "restaurant 
script" which supports the planning and inferencing required to reach 
the usual goal of getting a meal. Ordinarily, the headache context calls 
for a "headache script" which supports the planning required to get aspi­
rin in the usual context of home. The completely novel context of a 
headache in a restaurant calls for a special-purpose script integrating the 
knowledge that ordinarily manifests itself in two separate scripts. 

What kind of cognitive system is capable of this degree of flexibility? 
Suppose that the knowledge base of the system does not consist of a set 
of scripts like the restaurant script and the headache script. Suppose 

restaurant 
context 

headache 
context 

restaurant ~ 
&headache~ 

context 

Headache In a Restaurant 

restaurant 
script 

headache 
script 

special­
purpose 
script 

Inferences. goals 

-+ Inferences, goals 

•ask waitress 
for aspirin' 

FIGURE 2. In three different contexts, the knowledge base must produce three different 
scripts. 
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instead that the knowledge base is a set of knowledge atoms that config­
ure themselves dynamically in each context to form tailor-made scripts. 
This is the fundamental idea formalized in harmony theory. 4 

The degree of flexibility demanded of scripts is equaled by that 
demanded of all conceptual structures. 5 For example, metaphor is an 
extreme example of the flexibility demanded of word meanings; even 
so-called literal meaning on closer inspection actually relies on extreme 
flexibility of knowledge application (Rumelhart, 1979) .. In this chapter 
I will consider knowledge structures that embody our knowledge of 
objects, words, and other concepts of comparable complexity~ these I 
will refer to as schemata. The defining properties of schemata are that 
they have conceptual interpretations and that they support inference. 

For lack of a better term, I will use knowledge atoms to refer to the 
elementary constituents of which I assume schemata to be composed. 6 

These atoms will shortly be given a precise description; they will be 
interpreted as a particular instantiation of the idea of memo1y trace. 

Poilll 2. At the time of inference, stored knowledge atoms are dynami­
cally assembled into comext-sensitive schemaw. 

This view of schemata was explicitly articulated in Feldman (1981). 
It is in part embodied in the McClelland and Rumelhart ( 1981) letter­
perception model (see Chapter 1). One of the observed phenomena 
accounted for by this model is the facilitation of the perception of 
letters that are embedded in words. Viewing the perception of a letter 
as the result of a perceptual inference process, we can say that this 
inference is supported by a word schema that appears in the model as a 
single processing unit that encodes the knowledge of the spelling of that 
word. This is not an instantiation of the view of schemata as dynami­
cally created entities. 

4 Schank (1980) describes a symbolic implementation of the idea of dynamic script con­

struction; harmony theory constitutes a subsymbulic formalization. 

5 Hofstadter has long been making the case for the inadequacy of traditional symbolic 
descriptions to cope with the power and llexibility of concepts. For his most recen1 argu­
ment, see Hofstadler 0985). He argues for the need to admit the approximate nature of 

symbolic descriptions, and to explicitly consider processes that are subcognitive. In 
llofstadter (1979, p. 324ff), this same case was phrased in terms of the need for "active 
symbols," of which the "schemata" described here can be viewed as instances. I 

6 A physicist might cull these particles gnosons or soplwns, blH these terms seem quite 
uneuphonious. An acronym for Units }or Construrting Srhemaw Dynamically might serve, 

but would perhaps be taken us an advertising gimmick. So I have stuck wilh "knowledge 
atoms." 
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However, the model also accounts for the observed facilitation of 
letter perception within orthographically regular nonwords or pseudo­
words like A1A VE. When the model processes this stimulus, several 
word units become and stay quite active, including MAKE, WAVE, 
JIA VE, and other words orthographically similar to MA VE. In this 
case, the perception of a letter in the stimulus is the result of an infer­
ence process that is supported by the collection of activated units. This 
collection is a (b•namical/y created pseudoword schema. 

When an orthographically irregular nonword is processed by the 
model, letter perception is slowest. As in the case of pseudowords, 
many word units become active. However, none become very active, 
and very many are equally active, and these words have very little simi­
larity to each other, so they do not support inference about the letters 
effectively. Thus the knowledge base is incapable of creating schemata 
for irregular nonwords. 

Point 3. Schemata are coherent assemblies of knowledge atoms; only 
these can support inference. 

Note that schemata are created simply by activating the appropriate 
atoms. This brings us to what was labeled in Figure l the "descriptively 
characterized computational requirements" for harmony theory: 

Point 4: The harmony principle. The cognitive system is an engine for 
activating coherent assemblies of atoms and drawing inferences that are 
consistent with the knowledge represented by the activated atoms. 

Subassemblies of activated atoms that tend to recur exactly or approxi­
mately are the schemata. 

This principle focuses attention on the notion of coherency or con­
sistemy. This concept will be formalized under the name of harmony, 
and its centrality is acknowledged by the name of the theory. 

MICRO- AND MACROLEVELS 

It is important to realize that harmony theory, like all subsymbolic 
accounts of cognition, exists on two distinct levels of description: a 
microlevel i~volving knowledge atoms and a macrolevel involving sche­
mata (see Chapter 14). These levels of description are completely 
analogous to other micro- and macrotheories, for example, in physics. 
The microtheory, quantum physics, is assumed to be universally valid. 
Part of its job as a theory is to explain why the approximate 
macrotheory, classical physics, works when it does and why it breaks 
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down when it does. Understanding of physics requires understanding 
both levels of theory and the relation between them. 

In the subsymbolic paradigm in cognitive science, it is equally impor­
tant to understand the two levels and their relationship. In harmony 
theory, the microtheory prescribes the nature of the atoms, their 
interaction, and their development through experience. This descrip­
tion is assumed to be a universally valid description of cognition. It is 
also assumed (although this has yet to be explicitly worked out) that in 
performing certain cognitive tasks (e.g., logical reasoning), a higher 
level description is a valid approximation. This macrotheory describes 
schemata, their interaction, and their development through experience. 

One of the features of the formalism of harmony theory that distin­
guishes it from most subsymbolic accounts of cognition is that it 
exploits a formal isomorphism with statistical physics. Since the main 
goal of statistical physics is to relate the microscopic description of 
matter to its macroscopic properties, harmony theory can bring the 
power of statistical physics concepts and techniques to bear on the 
problem of understanding the relation between the micro- and macro­
accounts of cognition. 

THE NATURE OF KNOWLEDGE 

In the previous section, the letter-perception model was used to illus­
trate the dynamic construction of schemata from constituent atoms. 
However, it is only pseudowords that correspond to composite sche­
mata~ word schemata are single atoms. We can also represent words as 
composite schemata by using digraph units at the upper level instead of 
four-letter word units. A portion of this modified leiter-perception 
model is shown in Figure 3. Now the processing of a four-letter word 
involves the activation of a set of digraph units, which are the 
knowledge atoms of this model. Omitted from the figure are the 

Knowledge 
Atoms 

Representational 
Features 

FIGURE 3. A portion of a modified reading model. 

Knowledge 
Atoms 

W1A2 

M1A2 

A2K3 

~> 

~> 

=*> 

(-
(- + 
(0 0 

6. HARMONY THEORY 205 

+ + 0 0} 
+ 0 0} 

0 + + -) 

FIGURE 4. Each knowledge atom is a vector of+,-. and 0 values of the representa­
tional feature nodes. 

line-segment units, which are like those in the original letter-perception 
model. 

This simple model illustrates several points about the nature of 
knowledge atoms in harmony theory. The digraph unit W 1A 2 
represents a pattern of values over the letter units: W1 and A 2 on, with 
all other letter units for positions 1 and 2 off. This pattern is shown in 
Figure 4, using the labels +, -, and 0 to denote on, off, and irrelevant. 
These indicate whether there is an excitatory connection, inhibitory 
connection, or no connection between the corresponding nodes. 7 

Figure 4 shows the basic structure of harmony models. There are 
atoms of knowledge, represented by nodes in an upper layer, and a 
lower layer of nodes that comprises a representation of the state of the 
perceptual or problem domain with which the system deals. Each node 
is a feawre in the representation of the domain. We can now view 
"atoms of knowledge" like W1 and A 2 in several ways. Mathematically, 
each atom is simply a vector of+, -, and 0 values, one for each node 
in the lower, representation layer. This pattern can also be viewed as a 
fragment of a percept: The 0 values mark those features omitted in the 
fragment. This fragment can in turn be interpreted as a trace left 
behind in memory by perceptual experience. 

7 Omilled are the knowledge atoms that relate the letter nodes to the line segment 
nodes. Both line segment and leiter nodes are in the lower layer, and all knowledge 
atoms are in the upper layer. llierarchies in harmony theory are imbedded within an 
architecture of only two layers of nodes, as will be discussed in Section 2. 

, 
I 
f 
I 
I 
I 
I 
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fi.l,l 
1':1, 

Point 5. Knowledge atoms are fragments of representations that accu­
mulate with experience. 

THE COMPLETION TASK 

Having specified more precisely what the atoms of knowledge are, it 
is time to specify the task in which they are used. 

Many cognitive tasks can be viewed as inference tasks. In problem 
solving, the role of inference is obvious; in perception and language 
comprehension, inference is less obvious but just as central. In har­
mony theory, a tightly prescribed but extremely general inferential task 
is studied: the completion task. In a problem-solving completion task, a 
partial description of a situation is given (for example, the initial state 
of a system); the problem is to complete the description to fill in the 
missing information (the final state, say). In a slOry understanding 
completion task, a partial description of some events and actors' goals is 
given~ comprehension involves filling in the missing events and goals. 
In perception, the stimulus gives values for certain low-level features of 
the environmental state, and the perceptual system must fill in values 
for other features. In general, in the completion task some features of 
an environmental state are given as input, and the cognitive system 
must complete that input by assigning likely values to unspecified 
features. 

A simple example of a completion task (Lindsay & Norman, 1972) is 
shown in Figure 5. The task is to fill in the features of the obscured 
portions of the stimulus and to decide what letters are present. This 
task can be performed by the model shown in Figure 3, as follows. 
The stimulus assigns values of on and off to the unobscured letter 
features. What happens is summarized in Table I. 

Note that which atoms are activated affects how the representation is 

~ 
FIGURE 5. A perceptual completion task. 
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TABLE I 

A PROCEDURE FOR PERFORMING THE COMPLETION TASK 

lnpul: 

Activation: 

Inference: 

Assign values to some features in the representation 

Activate atoms that are consistent with the representation 

Assign values to unknown features of representation that 
are consistent with the active knowledge 

filled in, and how the representation is filled in affects which atoms are 
activated. The activation and inference processes mutually constrain 
each other; these processes must run in parallel. Note also that all the 
decisions come out of a striving for consistency. 

Point 6. Assembly of schemata (activation of atoms) and inference 
(completing missing parts of the representation) are both achieved by 
finding maximally self-consistent states of the system that are also con­
sistent with the input. 

· The completion of the stimulus shown in Figure 5 is shown in / 
Figure 6. The consistency is high because wherever an active atom is j 

C) active: - on 

...... - ..... Inactive; / \ , __ / 
off 

FIGURE 6. The state of the network in the completion of the stimulus shown in Figure 5. 
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connected to a representational feature by a+ (respectively,-) connec­

tion, that feature has value on (respectively, off). In fact, we can define 

a very simple measure of the degree of self-consistency just by consid­

ering all active atoms, counting + l for every agreement between one 

of its connections and the value of the corresponding feature, and 

counting -1 for every disagreement. (Here + with on or - with off 
constitutes agreement.) This is the simplest example of a harmony 
function-and brings us into the mathematical formulation. 

THE HARMONY FUNCTION 

Point 6 asserts that a central cognitive process is the construction of 
cognitive states that are "maximally self-consistent." To make this pre­
cise, we need only measure that self-consistency. 

Point 7. The self-consistency of a possible state of the cognitive system 
can be assigned a quantitative value by a harmony function, H. 

Figure 7 displays a harmony function that generalizes the simple exam­

ple discussed in the preceding paragraph. A state of the system is 

defined by a set of atoms which are active and a vector of values for all 

representational features. The harmony of such a state is the sum of 

terms, one for each active atom, weighted by the strength of that atom. 
Each weight multiplies the self-consistency between that particular atom 

and the vector of representational feature values. That self-consistency 

is the similarity between the vector of features defining the atom (the 
vector of its connections) and the representational feature vector. In 

the simplest case discussed above, the function h that measures this 
similarity is just the number of agreements between these vectors 

minus the number of disagreements. For reasons to be discussed, I 

have used a slightly more complicated version of h in which the 

simpler form is first divided by the number of (nonzero) connections 

to the atom, and then a fixed value K is subtracted. 

harmony1wowledge (representational feature vector, activations} 
base 

~ (strength of) I~ /:a~'tf~·l similarity{ feature vector. representation~/) 
L atom a 1 i 1 active' of atom a • feature vector 
a~ms · 

a 

FIGURE 7. A schematic representation for a harmony function. 
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A PROBABILISTIC FORMULATION \ 
OF SCHEMA THEORY 

The next step in the theoretical development requires returning to 

the higher level, symbolic description of inference, and to a more 

detailed discussion of schemata. 
Consider a typical inference process described with schemata. A 

child is reading a story about presents, party hats, and a cake with can­

dles. When asked questions, the child says that the girl getting the 

presents is having a birthday. In the terminology of schema theory, 
while reading the story, the child's birthday party schema becomes active 

and allows many inferences to be made, filling in details of the scene 
that were not made explicit in the story. 

The birthday party schema is presumed to be a knowledge structure 
that contains variables like birthday cake, guest of honor, other guests, 
g{fts. location, and so forth. The schema contains information on how 

to assign values to these variables. For example, the schema may 

specify: default values to be assigned to variables in the absence of any 

counterindicating information~ value restrictions limiting the kind of 

values that can be assigned to variables; and dependency information, 

specifying how assigning a particular value to one variable affects the 

values that can be assigned to another variable. 
A convenient framework for concisely and uniformly expressing all 

this information is given by probability theory. The default value for a 

variable can be viewed as its most probable value: the mode of the mar­

ginal probability distribution for that variable. The value restrictions on 
a variable specify the values for which it has nonzero probability: the 

support of its marginal distribution. The dependencies between vari­

ables are expressed by their statistical correlations, or, more completely, 
by their joint probability distributions. 

So the birthday party schema can be viewed as containing informa­

tion about the probabilities that its variables will have various possible 

values. These are clearly statistical properties of the particular domain 

or environment in which the inference task is being carried out. In read­

ing the story, the child is given a partial description of a scene from the 

everyday environment-the values of some of the features used to 
represent that scene-and to understand the story, the child must com-

. plete the description by filling in the values for the unknown features. 
These values are assigned in such a way that the resulting scene has the 
highest possible probability. The birthday party schema contains the 
probabilistic information needed to carry out these inferences. 

In a typical cognitive task, many schemata become active at once and 

interact heavily during the inference process. Each schema contains 
probabilistic information for its own variables, which are only a fraction 
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of the complete set of variables involved in the task. To perform a 
completion, the most probable set of values must be assigned to the 
unknown variables, using the information in all the active schemata. 

This probabilistic formulation of these aspects of schema theory can 
be simply summarized as follows. 

Point 8. Each schema encodes the statistical relations among a few 
representational features. During inference, the probabilistic information 
in many active schemata are dynamically folded together to find the most 
probable state of the environment. 

Thus the statistical knowledge encoded in all the schemata allow the 
estimation of the relative probabilities of possible states of the environ­
ment. How can this be done? 

At ihe macrolevel of schemata and variables, coordinating the folding 
together of the information of many schemata is difficult to describe. 
The inability to devise procedures that capture the flexibility displayed 
in human use of schemata was in fact one of the primary historical rea­
sons for turning to the microlevel description (see Chapter l). We 
therefore return to the microdescription to address this difficult 
problem. 

At the microlevel, the probabilistic knowledge in the birthday party 
schema is distributed over many knowledge atoms, each carrying a 
small bit of statistical information. Because these atoms all tend to 
match the representation of a birthday party scene, they can become 
active together; in some approximation, they tend to function collec­
tively, and in that sense they comprise a schema. Now, when many 
schemata are active at once, that means the knowledge atoms that 
comprise them are simultaneously active. At the microlevel, there is 
no real difference between the decisions required to activate the 
appropriate atoms to instantiate many schemata simultaneously and the 
decisions required to activate the atoms to instantiate a single schema. 
A computational system that can dynamically create a schema when it is 
needed can also dynamically create many schemata when they are 
needed. When atoms, not schemata, are the elements of computation, 
the problem of coordinating many schemata becomes subsumed in the 
problem of activating the appropriate atoms. And this is the problem 
that the harmony function, the measure of self-consistency, was created 
to solve. 

HARMONY THEORY 

According to Points 2, 6, and 7, schemata are collections of 
knowledge atoms that become active in order to maximize harmony, 

,,I 
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and inferences are also drawn to maximize harmony. This suggests that 
the probability of a possible state of the environment is estimated by 
computing its harmony: the higher the harmony, the greater the proba­
bility. In fact, from the mathematical properties of probability and har­
mony, in Section 2 we will show the following: 

Point 9. The relationship between the harmony function H and 
estimated probabilities is of the form 

probability a: e111 T 

where T is some constant that cannot be determined a priori. 

This relationship between probability and harmony is mathematically 
identical to the relationship between probability and (minus) energy in 
statistical physics: the Gibbs or Boltzmann law. This is the basis of the 
isomorphism between cognition and physics exploited by harmony 
theory. In statistical physics, H is called the Hamiltonian jUnction; it 
measures the energy of a state of a physical system. In physics, T is 
the temperature of the system. In harmony theory, T is called the co~­
putational temperature of the cognitive system. When the temperature IS 

very high, completions with high harmony are assign~d estimated pro­
babilities that are only slightly higher than those asstgned to low har­
mony completions~ the environment is treated as more random in t~e 
sense that all completions are estimated to have roughly equal probabtl­
ity. When the temp~rature is v~r~ low, .only the co~~t:tio~s with 
highest harmony are gtven nonnegltgtble estimated probabahttes. 

Point 10. The lower the computational temperature, the more the 
estimated probabilities are weighted towards the completions of highest 

harmony. 

In particular, the very best completion can be found by lowering the 
temperature to zero. This process, cooling, is fundamental to harmony 
theory. Concepts and techniques from thermal physics can be used to 
understand and analyze decision-making processes in harmony theory. 

A technique for performing Monte Carlo computer studies of ther­
mal systems can be readily adapted to harmony theory. 

Point 11. A massively parallel stochastic machine can be designed that 
performs !completions in accordance with Points 1-10. 

8 Since harmony corresponds to minus energy, at low physical temperatures only the 

stale with the lowest energy (the ground state) has nonnegligible probability. 
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For a given harmony model (e.g., that of Figure 4), this machine is 
constructed as follows. Every node in the network becomes a simple 
processor, and every link in the network becomes a communication link 
between two processors. The processors each have two possible values 
(+ 1 and -I for the representational feature processors; I = active and 
0 = inactive for the knowledge atom processors). The input to a com­
pletion problem is provided by fixing the values of some of the feature 
processors. Each of the other processors continually updates its value 
by making stochastic decisions based on the harmony associated at the 
current time with its two possible values. It is most likely to choose the 
value that corresponds to greater harmony; but with some 
probability-greater the higher is the computational temperature T-it 
will make the other choice. Each processor computes the harmony 
associated with its possible values by a numerical calculation that uses 
as input the numerical values of all the other processors to which it is 
connected. Alternately, all the atom processors update in parallel, and 
then all the feature processors update in parallel. The process repeats 
many times, implementing the procedure of Table 1. All the while, the 
temperature T is lowered to zero, pursuant to Point I 0. It can be 
proved that the machine will eventually .. freeze" into a completion that 
maximizes the harmony. 

I call this machine harmonium because, like the Selfridge and Neisser 
(1960) pattern recognition system pandemonium, it is a parallel distri­
buted processing system in which many atoms of knowledge are simul­
taneously "shouting .. out their little contributions to the inference pro­
cess~ but unlike pandemonium, there is an explicit method to the mad­
ness: the collective search for maximal harmony. 9 

The final point concerns the account of learning in harmony theory. 

Point 12. There is a procedure for accumulating knowledge atoms 
through exposure to the environment so that the system will perform the 
completion task optimally. 

The precise meaning of" optimality" will be an important topic in the 
subsequent discussion. 

This completes the descriptive account of the foundations of har­
mony theory. Section 2 fills in many of the steps and details omitted 

9 Harmonium is closely related to the Boltzmann machine discussed in Chapter 7. Tre 
basic dynamics of the machines are the same, although there are differences in m(j)st 
details. In the Appendix, it is shown that in a certain sense the Boltzmann machine is a 
special case of harmonium, in which knowledge atoms connected to more than two 
features are forbidden. In another sense, harmonium is a special case of the Boltzmann 
machine, in which the connections are restricted to go only between two layers. 
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above, and reports the results of some particular studies. The most for­
mal matters are treated in the Appendix. 

SECTION 2: HARMONY THEORY 

. . . the privileged unconscious phenomena, those susceptible of 
becoming conscious, are those which ... affect most profoundly our 
emotional sensibility . . . Now, what are the mathematic entities to 
which we aflribute this character of beauty and elegance . . . ? 
They are those whose elements are harmoniously disposed so that 
the mind without effort can embrace their totality while realizing the 
details. This harmony is at once a satisfaction of our esthetic needs 
and an aid to the mind, sustaining and guiding. . . . Figure the 
fwure elements of our combinations as something like the unhooked 
atoms of Epicun1s. . . . They flash in every direction through the 
space . . . like the molecules of a gas in the kinematic theory of 
gases. Then their mulllal impacts may produce new combinations. 

Henri Poincare (1913) 
Mathematical Creation 10 

In Section 1, a top-down analysis led from the demands of the com­
pletion task and a probabilistic formulation of schema theory to percep­
tual features, knowledge atoms, the central notion of harmony~ and the 
role or harmony in estimating probabilities of environmental states. In 
Section 2, the presentation will be bottom-up, starting from the 
primitives. 

KNO\VLEDGE REPRESENTATION 

Representation Vector 

At the certer of any harmony theoretic model of a particular cogni­
tive process' is a set of representational features rh r2, • • • • These 

JO I am indebted to Yves Chauvin for recently pointing out this remarkable passage by 
the great mathematician. See also Hofstadter (1985, pp. 655-656). 
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features constitute the cognitive system's representation of possible 

states of the environment with which it deals. In the environment of 

visual perception, these features might include pixels, edges, depths of 

surface elements, and identifications of objects. In medical diagnosis, 

features might be symptoms, outcomes of tests, diseases, prognoses, 

and treatments. In the domain of qualitative circuit analysis, the 

features might include increase in current through resistor x and increase 
in voltage drop across resistor x. 

The representational features are variables that I will assume take on 

binary values that can be thought of as present and absent or true and 

false. Binary values contain a tremendous amount of representational 

power, so it is not a great sacrifice to accept the conceptual and techni­

cal simplification they afford. It will turn out to be convenient to 

denote present and absent respectively by+ 1 and -1, or, equivalently, 

+ and -. Other values could be used if corresponding modifications 

were made in the equations to follow. The use of continuous numeri­

cal feature variables, while introducing some additional technical com­

plexity, would not affect the basic character of the theory. 11 

A representational state of the cognitive system is determined by a 

collection of values for all the representational variables {r;). This col­

lection can be designated by a list or vector of + 's and - 's: the 

representation vector r. 
Where do the features used in the representation vector come from? 

Are they "innate" or do they develop with experience? These crucial 

questions will be deferred until the last section of this chapter. The 

evaluation of various possible representations for a given environment 

and the study of the development of good representations through 

exposure to the environment is harmony theory's raison d'etre. But a 

prerequisite for understanding the appropriateness of a representation is 

understanding how the representation supports performance on the task 

for which it used~ that is the primary concern of this chapter. For now, 

we simply assume that somehow a set of representational features has 

already been set up: by a programmer, or experience, or evolution. 

II While continuous values make the analysis more complex, they may well improve 

the performance of the simulation models. In simulations with discrete values, the sys-

. tern state jumps between corners of a hypercube; with continuous values, the system 

state crawls smoothly around inside the hypercube. It was observed in the work reporled 

in Chapter 14 that "bad" corners corresponding to stable nonoptimal completions (l~cal 

harmony maxima) were typically not visited by the smoothly moving continuous state; 

these corners typically are visited by the jumping discrete state and can only be escaped 

from through thermal stochasticity. Thus continuous values may sometimes eliminate 

the need for stochastic simulation. 

Activation Vector 

The representational features serve as the blackboard on which the 

cognitive system carries out its computations. The knowledge that 

guides those computations is associated with the second set of entities, 

the knowledge aroms. Each such atom a is characterized by a knowledge 

vector ka, which is a list of + l, -1, and 0 values, one for each 

representation variable r;. This list encodes a piece of knowledge that 

specifies what value each r; should have:+ l, -1, or unspecified (0). 

Associated with knowledge atom a is its activation variable, a
0

• This 

variable will also be taken to be binary: 1 will denote active; 0, inactive. 

Because harmony theory is probabilistic, degrees of activation are 

represented by varying probability of being active rather than varying 

values for the activation variable. (Like continuous values for 

representation variables, continuous values for activation variables 

could be incorporated into the theory with little difficulty, but a need to 

do so has not yet arisen.) The list of ( 0, 1} values for the activations 

(a a} comprises the activation vector a. 
Knowledge atoms encode subpatterns of feature values that occur in 

the environment. The different frequencies with which various such 

patterns occur is encoded in the set of strengths, (rr al, of the atoms. 

In the example of qualitative circuit analysis, each knowledge atom 

records a pattern of qualitative changes in some of the circuit features 

(currents, voltages, etc.). These patterns are the ones that are con­

sistent with the laws of physics, which are the constraints characterizing 

the circuit environment. Knowledge of the laws of physics is encoded 

in the set of knowledge atoms. For example, the atom whose 

knowledge vector contains all zeroes except those features encoding the 

pattern < current decreases, voltage decreases, resistance increases> is one 

of the atoms encoding qualitative knowledge of Ohm's law. Equally 

important is the absence of an atom like one encoding the pattern 

<current increases, voltage decreases, resistance increases> , which 

violates Ohm's law. 
There is a very useful graphical representation for knowledge atoms; 

it was illustrated in Figure 4 and is repeated as Figure 8. The represen­

tational features are designated by nodes drawn in a lower layer; the 

activation variables are depicted by nodes drawn in an upper layer. The 

connections from an activation variable aa to the representation vari­

ables { r;} show the knowledge vector ka. When ka contains a + or -

for r;, the ¢onnection between aa and r; is labeled with the appropriate 

sign~ when ka contains a 0 for r1 , the connection between a a and r1 is 

omitted. 
In Figure 8, all atoms are assumed to have unit strength. In general, 

different atoms will have different strengths~ the strength of each atom 
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FIGURE 8. The graphical representation of a panicular harmony model. 
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would them be indicated above the atom in the drawing. (For the com­
pletely general case, see Figure 13.) 

Hierarchies and the Architecture of Harmony Networks 

One of the characteristics that distinguishes harmony models from 
other parallel network models is that the graph always contains two 
layers of nodes, with rather different semantics. As in many networks, 
the nodes in the upper layer correspond to patterns of values in the 
lower layer. In the letter-perception model of McClelland and 
Rumelhart, for example, the word nodes correspond to patterns over 
the letter nodes, and the letter nodes in turn correspond to patterns 
over the line-segment nodes. The letter-perception model is typical in 
its hierarchical structure: The nodes are stratified into a sequence of 
several layers, with nodes in one layer being connected only to nodes in 
adjacent layers. Harmony models use only two layers. 

The formalism could be extended to many layers, but the use of two 
layers has a principled foundation in the semantics of these layers. The 
nodes in the representation layer support representations of the environ­
ment at a// levels of abstractness. In the case of written words, this lay~r 
could support representation at the levels of line segments, letters, and 
words, as shown schematically in Figure 9. The upper, knowledge, 
layer encodes the patterns among these representations. If information 
is given about line segments, then some of the knowledge atoms 

I! 

I' 

,) 
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connect that information with the letter nodes, completing the 
representation to include letter recognition. Other knowledge atoms 
connect pallerns on the letter nodes with word nodes, and these com­
plete the representation to include word recognition. 

The pattern of connectivity of Figure 9 allows the network to be 
redrawn as shown in Figure 10. This network shows an alternation of 
representation and knowledge nodes, restoring the image of a series of 
layers. In this sense, "vertically" hierarchical networks of many layers 
can be imbedded as "horizontally" hierarchical networks within a two­
layer harmony network. 

Figure 10 graphically displays the fact that in a harmony architecture, 
the nodes that encode patterns are not part of the representation; there 
is a firm distinction between representation and knowledge nodes. This 
distinction is not made in the original letter-perception model, where 
the nodes that detect a pattern over the line-segment features are iden­
tical with the nodes that actually represent the presence of letters. This 
distinction seems artificial~ why is it made? 

I claim that the artificiality actually resides in the original letter­
perception model, in which the presence of a letter can be identified 
with a single pattern over the primitive graphical features (line seg­
ments). In a less idealized reading task, the presence of a letter would 
have to be inferable from many different combinations of primitive 
graphical features. In harmony theory, the idea is that there would be a 
set of representation nodes dedicated to the representation of the pres­
ence of letters independent of their shapes, sizes, orientations, and so 
forth. There would also be a set of representation nodes for graphical 

segment/letter 

knowledge atoms 

line-segment nodes letter nodes 

letter/word 

knowledge atoms 

word nodes . I 
FIGURE 9. The representational features support representations at all levels of 
abst rattnl!ss. 



218 BASIC MECHANISMS 

word nodes 

letter/word 
atoms 

letter nodes 

segment/letter 
atoms 

line-segment 
nodes 

FIGURE 10. A rearrangement of the network of Figure 9. 
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features, and for each letter there would be a multitude of knowledge 

atoms, each relating a particular configuration of graphical features with 

the representation of that letter. Thus the knowledge or schema for 

that letter would be distributed over many knowledge atoms all of 
which would be involved in setting up the same representation' on the 
letter nodes. To provide a broader context, Figure 11 schematically 

depicts a possible model for language processing. The full representa­
tion consists of graphical features, phonological features, syntactic 
features, and semantic features. Some of the knowledge atoms provide 
connections among features within a single category, while others con­
nect features in different categories. The nodes in the upper layer do 

not ~hemselves comprise parts of the representation, but rather encope 
relatwns between parts of the representation. 

!he a_dvantages of the two-layer scheme come from simplicity and 

umformlly: ~here are no connections within layers, only between 

layers. Thts stmplifies mathematical analysis considerably and permits a 

I 
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phonological 
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syntactic 
features 

semantic 
features 

FIGURE II. A complete model for language processing would involve representational 
variables of many types, and the atoms relating them. 

truly parallel implementation. The uniformity means that we can ima­

gine a system starting out with an "innate" two-layer structure and 

learning a pattern of connections like that of Figure 9, i.e., learning a 

hierarchical representation scheme that was in no sense put into the 

model in advance. The formalism is set up to analyze the environmen· 
tal conditions under which certain kinds of representations {e.g., 

hierarchical ones) might emerge or be expedient. 1 

The lack of within-layer connections in harmony networks is symp­

tomatic of a major difference between the goals of harmony theory and 

the goals of other similar approaches. The effect of a binary connection 

between two representation nodes can be achieved by creating a pair of 

upper level nodes that connect to the two lower level nodes.12.Thus we 

can dispense with lower level connections at the cost of creating upper 

level nodes. flarmony theory has been developed with a systematic com­
mitment to buy simplicity with extra upper level nodes. The hope is that by 
placing all the knowledge in the patterns encoded by knowledge atoms, 
we will be better able to understand the function and structure of the 

models. This explains why restrictions have been placed on the net­
work that to many would seem extraordinarily confining. 

If the goal is instead to get the most "intelligent" performance out of 
the fewest number of nodes and connections, it is obviously wiser to 

12 A negative connection between two lower level nodes means that the value pairs 
(+ ,-) and (- ,+) are favored relative to the other two pairs. This etTect can be achieved 
by creating two knowledge atoms that each encode one of the two favored patterns. A 
positive connection similarly can be replaced by two atoms for the patterns (+ ,+) and 
(-,-). 
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allow arbitrary connectivity patterns, weights, and thresholds, as in the 
Boltzmann machine. There are, however, theoretical disadvantages to 
having so many degrees of freedom, both in psychological modeling 
and in artificial intelligence applications. Too many free parameters in 
a psychological model make it too theoretically unconstrained and 
therefore insufficiently instructive. And as suggested in Chapter 7, net­
works that take advantage of all these degrees of freedom may perform 
their computations in ways that are completely inscrutable to the theor­
ist. Some may take delight in such a result, but there is reason to be 
concerned by it. It can be argued that getting a machine to perform 
intelligently is more important than understanding how it does so. If a 
magic procedure-say for learning-did in fact lead to the level of per­
formance desired, despite our inability to understand the resulting com­
putation, that would of course be a landmark accomplishment. But to 
expect this kind of breakthrough is just the sort of naivete referred to 
in the first paragraph of the chapter. We now have enough disappoint­
ing experience to expect that any particular insight is going to take us a 
very small fraction of the way to the kind of truly intelligent mechanisms 
we seek. The only way to reasonably expect to make progress is by 
chaining together many such small steps. And the only way to chain 
together these steps is to understand at the end of each one where we 
are, how we got there, and why we got no further, so we can make an 
informed guess as to how to take the next small step. A" magic" step is 
apt to be a last step; it is fine, as long as it takes you exactly where you 
want to go. 

HARMONY AND PROBABILITY 

The Harmony Function 

The preceding section described how environmental states and 
knowledge are represented in harmony theory. The use of this 
knowledge in completing representations of environmental states is 
governed by the harmony function, which, as discussed in Section l, 
measures the self-consistency of any state of a harmony model. l will 
now discuss the properties required of a harmony function and present 
the particular function I have studied. I 

A state of the cognitive system is determined by the values of the 
lower and upper level nodes. Such a state is determined by a pair 
( r, a) consisting of a representation vector r and an activation vector a. 
A harmony function assigns a real number HK (r, a) to each such state. 
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The harmony function has as parameters the set of knowledge vectors 
and their strengths: { ( ka ,rr a))~ I will call this the knowledge base K. 

The basic requirement on the harmony function H is that it be addi­
tive under decompositions of the system. 13 This means that if a network 
can be partitioned into two unconnected networks, as in Figure 12, the 
harmony of the whole network is the sum of the harmonies of the 
parts: 

In this case, the knowledge and representational feature nodes can each 
be broken into two subsets so that the knowledge atoms in subset 1 all 
have 0 connections with the representational features in subset 2, and 
vice versa. Corresponding to this partition of nodes there is a decom­
position of the vectors r and a into the pieces r"r 2 and a.,a 2• 

The harmony function I have studied (recall Figure 7) is 

(1) 

Here, ltK ( r, ka) is the harmony contributed by activating atom a, 
given the current representation r. I have taken this to be 

· r·k 
hK(r,ka) = lkai -K. 

1-··· ·---------a -----------lo.~ 

·-~--------~-- r------------------~ 

FIGURE 12. A decomposable harmony network. 

13 In physics, one says that II must be an extensive quantiry. 
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The vector inner product (see Chapter 9) is defined by 

r ·k ='I(',. (k ). a ~ 1 a 1 

I 

and the norm 14 is defined by 

I will now comment on these definitions. 
First note that this harmony function HK is a sum of terms, one for 

each knowledge atom, with the term for atom a depending only on 
those representation variables r; to which it has nonzero connection 
( k ) . . Thus IlK satisfies the additivity requirement. 
Th~ contribution to H of an inactive atom is zero. The contribution 

of an active atom a is the product of its strength and the consistency 
between its knowledge vector ka and the representation vector r; this is 
measured by the function hK ( r, ka). The parameter K always lies in 
the interval (-1, I). When K = 0, hK ( r, ka) is the number of 
representational features whose values agree with the corresponding 
value in the knowledge vector minus the number that disagree. This 
gives the simplest harmony function, the one described in Section I. 
The trouble is that according to this measure, if over 50% of the 
knowledge vector ka agrees with r, the harmony is raised by activating 
atom a. This is a pretty weak criterion of matching, and sometimes it 
is important to be able to have a more stringent criterion than 50%. As 
K goes from -1 through 0 towards 1, the criterion . goes fro~ ~% 
through 50% towards 100%. In fact it is easy to see that the cntenal 
fraction is (I+ K)/2. The total harmony will be raised by activating 
any atom for which the number of representational features on which 
the atom's knowledge vector agrees with the representation vector 
exceeds this fraction of the total number of possible agreements (jkaD. 

An important limit of the theory is K - 1. In this limit, the criterion 
approaches perfect matching. For any given harmony model, perfect 
matching is required by any K greater than some definite value less 
than 1 because there is a limit to how close to 100% matching one can 
achieve with a finite number of possible matches. Indeed it is easy to 
compute that if n is the largest number of nonzero connections to any 
atom in a model (the maximum oflkal), then the only way to exceed a 

14 This is the so-called L 1 norm, which is different from the L 2 norm defined I in 
Chapter 9. For each p in (O,oo) the L1 norm of a vector v is defined by 
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criterion of 1 - 2/~ is with a perfect match. Any K value greater than 
this will place the model in what I will call the perfect matching limit. 
Note that since harmony theory is probabilistic, even in the perfect 
matching limit, atoms will sometimes become active even when they do 
not match the current representation perfectly~ the closer the match, 
the more likely they will be active. 

By choosing + 1 and -I as the binary values for representational 
features, we have ensured that the product ( ka)1r1 will be + 1 if the 
knowledge vector agrees with r1, -1 if it disagrees, and 0 if it doesn't 
specify a value for feature i. The maximum value that can be attained 
by ka ·r is lkal, the number of nonzero connections to node a, irresptic­
tive of whether those connections are+ or-. 

In fact, this harmony function is invariant under the exchange of+ and 
- at any represenwtion node. That is, simultaneously flipping the signs 
of r; and ( ka ); for all a leaves the value of HK (r, a) unchanged, for 
every a. This symmetry was deliberately inserted into the general ha.r­
mony function because I could think of no principled reason to break at. 
If a systematic bias in the representation variables toward one of the 
binary values is to be built in from the outset, how large should the 
bias be? IL seemed reasonable to start the theory in a symmetric way, 
unbiased toward either value. Of course a bias can be inserted through 
the knowledge K. To take an extreme example, if the value of feature i 
is + in all knowledge atoms, i.e., (ka); = + for all a, then the ith 
feature r; will be strongly biased toward+. 

There is nothing sacred about the values + 1 and -1 in this theory. 
The values 1 and 0, for example, could be used as well. The preceding 
harmony function can easily be rewritten to give the same harmony 
values when r is changed from the {+ l ,-1} form to the { 1 ,0) form. 
The underlying invariance under sign change would however be 
transformed into a more complicated invariance. 

Estimating Probabilities With the Harmony Function 

In Section 1, 1 suggested that a cognitive system performing the com­
pletion task could use a harmony function for estimating the probabili­
ties of values for unknown variables. In fact, Point 9 asserted that the 
es.timated probability of a set of values for unknown variables was an 
exponentia1 function of the corresponding harmony value: 

probability o: e111T. (2) 

It is this relationship that establishes the mapping with statistical phy­
sics. In this section and the next, the relationship between harmony 
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and probability is analyzed. In this section I will point out that if proba­
bilities are to be estimated using H, then the exponential relationship 
of Equation 2 should be used. In the next section I adapt an argument 
of Stuart Geman (personal communication, 1984) to show that, starting 
from the extremely general probabilistic assumption known as the prin­
ciple of maximum missing information, both Equation 2 and the form of 
the harmony function (Equation 1) can be jointly derived. 

What we know about harmony functions in general is that they are 
additive under network decomposition. If a harmony network consists 
of two unconnected components, the harmony of any given state of the 
whole network is the sum of the harmonies of the states of the com­
ponent networks. In the case of such a network, what is required of 
the probability assigned to the state? I claim it should be the product of 
the probabilities assigned to the states of the component networks. The 
meaning of the unconnectedness is that the knowledge used in the 
inference process does not relate the features in the two networks to 
each other. Thus the results of inference about these two sets of 
fe~tures should be independent. Since the probabilities assigned to the 
states in the two networks should be independent, the probability of 
their joint occurrence-the state of the network as a whole-should be 
the product of their individual probabilities. 

In other words, adding the harmonies of the components' states 
should correspond to multiplying the probabilities of the components' 
states. The exponential function of Equation 2 establishes just this 
correspondence. It is a mathematical fact that the only continuous 
functions I that map addition into multiplication, 

I (x + y) = I (x) I (y) 

are the exponential functions, 

f(x) =ax 

for some positive number a. Equivalently, these functions can be 
written 

f(x) ==exiT 

for some value T (where T = 1/lna ). 
This general argument leaves undetermined the value of T, the com­

putational temperature. However several observations about the value 
of T can be made. I 

First, the sign of T must be positive, for otherwise greater harmony 
would correspond to smaller probability. 

For the second observation, consider a cognitive system a that esti­
mates its environmental probability distribution with a certain value for 
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Ta and a certain harmony function Ha. Then given any other positive 
temperature Tb, we could hypothesize another cognitive system b using 
that computational temperature and the modified harmony function 
fh = ( Tb/ Ta) Ha. Roth cognitive systems would have the same esti­
mates of en vi ron mental probabilities since Hb/ Tb = Hal Ta. Thus their 
behavior on the completion task would be indistinguishable. 

Thus, the magniwde of T is only meaningful once a specific scale has 
been set for fl. This means that if H is being learned by the system, 
rather lhan programmed in by the modeler, then any convenient choice 
of T will do~ the choice simply determines the scale of H that the sys­
tem will learn. 

The third observation refines the second. A convenient way of 
expressing Equation 2 is to use the likelihood ratio of two states s 1 and 
s2: 

prob(s 1) = e[f/Cs 1)-HCs 2>VT 

prob(s 2) • 
(3) 

Thus, T sets the scale for those differences in harmony that correspond to 
sign{/icant differences in probability. {It is understood here that "differ­
ences" in harmony are measured by subtraction while "differences" in 
probabilily are measured by division.) The smaller the value of T, the 
smaller the harmony differences that will correspond to significant likel­
ihood ratios. Thus, once a scale of H has been fixed, decreasing the 
value of T makes the probability distribution more sharply peaked. In 
fact, Equation 3 can be rewritten 

prob(s 1) = [eH(s 1)-H(s 2>] liT. 

prob(s 2) 

If state s 1 has greater harmony than s 2, the likelihood ratio at T == I 
will be the number in square brackets, a number greater than one; as T 
goes to zero this number gets raised to higher and higher powers so 
that the likelihood ratio goes to infinity. In other words, compared to 
T, the fixed difference in harmony between the two states looks larger 
and larger as T gets smaller and smaller. 

In the preceding argument, the exponential functions emerged as the 
only continuous functions mapping addition into multiplication. Of 

. course we could consider discontinuous functions, one example being 
the limit as T- 0 of the exponential. In this limit, the estimated 
probubility :of all states is zero, except the ones with maximal harmony. 
If there are several states with exactly the same maximal harmony, in 
the zero temperature limit they will all end up with equal, nonzero 
probability. This probability distribution will be called the zero tempera­
tllre distriblllion. It does not correspond to an exponential distribution, 
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but it can be obtained as the limit of exponential distributions; in fact, 
the zero-temperature limit plays a major role in the theory since the 
states of maximal harmony are the best answers to completion 
problems. 

THE COMPETENCE, REALIZABILITY, AND 
LEARNABILITY THEOREMS 

In this section, the mathematical results that currently form the core 
of harmony theory are informally described. A formal presentation 
may be found in the Appendix. 

The Competence Theorem 

In harmony theory, a cognitive system's knowledge is encoded in its 
knowledge atoms. Each atom represents a pattern of values for a few 
features describing environmental states, values that sometimes co­
occur in the system's environment. The strengths of the atoms encode 
the frequencies with which the different patterns occur in the environ­
ment. The atoms are used to estimate the probabilities of events in the 
environment. 

Suppose then that a particular cognitive system is capable of observ­
ing the frequency with which each pauern in some pre-existing set {ka} 
occurs in its environment. (The larger the set {ka}, the greater is the 
potential power of this cognitive system.) Given the frequencies of 
these patterns, how should the system estimate the probabilities of 
environmental events? What probability distribution should the system 
guess for the environment? 

There will generally be many possible environmental distributions 
that are consistent with the known pattern frequencies. How can one 
be selected from all these possibilities? . 

Consider a simple example. Suppose there are only two environmen­
tal features in the representation, r 1 and r 2, and that the system's only 
information is that the pattern r l = + occurs with a frequency of 80%. 
There are infinitely many probability distributions for the four environ­
mental events (ra,r2) E {(+,+) (+,-) (-,+)(-,-)}that are consistent 
with the given information. For example, we know nothing about tre 
relative likelihood of the two events(+,+) and(+,-); all we know is 
that together their probability is . 80 . 

One respect in which the possible probability distributions differ is in 
their degree of homogeneity. A distribution P in which P (+ ,+) = . 7 
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and P (+ ,-) = .1 is less homogeneous than one for which both these 
events have probability .4. 

Another way of saying this is that the uncertainty associated with the 
second distribution is greater than that of the first. In Shannon's 
(1948/ 1963) terms, if the second, more homogeneous, distribution 
applies, then at any given moment there is a greater amount of missing. 
information about the current state of the environment than there is if 
the more inhomogenous distribution applies. Shannon's formula for 
the missing information of a probability distribution P is 

- :LP(x) lnP(x). 
X 

Thus the missing information in the inhomogeneous probabilities 
(. 7, .I} is 

-[.7tn(.7) + .lln(.l)] = .48 

while the missing information in the homogeneous probabilities {.4, .4} 
is 

-(.4tn(.4) + .41n(.4)) = .73. 

The cognitive system's information on the frequency of patterns con­
tains some information about any lack of homogeneity in the environ­
mental distribution. One principle for guessing the environmental dis­
tribution is to select, of all probability distributions that are consistent 
with the known frequencies, the one that is most homogenous; the one 
that supposes the environment to have no more inhomogeneity than is 
needed to account for the known information. This principle can be 
formalized as the principle of maximal missing information; it is often 
used to extrapolate from some given statistical information to an esti­
mate for an· entire probability distribution (Christensen, 1981; Levine & 
Tribus, 1979). 

For the simple example discussed above, the principle of maximal 
missing information implies that the cognitive system should estimate 
the environmental distribution to be P (+ ,+) = P (+ ,-) - .40, 
P (- ,+) = P (- ,-) = . 10. This distribution is inhomogeneous with 
respect to the first feature, r., because it must be to account for the 
known fact that P (rl = +) = .80. It is homogeneous in the second 
feature, '2> because it can be without violating any known information. 
The justification for choosing this distribution is that there is not 
enough given information to justify selecting any other distribution with 
less missing information. 

In the general case, one can use the formula for missing information 
to derive the distribution with maximal missing information that is 
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I'.[ I 
1',1, 

consistent with the observed frequencies of the patterns ka. The result 
is a probability distribution I will call1r: 

1T ( r) a: e u <r> 

where the function U is defined by 

a 

The values of the real parameters Aa (one for each atom) are con­
strained by the known pattern frequencies; they will shortly be seen to 
be proportional to the atom strengths, cr a, the system should use for 
modeling the environment. The value of X a ( r) is simply 1 when the 
environmental state r includes the pattern ka defining atom a, and 0 
otherwise. 

Now that we have a formula for estimating the probability of an 
environmental state, we can in principle perform the completion task. 
An input for this task is a set of values for some of the features. The 
best completion is formed by assigning values to the unknown features 
so that the resulting vector r represents the most probable environment 
state, as estimated by 1T. 

It turns out that the completions performed in this way are exactly 
the same as those that would be formed by using the same procedure 
with the different distribution 

p ( r , a ) a: e H (r ,a). 

Here, II is the harmony function defined previously, where the 
strengths are 

and K is any value satisfying 

1 > K > 1 - 2/( maax lka I). 
(This condition on K is the exact matching limit defined earlier.) 

In passing from 1T ( r) top (r ,a), new variables have been introduced: 
the activations a. These serve to eliminate the functions X a from the 
formula for estimating probabilities, which will be important shorltly 
when we try to design a device to actually perform the completion com­
putation. The result is that in addition to filling in the unknown 
features in r, all the activations in a must be filled in as well. In other 
words, to perform the completion, the cognitive system must find those 
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values of the unknown r1 and those values of the aa that together max­
imize the harmony II( r ,a) and thereby maximize the estimated proba­
bility p (r ,a). 

This discussion is summarized in the following theorem: 

Theorem 1: Competence. Suppose a cognitive system can observe 
the frequency of the patterns {ka) in its environment. The probabil­
ity distribution with the most Shannon missing information that is 
consistent with the observations is 

1T(r)a:eU(x) 

with U defined as above. The maximum-likelihood completions of 
this distribution are the same as those of 

p (r ,a) a: ell<r,a) 

with the harmony function defined above. 

This theorem describes how a cognitive system should perform com­
pletions, according to some mathematical principles for statistical extra­
polation and inference. In this sense, it is a competence theorem. The 
obvious next question is: Can we design a system that will really com­
pute completions according to the specifications of the competence 
theorem? 

The .. Physics Analogy" 

It turns out that designing a machine to do the required computa­
tions is a relatively straightforward application of a computational tech­
nique from statistical physics. It is therefore an appropriate time to dis­
cuss the .. analogy" to physics that is exploited in harmony theory. 

Why is the relation between probability and harmony expressed in 
the competence theorem the same as the relation between probability 
and energy in statistical physics? The mapping between statistical phy­
sics and inference that is being exploited is one that has been known 
for a long time. 

The second law of thermodynamics states that as physical systems 
evolve in time, they will approach conditions that maximize random­
ness or entropy, subject to the constraint that a few conserved quantities 
like the systems' energy must always remain unchanged. One of the 
triumphs of statistical mechanics was the understanding that this law is 
the macroscopic manifestation of the underlying microscopic description 
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of matter in terms of constituent particles. The particles wiJI occupy 
various states and the macroscopic properties of a system will depend 
on the probabilities with which the states are occupied. The random­
ness or entropy of the system, in particular, is the homogeneity of this 

, ,probability distribution. It is measured by the formula 

- L P (x) In P (x). 
X 

A system evolves to maximize this entropy, and, in particular, a system 
that has come to equilibrium in contact with a large reservoir of heat 
will have a probability distribution that maximizes entropy subject to 
the constraint that its energy have a fixed average value. 

Shannon realized that the homogeneity of a probability distribution, 
as measured by the microscopic formula for entropy, was a measure of 
the missing information of the distribution. He started the book of 
information theory with a page from statistical mechanics. 

The competence theorem shows that the exponential relation 
between harmony and probability stems from maximizing missing 
information subject to the constraint that given information be 
accounted for. The exponential relation between energy and probability 
stems from maximizing entropy subjec1 to a constraint on average 
energy. The physics analogy therefore stems from the fact that entropy 
and missing information share exactly the same relation to probability. 
It is not surprising that the theory of information processing should 
share formal features with the theory of statistical physics. 

Shannon began a mapping between statistical physics and the theory 
of information by mapping entropy onto information content. Har­
mony theory extends this mapping by mapping self-consistency (i.e., 
harmony) onto energy. In the next subsection, the mapping will be 
further extended to map stochasticity of inference (i.e., computational 
temperature) onto physical temperature. 

The Realizability Theorem 

The mapping with statistical physics allows harmony theory to exploit 
a computational technique for studying thermal systems that was 
developed by N. Metropolis, M. Rosenbluth, A. , Rosenbluth, ! A. 
Teller, and E. Teller in 1953. This technique uses stochastic or" Mdnte 
Carlo" computation to simulate the probabilistic dynamical system 
under study. (See Binder, 1979.) 

The procedure for simulating a physical system at temperature T is 
as follows: The variables of the system are assigned random initial 
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values. One by one, they are updated according to a stochastic rule: 
The probability of assigning a new value x to the variable is propor-
tional to e

1
(/T, where fix is (minus) the energy the system would have 

if the value x were chosen. Thus the higher T, the more random are 
the decisions. As the computation proceeds, the probability that the 
system is in states at any moment becomes proportional to the desired 
value, ell<s)/T. 

Adapting this technique to the computations of harmony theory 
leads, through an analysis described in the Appendix, to the following 
theorem. It defines the machine harmonium that realizes the theory of 
completions expressed in Theorem 1. 

Theorem 2: Realizability. In the graphical representation of a har­
mony system (see Figure 13) let each node denote a processor. 
Each feature node processor can have a value of+ 1 or -1, and each 
knowledge atom a value of 1 or 0 {its activation). Let the input to a 
completion problem be specified by assigning the given feature 
nodes their correct values; these are fixed throughout the computa­
tion. All other nodes repeatedly update their values during the com­
putation. The features not specified in the input are assigned ran­
dom initial values, and the knowledge atoms initially all have value 
0. Let each node stochastically update its value according to the 
rule: 

prob(value = 1) = 
1 
+ e-I/T 

where T is a global system parameter and I is the "input" to the 
node from the other nodes attached to it (defined below). All the 

FIG lJ R E ll A geneml harmony graph. 
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nodes in the upper layer update in parallel, then all the nodes in the 
lower layer update in parallel, and so on alternately throughout the 

computation. During the update process, T starts out at some posi­
tive value and is gradually lowered. If T is lowered to 0 sufficiently 
slowly, then asymptotically, with probability 1, the system state 
forms the best completion (or one of the best completions if there 
are more than one that maximize harmony). 

To define the input I to each node, it is convenient to assign to the 
;;nk in the graph between atom a and feature i a weight W;a whose 
sign is that of the link and whose magnitude is the strength of the atom 
divided by the number of links to the atom: 

Using these weights, the input to a node is essentially the weighted sum 
of the values of the nodes connected to it. The exact definitions are 

for feature nodes, and 

Ia =:LW;ar;-K 
; 

for knowledge atoms. 
The formulae for I; and Ia are both derived from the fact that the 

input to a node is precisely the harmony the system would have if the 
given node were to choose the value l minus the harmony resulting 
from not choosing l. The factor of 2 in the input to a feature node is 
in fact the difference (+ 1) - (-I) between its possible values. The 
term K in the input to an atom comes from the K in the harmony. func­
tion; it is a threshold that must be exceeded if activating the atom is to 
increase the harmony. 

The stochastic decision rule can be understood with the aid of Figure 
14. If the input to the node is large and positive (i.e., selecting value 1 
would produce much greater system harmony), then it will almost cer­
tainly choose the value 1. If the input to the node is large and negative 
(i.e., selecting value 1 would produce much lower system harmony), 
then it will almost certainly not choose the value 1. If the input to t~e 
node is n~ar zero, it will choose the value 1 with a probability near . 5. 
The width of the zone of random decisions around zero input is larger 
the greater is T. 

The process of gradually lowering T can be thought of as cooling the 

6. HARMONY THEORY 233 

, slope-1fT 

FIGURE 14. The relation between the input I to a harmonium processor node and the 

probability the processor will choose the value I. 

randomness (mt of the initial system state. In the limit that T-0, the 
zone of random decisions shrinks to zero and the stochastic decision 
rule becomes the deterministic linear threshold rule of perceptrons 
(Minsky & Papert, 1969~ see Chapter 2). In this limit, a node will 
always select the value with higher harmony. At nonzero T, there is a 
finite probability that the node will select the value with lower har­
mony. 

Early in a given computation, the behavior of the processors will be 
highly random. As T is lowered, gradually the decisions made by the 
processors will become more systematic. In this way, parts of the net­
work gradually assume values that become stable~ the system commits 
itself to decisions as it cools~ it passes from fluid behavior to the rigid 
adoption of an answer. The decision-making process resembles the 
crystallization of a liquid into a solid. 

Concepts from statistical physics can in fact usefully be brought to 
bear on the analysis of decision making in harmony theory, as we shall 
see in the next section. As sufficient understanding of the computa­
tional effects of different cooling procedures emerges, the hope is that 
harmony theory will acquire an account of how a cognitive system can 
regulate its own computational temperature. 

Theorem 2 describes how to find the best completions by lowering to 
zero the computational temperature of a parallel computer­
harmonium-based on the function H. Harmonium thus realizes the 
second half of the competence theorem, which deals with optimal com­
pletions. But Theorem l also states that estimates of environmental 
probabilities are obtained by exponentiating the function U. It is also 
possible to build a stochastic machine based on U that is useful for 
simulating the environment. I will call this the simulation machine. 

Figure 15 shows the portion of a harmonium network involving the 
atom a, and the corresponding portion of the processor network for the 
corresponding simulation machine. The knowledge atom with strength 
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Simulation Machine Graph 

Harmonium Graph 

FIGURE 15. The graph for a one-atom harmony function and the graph for the 

corresponding U function. In the Iauer, there are only feature nodes. Each feature node 

has a single input point labeled ±A, where the sign is the same as that assigned to the 

feature by the knowledge atom. Into this input point come links from all the other 

features assigned values by the knowledge atom. The label on each arc leaving a feature 

is the same as the value assigned lo that feature by the knowledge atom. 

u a and feature pattern (+ ,- ,-) is replaced by a set of connections 
between pairs of features. In accordance with Theorem 1, 
A a = u a 0-K). For every atom a connected to a given feature in har­
monium, in the simulation machine there is a corresponding input 
point on that feature, labeled with A a. 

The update rule for the simulation machine is the same as for har­
monium. However, only one node can update at a time, and the defi­
nition of the input I to a node is different.15 The input to a feature node 
is the sum of the inputs coming through all input points to the node. If 
an input point on node i is labeled ±X a, then the input coming to i 

through that point is ±Aa if the values of all the nodes connected to i 
agree with the label on the arc connecting it to i, and zero otherwise. 

If the simulation machine is operated at a fixed temperature of 1, the 
probability that it will be found in state r asymptotically becomes pro­
portional to eU<r>lt. By Theorem 1, this is the cognitive system's esti­
mate 1T (r) of the probability that the environment will be in the state 
represented by r. Thus running this machine at temperature 1 gives a 
simulation of the environment. As we are about to see, this will turn 
out to be important for learning. 

The general type of search procedure used by harmonium, with a 
random "thermal noise" component that is reduced during the compu­
tation, has been used to find maxima of functions other than harmony 

IS Analogously 10 harmonium, the input to a node is the value U would have if the 

node adopted the value+ I, minus the value U it would have if il adopled the value -I. 
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functions. Physicists at IBM independently applied the technique, 
under the name simulated annealing, to both practical computer design 
problems and classical maximization problems (Kirkpatrick, Gelatt, & 
Vecchi, 1983). Benchmarks of simulated annealing against other search 
procedures have produced mixed results (Aragon, Johnson, & 
McGeoch, 1985). 

The contribution of harmony theory is not so much the search pro­
cedure for finding maxima of H, but rather the function H itself. 
Theorem 2 is important: It describes a statistical dynamical system that 
performs completions~ it gives an implementation-level description of a 
kind of completion machine. But Theorem I is more central: It gives a 
high, functional-level characterization of the performance of the 
system -says what the machine does-and introduces the concept of 
harmony. More central to the theory also is Theorem 3, which says 
how the harmony function can be tuned with experience. 

The Learnability Theorem 

Performing the completion task in different environments calls for 
different knowledge. In the formalism of Theorem 1, a given cognitive 
system is assumed to be capable of observing the frequency in its 
environment of a predetermined set of feature patterns. What varies 
for a given cognitive system across environments is the frequencies of 
the palterns~ this manifests itself in the variation across environments 
of the strengths of the knowledge atoms representing those patterns. 

Theorem 3: Learnabi/ity. Suppose states of the environment are 
selected according to the probability distribution defining that 
environment, and each state is presented to a cognitive system. 
Then there is a procedure for gradually modifying the strengths of 
the knowledge atoms that will converge to the values required by 
Theorem 1. 

The basic idea of the learning procedure is simple. Whenever one of 
· the patterns the cognitive system can observe is present in a stimulus 
from the environment, the parameter associated with that pattern is 
incremented. In harmonium, this means that whenever a knowledge 
atom matches a stimulus, its strength increases by a small amount flu. 

In the simulation machine, this means that the X parameter on all the 
connections corresponding to that atom must be incremented by 
fiX = 6.(T ( 1 - K). In this sense, an atom corresponds to a memory 
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trace of a feature pattern, and the strength of the atom is the strength 
of the trace: greater the more often it has been experienced. 

There is an error-correcting mechanism in the learning procedure 
that decrements parameters when they become too large. Intermixed 
with its observation of the environment, the cognitive system must per­
form simulation of the environment. As discussed above, this can be 
done by running the simulation machine at temperature I without input 
from the environment During simulation, patterns that appear in the 
feature nodes produce exactly the opposite effect as during environmen­
tal observation, i.e., a decrement in the corresponding parameters. 

Harmonium can be used to approximate the simulation machine. By 
running harmonium at temperature 1, without input, states are visited 
~ith a probability of e11 , which approximates the probabilities of the 
simulation machine, eU. 16 When harmonium is used to approximately 
simulate the environment, every time an atom matches the feature vec­
tor its strength is decremented by dcr. 

This error-correcting mechanism has the following effect. The 
strength of each atom will stabilize when it gets (on the average) incre­
mented during environmental observation as often as it gets decre­
mented during environmental simulation. If environmental observarion 
and simulation are intermixed in equal proportion, the strength of each 
atom will stabilize when its pattern appears as often in simulation as in 
real observation. This means the simulation is as veritical as it can be, 
and that is why the procedure leads to the strengths required by the 
competence theorem. 

DECISION-MAKING AND FREEZING 

The Computational Significance of Phase Transitions 

Performing the completion task requires simultaneously satisfying 
many constraints. In such problems, it is often the case that it is easy 
to find "local" solutions that satisfy some of the constraints but very 
difficult to find a global solution that simultaneously satisfies the max­
imum number of constraints. In harmony theory terms, often there are 
many completions of the input that are local maxima of II, in which 
some knowledge atoms are activated, but very few completions that a,re 
global maxima, in which many atoms can be simultaneously activated.: 

When harmonium solves such problems, initially, at high 

16 Theorem 1 makes this approximation precise: These two distributions are not equal, 
but the maximum·probability states are the same for any possible input. 
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temperatures, it occupies states that are local solutions, but finally, at 
low temperatures, it occupies only states that are global solutions. If 
the problem is well posed, there is only one such state. 

Thus the process of solving the problem corresponds to the passage 
of the harmonium dynamical system from a high-temperature phase to 
a low-temperature phase. An important question is: Is there a sharp 
transition between these phases? This is a "freezing point" for the sys­
tem, where major decisions are made that can only be undone at lower 
temp~ratures by waiting a very long time. It is important to cool slowly 
through phase transitions, to maximize the chance for these decisions 
to be made properly~ then the system will relatively quickly find the 
global harmony maximum without getting stuck for very long times in 
local maxima. 

In this section, I will discuss an analysis that suggests that phase tran­
sitions do exist in very simple harmony theory models of decision­
making. In the next section, a more complex model that answers sim­
ple physics questions will furnish another example of a harmony system 
that seems to possess a phase transition.17 

The cooling process is an essentially new feature of the account of 
cognitive processing offered by harmony theory. To analyze the impli­
cations of cooling for cognition, it is necessary to analyze the tempera­
ture dependence of harmony models. Since the mathematical frame­
work of harmony theory significantly overlaps that of statistical 
mechanics, general concepts and techniques of thermal physics can be 
used for this analysis. However, since the structure of harmony models 
is quite different from the structure of models of real physical systems, 
specific results from physics cannot be carried over. New ideas particu­
lar to cognition enter the analysis; some of these will be discussed in a 
later section on the macrolevel in harmony theory. 

Symmetry Breaking 

At high temperatures, physical systems typically have a disordered 
phase, like a fluid, which dramatically shifts to a highly ordered phase, 

17 h is tempting to identify freezing or •crystallization• of harmonium with the 
phenomenal experience of sudden "crystallization" of scallered thoughts into a coherent 
form. There may even be some usefulness in this identification. However, it should be 
pointed out that since cooling should be slow at the freezing point, in terms of iterations 
of harmonium, the transition from the disordered to the ordered phase may not be sud­
den. If iterations of harmonium are interpreted as real cognitive processing time, this 
calls into question the argument that -sudden" changes as a function of temperature 
correspond to "sudden" changes as a function of real time. 
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like a crys.tal, at a certain freezing temperature. In the low-temperature 
p~ase, a srngle ordered configuration is adopted by the system, while at 
h!gh temperatures, parts of the system shift independently among 
pteces of ordered configurations so that the system as a whole is a con­
stantly changing, disordered blend of pieces of different ordered states. 

Thus we might expect that at high temperatures, the states of har­
~onium models will be shifting blends of pieces of reasonable comple­
tiOns of the current input; it will form locally coherent solutions. At 

-low temperatures (in equilibrium), the model will form completions 
that are globally coherent. 

Finding the best solution to a completion problem may involve fine 
discriminations among states that all have high harmonies. There may 
even be several completions that have exactly the same harmonies as 
in interpreting ambiguous input. This is a useful case to consider , for 
in an ordered phase, harmonium must at any time construct on~ of 
these "best answers" in its pure form, without admixing parts of other 
best answers (assuming that such mixtures are not themselves best 
answers, which is typically the case). In physical terminology, the sys­
:::rn must break the symmetry between the equally good answers in order 
to enter the ordered phase. One technique for finding phase transitions 
is to look for critical temperatures above which symmetry is respected 
and below which it is broken. ' 

An Idealized Decision 

This suggests we consider the following idealized decision-making 
task. Suppose the environment is always in one of two states A and 
B, with. equal probability. Consider a cognitive system perfor~1ing the 
completion task. Now for some of the system's representational 
features, these two states will correspond to the same feature value. 
These features do not enter into the decision about which state the 
environment is in, so let us remove them. Now the two states 
correspond to opposite values on all features. We can assume without 
loss of generality that for each feature, + is the value for A , and - the 
value for B (for if this were not so we could redefine the features 
exploiting the symmetry of the theory under nipping signs of features)~ 
After training in this environment, the knowledge atoms of our system 
each have either all + connections or all - connections to the features. 

To look for a phase transition, we see if the system can break sym­
metry. We give the system a completely ambiguous input: no input at 
all. It will complete this to either the all-+ state, representing A, or 
the all-- state, representing B, each outcome being equally likely. 
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Observing the harmonium model we see that for high temperatures, the 
states are typically blends of the all-+ and all-- states. These blends 
are not themselves good completions since the environment has no 
such states. But at low temperatures, the model is almost always in one 
pure state or the other, with only short-lived intrusions on a feature or 
two of the other state. It is equally likely to cool into either state and, 
given enough time, will flip from one state to the other through a 
sequence of (very improbable) intrusions of the second state into the 
first. The transition between the high- and low-temperature phases 
occurs over a quite narrow temperature range. At this freezing tem­
perature, the system drifts easily back and forth between the two pure 
states. 

The harmonium simulation gives empirical evidence that there is a 
critical temperature below which the symmetry between the interpreta­
tions of ambiguous input is broken. There is also analytic evidence for 
a phase transition in this case. This analysis rests on an important con­
cept from statistical mechanics: the thermodynamic limit. 

The Thermodynamic Limit 

Statistical mechanics relates microscopic descriptions that view matter 
as dynamical systems of constituent particles to the macrolevel descrip­
tions of matter used in thermodynamics. Thermodynamics provides a 
good approximate description of the bulk properties of systems contain­
ing an extremely large number of particles. The thermodynamic limit is 
a theoretical limit in which the number of particles in a statistical 
mechanical system is taken to infinity. keeping finite certain aggregate 
properties- like the system's density and pressure. It is in this limit that 
the microtheory provably admits the macrotheory as a valid approxi­
mate description. 

The thermodynamic limit will later be seen to relate importantly to 
the limit of harmony theory in which symbolic macro-accounts become 
valid. But for present purposes, it is relevant to the analysis of phase 
transitions. One of the important insights of statistical mechanics is 
that qualitative changes in thermal systems, like those characteristic of 
genuine phase transitions, cannot occur in systems with a finite number 
of degrees of freedom (e.g., particles). It is only in the thermodynamic 
limit that phase transitions can occur. 

This means that an analysis of freezing in the idealized-decision 
model must consider the limit in which the number of features and 
knowledge atoms go to infinity. In this limit, certain approximations 
become valid that suggest that indeed there is a phase transition. 



240 BASIC MECHANISMS 

Robustness of Coherent Interpretation 

To conclude this section, let me point out the significance of this 
simple decision-making system. Harmony theory started out to design 
an engine capable of constructing coherent interpretations of input and 
ended up with a class of thermal models realized by harmonium. We 
have just seen that the resulting models are capable of taking a com­
pletely ambiguous input and nonetheless constructing a completely 
coherent interpretation (by cooling below the critical temperature). 
This suggests a robustness in the drive to construct coherent interpreta­
tions that should prove adequate to cope with more typical cases charac­
terized by less ambiguity but greater complexity. The greater complex­
ity will surely hamper our attempts to analyze the models' performance; 
it remains to be seen whether greater complexity will hamper the 
models' ability to construct coherent interpretations. With this in 
mind, we now jump to a much more complex decision-making prob­
lem: the qualitative analysis of a simple electric circuit. 

AN, APPLICATION: ELECTRICITY PROBLEM SOLVING 

Theoretical context of the model. In this section I show how the 
framework of harmony theory can be used to model the inlllition that 
allows experts to answer, without any conscious application of" rules," 
questions like that posed in Figure 16. Theoretical conceptions of how 
such problems are answered plays an increasingly significant role in the 
design of instruction. (For example, see the new journal, Cognition and 

v 
total 

FIGURE 16. If the resistance of R 2 is increased (assuming that V,owl and R 1 remain the 

same). what happens to the current and voltage drops? 
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Instruction, and Ginsburg, 1983.) Even such simple problems as that of 
Figure 16 have important instructional implications (Riley, 1984). 

The model I will describe was studied in collaboration with Mary S. 
Riley (Riley & Smolensky, 1984) and Peter DeMarzo {1984). This 
model provides answers, without any symbolic manipulation of rules, to 
qualitative questions about the particular circuit of Figure 16. It should 
not be assumed that we imagine that a different harmony network like 
the one I will describe is created for every different circuit that is 
analyzed. Rather we assume that experts contain a small number of 
fixed networks like the one we propose, that these networks represent 
the effects of much cumulated experience with many different circuits, 
that they form the "chunks" with which the expert's intuition represents 
the circuit domain, and that complex problem solving somehow 
employs these networks to direct the problem solving as a whole 
through intuitions about chunks of the problem. At this early stage we 
cannot say much about the coordination of activity in complex problem 
solving. But we do claim that by giving an explicit example of a non­
symbolic account of problem solving, our model offers insights into 
expertise that complement nicely those of traditional production-system 
models. The model also serves to render concrete many of the general 
features of harmony theory that have been described above. 

Representational features. The first step in developing a harmony 
model is to select features for representing the environment. Here the 
environment is the set of qualitative changes in the electric circuit of 
Figure 16 that obey the laws of physics. What must obviously be 
represented are the changes in the physical components: whether R 1 

goes up, goes down, or stays the same, and similarly for R 2 and the 
battery's voltage V,0101 • We also hypothesize that experts represent 
deeper features of this environment, like the current I, the voltage 
drops V 1 and V 2 across the two resistors, and the effective resistance 
R10101 of the circuit. We claim that experts "see" these deeper features~ 
that perceiving the problem of Figure 16 for experts involves filling in 
the deeper features just as for all sighted people-experts in vision­
perceiving a scene involves filling in the features describing objects in 
three-dimensional space. Many studies of expertise in the psychological 
literature show that experts perceive their domain differently from 
novices: Their representations are much richer; they possess additional 
representational features that are specially developed for capturing the 
structure or the particular environment. (See, for example, Chase & 
Simon, 1973; Larkin, 1983.) 

So the representational features in our model encode the qualitative 
changes in the seven circuit variables: R It R 2, R101a~t v., V 2' V,otal, and 
1. Our claim is that experts possess some set of features like these~ 
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there are undoubtedly many other possibilities, with different sets being 
appropriate for modeling different experts. 

Next, the three qualitative changes up, down, and same for these 
seven variables need to be given binary encodings. The encoding I will 
discuss here uses one binary variable to indicate wheth.er there is any 
change and a second to indicate whether the change is up. Thus there 
are two binary variables, I.e and J.u, that represent the change in the 
current, I. To represent no change in I, the change variable I.e is set 
to -1; the value of l.u is, in this case, irrelevant. To represent 
increase or decrease of I, I.e is given the value+ 1 and l.u is assigned 
a value of+ l or -1, respectively. Thus the total number of represen­
tational features in the model is 14: two for each of the seven circuit 
variables. 

Knowledge atoms. The next step in constructing a harmony model 
is to encode the necessary knowledge into a set of atoms, each of which 
encodes a subpattern of features that co-occur in the environment. The 
environment of idealized circuits is governed by formal laws of physics, 
so a specification of the knowledge required for modeling the environ­
ment is straightforward. In most real-world environments, no formal 
laws exist, and it is not so simple to give a priori methods for directly 
constructing an appropriate knowledge base. However, in such 
environments, the fact that harmony models encode slatistical informa­
tion rather than rules makes them much more natural candidates for 
viable models than rule-based systems. One way that the statistical 
prop-erti~s of the environment can be captured in the strengths of 
knowledge atoms is given by the learning procedure. Other methods 
can probably be derived for directly passing from statistics about the 
domain (e.g., medical statistics) to an appropriate knowledge base. 

The fact that the environment of electric circuits is explicitly rule­
governed makes a probabilistic model of intuition, like the model under 
construction, a particularly interesting theoretical contrast to the obvi­
ous rule-applying models of explicit conscious reasoning. 

For our model we selected a minimal set of atoms; more realistic 
models of experts would probably involve additional atoms. A minimal 
specification of the necessary knowledge is based directly on the equa­
tions constraining the circuit: Ohm's law, Kirchoff's law, and the equa­
tion for the total resistance of two resistors in series. Each of these is 
an equation constraining the simultaneous change in three of the circuit 
variables. For each law, we created a knowledge atom for each combi­
nation of changes in the three variables that does not violate the law. 
These are memory traces that might be left behind after experiencing 
many problems in this domain, i.e., after observing many states of this 
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environment. It turns out that this process gives rise to 65 knowledge 
atoms!8 all of which we gave strength l. 

A portion of the model is shown in Figure 17. The two atoms shown 
are respectively instances of Ohm's law for R 1 and of the formula for 
the total resistance of two resistors in series. 

It can be shown that with the knowledge base I have described, 
whenever a completion problem posed has a unique correct answer, 
that answer will correspond to the state with highest harmony. This 
assumes that K is set within the range determined by Theorem 1: the 
perfect matching limit. 19 \ 

The parameter K. According to the formula defining the perfect 
matching limit, K must be less than 1 and greater than l - 2/6 - 2/3 \ 
because the knowledge atoms are never connected to more than 6 
features (two binary features for each of three variables). In the 

Knowledge 

Atoms 

Representational 

Features 

... 

FIGURE 17. A schematic diagram of the feature nodes and two knowledge atoms of the 

model of circuit analysis. u, d, and s denote up, down, and same. The box labeled I 

denotes the pair of binary feature nodes representing/, and similarly for the other six cir· 

cuit variables. Each connection labeled d denotes a pair of connections labeled with the 

binary encoding (+ ,-) representing down, and similarly for connections labeled u and s. 

ts Ohm's law applies three times for this circuit; once each for R 1, R 2, and RrOUJI· This 

together with the other two laws gives five constraint equations. In each of these equa· 

tions, the three variables involved can undergo 13 combinations of qualitative changes. 

t9 Proof· The correct answer satisfies all live circuit equations, the maximum possible. 

Thus it ~xuctly matches five atoms, and no possible answer can exactly match more than 

live atoms. In the exact matching limit, any nonexact matches cannot produce higher 

harmony, so the correct answer has the maximum possible harmony. If enough informa­

tion is given in the problem so that there is only one correct answer, then there is only 

one state with this maximal harmony value. 
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simulations I will describe, K was actually raised during the computation 
to a value of. 75, as shown in Figure 18. (The model actually performs 
better if K = . 75 throughout: DeMarzo, 1984.) 

Cooling schedule. It was not difficult to find a cooling rate that per­
milled the model to get the correct answer to the problem shown in 
Figure 16 on 28 out of 30 trials. This cooling schedule is shown in Fig­
ure 19. 20Jhe initial temperature (4.0) was chosen to be sufficiently high 

0.75 

0.50 

0.25 

0.00 ~~~-----L----~----~----~--~----~--~ 
0 100 200 

Time 
300 

FIGURE 18. The schedule showing K as a function of time during the computation. 

400 

20 In the reponed simulations, one node, selected randomly, was updated at· a time. 

The computation lasted for 400 "iterations" of 100 node updates each; that is, on the 

average each of the 79 nodes was updated about 500 times. "Updating" a node means 

deciding whether to change the value of that node, regardless of whether the decision 

chan~es the value. (Note on "psychological plausibility": 500 updates may seem like a lot to 
solve such a simple problem. But I claim the model cannot be dismissed as implausible 

on this ground. According to current ~·ery general hypotheses about neural computation 

(see Chapter 201, each node update is a computation comparable to what a neuron can 
perform in its "cycle time" of about 10 mse~.:. Because harmonium could actually be 

implemented in parallel hardware, in accordance with the realizability theorem, the 500 
updates could be achieved in 500 cycles. With the cycle time of the neuron, this comes 
to about 5 seconds. This is clearly the correct order of magnitude for solving such prob­

lems intuitively. While it is also possible to solve such problems by firing a few symbolic 

productions, it is not so clear that an implementation of a production system model could 
be devised that would run in 500 cycles of parallel computations comparable to neural 
computations.) 

t-

100 200 

Time 
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300 400 

FIGURE 19. The schedule showing Tas a function of time during the computation. 

that nodes were flipping between their values essentially at random; the 
final temperature (0.25) was chosen to be sufficiently small that the 
representational features hardly ever flipped, so that the completion 
could be said to be its "final decision." Considerable computation time 
was probably wasted at the upper and lower ends of the cooling 
schedule. 

The simulation. The graphical display used in the simulation pro­
vides a useful image of the computational process. On a gray back­
ground, each node was denoted by a box that was white or black 
depending on the current node value. Throughout the computation, 
the nodes encoding the given information maintain their fixed values 
(colors). Initially, all the atoms are black (inactive) and the unknown 
features are assigned random colors. When the computation starts, the 
temperature· is high, and there is much flickering of nodes between 
black and white. At any moment many atoms are active. As computa­
tion proceeds and the system cools, each node flickers less and less and 
eventually settles into a final value.21 The ''answer" is read out by 

21 It may happen that some representation variables will be connected only to 
knowlcd~e atoms that are inactive towards the end of the computation; these representa· 

lion variables will continue to flicker at arbitrarily low temperatures, spending 50% of the 
time in each state. In fact, this happens for bits of the representation (like R ,.u) that 

encode the "direction of chan~e" of circuit variables that are in state no change, indicated 

by - on the "presence of change" bit. These bits are ignored by the active knowledge 

atoms (those involving tw duwge for the circuit variable) and are also ignored when we 
"read out" the final answer produced by the network. 
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decoding the features for the unknowns. Ninety-three percent of the 
time, the answer is correct. 

The microdescription of problem solving. Since the model correctly 
answers physics questions, it "acts as though" it knows the symbolic 
rules governing electric circuits. In other words, the competence of the 
harmonium model (using Chomsky's meaning of the word) could be 
accurately described by symbolic inference procedures (e.g., produc­
tions) that operate on symbolic representations of the circuit equations. 
However the performance of the model (including its occasional errors) 
is achieved without interpreting symbolic rules.22 In fact, the process 
underlying the model's performance has many characteristics that are 
not naturally represented by symbolic computation. The answer is 
computed through a series of many node updates, each of which is a 
microdecision based on formal numerical rules and numerical computa­
tions. These microdecisions are made many times, so that the eventual 
values for the different circuit variables are in an important sense being 
computed in parallel. Approximate matching is an important part of the 
use of the knowledge: Atoms whose feature patterns approximately 
match the current feature values are more likely to become active by 
thermal noise than atoms that are poorer matches (because poorer 
matches lower lhe harmony by a greater amount). And all the 
knowledge that is active at a given moment blends in its effects: When 
a given feature updates its value, its microdecision is based on the 
weighted sum of the recommendations from all the active atoms. 

The macrodescription of problem solving. When watching the simu­
lation, it is hard to avoid anthropomorphizing the process. Early on, 
when a feature node is flickering furiously, it is clear that "the system 
can't make up its mind about that variable yet." At some point during 
the computation, however, rhe node seems to have stopped 
flickering-"it's decided that the current went down." ll is reasonable to 
say that a macrodecision has been made when a node stops flickering, 

22 The distinction between characterizing the competence and performance of dynami­
cal systems is a common one in physics, although I know of no terminology for il. A 
production system expressing the circuit laws can be viewed as a grammar for generming 
the high-harmony states of the dynamical system. These laws neatly express the states into 
which the system will seule. However, completely different laws govern the dynamics 
through which the system enters equilibrium states. Othl.!r examples from physics of this 
distinction are to be found essentially everywhere. Kepler's laws, for example, neatly 
characterize the planetary orbits, but completely different laws, Newton's laws of motion 
and gravitation, describe the dynamics of planetary motion. Oalmer's formula neatly 
characterizes the light emilted by the hydrogen atom, but ullerly different laws of quan­
tum physics describe the dynamics of the process. 
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although there seems to be no natural formal definition for the concept. 
To study the properties of macrodecisions, it is appropriate to look at 
how the average values of the stochastic node variables change during 
the computation. For each of the unknown variables, the node values 
were averaged over 30 runs of the completion problem of Figure 16, 
separately for each time during the computation. The resulting graphs 
are shown in Figure 20. The plots hover around 0 initially, indicating 
that values + and - are equally likely at high temperatures-lots of 
flickering. As the system cools, the average values of the representa­
tion variables drift toward the values they have in the correct solution 
to the problem (Rtotal = up, I = down, VI =down, v2 = up). 

Emergent seriality. To better see the macrodecisions, in Figure 21 
the graphs have been superimposed and the "indecisive" band around 0 
has been rerhoved. The striking result is that out of the statistical din 
of parallel microdecisions emerges a sequence of macrodecisions. 

Propagation of givens. The result is even more interesting when it 
is observed that in symbolic forward-chaining reasoning about this 
problem, the decisions are made in the order R. I, V 11 V2• Thus not 
only is the competence of the model neatly describable symbolically, but 
even the pe~:fimnance, when described at the macrolevel, could be 
modeled by the sequential firing of productions that chain through the 
inferences. Of course, macrodecisions emerge first about those vari­
ables that are most directly constrained by the given inputs, but not 
because rules are being used that have conditions that only allow them 
to apply when all but one of the variables is known. Rather it is 
because the variables given in the input are [LXed and do not fluctuate: 
They provide the information that is the most consistent over time, and 
therefore the knowledge consistent with lhe input is most consistently 
activated, allowing those variables involved in this knowledge to be 
more consistently completed than other variables. As the temperature 
is lowered, those variables "near" the input (with respect to the connec­
tions provided by the knowledge) stop fluctuating first, and their rela­
tive constancy of value over rime makes them function somewhat like 
the original input to support the next wave of completion. In this 
sense, the stability of variables ''spreads out" through the network, 
starting at the inputs and propagating with the help of cooling. Unlike 
the simple feedforward "spread of activation" through a standard activa­
tion network, this process is a spread of feedback-mediated coherency 
through a decision-making network. Like the growth of droplets or 
crystals, this amounts to the expansion of pockets of order into a sea of 
disorder. 
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FIGURE.21. Emergent seriality: The decisions about the direction of change of the cir­
cuit variables "freeze in" in the order R = R10101 , I """'110101 , V1, V2 (Rand I are very 
close). 

Phase transition. In the previous section, a highly idealized 
decision-making model was seen to have a freezing temperature at 
which the system behavior changed from disordered (undecided) to 
ordered (decided). Does the same thing occur in the more complicated 
circuit model? As a signal for such a phase transition, physics says to 
look for a sharp peak in the quantity 

<112>- <H> 2 

C = T2 

This is global property of the system which is proportional to the rate at 
which entropy-disorder-decreases as the temperature decreases; in 
physics, it is called the specific heat. If there is rapid increase in the 
order of the system at some temperature, the specific heat will have a 
peak there. 

Figure 22 shows that indeed there is a rather pronounced peak. Does 
this macrostatistic of the system correspond to anything significant in 
the macrodecision process? In Figure 23, the specific heat curve is 
superimposed on Figure 21. The peak in the specific heat coincides 
remarkably with the first two, major macrodecisions about the total 
resistance and current. 
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FIGURE 22. The specific heat of the circuit analysis model through the course of the 
computation. 
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FIGURE 23. There is a peak in the specific heat at the time when the R and I decisions 
are being made. 
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MACRODESCRIPTION: PRODUCTIONS, SCHEMATA, 
AND EXPERTISE 

Productions and Expertise 

While there are similarities in the production-system account of prob­
lem solving and the macrodescription of the harmony account, there 
are important differences. These differences are most apparent in the 
accounts of how experts' knowledge is acquired and represented. 

A symbolic account of expertise acquisition. A standard description 
within the symbolic paradigm of the acquisition of expertise is based on 
the idea of knowledge compilation (Anderson, 1982). Applied to circuit 
analysis, the account goes roughly like this. Novices have procedures 
for inspecting equations and using them to assign values to unknowns. 
At this stage of performance, novices consciously scan equations when 
solving circuit problems. As circuit problems are solved, knowledge is 
proceduralized: specialized circuit-analysis productions are stored in the 
knowledge base. An example of might be "IF given: R 1 and R 2 both 
go up, THEN conclude: R10101 goes up" which can be abbreviated 
R t 11 R 211 

-- Rwta/ 11
• Another might be Rwtalu vtotals --Jd. At this stage 

of performance, a series of logical steps is consciously experienced, but 
no equations are consciously searched. As the circuit productions are 
used together to solve problems, they are composed together (Lewis, 
1978). The two productions just mentioned, for example, are com­
posed into a single production, R 1u R 2

11 V10101
5 

-+ R10101
11 Jd. As the pro­

ductions are composed, the conditions and actions get larger, more is 
inferred in each production firing, and so fewer productions need to 
fire to solve a given problem. Eventually, the compilation process has 
produced productions like R 1

11 R 2
11 V10101 s - R10101

11 Jd V1d V2
11 

• Now we 
have an expert who can solve the problem in Figure 16 all at once, by 
firing this single production. The reason is that the knowledge base 
contains, prestored, a rule that says "whenever you are given this prob­
lem, give this answer." 

A subsymbo/ic account. By contrast, the harmony theory account of 
the acquisition of expertise goes like this. (This account has not yet 
been tested with simulations.) Beginning physics students are novices in 
circuit analysis but experts (more or less) at symbol manipulation. 
Through experience with language and mathematics, they. have built 
up- by means of the learning process referred to in the learnability 
theorem-a set or features and knowledge atoms for the perception and 
manipulation of symbols. These can be used to inspect the circuit 
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equations and draw inferences from them to solve circuit problems. 
With experience, features dedicated to the perception of circuits evolve, 
and knowledge atoms relating these features develop. The final net­
work for circuit perception contains within it something like the model 
described in the previous section (as well as other portions for analyz­
ing other types of simple circuits). This final network can solve the 
entire problem of Figure 16 in a single cooling. Thus experts perceive 
the solution in a single conscious step. (Although sufficiently careful 
perceptual experiments that probe the internal structure of the con­
struction of the percept should reveal the kind of sequential filling-in 
that was displayed by the model.) Earlier networks, however, are not 
sufficiently well-tuned by experience~ they can only solve pieces of the 
problem in a single cooling. Several coolings are necessary to solve the 
problem, and the answer is derived by a series of consciously experi­
enced steps. (This gives the symbol-manipulating network a chance to 
participate, offering justifications of the intuited conclusions by citing 
circuit laws.) The number of circuit constraints that can be satisfied in 
parallel during a single cooling grows as the network is learned. Produc­
tions are higher level descriptions of what input/ output pairs­
completions-can be reliably performed by the network in a single cooling. 
Thus, in terms of their productions, novices are described by produc­
tions with simple conditions and actions, and experts are described by 
complex conditions and actions. 

Dynamic creation of productions. The point is, howe·ver, that in the 
harmony theory account, productions are just descriptive entities; they are 
not stored, precompiled, and fed through a formal inference engine; rather 
they are dynamically created at the time they are needed by the appropri­
ate collective action of the small knowledge atoms. Old patterns that 
have been stored through experience can be recombined in completely 
novel ways, giving the appearance that productions had been precom­
piled even though the particular condition/ action pair had never before 
been performed. When a familiar input is changed slightly, the net­
work can settle down in a slightly different way, flexing the usual pro­
duction to meet the new situation. Knowledge is not stored in large 
frozen chunks; the productions are truly context sensitive. And since 
the productions are created on-line by combining many small pieces of 
stored knowledge, the set of available productions has a size that is an 
exponential function of the number of knowledge atoms. The 
exponential explosion of compiled productions is virtual, not precom­
piled and stored. 

Contrasts with logical iriference. It should be noted that the har­
monium model can answer ill·posed questions just as it can answer 
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well-posed ones. If insufficient information is provided, there will be 
more than one state of highest harmony, and the model will choose one 
of them. It does not stop dead due to "insufficient information" for 
any formal inference rule to fire. If inconsistent information is given, 
no available state will have a harmony as high as that of the answer to a 
well-posed problem~ nonetheless, those answers that violate as few cir­
cuit laws as possible will have the highest harmony and one of these 
will therefore be selected. It is not the case that "any conclusion fol­
lows from a contradiction." The mechanism that allows harmonium to 
solve well-posed problems allows it to find the best possible answers to 
ill-posed problems, with no modification whatever. 

Schemata 

Productions are higher level descriptions of the completion process 
that ignore the internal structures that bring about the input/ output 
mapping. Schemata are higher level descriptions of chunks of the 
knowledge base that ignore the internal structure within the chunk. To 
suggest how the relation between knowledge atoms and schemata can 
be formalized, it is useful to begin with the idealized two-choice deci­
sion model discussed in the preceding section entitled Decision-Making 
and Freezing. 

Two-choice model. In this model, each knowledge atom had either 
all + or all - connections. To form a higher level description of the 
knowledge, let's lump all the+ atoms together into the+ schema, and 
denote it with the symbol S+. The activation level of this schema, 
A (S+), will be defined to be the average of the activations of its con­
stituent atoms. Now let us consider all the feature nodes together as a 
slot or variable, s, for this schema. There are two states of the slot that 
occur in completions: all + and all -. We can define these to be tht. 
possible fillers or values of the slot and symbolize them by f + and f -· 
The information in the schema S+ is that the slot s should be filled 
with f+; the proposition s = f +· The "degree of truth" of this proposi­
tion, r (s = f +), can be defined to be the average value of all the 
feature nodes comprising the slot: If they are all +, this is 1 or true; if 
all - this is -1 or false. At intermediate points in the computation 
when there may be a mixture of signs on the feature nodes, the degree 
of truth is somewhere between 1 and -1. 

Repeating the construction for the schema S_, we end up with a 
higher level description of the original model depicted in Figure 24. 
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Microdescription 

s+ s 
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s 

Macrodescriptlon 

A(S_) 

FIGURE 24. Micro- and macrodescriptions of the idealized decision model. 

The interesting fact is that the harmony of any state of the original 
model can now be re-expressed using the higher level variables: 

H = A (S + )[r (s = f +) - K 1 + A (S _ )[r (s = f _) - K }. 

In this simple homogeneous case, the aggregate higher level variables 
contain sufficient information to exactly compute the harmony 
function. 

6. HARMONY THEORY 2)5 

The analysis of decision making in this model considered the limit as 
the number of features and atoms goes to infinity-for only in this 

11 thermodynamic limit II can we see real phase transitions. In this limit, 
the set of possible values for the averages that define the aggregate 
variables comes closer and closer to a continuum. The central limit 
theorem constrains these averages to deviate less and less from their 
means~ statistical fluctuations become less and less significant~ the 
model's behavior becomes more and more deterministic. 

Thus, just as the statistical behavior of matter disappears into the 
deterministic laws of thermodynamics as systems become macroscopic 
in size, so the statistical behavior of individual features and atoms in 
harmony models becomes more and more closely approximated by the 
higher level description in terms of schemata as the number of constit­
uents aggregated into the schemata increases. However there are two 
important differences between harmony theory and statistical physics 
relevant here. First, the number of constituents aggregated into sche­
mata is nowhere near the number-1023 -of particles aggregated into 
bulk matter. Schemata provide a useful but significantly limited 
description of real cognitive processing. And second, the process of 
aggregation in harmony theory is much more complex than in physics. 
This point can be brought out by passing from the grossly oversimpli­
fied two-choice decision model just considered to a more realistic cogni­
tive domain. 

Schemata for rooms. In a realistically complicated and large net­
work, the schema approximation would go something like this. The 
knowledge atoms encode clusters of values for features that occur in 
the environment. Commonly recurring clusters would show up in 
many atoms that differ slightly from each other. (In a different 
language, the many exemplars of a schema would correspond to 
knowledge atoms that differ slightly but share many common features.) 
These atoms can be aggregated into a schema, and their average activa­
tion at any moment defines the activation of the schema. Now among 
the atoms in the cluster correSponding to a schema for a living-room, for 
example, might be a subcluster corresponding to the schema for 
sofa/ coj(ee-table. These atoms comprise a subschema and the average of 
their activations would be the activation variable for this subschema. 

The many atoms comprising the schema for kitchen share a set of 
connections to representational features relating to cooking devices. It 
is convenient to group together these connections into a cooking-device 
slot, smoking. Different atoms for different instances of kitchen encode 
various patterns of values over these representational features, 
corresponding to instances of stove, conventional oven, microwave oven, 
and so forth. Each or these patterns defines a possible filler, Itt for the 
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slot. The degree of truth of a proposition like Scooking = /; is the 
number of matches minus the number of mismatches between the pat­
tern defining/; and the current values over the representati~n nodes in 
the slot s k. all divided by the total number of features m the slot. coo ·mg, . . 
Now the harmony obtained by activating the schema ts determmed by 
the degrees of truth of propositions specifying the possible fillers for 
the slots of the schema. Just like in tbe simple two-decision model, the 
harmony function, originally expressed in terms of the microscopic 
variables, can be re-expressed in terms of the macroscopic variables, 
the activations of schemata, and slot fillers. However, since the 
knowledge atoms being aggregated no longer have exactly the same 
links to features, the new expression for fl in terms of aggregate vari­
ables is only approximately valid. The macrodescription involves fewer 
variables but the structure of these variables is more complex. The 
objects a;e becoming richer, more like the structures of symbolic com­
putation. 

This is the basic idea of the analytic program of harmony theory for 
relating the micro- and macro-accounts of cognition. Macroscopic vari­
ables for schemata, their activations, their slots, and propositional con­
tent are defined. The harmony function is approximately rewritten in 
terms of these aggregate variables, and then used to study the macro­
scopic theory that is determined by that new function of the new vari­
ables. This theory can be simulated, defining macroscopic models. 
The nature of the approximation relating the macroscopic to the 
microscopic models is clearly articulated, and the situations and senses 
in which this approximation is valid are therefore specified. 

The kind of variable aggregation involved in the schema approxima­
tion is in an important respect quite unlike any done in physics. The 
physical systems traditionally studied by physicists have homogeneous 
structure, so aggregation is done in homogeneous ways. In cognition, 
the distinct roles played by different schemata mean aggregates must be 
specially defined. The theory of the schema limit corresponds at a very 
general level to the theory of the thermodynamic limit, but is rather 
sharply distinguished by a much greater complexity. 

The Schema Approximation 

In this subsection I would like to briefly discuss the schema approxi­
mation in a very general information-processing context. 

In harmony theory, the cognitive syslem fills in missing information 
with reference to an internal model of the environment represented as 

. I 
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a probability distribution. Such a distribution of course contains poteri­
tially a phenomenal amount of information: the joint statistics of a'l 
combinations of all features used to represent the environment. How 
can we hope to encode such a distribution effectively? Schemata pro­
vide an answer. They comprise a way of breaking up the environment 
into modules-schemata-that can individually by represented as a 
mini probability distribution. These minidistributions must then' be 
folded together during processing to form an estimate of the whole dis­
tribution. To analyze a room scene, we don't need information about 
the joint probability of all possible features~ rather, our schema for 
"chair" takes care of the joint probability of the features of chairs; the 
schema for "sofa/coffee-table" contains information about the joint 
probability of sofa and coffee-table features, and so on. Each schema 
ignores the features of the others, by and large. 

This modularization of the encoding can reduce tremendously the 
amount of information the cognitive system needs to encode. If there 
are f binary features, the whole probability distribution requires 2f 
numbers to specify. If we can break the features into s groups 
corresponding to schemata, each involving f Is features, then only 
s 21/s numbers are needed. This can be an enormous reduction~ even 
with such small numbers as f = 100 and s = 10, for example, the 
reduction factor is lOx 2- 90:::::::10- 28• 

The reduction in information afforded by schemata amounts to an 
assumption that the probability distribution representing the environ­
ment has a special, modular structure-at least, that it can be usefully 
so approximated. A very crude approximation would be to divide the 
features into disjoint groups, to separately store in schemata the proba­
bilities of possible combinations of features within each group, and then 
to simply multiply together these probabilities to estimate the joint prob­
ability of all features. This assumes the features in the groups are com­
pletely statistically independent, that the values of features of a chair 
interact with other features of the chair but not with features of the 
sofa. To some extent this assumption is valid, but there clearly are 
limits to its validity. 

A Jess crude approximation is to allow schemata to share features so 
that the shared features can be constrained simultaneously by the joint 
probabilities with the different sets of variables contained in the dif­
ferent schemata to which it relates. Now we are in the situation 
modeled by harmony theory. A representational feature node can be 
attached to many knowledge atoms and thereby participate in many 
schemata. The distribution e111T manages to combine into a single 
probability distribution all the separate but interacting distributions 
corresponding to the separate schemata. Although the situation is not 
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as simple as the case of nonoverlapping schemata and completely 
independent subdistributions, the informational savings is still there. 
The trick is to isolate groups of environmental features which each 
comprise a small fraction of the whole feature set, to use these groups 
to define more abstract features, and record the probability distributions 
using these features. The groups must be selected to capture the most 
important interrelationships in the environment. This is the problem of 
constructing new features. The last section offers a few comments on 
this most important issue. 

LEARNING NEW REPRESENTATIONS 

The Learning Procedure and Abstract Features 

Throughout this chapter I have considered cognitive systems that 
represent states of their environment using features that were esta­
blished prior to our investigation, either through programming by the 
modeler, or evolution, or learning. In this section I would like to make 
a few comments about this last possibility, the establishment of features 
through learning. 

Throughout this chapter I have emphasized that the features in har­
mony models represent the environment at all levels of abstractness. 
In the preceding account of how expertise in circuit analysis is acquired, 
it was stated that through experience, experts evolve abstract features 
for representing the domain. So the basic notion is that the cognitive 
system comes into existence with a set of exogenous fea/llres whose 
values are determined completely by the state of the external environ­
ment, whenever the environment is being observed. Other endogenous 
fealllres evolve, through a process now to be described, through experi-
ence, from an initial state of meaninglessness to a final state of abstract 
meaning. Endogenous features always get their values through internal 
completion, and never directly from the external environmentP 

As a specific example, consider the network of Figure 9, which is 
repeated as Figure 25. In this network, features of several levels of 

21 In Chapter 1, Hinton and Sejnowski use the terms visible and hidden units. The 

former correspond to the exogenous feature nodes, while the laller encompass b01h the 
endogenous feature nodes and the knowledge atoms. 

segment/letter 

knowledge atoms 

line-segment nodes letler nodes 
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letter/word 

knowledge atoms 

word nodes 

FlOUR E 25. A network representing words at several levels of abstractness. 

abstractness are used to represent words. Here is a hypothetical account 

of how such a network could be learned.24 

The features representing the line segments are taken to be the exo­
genous features given a priori. This network comes into existence with 
these line-segment nodes, together with extra endogenous feature 
nodes which, through experience, will become the letter and word 

nodes. 
As before, the cognitive system is assumed to come into existence 

with a set of knowledge atoms whose strengths will be adjusted to 
match the environment. Some of these atoms have connections only to 
exogenous features, some only to endogenous features, and some to 
both types of features. 

The environment (in this case, a set of words) is observed. Each 
time a word is presented, the appropriate values for the line-segment 
nodes are set. The current atom strengths are used to complete the 
input, through the cooling procedure discussed above. ~he endog.e~ous 
features are thus assigned values for the particular mput. lmttally, 

24 The issue of selecting patterns on exogenous features for use in defining endogenous 

features-including the word domain-is discussed in Smolensky (1983). To map the 
terminology of that paper on to that of this chapter, replace schemas by knowledge atoms 
and btdiels by fealllre values. That paper offers an alternative use of the harmony concept 
in learni.ng. Rather than specifying a learning process, it specifies an opti~ality ~on~ition 
on the atom strengths: They should maximize the total harmony assoctated Wtlh mter­

preting all environmental stimuli. This condition is related, but not equivalent, to 

information-theoretic conditions on the strengths. 
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when the atoms' strengths have received lillie environmental tuning, 
the values assigned to the endogenous features will be highly random. 
Nonetheless, after the input has been completed, learning occurs: The 
strengths of atoms that match the feature nodes are all increased by 
t:J.u. 

Intermixed with this incrementing of strengths during environmental 
observation is a process of decrementing strengths during environmen­
tal simulation. Thus the learning process is exactly like the one 
referred to in the learnability theorem, except that now, during obser­
vation, not all the features are set by the env(ronment; the 
endogenous features must be lilled in by completion. 

Initially, the values of the endogenous features are random. But as 
learning occurs, correlations between recurring patterns in the exo­
genous features and the random endogenous features will be amplified 
by ihe slrengthening of atoms that encode those correlations. An 
endogenous feature by chance tends to be + when patterns of line seg­
ments defining the teller A are present and so leads to strengthening of 
atoms relating it lO those patterns; it gradually comes to represent A . 
In this way, self-organization of the endogenous features can potentially 
lead them to acquire meaning. 

The learnability theorem states that when no endogenous features are 
present, this learning process will produce strengths that optimally 
encode the environmenlal regularities, in the sense that the comple­
tions they give rise to are precisely the maxinuun~likelihood comple­
tions of the estimated environmental probability distribution with maxi­
mal missing information that is consistent with observable statistics. At 
present there is no comparable theorem that guarantees that in the 
presence of endogenous features this learning procedure will produce 
strengths with a corresponding optimulity characterization.25 

Among the most important future developments of the theory is the 
study of self-organization of endogenous features. These developments 
include a possible extension of the learnability theorem to include 
endogenous features as well as computer simulations of the learning 
procedure in specific environments. 

25 In Chapler 7, lfinlon and Sejnowski use a differenl bul relaled op1imali1y condi&ion. 
They use a funclion G which measures 1he informa&ion-lheorclic difkrcnce bclween the 
1ruc environmenlal probability dislribulion and ahe esaimalcd disaribuaion e11 . For ahe 
case of no endogenous fealures, ahe following is true (set Th!.!orem ~ of ahe Appendix). 
The suenglhs lhal correspond to the maximal-missing-information distribUJion consistenl 
wilh observable staaislics arc lhc same as the strcnglhs lhat minimite G. Thai ahe 
estimated distribuaion is of the form ell must be anwued a priori in using tht: minimai-G 
cri&erion~ it is eJIIailecJ by the maxinMI-mbsing-infonnation cri1erion. 

Learning in the Symbolic and Subsymbolic Paradigms 

Nowhere is the contrast between the symbolic and subsymbolic 
approaches to cognition more dramatic than in learning. Learning a 
new concept in the symbolic approach entails creating something like a 
new schema. Because schemata are such large and complex knowledge 
structures, developing automatic procedures for generating them in ori­
ginal and llexihle ways is extremely difficult. 

In tile suhsymbolic uccount, by contrast, a new schema comes into 
being gradually. as the strengths of atoms slowly shifts in response to 
environmental observation, and new groups of coherent atoms slowly 
gain important influence in the processing. During learning, there need 
never hi.! any decision that "now is the time to create and store a new 
schema." Or rather, if such a decision is made, it is by the modeler 
obsen,ing the evolving cognitive system and not by the system itself. 

Similarly there is never a time when the cognitive system decides 
•• now is the rime to assign this meaning to this endogenous feature." 
Rather, the strengths of all the atoms that connect to the given 
endogenous feature slowly shift, and with it the "meaning" of the 
feature. Eventually, the atoms that emerge with dominant strength 
may create a network like that of Figure 25, and the modeler observing 
the system may say" this feature means the letter A and this feature the 
word .AJJLE." Then again, some completely different representation may 
emerge. 

The reason that learning procedures can be derived for subsymbolic 
systems, and their properties mathematically analyzed, is that in these 
systems knowledge representations are extremely impoverished. It is 
for this same reason that they are so hard for us to program. It is 
therefore in the domain of learning, more than any other, that the 
potential seems greatest for the subsymbolic paradigm to offer new 
insights into cognition. Harmony theory has been motivated by the 
goal of establishing a subsymbolic computational environment where 
the mechanisms for using knowledge are simultaneously sufficiently 
powerful and analytically tractable to facilitate-rather than hinder-the 
study or learning. 

CONCLUSIONS 

In this chapter I have described the foundations of harmony theory, a 
formal suhsymholic framework for performing an important class of 
generalized perceptual computations: the completion of partial 
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descriptions of static slates of an environmenl. In harmony theory, 
knowledge is encoded as constraints among a set of well-tuned percep­
tuul features. These constraints are numerical and are imbedded in an 
extremely powerful parallel constraint ~mtisfaction machine: an informal 
inference engine. The constraints and features evolve gradually 
through experience. The numericul processing mechanisms implement­
ing both performance and learning are derived top-down from 
mathematical principles. When the computation is described on an 

·aggregate or macrolevel, qualitatively new features emerge (such as 
seriality). The competence of models in this framework can sometimes 
be neatly expressed by symbolic rules, but their performance is never 
achieved by explicitly storing these rules and passing them through a 
symbolic interpreter. 

In harmony theory, the concept of self-consistency plays the leading 
role. The theory extends the relationship that Shannon exploited 
between informution and physical entropy: Computational self­
consistency is related to physical energy, and computational randomness 
lo physical temperature. The centrality of the consistency or harmony 
function mirrors that of the energy or Hamiltonian function in statisti­
cal physics. Insights from statistical physics, adapted to the cognitive 
systems of harmony theory, can be exploited lO relate the micro- and 
macrolevel accounts of the computation. Theoretical concepts, 
theorems, and comput£uional techniques are being pursued, towards the 
ultimate goal of a subsymbolic formulation of the theory of information 
processing. 
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APPENDIX: 
FORMAL PRESENTATION OF THE THEOREMS 

Formal relationships between parallel (or neural) computation and 
statistical mechanics have been exploited by several researchers. Three 
research groups in particular have been in rather close contact since 
their initially independent development of closely related ideas. These 
groups use names for their research which reflect the independent per­
spectives that they maintain: the Boltzmann machine (Ackley, Hinton, & 
Sejnowski, 1985; Fahlman, Hinton, & Sejnowski, 1983; Hinton & 
Sejnowski, 1983a, 1983b; Chapter 7), the Gibbs sampler (Geman & 
Geman, 1984), and harmony theory (Smolensky, 1983, 1984; Smolen­
sky & Riley, 1984). In this appendix, all results are presented from the 
perspective of harmony theory, but ideas from the other groups have 
been incorporated and are so referenced.26 

Because the ideas have been informally motivated and pursued at 
some length in the text, this appendix is deliberately formal and con­
cise. The proofs are presented in the final section. In making the for­
mal presentation properly self-contained, a certain degree of redun­
dancy with the text is necessarily incurred; this is an inevitable conse­
quence of presenting the theory at three levels of formality within a 
single, linearly ordered document. 

Preliminary Definitions 

Overview of the definitions. The basic theoretical framework is 
schematically represented in Figure 26. There is an external environ­
ment with structure that allows prediction of which events are more 
likely than others. This environment is passed through transducers to 
become represented internally in the exogenous jeawres of a representa­
tional space. (Depending on the application, the transducers might 
include considerable perceptual and cognitive processing, so that the 
exogenous features might in fact be quite high level~ they are just 
unanalyzed at the level of the particular model.) The features in the 

26 Hofstadter 0983) uses the idea of computational temperature in a heuristic raiher 
than formal way to modulate lhe parallel symbolic processing in an AI system for doing 
anagrams. His insights inlo relationships between statistical mechanics and cognition 
were inspirational for the development of harmony thcory (see lfofstadtcr, 1985, pp. 
654-665). . 

Transducer 
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Mental Space: M 

knowledge 

A 

FIGURE 26. A schematic representation of the theoretical framework. 

representation are taken to be binary. The prediction problem is to 
take some features of an environmental state as input and make best 
guesses about the unknown features. This amounts to extrapolating 
from some observed statistics of the environment to an entire probabil­
ity distribution over all possible feature combinations. This extrapola­
tion proceeds by constructing the distribution that adds minimal infor­
mation (in Shannon's sense) to what is observed. 

Notation. B = (-1, +I}, the default binary values. R = the real 
numbers. xn = Xx Xx ... X X (n times) t where X is the cartesian 
product. If x,y E xn, then x·y = L!-tXmYm and lxl == L!-tlxml . 
2x is the set of all subsets of X. lXI is the number of elements of X. 

· Bn is called a binary hypercube. The ith coordinate function of Bn 
(i = I, ...• n) gives for any point (i.e., vector) in Bn its ith B-valued 
coordinate (i.e., component). 

Def A distal environment Edistal = (E, P) is a set E of environmental 
events and a probability distribution P on E. 

Def A representational space R is a cartesian product Rex x Re, of 
two binary hypercubes. Each of the N (Nex ~ Nen) binary-valued coordi­
nate functions r; of R (Rex~ Ren) is called an (exogenous; endogenous) 
feature. 

Def A transduction map T from an environment £distal to a represen­
tational space R = Rex x Ren is a map T: E - Rex. T induces a proba­
bility distribution p on Rex: p = P o r-•. This distribution is the 
(proximal) environment. 

I 
I 
I 
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Def Let R be a representational space. Associated with this space 
is the input space I = {-1, 0, +It Na. 

Def A point r in R is called a completion of a point " in I if every 
nonzero feature of" agrees with the corresponding feature of r. This 
relationship will be designated r ::J ". A completion fimcfion c is a map 
from I to 2R (the subsets of R) for which r E c (,.) implies r ::J ,. . The 
features of" with value 0 are the "unknowns" that must be filled in by 
the completion function. 

Def Let p be a probability distribution on a space X = RexxA. 
The maximum-likelihood completion fimction determined by p, 
cP: I -- 2R, is defined by 

c (d = ( r E R I for some a E A, and all ( a',r') E R xA 
such thatr' ::J 1.: p(r,a) ~ p(r',a')) 

(A will be either empty or the set of possible knowledge atom activa­
tion vectors.) 

Def A basic event a has the form 

a: [r· = b l] & [r· = b2] & · · · & [r. = b 1 1 1 1 2 1/1 fj 

where { r; 
1

, r;
2
, ••• , r;

8
} is a collection of exogenous features and 

(b" b2- ... , bp) E Bfl. a can be characterized by the function 
Xu: R -{0,1) defined by 

xa< r> = fi '/21 '; (r)+bft I 
JL - 1 JJ. 

which is 1 if the features all have the correct values, and 0 otherwise. 
A convenient specification of a is as the knowledge vector 

ka = (0, 0, ... ,0, b;
1
, 0, ... , 0, b;

2
, 0, ... ,0, b;{j, 0, ... ,0) 

E (-1, O,+l)N 

in which the iJL th element is b~-t and the remaining elements are all 
zero. 

Def A set 0 of observables is a collection of basic events. 

Def Let p be an environment and 0 be a set of observables. The 
observable statistics of p is the set of probabilities of all the events in 0: 
{p (a )}a E 0 · 
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Def The entropy (or the missing information; Shannon, 1948/ 1963) 
of a probability distribution p on a finite space X is 

S(p) =- I, p(x) lnp(x). 
xEX 

Def The maximum entropy estimate 1r p,O of environment p with 
observables 0 is the probability distribution with maximal entropy that 
possesses the same observable statistics asp. 

This concludes the preliminary definitions. The distal environment 
and transducers will play no further role in the development. They 
were introduced to acknowledge the important conceptual role they 
play: the root of all the other definitions. A truly satisfactory theory 
would probably include analysis of the structure of distal environments 
and the transformations on that structure induced by adequate 
transduction maps. Endogenous features will also play no further role: 
Henceforth, Ren is taken to be empty. It is an open question how to 
incorporate the endogenous variables into the following results. They 
were introduced to acknowledge the important conceptual role they 
must play in the future development of the theory. 

Cognitive Systems and the Harmony Function H 

Def A cognitive system is a quintuple (R , p, 0, 1r, c) where: 

R is a representational space, 
p is an environment, 
0 is a set of statistical observables, 
n is the maximum-entropy estimate 1r p,O of environment p 

with observables 0, 
c is the maximum-likelihood completion function determined 

by 7T. 

Def Let X be a finite space and V: X--+ R. The Gibbs distribution 
determined by V is 

Pv(x) = z-1 eV(x) 

where Z is the normalization constant: 

Z = L eV(x). 

x EX 
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., 
I''· 

Theorem 1: Competence. A: The distribution 7T of the cognitive 
system (R, p, 0, 7T, c) is the Gibbs distribution Pu ·determined by 
the function 

U(r) = L AaXa(r) 
aEO 

for suitable parameters A = {Aala E 0 (S. Geman, personal com­
munication, 1984). B: The completion function c is the maximum­
likelihood completion function cPn of the Gibbs distribution p11 , 

where H: M -R, M = R x A, A = (0,1}1°1, is defined by 

H(r,a) = L O"a aa h(r,ka) 
aEO 

and 

I 
for suitable parameters u = {a-ala E 0 and forK sufficiently1 close 
to )· ', . \ 

1 > K > 1- 2/[maxlkal]· 
aEO 

Theorem 2 will describe how the variables a = {aala E 0 can be used 
to actually compute the completion function. Theorem 3 will describe 
how the parameters u can be learned through experience in the 
environment. Together, these theorems motivate the following 
interpretation. 

Terminology. The triple ( ka, ua, aa) defines the knowledge atom or 
memory trace a. The vector ka is called the knowledge vector of atom a. 
The knowledge vector is an unchanging aspect of the atom. The real 
number a-a is called the strength of atom a. This strength changes with 
experience in the environment. The { 0, 1} variable a a is called the 
activation of atom a. The activation of an atom changes during each 
computation of the completion function. The set K = ( (ka, a-a>L. E 0 
is the long-term memory state or knowledge base of the cognitive system. 
The vector a of knowledge atom activations {aala E 0 is the working­
memory state. The value h ( r, ka) is a measure of the consistency 
between the representation vector r and the knowledge vector of atom 
a; it is the potential contribution (per unit strength) of atom a to II. 
The value H ( r, a) is a measure of the overall consistency between the 
entire vector a of knowledge atom activations and the representation r, 
relative to the knowledge base K. Through K, II internalizes within 

6. UARMONY THEORY 269 

the cognitive system some of the statistical regularities of the environ­
ment. Viewing the completion of an input t as an inference process, 
we can say that // allows the system to distinguish which patterns of 
features r are more self-consistent than others, as far as the environmen­
tal regularities are concerned. This is why II is called the harmony 
fimction. 

Def The cognitive system determined by a harmony function H can 
be represented by a graph which will shortly be interpreted as a network 
of stochastic parallel processors (see Figure 27). For each cobrdinate of 
the cognitive system's mental space M, that is, for each feature r1 and 
each atom a, there is a node. These nodes carry binary values; the 
node for feature r; carries the value of r; E {+ 1, -1}, while the node 
for atom a carries the activation value a a E { 1 ,0}. If the value of ka 
for a feature r; is + 1 or -1, there is a link with the corresponding ± 1 
label joining the nodes for a a and r1• Finally, each node a is labeled by 
its strength, a-a· The graphs of harmony networks are two-color; if 
feature nodes are assigned one color and atom nodes another, all links 
go between nodes of different colors. This will turn out to permit a 
high degree of parallelism in the processing network. 

Retrieving Information From H: Performance 

Dej Let {p,} ,-_ 0 be a sequence of probability distributions on a 
binary cube X = Bn. The paths of the (one-variable heat bath) stochas­
tic process x determined by {p,} is defined by the following procedure. 
At time t = 0, x occupies some state x (0) = x E X, described by 

CTO (]' , 
0 

FIGURE 27. A harmony network: The graph associated with a harmony function. 
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some arbitrary initial distribution, pr(x (0) = x). Given the initial state 
x, the new state at Time 1, x (l), is constructed as follows. One of the 
n coordinates of M is selected (with uniform distribution) for updating. 
All the other n-1 coordinates of x (1) will be the same as those of 
x (0) = x. The updated coordinate can retain its previous value, lead­
ing to x (1) = x, or it can flip to the other binary value, leading to a 
new state that will be denoted x'. The selection of the value of the 
updated coordinate for x (1) is stochastically chosen according to the 
likelihood ratio: 

pr(x (1) = x') _ Po(x') 
pr(x(l) = x) - Po(x) 

(where Po is the probability distribution for t = 0 in the given 
sequence {p,} :0,., o). This process-randomly select a coordinate to 
update and stochastically select a binary value for that coordinate-is 
iterated indefinitely, producing states x (t) for all times 
t = l, 2, . . . . At each time t, the likelihood ratio of values for the 
stochastic choice is determined by the distribution p1 • 

Def. Let p be a probability distribution. Define the one-parameter 
family of distributions Pr by 

Pr =Nil pliT 

where the normalization constants are 

Nr = L P (x)liT. 
xEX 

T is called the temperature parameter. An annealing schedule T is a 
sequence of positive values { T,} ;':0 that converge to zero. The anneal­
ing process determined by p and T is the heat bath stochastic process 
determined by the sequence of distributions, Pr. If p is the Gibbs dis-, 
tribution determined by V, then 

where 

Pr (x) = z i t e v (x )/ T 

Zr = L eV(x)/T. 

xEX 

This is the same (except for the sign of the exponent) as the relation­
ship that holds in classical statistical mechanics between the probability 
p ( x) of a microscopic state x, its energy V ( x), and the temperature T. 
This is the basis for the names "temperature" and "annealing schedule." 
In the annealing process for the Gibbs distribution Pu of Theorem l on 
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the space M, the graph of the harmony network has the following sig­
nificance. The updating of a coordinate can be conceptualized as being 
performed by a processor at the corresponding node in the graph. To 
make its stochastic choice with the proper probabilities, a node updating 
at time t must compute the ratio 

Pr, (x') = e(l/(x')- 1/Cx>VT, 

Pr (x) · 
I 

The exponent is the difference in harmony between the two choices of 
value for the updating node, divided by the current computational tem­
perature. By examining the definitions of the harmony function and its 
graph, this difference is easily seen to depend only on the values of 
nodes connected to the updating node. Suppose at times t and t+ 1 two 
nodes in a harmony network are updated. If these nodes are not con­
nected, then the computation of the second node is not affected by the 
outcome of the first: They are statistically independent. These compu­
tations can be performed in parallel without changing the statistics of 
the outcomes (assuming the computational temperature to be the same 
at t and t+ 1). Because the graph of harmony networks is two-color, 
this means there is another stochastic process that can be used without 
violating the validity of the upcoming Theorem 2.27 All the nodes of one 
color can update in parallel. To pass from x (t) to x (t+ 1), all the nodtts 
of one color update in parallel~ then to pass from x (t+ 1) to x (t+ 2), all 
the nodes of the other color update in parallel. In twice the time it 
takes a processor to perform an update, plus twice the time required to 
pass new values along the links, a cycle is completed in which an 
entirely new stale (potentially different in all N + 101 coordinates) is 
computed. 

Theorem 2: Realizability. A: The heat bath stochastic process 
determined by Pu converges, for any initial distribution, to the dis­
tribution 1T of the cognitive system (R, p, 0, 1T, c) [Metropolis et 
al., 1953}. B: The annealing process determined by PH converges, 
for any initial distribution, to the completion function of the cogni­
tive system, for any annealing schedule that approaches zero suffi­
ciently slowly (Geman & Geman, 1984). 

Part A of this theorem means the following. Suppose an input r. is 
given. Those features specified in ' to have values + l or -1 are 

27 This is an important respect in which harmony networks differ from the arbitrary 
networks allowed in lhe Boltzmann machine. 
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assigned their values, which are thereafter fixed. The remammg 
features are assigned random initial values; these will change through 
the stochastic process. Now we begin the stochastic process determined 
by Pu. (The state space X is now R, and the same distribution Pu is 
used for all times.) The nonfixed variables fiip back and forth between 
their binary values. As time progresses, the probability of finding the 
system in any state r:JL approaches the maximum-entropy estimate 
1r ( r) (conditioned on ', so that only completions of , have nonzero 
probability). The meaning of Part B of Theorem 1 is this: As in Part 
A, we fix the features specified in the input , and start the other 
features off with random values. The activation variables are assigned 
initial values, say, of 0. We start the annealing process determined by 
p11 • (The state space X is now M = R x A .) The unfixed features and 
all the activations flip between their values. The temperature drops 
according to the annealing schedule. As time progresses, the probabil­
ity of finding the system in a state other than a maximum-likelihood 
completion of ' goes to zero. (If there are multiple maximum­
likelihood completions, these completions become equally likely as time 
progresses.) 

Storing Information in f/: Learning 

Def (After Hinton & Sejnowski, 1983a.) Let (R, p, 0, 1r, c) be a 
cognitive system. The trace learning procedure is defined iteratively as 
follows. Initially, let A a = 0 for all a E 0. Present the system with a 
sample of states, r, drawn from the environmental distribution, p 

(environmental observation). Now store an increment for each Aa equal 
to the mean of Xa ( r) in this sample. Next, use the current A to define 
U as in Theorem 1 and use the stochastic process determined by Pu to 
generate a sample of values of r from the distribution Pu, following 
Theorem 2 (environmental simulation). Now store a decrement for each 
A a equal to the mean of X a ( r) in this sample. Finally, change each A a 
by the stored increment minus the decrement. Repeat this observe­
environment/ simulate-environment/ modify-A cycle. Throughout the 
learning, define 

A a 
O"a = -1--. 

-K 

For small AA, a good approximate way to implement this procedure is 
to alternately observe and simulate the environment in equal 
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proportions, and to increment (respectively, decrement) Aa by AA each 
time the feature pattern defining a appears during observation (respec­
tively, simulation). It is in this sense that u a is the strength of the 
memory trace for the feature pattern ka defining a. Note that in learn­
ing, equilibrium is established when the frequency of occurrence of 
each pattern ka during simulation equals that during observation (i.e., 
Au has no net change). 

Theorem 3: Learnability. Suppose all knowledge atoms are 
independent. Then if sufficient sampling is done in the trace learn­
ing procedure to produce accurate estimates of the observable statis­
tics, A and u will converge to the values required by Theorem 1. 

Independence of the knowledge atoms means that the functions 
{xala E 0 are linearly independent. This means no two atoms can have 
exactly the same knowledge vector. It also means no knowledge atom 
can be simply the "or" of some other atoms: for example, the atom 
with knowledge vector +0 is the "or" of the atoms++ and+-, and so 
is not independent of them. (Indeed, X+O =X+++ X+-·) The sampling 
condition of this theorem indicates the tradeoff between learning speed 
and performance accuracy. By adding higher order statistics to 0 
(longer patterns), we can make 1T a more accurate representation of p 
and thereby increase performance accuracy, but then learning will 
require greater sampling of the environment. 

Second-Order Observables and the Boltzmann Machine 

Consider the special case in which the observables 0 each involve no 
more than two features. The largest independent set of such observ­
ables is the set of all observables either of the form 

a;: [r; = +] 

or the form 

with i <), i.e., 
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To see that the other first- or second-order observations are not 
independent of these, consider a particular pair of features r; and r1 , 
and let 

and 

XOb 2 = Xlr1 -b 2J· 

Then notice: 

X+- = X+O- X++ 

X-o = 1- X+O 

X-- = 1 -X++- X+-- X-+ 

= 1- X++- [x+o- X++)- fxGt- X++). 

Thus, the x-functions for all first- and second-order observations can 
be linearly generated from the set 

which will now be taken to be the set of observables. I will abbreviate 
AaiJ as "Au and X a, as "A;. Next, consider the U function for this set, 0: 

U = ~A X = ~A··x··+~A·X· L.J aa LuuL11 
a E 0 i<j i 

= LAuX;XJ + LA;X;· 
l<j i 

Here I have used 

Xu = XiXJ 

which follows from 

au = a 1 & aJ. 

Now using the formula for x given above, 

{ 
1 iff; = + 

X; = 'h(r; + 1) = 0 if r; 
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If we regard the variables of the system to be the x1 instead of the r1, 
this formula for U can be identified with minus the formula for energy, 
E, in the Boltzmann machine formalism (see Chapter 7). The mappina 
takes the harmony feature r; to the Boltzmann node x1, the harmony 
parameter Au to the Boltzmann weight w0 , and minus the parameter A. 1 
to the threshold 0;. Harmony theory's estimated probability for states 
of the environment, eu, is then mapped onto the Boltzmann machine's 
estimate, e-E. For the isomorphism to be complete, the value of). 
that arises from learning in harmony theory must map onto the weights 
and thresholds given by the Boltzmann machine learning procedure. 
This is established by the following theorem, which also incorporate! 
the preceding results. 

Theorem 4. Consider a cognitive system with the above set of first­
ami second-order observables, 0. Then the weights ( wu) I<J and 
thresholds {O;L learned by the Boltzmann machine are related to the 
parameters A generated by the trace learning procedure by the rela­
tions wu = Au and 0; = -A;. It follows that the Boltzmann 
machine energy function, E, is equal to - U, and the Boltzmann 
machine's estimated probabilities for environmental states are the 
same as those of the cognitive system. 

This result shows that the Boltzmann criterion of mrmmrzmg the 
information-theoretic distance, G, between the environmental and 
estimated distributions, subject to the constraint that the estimated dis~ 
tribution be a Gibbs distribution determined by a quadratic function, 
- E, is a consequence of the harmony theory criterion of minimizins 
the information of the estimated distribution subject to environmental 
constraints, in the special case that these constraints are no higher than 
second order. 

Proofs of the Theorems 

Theorem 1. Part A: The desired maximum-entropy distribution 1T is 
the one that maximizes S (rr) subject to the constraints 

L 7T(r) == I 
r E R 

and 

<xa>1T = Pa 

where < > 1T denotes the expected value with respect to the distribu­
tion 7T, and fPala E 0 are the observable statistics of the environment. 
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We introduce the Lagrange multipliers A. and Aa (see, for example, 
Thomas, 1968) and solve for the values of rr ( r) obeying 

0 = 
0 

~ ) { I, rr ( r',) In rr ( r') 
1f r r· E R · 

L A.a( _I, Xa ( r')rr (r') - Pu] - A [_I, 1f (r'
1
)- Ill· 

aEO rER · rER 

This leads directly to A. Part B: Since Xa can be expressed as the pro­
duct of lkal terms each linear in the feature variables, the function U is 
a polynomial in the features of degree lka 1. By introducing new vari­
ables a a, U will now be replaced by a quadratic function fl. The trick 
is to write 

as 

{ 
1 if r·ka/lkal = 1 

X a ( r) = 0 otherwise 

where K is chosen close enough to 1 that r·kjlkal can only exceed K 

by equaling l. This is assured by the condition on K of the theorem. 
Now U can be written 

U ( r) = L rr a max [a a h ( r, ka) 1 = max H (a, r) 
a E 0 a" E {O.IJ a E A 

where the strengths u a are simply the Lagrange multipliers, rescaled: 

A a 
O'a = -~-. 

-K 

Computing the maximum-likelihood completion function C11 requires 
maximizing rr ( r) a: e u<r> over those r E R that are completions of the 
input c.. This is equivalent to maximizing U (r), since the exponential 
function is monotonically increasing. But, 

max U(r) = max max H(r, a). 
r:::lL r:::lL a E A 

Thus the maximum-likelihood completion function C11 = cPu deter­

mined by rr, the Gibbs distribution determined by U, is the same as 
the maximum-likelihood completion function cP

11 
determined by p11 , 

the Gibbs distribution determined by H. Note that PH is a distribution 
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on the enlarged space M = R x A. For Theorem 3, the conditions 
determining the Lagrange multipliers (strengths) will be examined. 

Theorem 2. Part A: This classic result has, since Metropolis et at. 
(1953), provided the foundation for the computer simulation of ther­
mal systems. We will prove that the stochastic process determined by 
any probability distribution p always converges to p. The stochastic 
process x is a Markov process with a stationary transition probability 
matrix. (The probability of making a transition from one state to 
another is time-independent. This is not true of a process in which 
variables are updated in a fixed sequence rather than by randomly 
selecting a variable according to some fixed probability distribution. 
For the sequential updating process, Theorem 2A still holds, but the 
proof is less direct [see, for example, Smolensky, 1981]). Since only 
one variable can change per time step, lXI steps are required to com­
pletely change from one state to another. However in lXI time steps, 
any state has a nonzero probability of changing to any other state. In 
the language of stochastic processes, this means that the process is 
irreducible. It is an important result from the theory of stochastic 
processes that in a finite state space any irreducible Markov process 
approaches, in the above sense, a unique limiting distribution as t~oo 
(Lamperti, 1977). It remains only to show that this limiting disttilbu­
tion is p. The argument now is that p is a stationary distribution of the 
process. This means that if at any time t the distribution of states of 
the process is p, then at the next time t+ 1 {and hence at all later 
times) the distribution will remain p. Once p is known to be stati6n­
ary, it follows that p is the unique limiting distribution, since we could 
always start the process with distribution p, and it would have to con­
verge to the limiting distribution, all the while remaining in the station­
ary distribution p. To show that p is a stationary distribution for the 
process, we assume that at time i the distribution of states is p. The 
distribution at time t+ I is then \ \ 

pr(x(t+l) = x) = L pr(x(t) = x') pr(x(t+l) =xI x(t) == x') 
x' Ex. I 

= L p{x}) Wx·x· 
x' Ex. 1 

The sum here runs over x., the set of states that differ from x in at 
most one coordinate~ for the remaining states, the one time-step transi­
tion probability Wx' x = pr(x (t+ 1) = x lx (t) = x') is zero. Next we 
use the important detailed balance condition, I 

p ( x') JVx· " = p (x) Wx x' 
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which states that in an ensemble of systems with states distributed 
according to p, the number of transitions from x' to x is equal to the 
number from x to x'. Detailed balance holds because, for the non­
trivial case in which x' and x differ in the single coordinate v, the tran­
sition matrix W determined by the distribution p is 

p (x) 
Wx·x = Pv p (x) + P (x) 

I 
where P11 is the probability of selecting for update the coordinate v. 
Now we have 

pr(x (t+ 1) = X) = L p ( x') Wx· x = I, p (x) Wx x' 
x' E Xx · x' E Xx 

= P (X) I, Wx x· = p (x). 
x' E Xx 

The last equality follows from 

L Wxx' = 1 
x' EX~. 

which simply states that the probability of a transition from x to some 
state x' is 1. The conclusion is that the probability distribution at time 
t+ 1 remains p, which is therefore a stationary distribution. 

Part B: Part A assures us that with infinite patience we can arbitrarily 
well approximate the distribution Pr at any finite temperature T. It 
seems intuitively clear that with still further patience we could sequen­
tially approximate in one long stochastic process a series of distributions 
Pr with temperatures T, monotonically decreasing to zero. This pro-, 
cess would presumably converge to the zero-temperature distribution 
that corresponds to the maximum-likelihood completion function. A 
proof that this is true, provided 

T, > C/ In t 

for suitable C, can be found in S. Geman and D. Geman (1984). f 

Theorem 3. We now pick up the analysis from the end of the proof 
of Theorem 1. 

Lemma. (S. Geman, personal communication, 1984.) The values of 
the Lagrange multipliers A. = {'Aala E 0 defining the function U of 
Theorem 2 are those that minimize the convex function: 
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L >-afxa(r)-pa) 

F('A) = lnZv('A) =In Lea E 0 • 

r E R 

Proof of Lemma: Note that 

p u ( r) = p v ( r) = z v ('A )-1 e v < r) 

where 

V(r) = L 'Aalxa(r)-pa] = U(r)- L 'AaPa· 
crEO crEO 

From this it follows that the gradient ofF is 

(JF 
~ = < Xa > Pu- Per 

a 

The constraint that 'A enforces is precisely that this vanish for all a; 
then Pu = 1r. Thus the correct 'A is a critical point of F. To see that 
in fact the correct 'A is a minimum of F, we show that F has a 
positive-definite matrix of second-partial derivatives and is therefore 
convex. It is straightforward to verify that the quadratic form 

(J2p 

L qa OA OA ' qa· a ,a· E 0 a a 

is the variance 

< (Q- < Q> Pu)
2 > Pu 

of the random variable Q defined by Q ( r) = I, qa X a ( r). !his 
crEO 

variance is clearly nonnegative definite. That Q cannot vanish is 
assured by the assumption that the Xa are linearly independent. Since ~ 
Gibbs distributipn Pu is nowhere zero, this means that the variance o( 
Q is positive, so the Lemma is proved. 

Proof of Theorem 3: Since F is convex, we can find its minimum, A., 
by gradient descent from any starting point. The process of learniri.l 
the correct 'A, then, can proceed in time according to the gradient deft 
cent equation 

where il is understood that the function U changes as 'A changes. The 
two phases of the trace learning procedure generate the two terms in 
this equation. In the environmental observation phase, the incremerH 
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<xa> P is estimated~ in the environmental simulation phase, the decre­

ment <xa> Pu is estimated (following Theorem 2). By hypothesis, 

these estimates are accurate. (That is, this theorem treats the ideal case 

of perfect samples, with sample means equal to the true population 

means.) Thus A will converge to the correct value. The proportional 

relation between u and A was derived in the proof of Theorem l. 

Theorem 4. The proof of Theorem 3 shows that the trace learning 

procedure does gradient descent in the function F. The Boltzmann 

learning procedure does gradient descent in the function G: 

Pu(r) 
G(A) =-I,p(r) ln--

r p (r) 

where, as always, the function U implicitly depends on A. Theorem 4 

will be proved by showing that in fact F and G differ by a constant 

independent of A, and therefore they define the same gradient descent 

trajectories. From the above definition of V, we have 

V(r) = U(r)- L Aa<xa> = U(r)- <U> 
aEO 

where, here and henceforth, < > denotes expectation values with 

respect to the environmental distribution p. This implies 

}:eV<r> = e-<U> I,eu<r>, 

i.e., 

Zv = Zu e-<U>. 

By the definition ofF, 

F = lnZv = lnZu- < U> = < lnZu- U >. 

To evaluate the last quantity in angle brackets, note that 

py(r) = Zjj 1 eU<d 

implies 

lnpu(r) = -lnZu + U(r) 

so that the preceding equation for F becomes 

F = < lnZu- U > =- < lnpu > =- I,p(r) lnpu(r). 
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Now, 

so we have 

G (A ) = F (A ) - S (p ) . 

Thus, as claimed, G is just F minus a constant that is independent o( 

A: the entropy of the environment. 
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