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ABSTRACT 

The goal of this research is to test a central hypothesis: that gas species 

generated by the thermal and/or catalytically assisted decomposition of 

hydrocarbons in an inert atmosphere can reduce metal oxides to a metallic state. 

It is postulated that the decomposition releases gas phase radicals that can bind 

with oxygen in the metal oxides, forming volatile, stable oxides such as CO2 and 

water. This research consisted of thermally decomposing several types of solid 

hydrocarbon, including wax and low-grade coal, both with and without 

catalysts, in a nitrogen environment at >600 °C, located immediately below beds 

of micron scale particles of either NiO or Fe3O4. X-ray diffraction and scanning 

electron microscopy analysis showed, in support of the hypothesis, both metal 

oxides reduced to some extent. Nickel oxide reduced fully in many cases, but 

iron oxide never fully reduced and the extent of reduction was found to be a 

function of hydrocarbon, catalyst and temperature. These results suggest solid 

hydrocarbon assisted reduction (SHAR) with further testing and development 

may be a practical means to make sub-micron particles suitable in terms of price 

and quality for use in particle injection molding and 3D manufacturing of precision 

metal parts. 
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I. INTRODUCTION 

3D manufacturing is a method of intense interest to both the U.S. 

government, and industrial firms world wide [1]. The Navy is interested in the use 

of 3D manufacturing as a means to reduce the tonnage of spare parts required 

on vessels. As only a small fraction of stored parts are employed in any single 

voyage, most of the spare part tonnage is an expensive (space and cost), 

complex, insurance policy. The hope is that instead of carrying parts, the vessels 

will take “software instructions”, a “3D printer” and the raw material required for 

the construction process. This will reduce storage space, inventory management, 

supplier complexity and capital cost. In some ways, the switch from spare part 

inventories to 3D manufacturing can be compared to the dramatic cost reduction 

associated with a switch for major manufacturing processes from storing parts to 

just-in-time protocols.  

One major barrier to implementing this technology is that at present it 

works well only for plastic-based parts. Metal printer technology is more complex 

and expensive and the raw material, metal particles, is also expensive. Some of 

these technological barriers are gradually being overcome. In particular, the 

quality and reliability of 3D metal manufacturing tools is constantly improving, 

while capital investment requirements for equipment are expected to continue 

current downward trends [2]. Yet, it is not clear that there has been any similar 

improvement in the quality and cost of metal particles. 

The cost of particles is associated with the additional steps involved in the 

manufacturing technique. For example, to produce iron particles the first step is 

to produce bulk iron using the standard blast furnace approach. Iron particles are 

inherently more expensive than bulk iron because particle production requires an 

additional step. Metallic iron in molten form must be forced at high pressure 

through a nozzle or sieve under reducing conditions. The molten iron streams 

generated in this fashion break up, forming particles, which are subsequently 

solidified in a rapid cooling process. This technique, known as atomization, has 
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other limits as well. Indeed, the name is a misnomer. The particles that form are 

not particularly small. Average particle size is of the order of 50 microns. This 

actually limits the size of features that can be produced with the particles. Indeed, 

a smooth, full strength, part made from sintered particles requires that the 

particles be no more than ~10% of the size of the feature. To some extent the 

smaller particles in the distribution formed via atomization can be culled. Still, 

creating particle size distributions in which the average particle size is less than 

20 microns is very expensive. Other technologies are available for making 

smaller particles, such as precipitation from solution, but particles produced in 

this fashion are prohibitively expensive for bulk manufacturing. Hence, the 

smallest practical, full strength, features that can realistically be formed using 

todays’ standard, relatively inexpensive, particle technology are about 200 

microns in size.  

The present work explores a specific alternative to atomization as a 

means of particle production. In brief, the hypothesis is that reducing radicals 

produced by heating solid hydrocarbons, including coal, in inert atmospheres can 

reduce metal oxides. Prior to the present work, this technology was never 

postulated and never tested. Thus, this thesis presents the testing of a new 

method for metal particle production. The hypothesis is given this name: Solid 

Hydrocarbon Assisted Reduction (SHAR).  

For the purposes of the initial testing of the SHAR hypothesis as carried 

out in this thesis, two reactors were staged very closely together, with a 

separation of no less than 1 millimeter and no more than one centimeter. In one, 

a source of hydrocarbon was contained. In the other, a metal oxide was placed. 

With this arrangement, a more specific form of the hypothesis could be tested. To 

wit: The SHAR hypothesis would be considered validated if the metal oxide was 

reduced following heating of the two reactors in an inert atmosphere to a 

temperature sufficient to produce radicals. Other aspects of the SHAR 

hypothesis were also tested.  
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 Can SHAR be conducted at a temperature far lower than that 
required to melt the solid? 

 Can micron and even submicron particles be directly produced from 
metal oxide? 

 Can it be demonstrated that SHAR is less expensive than 
alternative particle production technologies?  

The simplest summary of the results is that the SHAR hypothesis has 

been demonstrated. Specifically:  

 SHAR can produce some metal from metal oxides at temperatures 
far below the melting temperature of the metal. 

 Sub-micron metal particles can be produced directly from metal 
oxide using SHAR.  

 SHAR can be successfully carried out using relatively small 
amounts of lignite coal, a very inexpensive form of solid 
hydrocarbon suggesting it is indeed a very inexpensive technology. 

The work also revealed limitations and clear directions for future work. 

Although SHAR could fully reduce NiO to form sub-micron Ni metal particles at 

850 C, far below the melting temperature of Ni, in this first work we were only 

able to partially reduce Fe3O4 to metallic iron particles, even at 950 C. 

There is clearly a need for more work to improve the process, specifically 

for the reduction of iron ore. The operating temperature may be refined based on 

the identity of the hydrocarbon and catalyst employed. The physical orientation of 

the experiment may be altered to ensure a more direct interaction between the 

oxide particles and the hydrocarbon decomposition products. The treatment time 

may be the variable of focus for future research, as the decomposition of 

hydrocarbons is this experiment may prove to be incomplete. 
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II. BACKGROUND 

To illustrate the potential value of the SHAR technique, the application and 

potential alternatives must first be evaluated. 

A. THREE DIMENSIONAL PRINTING 

Three-dimensional printing is of great interest to the Navy, and to the 

manufacturing industry at large. The U.S. Navy employed the first shipboard 3D 

printer on USS ESSEX, LHD-2, in the spring of 2014 [3]. Many suggestions for its 

employment have come for Sailors. For example, big deck ships such as LHDs 

and CVNs use a miniaturized facsimile of the flight deck colloquially known as an 

“Ouija Board” that uses models of aircraft to test aircraft staging strategies. A set 

of these models can range in cost between $8,000 and $10,000, but a version 

that is manufactured via 3D printing is an order of magnitude more cost effective 

at a range of $300-$400. [4] 

Though this example is useful to illustrate the cost saving opportunity that 

3D printing presents, the existing naval applications are limited to the use of 

polymers. The more ambitious goal is the manufacturing of components out of 

metal and metal alloys. The ability to construct such components as needed 

would dramatically relieve the strain on the existing supply system, and would 

reduce the costly insurance policy that is the soring of spare parts on naval 

vessels. Any effort that reduces the space required for storage opens the 

possibility to repurpose space for critical war fighting equipment such as sensors 

and armament. There are cases in the submarine force where 3D printing has 

been used to produce parts no longer produced by the original equipment 

manufacturer [5], which directly impacts fleet readiness. 

Improvements in the polymer-based additive manufacturing process are 

being adapted to metal based methods, but little has been done to improve the 

quality or production of the raw materials they require. One issue of quality 

relates to the available metal particle sizes. Metal particles less than ca. 30 
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microns are very expensive as they represent a very small fraction of the 

particles produced by grinding or atomization. As the ultimate size of a feature 

that can be produced using 3D metal printing, with accuracy, strength and 

smooth finish, is of the order 10 X the dimensions of the particles employed, the 

current available feedstock limits quality feature size to about 300 micron. The 

focus of this study is on improving the process to produce reduced metal 

powders, as would be employed in 3D printing, particularly particle size.  

In addition to 3D printing another older, widely used technology based on 

metal particles is particle injection molding (PIM). This technology allows metal 

parts to be made from particles injected with wax, or other removable binding 

material, into molds [6]. The wax is removed by heating or volatilization via 

pyrolysis, leaving a solid metal part of precise dimensions. Particularly for metal 

parts with fine components this can lead to tremendous cost savings relative to 

machining parts. This method is used extensively in the automotive sector, 

consumer electronics industry, and in the medical field [7]. Similar to 3D printing, 

the ultimate limitation on the feature size of component is a function of the size of 

the particles of construction [8]. Although this is not a technology that the Navy is 

exploring, it indirectly benefits from the existence of the technology. Clearly, Navy 

vehicles and other items normally include PIM made parts.  

B. INDUSTRIAL ORE REDUCTION 

The acceptance of this technique is dependent on its favorability 

compared to existing metal particle production processes currently in use in 

industry. In fact, the general process requires two steps. In the first, a very large-

scale (tons/hr) continuous process, the iconic pyrometallurgical reduction of iron 

oxide via blast furnace, is employed to reduce ore to the metallic form. Next, a 

second process of atomization is employed to convert molten metal into particles. 

The cost and complexity of this two-step process is outlined below.  
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1. Blast Furnace 

Up to 10,000 tons of product iron can be produced daily in an industrial 

blast furnace such as the one detailed in Figure 1. These furnaces can exceed 

60 m in height and 14 m in diameter [9]. 

 

Figure 1.  Blast Furnace for Industrial Iron Ore Reduction  
with Figure of a Person for Scale, from [9].  

The top of the blast furnace is charged via conveyor with iron, limestone, 

and coke. Limestone (CaCO3) is used as a source of calcium oxide, which acts 

as flux to create a fusible slag from silicates and other impurities found in the iron 

ore [10] by Equation 1. In addition to silica, the slag also contains calcium and 

magnesium oxides [11]. This slag layer provides a secondary benefit in that 

protects the molten iron from the heated air supplied via blast nozzles. 

 CaO  SiO2 CaSiO3  (1) 
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Coke is coal that has undergone an energy-intensive heat treatment in an 

oxygen-deficient environment to raise the carbon concentration and remove 

volatile components such as benzene and ammonia [12]. The resulting carbon 

content can be 90 percent and greater. This carbon enrichment is needed, as it 

serves as the fuel for the chemical reduction process. Preheated air is supplied 

to the blast furnace near the bottom, as it is needed for the partial combustion 

reaction of the coke, and the concomitant production of the actual reducing 

species, such as carbon monoxide..  

To yield 1 kg of crude iron from this process, approximately 2 kg of ore, 

1 kg of coke, 0.3 kg of limestone, and 1.5 kg of air are required [9]. Depending on 

the quality of ore used, refining and heat treatment may be required to form 

pellets of acceptable hardness for use in the blast furnace. This is a prime 

example of a material- and energy-intensive industrial process. 

The carbon in the coke and the oxygen supplied in the lower part of the 

blast furnace react to form carbon monoxide by Equation 2. 

 2C O2  2CO   (2) 

This reaction is exothermic with a -32.808 kcal/mol change in standard 

free energy, and provides the heat needed for furnace operation. The 

temperature can be controlled through the precise control of moisture in the 

supplied air, as it reacts endothermically in the manner shown in Equation 3. 

 C  H2O  CO  H2   (3) 

The limestone charged into the top of the blast furnace decomposes into 

CO2 and CaO. The iron ore is reduced by carbon monoxide by Equation 4 as 

well as by hydrogen as in Equation 5 among others. 

 Fe3O4  4CO  3Fe 4CO2  (4) 

 Fe3O4  4H2  3Fe 4H 2O   (5) 
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The generated heat and reduction of iron ore results in a distinct layer of 

molten iron at the bottom of the furnace covered by a layer of slag. The formation 

of molten metal clearly indicates the furnace reaches temperatures in excess of 

the melting temperature of iron, ~1540 C. Port locations are located to tap these 

layers individually, allowing the distinct removal of molten iron and waste 

products. The molten iron resulting from this process is typically used for the 

manufacture of steel through the use of alloying agents. 

The blast furnace process described here is suboptimal for on demand 

manufacturing, as it is a continuous process that is ill suited for production of the 

small quantities required for batch manufacturing.  

2. Atomization 

The ductility of metal makes it very difficult to grind or otherwise 

mechanically seperate bulk metal into particles smaller than approximately 50 

microns. In contrast, non-ductile, that is brittle materials such as metal oxides, 

can readily be ground to the range of a single micron in size. Thus, very small 

metal particles are traditionally made from the molten form.  

Atomization of liquids can be accomplished hydraulically, where the liquid 

is forced through a nozzle by high pressure into a relatively stationary gas, or 

pneumatically, where a high velocity gas stream imparts the required energy to a 

stationary liquid. In either case, the environment and temperature of the atomized 

liquid droplets is tightly controlled to yield solidified powders with the desired 

characteristics [13]. The two methods of atomization have been a great subject of 

study, including the impact of temperature and pressure on the created droplets 

[14], but there are fundamental limitations to these techniques. There is an 

inverse relation between applied pressure and particle size; the higher the forcing 

pressure, the smaller the particles. The pressures applied are maximized in 

industrial atomization processes. Further increases in pressure would risk 

physical destruction of the device. Yet, this still only produces average particles 

with dimensions in the tens of microns. Moreover, an unfortunate property of 
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these resulting particles is their tendency to relax by recombining, resulting in 

larger particles after the initial processing has been completed. Thus, it is difficult 

to form particles less than 20 micron average size even with atomization. 

C. ALTERNATIVE SHAR APPROACH 

The novelty of the proposed technique is that the metal oxide stock is 

already in powder form, and is reduced by gaseous radicals. The absence of 

physical contact between the oxide and the reducing agent has the benefit of 

negating any type of post treatment separation process. Metal oxide particles can 

be produced simply through physical processes such as grinding and filtering, 

and there is no recombination effect of the oxide particles, as they exist in a more 

thermodynamically favored state than their reduced counterparts. 
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III. EXPERIMENTAL METHODS 

A. EXPERIMENTAL SETUP 

The protocols designed in this section were designed to test the central 

hypothesis: gas species generated by the thermal and/or catalytically assisted 

decomposition of hydrocarbons in an inert atmosphere can reduce metal oxides 

to a metallic state. Thus, the experimental setup consisted of these components: 

i) a first vessel in which the selected hydrocarbons/catalysts could be 

decomposed in an inert atmosphere under selected temperature conditions, and 

ii) a second vessel to hold metal oxides, which was in contact with the first vessel 

only via the gas phase. The equipment setup required for the execution of 

experiments consisted of the two vessels described above, an oven for 

temperature control, a tubular quartz reactor to house the two vessels, and the 

apparatus required to maintain atmospheric control of the process as shown in 

Figure 2. 

The reactor, fabricated of quartz to withstand the temperatures utilized, 

was of these dimensions: 25 mm outer diameter, 22 mm inner diameter, 0.6 m in 

length. The ends of the reactor were sealed to a gas flow system that permitted 

the system to be purged of air, and then maintained under a flowing inert gas. 

The exiting gas was routed to a standard fume hood for safety. 

The tube furnace used for these experiments was a model TF55035A-1, 

which is manufactured by Lindberg/Blue M out of Ashville, North Carolina. This 

unit is rated at 800 kW and has a maximum continuous operating temperature of 

1100 C. 
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Figure 2.  Experimental Apparatus 

The structure of the two vessels is key to the experiment. In all cases, the 

hydrocarbon, and in most cases both hydrocarbon and catalyst, were placed in 

an alumina boat (first vessel) measuring 90 x 16 mm at the opening, with a 

height of 12 mm. The second vessel, shown in Figure 3, was fabricated from 

either Grafoil, a commercial high purity (>99 %) graphite sheet of thickness 0.4 

mm, described in more detail in [15]. 
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Figure 3.  Grafoil Sample Containment 

Initially Grafoil was employed for the second vessel. A piece of Grafoil, of 

approximate dimensions 95 x 40 mm was fashioned to fit on top of the first 

vessel. The middle third was manually punctured with a sewing pin in an array of 

5 rows of 32 holes measuring 0.6 mm in diameter to allow gas flow. The metal 

oxide powder was then contained in the folded Grafoil, and the loaded second 

vessel placed directly on top of the alumina boat / first vessel. When inserted into 

the quartz tube, the folded Grafoil placed the assembled sample under slight 

compression, aiding in stability when transitioning the tube to and from the oven. 

 Later experiments with iron oxide employed T304 stainless steel mesh, 

basically fashioned into the same shape as that shown for Grafoil, shown in 

Figure 4, and tightly fitted to the top of the alumina boat. Specifically, the 200 x 

200 per 2.54 cm mesh is made from 0.0533 mm diameter wire, which has 

openings measuring 0.07 mm, for an opening area percentage of 33.6%. This 

item is stocked under the part number 200X200S0021W48T by TWP Inc. in 

Berkeley, California. The stainless steel mesh was folded in three segments 

similar to the Grafoil it replaced. 
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Figure 4.  Stainless Steel Mesh and Sample Containment 

The reducing agent, composed of a hydrocarbon or a hydrocarbon / 

catalyst physical mixture, was prepared by first measuring the appropriate 

amount of hydrocarbon / catalyst to be used via a standard balance. The chosen 

hydrocarbon source and catalyst (if desired) was mixed thoroughly by stirring in 

an alumina boat. The second vessel was loaded with the desired amount of 

metal oxide powder. Generally, there was a simple mass relationship between 

the reducing agent and the metal oxide powder. 

B. EXPERIMENTAL PROCESS 

The quartz tube was staged in front of the oven, and the sample inserted 

from the right (or upstream) end approximately 10 cm. Both tube ends were then 

capped using a four piece Ultra-Torr Swagelok fitting which formed a tight seal 

via a compressed O-ring, leaving a smaller fitting suitable for securing standard 5 
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mm plastic tubing. The upstream fitting was connected to a regulated supply of 

clean compressed nitrogen (N2) gas by plastic tubing, and the downstream fitting 

was used to route plastic tubing to a standard laboratory fume hood. 

The apparatus was then purged with N2 gas for a nominal period of 20 

minutes at a flow rate of 100 cc/min. The flow of N2 gas was controlled using a 

FM-1050 series high accuracy flowmeter manufactured by Matheson Tri-Gas, 

part number ME14C201I200. At the completion of the purge period, the N2 gas 

flow rate wa reduced to 10 cc/min, and flow was again verified. The flow rate of 

N2 gas was maintained at 10 cc/min for the remainder of the experiment. 

When the tube furnace reached the desired temperature of 850 C, the 

quartz tube was inserted such that the upstream end containing the sample 

remained external to the furnace. Once the furnace temperature stabilized, the 

sample heat cycle was commenced by simply sliding the tube to the left, 

ensuring the sample was near the center of the pre-heated furnace. Compact 

fans were staged to cool the Ultra-Torr Swagelok fittings during the heat cycle to 

protect the O-rings from thermal damage. The heat cycle was complete after 10 

minutes, and the tube was removed with the aid of heat resistant gloves. The 

tube was then allowed to cool to room temperature, while maintaining the 10 

cc/min N2 flow. 

Once the sample is cool, the Swageloks were disassembled, and the 

sample was removed. The treated metal oxide was then weighed and quickly 

placed in a glass vial. The vial was purged with clean Argon gas for a period of 

10 to 15 seconds to displace the atmospheric gasses, capped tightly and sealed 

with Parafilm. This process of handling and storage was executed to minimize 

the exposure of the sample to the environment, which could result in re-oxidation 

of reduced metal powder created by the experiment. 

The residual material that remains in the alumina boat was also weighed 

and retained in a separate vial. This residual material was stored by lightly 

capping the vial, with no Ar purge or sealing film used. 
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The first few experiments were used to test the effectiveness of the 

experimental apparatus as much as the result of the reaction. The only deficiency 

noted in this phase was the potential to clog the downstream plastic tubing with 

the products of the reaction. To mitigate this risk, the process was modified to 

include the cleaning of the downstream section of plastic tubing and cleaning all 

surfaces of the Ultra-Torr fitting prior to use. This method proved to be sufficient 

to prevent clogging. 

1. Variables and Controls 

The experiment was conducted with many variable parameters that could 

be manipulated to optimize the results, but the combination of sample materials 

was the variable that receives the most scrutiny here. Three separate solid 

hydrocarbon sources were utilized: common candle wax, paraffin wax, and coal. 

The coal used in this case is low quality brown coal, or lignite. Two different 

catalysts were chosen for this experiment, sodium carbonate monohydrate 

(Na2CO3
.H2O) and potassium carbonate (K2CO3). Each solid hydrocarbon and 

catalyst combination was tested. Control experiments for each solid hydrocarbon 

with no catalyst were also performed. The set of experiments were performed 

using magnetite or iron oxide (Fe3O4) and nickel oxide (NiO) as targets for 

reduction. As the combination of materials shown in Table 1 chosen was the 

variable of focus, the mass of each constituent was held close to equal as 

possible. A target mass of 0.3 g for each ingredient was chosen, as the volume 

of the alumina boat used to contain the hydrocarbon and catalyst mixture was a 

limiting factor. 

Table 1.   Investigated Material Species 

Oxides Hydrocarbons Catalysts Temperature (C) 

NiO Candle Wax Na
2
CO

3
 850 

Fe
3
O

4
 Paraffin K

2
CO

3
 950 

Lignite None 
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The atmosphere control strategy of purging the quartz tube with N2 gas at 

a rate of 100 cc/min for 20 minutes and maintaining a flow rate of 10 cc/min was 

utilized for all experiments. Changing the purge flow rate, duration, or the static 

flow rate for the execution of the heat cycle was not chosen as a variable of 

interest. Choosing a different purge gas, such as argon may be of interest in 

future experiments, as it is heavier than N2 and is a more effective displacer of 

oxygen. 

The heat cycle of 850 °C for 10 minutes was utilized for the initial set of 

experiments. This was chosen as the candle wax and paraffin wax would melt 

and provide the appropriate hydrocarbon and catalyst interaction for the 

experiment.  

2. Materials and Equipment 

The materials utilized for this study include magnetite powder (Iron(II,III) 

Oxide powder, < 5 µm, 95%, CAS 1317-61-9) and nickel oxide powder (Nickel 

(II) Oxide green, -325 mesh, 99%, CAS 1313-99-1) as the source material, with 

sodium carbonate monohydrate (99.5%, A.C.S. reagent, CAS 5968-11-6) and 

potassium carbonate (99.995% trace metals basis, CAS 584-08-7) as catalysts. 

The solid hydrocarbon sources selected were wax from a dye free unscented 

candle, premium candle wax manufactured by Yayley Enterprises, and lignite 

coal sourced from the National Institute of Carbon in Oviedo, Spain. 

The two forms of wax were sourced from a local arts and crafts store, and 

did not require any special storage or handling. The lignite was maintained in a 

sealed plastic bag that was evacuated using a hand pump. The bag was then 

secured inside a second evacuated bag, and stored in a commercial freezer for 

long-term storage. 

All weight measurements were performed on an Ohaus Explorer Pro 

balance, model number EP114C, utilizing Schleicher & Schuell weighing paper 

(Z134120). 
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The Grafoil used to house the metal oxide during the experimentswere 

sourced from Fralock, which operates out of Valencia, California. 

The interface between the quartz reactor and the gas flow apparatus is 

made up of a four-piece Ultra-Torr fitting from Swagelok and 5mm plastic tubing. 

The threaded male fitting and tubing were fastened together with a wrench, and 

then the remaining components slid onto the quartz reactor. With the male fitting 

held snugly against the reactor face, the female fitting is gently used to guide the 

O-ring into place, before being tightened hand-tight. The O-ring is compressed to 

create a strong seal. The flow of N2 is verified by the formation of bubble at the 

submerged end of the apparatus, making a soap bubble type test at this union 

unnecessary. 

When assembled, the fitting provides a convenient interface with easily 

replaceable plastic tubing. This proved to be valuable, as the downstream tubing 

can become clogged by deposits resulting from the experiments, and can 

become very stiff after many heat cycles from exhausted gases. 

Assorted standard lab equipment such as spatulas and cleaning wipes 

were used as well, but do not warrant an itemized accounting. 

3. Revisited Parameters 

The initial set of experiments using formed Grafoil for the second vessel 

showed the nickel oxide could be completely reduced, but that magnetite powder 

was only partially reduced (see Results). This led to efforts to increase the 

reduction of the iron by using higher temperatures, a two step temperature 

process, a second vessel made of stainless steel screen, and relatively larger 

reducing mixtures. 

In particular, additional experiments were conducted where the heat cycle 

was modified as follows. The sample preparation and handling was maintained 

from previous experiments, with catalytically promoted coal, but the temperature 

was initially set to 500 C. The sample was treated at this temperature for one 
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minute, and then removed from the furnace by sliding the tube. The oven was 

then set to maintain a temperature of 950 °C and allowed to stabilize. The 

sample was then reinserted into the oven and heated at this temperature for a 

period of five additional minutes, before being allowed to cool to room 

temperature prior to removal. This heat cycle was chosen serve dual purposes. 

First it was postulated that during the low temperature heat treatment the catalyst 

would spread on the coal surface. It was anticipated this would give rise to the 

second improvement: optimal catalytic efficiency and hence faster release of 

reducing species (e.g., CO) during the subsequent elevated temperature 

treatment. 

The purpose of the change to stainless steel mesh for the second volume 

was both for effectiveness and consistency. The mesh has a more uniform array 

of holes through which the solid hydrocarbon and catalyst byproducts could pass 

through and interact with the metal oxide, while being small enough to prevent 

spillage into the alumina boat below.  

In addition to the modified heat cycle, the amount of solid hydrocarbon 

and catalyst was increased for these experiments. While maintaining a target 

amount of 0.3 grams of metal oxide, the mass of lignite and catalyst used was 

doubled, and then tripled. This was performed exclusively on magnetite powder, 

as nickel oxide was successfully reduced with methods used in the initial set of 

experiments. 



 20

THIS PAGE INTENTIONALLY LEFT BLANK 



 21

IV. CHARACTERIZATION 

Several characterization techniques were used to determine the 

effectiveness of the SHAR process, including scanning electron microscopy 

(SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). 

A. SCANNING ELECTRON MICROSCOPY 

The SEM utilized in this study is a Zeiss Neon 40 field emission SEM with 

focused ion beam. This microscope is equipped with backscattered electron 

(BSE) and energy dispersive analysis of x-rays (EDAX) detectors, and has a 

resolution of 1.1 nm using a 30 kV accelerating voltage. 

All samples for this study were in loose powder form. Samples were 

installed on conductive sample mounts using double-sided carbon tape to allow 

for secure control of the sample position during analysis. 

1. Method 

Conventional optical light microscopy samples images via the light 

reflected from the object under inspection, and is inherently limited by the 

diffraction limit of photons in the visible spectrum. In contrast, SEM uses 

electrons that are not subject to this limitation to create the sample image. The 

limitation of optical microscopy is based on the wavelength of light in the visible 

spectrum, leading to a maximum magnification on the order of 2000x [16]. 

Beyond this region, increased magnification does not yield more information 

about the sample. Electrons with wavelength of 0.5 angstroms yield a theoretical 

limit of magnification of several hundred thousand, though practical limits are on 

the order of 75,000x. This practical range enables the imaging of materials on the 

nanometer scale. In addition to high resolution, the working distance used for 

sample analysis can be altered to obtain images with high depth of field, where 

the topography of the sample can be simultaneously in focus [17]. 
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Materials to be imaged via SEM are placed under high levels of vacuum: 

1E-5 Torr for the chamber, and 3E-10 Torr for the gun. This effort reduces the 

gas molecules in the chamber, which otherwise would scatter the generated 

electron beam. Other types of gaseous contaminants could deposit on the 

specimen under investigation if the chamber is not effectively evacuated [18]. 

The generated electrons are accelerated by a voltage source on the range 

of 1 to 30 keV in most SEMs [16], determined by the material being inspected. 20 

keV was used for the images that follow. The resulting electron beam is variable 

up to approximately 200 Å in diameter, while smaller diameter electron beams 

are critical for high-resolution image capture. 

The generation of the SEM image is generated similarly to the line-by-line 

drawing of an image on a cathode ray tube (CRT) display. The user can adjust 

the scan speed of the electron beam, or the rate at which the beam passes over 

the sample. The quality of the image is inversely proportional to the scan speed. 

In practice, a fast scan speed is used to generate a displayed image adequate 

for identifying areas of interest. Once an area is selected for detailed 

investigation, the scan speed is reduced for high quality image capture. 

2. Analysis 

The SEM was used to capture images of both the untreated iron and 

nickel oxides as well as treated samples of interest. This allowed direct 

comparison size and morphology of the powders resulting from the experiment to 

their untreated state.  

a. Imaging 

Images were captured for each sample at a resolution of 2048x1536 using 

a scan speed of 4 and line integrated noise reduction. To ensure a level of 

consistency and comparability, each sample analyzed was captured at 12,500x 

at multiple locations, as well as at 5,000x. The high magnification images were 
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captured to show morphology and geometry of the powders, whereas lower 

magnification images were used for larger scale comparison. 

b. Energy Dispersive X-Ray Spectroscopy 

The EDAX detector equipped on the SEM allows for a compositional 

analysis of the sample. When the electron beam interacts with the sample, the 

incident atoms can become excited, elevating electrons to a higher energy state. 

The electron will naturally de-excite to regain its more stable ground state 

through the emission of a photon. The energy of this photon is precisely the 

same as the difference in the electron energy states, which are in turn 

characteristic of the element. 

Through the collection of these emitted de-excitation photons, a spectrum 

can be constructed, and the relative intensity of the peaks can be related to the 

relative quantity of the present elements. 

The area scanned for EDS analysis is set by the same method as for SEM 

image capture. In each case, a zoom of 500x was selected to get a 

representative result of the sample, instead of only a few select particles at high 

magnification. 

Although useful, it is important to note that this analysis provides a literally 

superficial result, due to the low penetration of the incident radiation. Additionally, 

the resulting atomic fraction provides no information about the phase or crystal 

structure of the sample under investigation. This analysis was used primarily to 

support and validate the results found via XRD. 

B. X-RAY DIFFRACTION (XRD) 

The X-ray diffraction characterization technique was critical to evaluating 

the success of the experiments, as it yields the relative composition of the 

processed sample. Unlike EDS methods that result in relative abundance of 

elements, XRD is used to identify the crystal structures present in the sample. 

For example, EDS may show percentage of elemental iron and oxygen present, 
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where XRD will explicitly determine the components and phase in which they 

appear – Fe3O4, Fe2O3, FeO, Fe and so on.  

1. Method 

The principle of XRD characterization is the identification of constructively 

scattered x-rays. A precisely known x-ray source is made incident upon the 

sample, resulting in scattering reactions at various angles. If the target has a 

consistent crystal structure, there is a condition that promotes constructive 

interference in the scattered x-ray.  

The yield from the experiments was low due to physical limitations of the 

reactor and enclosed containment, so it was necessary to use a special zero 

background holder with a small depression in the center, shown in Figure 5. 

 

Figure 5.  Zero Background XRD Sample Holder 

A portion of the processed oxide powder was placed in the depression 

and compressed using a clean glass microscope slide. The depression was filled 

with compressed powder and the excess carefully removed. The samples were 

scanned directly after preparation to minimize the potential of reoxidation of 



 25

reduced metal. Additionally, the characteristic spectra associated with the 

anticipated forms of oxide and reduced metal were compared to determine a 

range of angles to scan the sample that would provide sufficient peaks while 

ensuring the peaks were distinguishable. The processed magnetite samples 

were scanned over the range of angles from 10 to 90 degrees, while the 

processed nickel oxide samples were scanned from 25 to 100 degrees. In all 

cases, the angle rate was chosen to be 10 degrees per minute, resulting in scans 

of less than 10 minutes per sample. The spectra from these parameters were 

sufficiently useful for phase identification while minimizing the exposure of the 

sample to the atmosphere over the duration of the scan. 

The Rigaku Miniflex 600 X-Ray Diffractometer source uses the Cu Kα x-

ray, which has characteristics of 8.04 keV and a wavelength of 0.1542 nm [19]. 

For each analysis, the instrument was operated at a voltage and current of 40 kV 

and 15 mA, respectively.  

2. Analysis 

Figure 6 shows a lattice structure with interplanar spacing dhkl. For the 

scattered x-rays to be in phase, the distance traveled must differ by an integer 

factor of the wavelength.  
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Figure 6.  Bragg Scattering Geometry, after [19] 

Simple geometric analysis of this condition yields the familiar Bragg law in 

Equation 6. 

 n  2dhkl sin( )  (6) 

The wavelength of the incident x-ray source is known, making this 

interference condition purely a function of crystal plane spacing. The identities of 

the phases present in the sample are then determined by comparing the 

spectrum peaks with documented values available in various publications. For 

this study, the spectra was compared against a database using PDXL software. 

When the sample is subjected to the x-ray source, it is possible for the x-

ray to be absorbed by an orbital electron, raising the atom to an excited state. 

The excited atom can return to its ground state by emitting a photon of energy 

equal to that of the incident beam. In this case, the emitted photon is called 

fluorescent radiation [19]. This radiation is not direction specific, so it has the 
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effect of obscuring the otherwise distinct peaks predicted by bragg scattering, as 

shown in Figure 7.  

 

Figure 7.  Magnetite XRD Spectrum (Green), Fluorescence Corrected (Blue) 

In this case, untreated magnetite has been characterized by XRD, yielding 

the plot in green, which is subject to fluorescent radiation. This radiation can in 

some cases make it impossible to resolve the peaks characteristic of the sample 

due to low intensity. The fluorescence effect has been reduced for the plot of the 

same scan, this time in blue. This is accomplished by altering the pulse height 

analyzer to a smaller window. Although the peaks are slightly smaller, the effect 

of reducing the fluorescence is to greatly improve the peak to background ratio. 

Finally, the impact of background radiation that is detected during the scan 

is compensated for, resulting in the ultimate result shown in Figure 8. 
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Figure 8.  Magnetite XRD Spectrum–Fluorescence and Background Corrected 

The end result of these improvements is to improve the ability of the 

software to identify small intensity characteristic peaks that may otherwise be 

indistinguishable. Each sample analyzed for this study was treated in this 

fashion. 
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V. RESULTS 

XRD characterization was conducted to determine the efficacy of the 

SHAR technique, the results of which are included. SEM images for 

characteristic samples are included as well to give insight into the structure and 

size of the resulting particles. 

A. XRD ANALYSIS 

X-ray diffraction is the primary characterization method used to determine 

the metal phases present before and after SHAR treatment. The XRD data 

provides quantification of the extent of reduction, which is the objective of the 

SHAR process. Thus it is a measure of the effectiveness of reducing metal oxide 

powders using the SHAR technique. The results of these analyses are included 

for review, beginning with the untreated metal oxides. 

1. Untreated Metal Oxide 

The source iron and nickel oxides were subjected to 850 °C for 10 minutes 

with no hydrocarbon or catalyst in the reactor. No reduction was expected, and 

none was observed by X-Ray Diffraction analysis. 

The XRD spectrum for the control experiment for nickel oxide is shown in 

Figure 9, with spectrum details in Table 2. 
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Figure 9.  Nickel Oxide XRD Spectrum–Control Experiment 

Table 2.   Nickel Oxide (NiO) Spectrum Data–PDF card 04-007-9781 

No. 2-theta(deg) d(ang.) Phase name 
1 37.2720(13) 2.41053(8) Nickel Oxide(1,1,0) 
2 43.3182(11) 2.08705(5) Nickel Oxide(1,1,-1) 
3 62.9115(17) 1.47612(4) Nickel Oxide(0,2,0) 
4 75.4389(19) 1.25907(3) Nickel Oxide(0,2,1) 
5 79.389(4) 1.20605(6) Nickel Oxide(2,2,0) 
6 95.099(5) 1.04396(4) Nickel Oxide(2,2,-2) 

 

The XRD spectrum for the control experiment for iron oxide is shown in 

Figure 10, with spectrum details in Table 3. Note that all peaks are accounted for, 

and that the relative intensities observed are those expected from a powder with 

no preferential orientation. 
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Figure 10.  Magnetite XRD Spectrum–Control Experiment 

Table 3.   Magnetite (Fe3O4) Spectrum Data–PDF card 04-006-6692 

No. 2-theta(deg) d(ang.) Phase name 
1 18.269(12) 4.852(3) Magnetite, syn(1,1,1) 
2 30.091(5) 2.9674(5) Magnetite, syn(2,2,0) 
3 35.430(3) 2.53155(18) Magnetite, syn(3,1,1) 
4 37.060(7) 2.4238(5) Magnetite, syn(2,2,2) 

5 43.033(6) 2.1002(3) Magnetite, syn(4,0,0) 

6 53.45(2) 1.7128(7) Magnetite, syn(4,2,2) 

7 56.925(7) 1.61628(19) Magnetite, syn(3,3,3) 
8 62.509(6) 1.48465(12) Magnetite, syn(4,4,0) 
9 73.93(3) 1.2811(5) Magnetite, syn(5,3,3) 

 

In
te

ns
ity

 (
cp

s)

    0e+000

    1e+004

    2e+004

2-theta (deg)

20 40 60 80

Magnetite, syn, Fe3 O4, 04-006-6692



 32

2. Hydrocarbon Control Experiments: No Catalyst 

Evaluation of catalyst performance requires control experiments using 

hydrocarbon and no catalyst. Paraffin was chosen as the hydrocarbon for these 

experiments. 

These experiments resulted in partial reduction of the magnetite powder, 

and complete reduction of nickel oxide powder as shown in Table 4, suggesting 

the thermal decomposition of paraffin alone was sufficient for reduction. 

Table 4.   XRD Results: Catalyst-free Control Experiments 

Reactants Products 
Oxide Hydrocarbon Catalyst NiO (%) Ni (%) Fe3O4 (%) FeO (%) 
NiO pWax N/A   100.0(4)     

Fe3O4 pWax N/A     86.6(4) 13.4(3) 

 

The XRD spectrum for the catalyst-free paraffin experiment for nickel 

oxide is shown in Figure 11, with spectrum details in Table 5. 



 33

 

Figure 11.  Fully Reduced Nickel XRD Spectrum 

Table 5.   Fully Reduced Nickel Spectrum Data–PDF card 004-001-0091 

No. 2-theta(deg) d(ang.) Phase name 
1 44.5842 2.03068 Nickel, syn(1,1,1) 
2 51.93 1.75938 Nickel, syn(2,0,0) 
3 76.4261 1.24525 Nickel, syn(2,2,0) 
4 92.9565 1.06231 Nickel, syn(3,1,1) 
5 98.3859 1.01768 Nickel, syn(2,2,2) 

 

The XRD spectrum for the catalyst-free paraffin experiment for iron oxide 

is shown in Figure 12, with spectrum details in Table 6. In this case, the peaks 

characteristic of unreduced magnetite are marked in blue on the top row, while 

peaks associated with the partially reduced wustite (FeO) are marked in red in 

the bottom row. Once again the relative intensities observed are those 

anticipated from a powder in which there is no preferential orientation. 
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Figure 12.  Partially Reduced Iron Oxide XRD Spectrum 
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Table 6.   Partially Reduced Magnetite Spectrum Data 

No. 2-theta(deg) d(ang.) Phase name Chemical formula DB card number 
1 18.2719 4.85143 Magnetite, syn(1,1,1) Fe3 O4 04-008-4512 
2 30.0898 2.96752 Magnetite, syn(2,2,0) Fe3 O4 04-008-4512 
3 35.4467 2.53036 Magnetite, syn(3,1,1) Fe3 O4 04-008-4512 
4 36.2931 2.47327 Wustite, syn(1,1,1) Fe O 04-005-4396 
5 37.0821 2.42244 Magnetite, syn(2,2,2) Fe3 O4 04-008-4512 
6 42.1103 2.14408 Wustite, syn(2,0,0) Fe O 04-005-4396 
7 43.0771 2.09818 Magnetite, syn(4,0,0) Fe3 O4 04-008-4512 
8 53.4565 1.71269 Magnetite, syn(4,2,2) Fe3 O4 04-008-4512 
9 56.9719 1.61507 Magnetite, syn(5,1,1) Fe3 O4 04-008-4512 
10 61.0336 1.51695 Wustite, syn(2,2,0) Fe O 04-005-4396 
11 62.5543 1.48368 Magnetite, syn(4,4,0) Fe3 O4 04-008-4512 
12 70.955 1.32722 Magnetite, syn(6,2,0) Fe3 O4 04-008-4512 
13 73.9776 1.28029 Magnetite, syn(5,3,3) Fe3 O4 04-008-4512 
14 74.9961 1.26541 Magnetite, syn(6,2,2) Fe3 O4 04-008-4512 
15 78.9173 1.21207 Magnetite, syn(4,4,4) Fe3 O4 04-008-4512 
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Each treated metal oxide sample was analyzed using identical methods as 

the control experiments covered in detail above. The relative intensity of the 

peaks in the resulting XRD spectrum are used by the software to determine the 

percentage of the identified phases in each sample. The results of this relative 

intensity method are tabulated for further experiments, as the spectra are similar 

in nature to those already shown and provide little additional information. 

3. Hydrocarbon and Catalyst Experiments 

The experiments were then repeated using each combination of metal 

oxide, hydrocarbon and catalyst to allow for trend analysis. The physical data 

from these experiments are shown in Table 7. Included in this table is the 

reduction in mass of the combined hydrocarbon and catalyst mixture, calculated 

by the change in mass of the mixture divided by the original mass. 
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Table 7.   Physical data: Hydrocarbon and Catalyst Experiments 

Input Output 

Oxide 
Mass 

(g) 
Hydrocarbon 

Mass 
(g) 

Catalyst 
Mass 

(g) 
Product 
Metal (g) 

Residual 
Material (g)

Hydrocarbon and 
Catalyst Mixture 
Mass Reduction 

(%) 

NiO 

0.2998 Wax 0.3002 Na2CO3 0.2997 0.2590 0.2465 58.91 
0.2997 pWax 0.3003 Na2CO3 0.3001 0.2480 0.2512 58.16 
0.2997 Wax 0.3000 K2CO3 0.3002 0.2757 0.2902 51.65 
0.3000 pWax 0.2997 K2CO3 0.3002 0.2553 0.2912 51.46 

Fe3O4 

0.2992 Wax 0.3006 Na2CO3 0.2993 NDR NDR NDR 
0.3002 pWax 0.3002 Na2CO3 0.3005 0.2884 0.2471 58.86 
0.3003 Wax 0.3003 K2CO3 0.3004 0.281 0.2831 52.87 
0.3003 pWax 0.3003 K2CO3 0.3005 0.2799 0.2807 53.28 
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Table 8 collects the X-Ray diffraction analysis results for these 

experiments. Nickel oxide is shown to be generally more effectively reduced 

when compared to magnetite. 

Table 8.   XRD Results: Hydrocarbon and Catalyst Experiments 

Reactants Products 
Oxide Hydrocarbon Catalyst NiO (%) Ni (%) Fe3O4 (%) FeO (%) 

NiO 

Wax Na2CO3 100.0(3)       
pWax Na2CO3 3.2(4) 96.8(3)     
Wax K2CO3   100.0(2)     

pWax K2CO3   100.0(3)     

Fe3O4 

Wax Na2CO3     89.0(7) 11.0(3) 
pWax Na2CO3     92.1(4) 7.9(3) 
Wax K2CO3     48.1(5) 51.9(5) 

pWax K2CO3     71.0(4) 29.0(4) 

 

4. Coal Control Experiments: No Catalyst 

The experiments were repeated using the same methods, with low cost 

lignite as a hydrocarbon source. As with the paraffin control experiments, the 

thermal decomposition of coal was more effective at reducing nickel oxide than 

iron oxide. It must be noted, however, that catalytically promoted coal never fully 

reduced either the NiO or the Fe3O4, whereas using SHAR with paraffin wax, 

even without catalyst led to complete reduction of the NiO. The physical data and 

results of these control experiments are collected in Tables 9 and 10, 

respectively. 
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Table 9.   Physical Data: Catalyst-free Coal Experiments 

Input Output 

Oxide 
Mass 

(g) 
Hydrocarbon

Mass 
(g) 

Catalyst
Mass 

(g) 
Product 
Metal (g) 

Residual 
Material (g) 

Hydrocarbon and 
Catalyst Mixture 

Mass Reduction (%)
NiO 0.2999 Coal 0.2997 N/A 0 0.2679 0.1820 39.27 

Fe3O4 0.3003 Coal 0.3002 N/A 0 0.2885 0.1754 41.57 
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Table 10.   XRD Results: Catalyst-free Coal Experiments 

Reactants Products 
Oxide Hydrocarbon Catalyst NiO (%) Ni (%) Fe3O4 (%) FeO (%) 
NiO Coal N/A 74.9(5) 25.09(13)     

Fe3O4 Coal N/A     100.00(4)   

 

5. Coal and Catalyst Experiments 

Each combination of metal oxide powder and catalyst was tested using 

coal as the hydrocarbon source. The physical data for these experiments is 

contained in Table 11. 
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Table 11.   Physical Data: Coal and Catalyst Experiments 

Input Output 

Oxide 
Mass 

(g) 
Hydrocarbon

Mass 
(g) 

Catalyst 
Mass 

(g) 
Product 
Metal (g) 

Residual 
Material 

(g) 

Hydrocarbon and 
Catalyst Mixture 

Mass Reduction (%) 

NiO 
0.3003 Coal 0.3000 Na2CO3 0.2998 0.2444 0.4075 32.06 
0.3003 Coal 0.2997 K2CO3 0.3003 0.2733 0.4747 20.88 

Fe3O4 
0.3001 Coal 0.3003 Na2CO3 0.2997 0.2828 0.4194 30.1 
0.3003 Coal 0.2997 K2CO3 0.3002 0.2864 0.4707 21.54 
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Table 12 collects the X-Ray diffraction analysis results for these 

experiments. 

Table 12.   XRD Results: Coal and Catalyst Experiments 

Reactants Products 
Oxide Hydrocarbon Catalyst NiO (%) Ni (%) Fe3O4 (%) FeO (%)

NiO 
Coal Na2CO3 23.8(3) 76.2(4)     
Coal K2CO3 82.6(4) 17.44(8)     

Fe3O4 
Coal Na2CO3     58.0(5) 42.0(4) 
Coal K2CO3     100.00(4)   

 

The experimental results revealed that the process was consistently less 

effective at reducing iron oxide than nickel oxide under the same laboratory 

conditions. 

6. Modified Coal and Catalyst Experiments 

The remainder of the experimental phase focused on improving the 

reduction of iron oxide powder. The heat treatment was modified to use a higher 

temperature of 950 °C and the grafoil containment was replaced with stainless 

steel mesh. The amount of coal and catalyst was doubled, and then tripled from 

previous experiments. The physical data for these experiments is compiled in 

Table 13. 
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Table 13.   Physical Data: Modified Coal and Catalyst Experiments 

Input Output 

Oxide 
Mass 

(g) 
Hydrocarbon

Mass 
(g) 

Catalyst 
Mass 

(g) 
Product 
Metal (g) 

Residual 
Material (g) 

Hydrocarbon and 
Catalyst Mixture 

Mass Reduction (%) 

Fe3O4 

0.3003 Coal 0.6003 Na2CO3 0.6003 0.2867 0.8537 28.89 
0.2998 Coal 0.6002 K2CO3 0.6003 0.2623 0.8935 25.57 
0.3003 Coal 0.8997 Na2CO3 0.8999 0.2872 1.3013 27.69 
0.2999 Coal 0.8998 K2CO3 0.9003 0.278 1.3615 24.37 
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Tables 14 and 15 contain the X-Ray diffraction analysis results for these 

experiments. 

Table 14.   XRD Results: Coal and Catalyst Doubled 

Reactants Products 
Hydrocarbon Catalyst Fe3O4 (%) FeO (%) FeO (%) Fe (%) 

Coal Na2CO3 37.2(4) 62.8(6)     
Coal K2CO3   56(3) 37(3) 7.81(12) 

 

It is notable that experiment using coal catalytically promoted by K2CO3 

resulted in two distinctly identifiable forms of FeO with slightly differing interphase 

dimensions. The two forms of wustite identified for this experiment are 

characterized by PDF Cards 04-006-5424 and 04-003-5839. 

Table 15.   XRD Results: Coal and Catalyst Tripled 

Reactants Products 
Hydrocarbon Catalyst Fe3O4 (%) Fe2O3 (%) FeO (%) Fe (%) 

Coal Na2CO3 80.8(3) 19.2(3)   
Coal K2CO3   34.9(11) 58(5) 7.37(12) 

 

The results of this experimental phase illustrates that dramatically 

increasing the coal and catalyst content in the reactor volume was ineffective at 

improving the reduction of iron oxide powder. 

B. SEM ANALYSIS 

Scanning electron microscopy was performed to identify structure and size 

of the powders created by the SHAR process. As with the XRD technique, the 

untreated metal oxides were analyzed for comparison. For each case, images 

were captured at 5000, 12,500, and 50,000 times magnification to provide 

consistency between samples. 
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1. Untreated Nickel Oxide 

Figures 13-15 show the structure and orientation of the untreated nickel 

oxide powder. 

 

Figure 13.  Untreated Nickel Oxide 5k Magnification 
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Figure 14.  Untreated Nickel Oxide 12.5k Magnification 

 

Figure 15.  Untreated Nickel Oxide 50k Magnification 

These images show a high degree of symmetry, which is expected for the 

NiO crystal structure. Typical particle sizes for this untreated powder are on the 

order of 200-400 nm wide.  
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2. Fully Reduced Nickel 

Figures 16-18 are images obtained for the nickel oxide sample processed 

with paraffin promoted with K2CO3, which experienced complete reduction.  

 

Figure 16.  Nickel Fully Reduced by Paraffin and K2CO3 5k Magnification 
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Figure 17.  Nickel Fully Reduced by Paraffin and K2CO3 12.5k Magnification 

 

Figure 18.  Nickel Fully Reduced by Paraffin and K2CO3 50k Magnification 

The fully reduced nickel powder exhibited a change in surface 

morphology, as the symmetry of the untreated oxide is no longer apparent. The 
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size of reduced particles remains on the same order of magnitude as in their 

untreated state. 

3. Untreated Magnetite 

Figures 19-21 show the structure and orientation of the untreated 

magnetite powder. 

 

Figure 19.  Untreated Magnetite 5k Magnification 
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Figure 20.  Untreated Magnetite 12.5k Magnification 

 

Figure 21.  Untreated Magnetite 50k Magnification 

The untreated magnetite shows well-defined particle boundaries of highly 

regular shape, with sizes in the range of 100-300 nm. 
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4. Partially Reduced Magnetite 

Although no experiment resulted in complete reduction of magnetite to 

iron metal, partial reduction was achieved. Figures 22-24 included here are a 

result of the experiment using a doubled amount of coal promoted by K2CO3, 

which resulted in reduction of the sample to two forms of FeO and a small 

amount (7.8%) of iron metal as shown in Table 14. 

 

Figure 22.  Magnetite Partially Reduced by Coal and K2CO3 to FeO  
and Fe 5k Magnification 
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Figure 23.  Magnetite Partially Reduced by Coal and K2CO3 to FeO  
and Fe 12.5k Magnification 

 

Figure 24.  Magnetite Partially Reduced by Coal and K2CO3 to FeO  
and Fe 50k Magnification 
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The characteristics of the partially reduced FeO and Fe powder is very 

similar to that of the untreated magnetite, in that the high degree of regularity is 

clear. As observed from the nickel oxide experiments, the size of the particles 

does not appear to be impacted by the treatment process. This indicates that 

there has been no sintering of the particles at the operating temperatures used 

for this study. 
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VI. DISCUSSION 

A. DEMONSTRATING THE SHAR PROCESS  

Overall the results demonstrate that the SHAR hypothesis is correct. To 

wit: Species generated via the thermal decomposition or volatilization of 

hydrocarbons can reduce metal oxides. In particular, it is clear from Figure 11 

and Table 5 that NiO is fully and rapidly reduced at 850 °C by species evolved 

via the thermal decomposition of paraffin wax. This statement is based on the 

fact that there is no physical contact between the paraffin and the NiO at any 

time. There is a gap that can only be traversed by gas species, and these gas 

species must be produced by the thermal decomposition, or volatilization, of the 

hydrocarbon. The contrast with control experiments shown in Figures 9 and 10 

makes this abundantly clear. No reduction is observed in the absence of the solid 

hydrocarbon. This in itself is an important and novel observation as generally 

reduction of solids is accomplished via gas phase species such as hydrogen or 

CO. That is, we have demonstrated a novel chemical process for a very 

significant industrial process, the reduction of oxides to metal. This process does 

bear some relationship to the process that takes place in a typical blast furnace, 

but is clearly distinct. Indeed, in blast furnace operation gas phase oxygen is 

required. No oxygen gas is employed in the SHAR process.  

B. FACTORS IMPACTING THE SHAR PROCESS  

The results also demonstrate that many factors influence the efficacy of 

the process including the identity of the solid hydrocarbon, the presence of 

catalysts, and the identity of the metal oxide. An example of the influence of the 

first two parameters can be gleaned from an examination of the NiO results. 

Regarding the influence of hydrocarbon identity: Whereas NiO was totally 

reduced by the evolution of gas species from paraffin at a relatively low 

temperature, 850 C, it was only partially reduced by lignite under the same 

conditions, as shown in Table 10. 
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The influence of catalyst on NiO reduction can most clearly be observed in 

the contrast at 850 °C between the degree of NiO reduction with Na2CO3 catalyst 

(~76%) vs. the amount reduced in the presence of K2CO3 (~17%) under the 

same conditions. In fact the latter value is slightly less than the fractional 

reduction observed in the absence of catalyst. It appears that if anything K2CO3 

has a negative impact on the reduction process when conducted at 850 C. 

However, the Na2CO3 reduction value suggests catalyst can play an important 

role in enhancing the efficacy of a very inexpensive form of solid hydrocarbon, 

lignite coal, for the SHAR process.  

The fact that all the results show that under reducing conditions iron is 

more difficult to reduce than NiO shows that the SHAR process will work better 

with some oxides than others. This is not surprising as it is a long established 

fact, one quantifiably consistent with thermodynamics, some oxides are far more 

difficult to reduce than others. Still, it is valuable to contrast the results of SHAR 

reduction of nickel oxide with those of iron oxide. The primary contrast: magnetite 

(Fe3O4) was only partially reduced to wustite (FeO) under conditions that led to 

the complete reduction of NiO. Specifically, whereas NiO was fully, or almost fully 

reduced by paraffin or catalyst promoted paraffin at 850 C, under the same 

conditions no iron metal formed at all. The only reduced species observed was 

wustite, and the fraction of this species in the product was relatively small 

(~13%). Also, in the presence of coal, without catalyst, NiO was partially reduced 

(25%), but magnetite under identical conditions was not reduced at all.  

 Metallic iron was only found following the process in which coal was 

promoted with K2CO3 and the temperature employed was 950 °C rather than the 

standard 850 C. This does demonstrate that the SHAR process can be adapted 

to the reduction of iron ore, but the process as conducted in this initial 

investigation is far from adequate. 
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C. SELECTION OF REDUCING SPECIES 

Several reducing species were selected in order to demonstrate that the 

SHAR process is a general one. The present results clearly support, although do 

not prove, the hypothesis that any hydrocarbon which can be thermally 

decomposed or volatilizes can be used to reduce metal oxides using the SHAR 

process. Paraffin and wax from a candle were chosen as relatively generic 

sources of hydrocarbon. Lignite coal was selected as it represents a very 

inexpensive source of hydrocarbon. At the time of publishing, commodity prices 

for paraffin are in the range of $600 - $800 U.S. per ton, compared to $15 - $25 

per ton for lignite. Coal is already the preferred source of hydrocarbons in 

industrial metal reduction processes and has a well-established production and 

distribution infrastructure. This combination of availability and cost effectiveness 

suggests the commercial viability of SHAR.  

D. SELECTION OF CATALYSTS 

Catalysts that are well known to aid in coal combustion were selected for 

this study. Various studies in the literature regarding the mechanism of coal 

combustion catalysts suggest these catalysts greatly enhance the rate of volatile 

species production from coal. Indeed, as shown elsewhere [20], the mechanism 

of catalytic combustion of coal by alkali metals and carbonates, particularly 

K2CO3 and Na2CO3 roughly involve these steps. First, upon exposure to elevated 

temperatures the catalyst (e.g. K2CO3) wets the surface of the coal. That is, 

instead of forming particles of K2CO3, as is the general understanding of the 

morphology of heterogeneous catalysts, the coal catalyst forms a monolayer of 

partially oxidized potassium on the surface of the coal. It is important to note that 

this process takes place from a physical mixture of coal and catalyst. There is no 

need for a process to impregnate the coal with the catalyst. Second, an oxygen 

atom from the thin layer of the potassium oxide reacts with the carbon atoms in 

the coal, generally forming a volatile CO species. Third, upon exposure to gas 

phase oxygen, the original K-oxide surface phase reforms. This allows Step 2 to 
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recur. The oxidation / reduction cycle of the potassium carbonate catalyst takes 

place repeatedly until the coal is fully combusted.  

The catalytic process for Na2CO3 is believed to be nearly the same as that 

described for potassium. However, there are differences. First, the thinly spread 

sodium phase is thought to be closer to metallic than is the case with potassium. 

Second, and more germane to the current work, is that the sodium coverage 

appears to decrease with temperature and the potassium to increase. The 

dispersion of the sodium on coal after a 900 °C treatment is about one-half that 

after a 500 °C treatment [21]. In contrast the potassium dispersion increases with 

temperature. The dispersion on coal after a 900 °C treatment is more than three 

times higher than it is after treatment at 500 °C [21]. This suggests that sodium 

might be a better low temperature combustion catalyst and potassium a better 

high temperature catalyst. 

In the present study an excess of carbonate, either sodium or potassium, 

was physically mixed with the coal. It was postulated that oxygen atoms from 

carbonate molecules not participating in the thin surface catalyst phase makes 

up for oxygen at the carbonate/coal interface lost due to CO formation. This 

would permit the oxidation/reduction process to take place repeatedly. In this 

fashion coal could be a source of a volatile reducing species, carbon monoxide. 

The results are qualitatively consistent with the postulated model. First, 

potassium carbonate (on lignite) did not seem to lead to any iron reduction at 850 

C, whereas sodium carbonate (lignite) was a good catalyst for converting iron 

into wustite at this temperature. However, at 950 °C the coal treated with catalyst 

was most effective at iron reduction, actually allowing some metallic iron to form. 

In contrast the sodium catalyst only yielded wustite. 

E. THERMODYNAMIC ANALYSIS 

In this work, it is clear that SHAR is an effective means of reducing nickel 

oxide and iron oxide to metal. Indeed, as demonstrated in Table 4, nickel oxide 

can be reduced by the thermal decomposition of paraffin in a bed under a bed of 
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nickel oxide powder. Iron oxide was more difficult to reduce, and in fact in this 

first study, only partial reduction was achieved. However, this partial reduction is 

believed to demonstrate the potential for full reduction. 

This work also provides insight into the effectiveness of different solid 

hydrocarbons. Paraffin was found to be the most effective, but is also the most 

expensive, hydrocarbon employed. Coal, specifically low cost lignite coal, and 

catalyzed coal was less effective than paraffin, but far less costly, hence more 

likely to be used for further SHAR technique development. 

To focus further development of the SHAR process and to attempt to 

understand the effectiveness disparity between nickel and iron oxides, the 

thermodynamics must be analyzed in detail. 

For the purpose of this analysis, it is assumed that the reduction of the 

metal oxide powder is performed by carbon monoxide produced by the 

decomposition of the hydrocarbon source. This is a reasonable assumption, and 

is the same assumption made regarding the iron oxide reducing species created 

in coal reacting with air in a blast furnace. It is interesting to note that CaCO3 

(limestone) is also present in a blast furnace, mixed with the coal. It is reasonable 

to assume this material is actually a catalyst that provides oxygen atoms, rather 

than oxygen molecules, enabling the conversion of coal into CO. It is germane to 

this model to note neither calcium carbonate, nor any other alkali earth metals, is 

a quality coal gasification catalyst. In this regard it is relevant to note that coal 

gasification generally takes place at a temperature of less than 1000 C, whereas 

in a blast furnace the melting temperature of metallic iron (~1540 C) is reached. 

At these temperatures limestone may be an excellent catalyst.  

Given the assumption that CO is the reducing species, the reduction of 

nickel oxide in this manner obeys Equation 7: 

 NiO CO  Ni CO2   (7) 
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The spontaneity of a chemical process can be determined by calculating 

the standard free energy change using Equation 8, where Gf
o is the standard 

free energy of formation for each species in the reaction, and  is the coefficient 

for the species in the balanced reaction.  

 Go  Gf
o (products) Gf

o (reac tan ts)   (8) 

If the standard free energy change is negative, it will be spontaneous in 

the forward direction; if positive, the reaction is nonspontaneous and requires 

additional energy input to occur. Values for the standard free energy of formation 

of many materials have been tabulated in many places in the literature [22]. 

General guidance for this analytical process can be found in many standard 

chemistry texts, though [23] was the primary reference.  

The reduction of nickel oxide is analyzed to determine the standard free 

energy change as follows. 

 Go NiGf Ni
0 CO2

Gf CO2

0 NiOGf NiO
0 COGf CO

0    (9) 

 G0  (0) (1)(94.260) (1)(51.7) (1)(32.808)   (10) 

 G0  9.752  kcal/mol (11) 

The tabulated standard free energy values are valid under the condition of 

25 C, but it is the thermodynamics of the reaction at the operating temperature 

that is of interest. The free energy change of a reaction related to the standard 

change in free energy by Equation 12 [24]. 

 G  Go  RT lnQ  (12) 

In this equation, R  is the ideal gas constant, T  is absolute temperature, 

and Q is the reaction quotient. At equilibrium, Q is the equilibrium constant for 

the reaction, Keq, and G is zero. Equation 13 then simplifies to the familiar form 

in of Equation 13. 

 Go  RT ln Keq   (13) 
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This equation can then be solved for the equilibrium constant as shown in 

Equation 14. 

 Keq  e
Go

RT   (14) 

The equation is then evaluated for the operating temperature of 850 C. 

 Keq  e
Go

RT  EXP 9752
cal

mol
*

1

1.987

mol *K

cal
*

1

(850  273.15)K






  (15) 

 

 Keq  79.025   (16) 

The equilibrium constant is often defined by the law of mass action [9], 

which will be demonstrated using a general equilibrium reaction as an example. 

   (17) 

In this case, A, B, C, and D are the species of the reaction, and a,, b, c, 

and d are the coefficients of the balanced reaction. The equilibrium constant is 

then found numerically by Equation 18, where the square brackets indicate molar 

concentration. 

 Keq 
[C]c[D]d

[A]a[B]b
  (18) 

The equilibrium condition for the nickel oxide reduction can be 

investigated using this equation. Assuming one mole of each reactant, the 

equilibrium state and gaseous constituents can be quantified by constructing a 

table describing the equilibrium state [25]. 
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Table 16.   Equilibrium Table: Nickel oxide reduction 

Species 
Initial 
Amount 

Final 
Amount 

Present in Gas 
Phase 

Gas Phase Mole 
Fraction 

NiO  1  1‐X       

CO  1  1‐X  1‐X  (1‐X)/1 

Ni  0  X       

CO2  0  X  X  X/1 

Total        1    

 

The gaseous equilibrium constant defined by Equation 18 then simplifies 

to Equation 19. 

 Keq 
X

1 X
  (19) 

Rearranging this definition then yields the unknown X in Table 16. 

 X 
Keq

1 Keq


79.025

1 79.025
 0.987   (20) 

This process shows that when a mole of carbon monoxide interacts with a 

mole of nickel oxide, most of the carbon monoxide converts to carbon dioxide via 

the process of removing oxygen from the solid oxide. Only one percent of the 

original CO produced (e.g. from volatilized lignite coal) remains in the gas phase 

to satisfy equilibrium.  

The reduction of iron oxide is investigated using the same procedure. This 

chemical process follows Equation 21. 

 Fe3O4  4CO  3Fe 4CO2  (21) 

From this balanced reaction, the standard free energy change is 

determined to be -3.508 kcal/mol, and the equilibrium constant is calculated. 

Keq  e
Go

RT  EXP 3508
cal

mol
*

1

1.987

mol *K

cal
*

1

(850  273.15)K






  (22) 

 



 63

 Keq  4.815   (23) 

The equilibrium table, Table 17, is constructed. Once again a single mole 

of each reactant is assumed.  

Table 17.   Equilibrium Table: Iron oxide reduction 

Species 
Initial 
Amount 

Final 
Amount 

Present in Gas 
Phase 

Gas Phase Mole 
Fraction 

Fe3O4  1  1‐X       

CO  4  4‐X  4‐X  (4‐X)/(4+3X) 

Fe  0  3X       

CO2  0  4X  4X  4X/(4+3X) 

Total        4+3X    

 

 

The gas phase equilibrium then simplifies and evaluates to Equation 24. 

 Keq 
4X

4  X
  (24) 

Rearranging this definition then yields the unknown X in Table 17. 

 X 
4Keq

4  Keq


4 *4.815

4  4.815
 2.185   (25) 

Inserting this value of X into the expression for mole fraction in the gas 

phase reveals that at equilibrium, greater than 17 percent of the CO cannot be 

converted to CO2 in order to maintain equilibrium. Stoichiometry also shows the 

need for 33 % more oxygen removal from Fe3O4, relative to NiO, to fully reduce 

one mole of iron. It is clear that the reduction of nickel oxide is more favored from 

a thermodynamic standpoint than iron oxide. 

The analysis is valid for the operating temperature used for the initial 

experimental phase, but can easily be adapted to other temperatures, as all other 



variables are either tabulated properties or the result of the balanced chemical 

reaction. The mole fraction of C02 in the gas phase is plotted in Figure 25 as a 

function of operating temperature. This corresponds to the percentage of CO that 

has been converted by the reduction of magnetite. 
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The limitation of th is analysis is that the effect of temperature on the 

thermal and catalytic decomposition of the hydrocarbon source is not evaluated, 

and the thermal impacts on diffusion rates are ignored . The result is useful 

however, in that it illustrates that simply raising the operating temperature of the 

reaction is not the clear path toward improving the SHAR technique. 

Another limitation of the present analysis is that it provides little insight into 

the rate or kinetics of the process. Thus, it is still not clear if the relative difficulty 

of reducing iron oxide vs. nickel oxide is thermodynamically or kinetically limited. 

Indeed, it is difficu lt to argue that thermodynamics is the only limiting factor. Most 

of the CO is avai lable thermodynamically to reduce iron, yet reduction is far less 

than with NiO under the same conditions. Further study is requ ired to determine 

the mechanism and the means to reach pure metall ic iron using SHAR. 

64 
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The study focused on the combination of materials used to determine the 

efficacy of the SHAR hypothesis. Time was not a primary variable of 

investigation, but may be of great importance for future research. Experiments 

utilizing solid hydrocarbons resulted in dramatically less residual material in the 

alumina vessel compared to that of the coal experiments. It was postulated that 

the high degree of reduction observed in paraffin experiments is related to the 

degree of decomposition of the carbon source. Indeed, a review of the literature 

revealed that paraffin decomposition by pyrolysis is exclusively a free radical 

process, rather than a molecular one [26]. This coupled with complete 

decomposition of the paraffin explains why the reduction process was completed 

to a great degree for these experiments. 

By contrast, the pyrolysis of coal in the absence of catalysts results in a 

two-phase decomposition and degasification process. In the first phase, the coal 

softens, resulting in the release of primary gasses, consisting of carbon, oxygen, 

and hydrogen. The process then transitions to a hardening transition, 

commensurate with the release of secondary gas made primarily of hydrogen 

[27]. Additionally, the temperature at which coal is heat treat has a strong impact 

on the nature of the decomposition [28]. The highly dynamic nature of coal 

pyrolysis was not accounted for in the present study, and demands further 

inspection. 

The addition of gasification catalysts to the coal adds oxygen to the 

process. That is, as discussed in the scientific literature, [20] among others, 

oxygen atoms from either the potassium or sodium carbonate catalysts interact 

with the carbon in coal to produce CO and other O-based radicals far more 

rapidly, and at lower temperature than is possible in the absence of catalyst. The 

present work shows that the effect on the SHAR process of carbonate catalyst 

addition to the coal is pronounced. In the absence of catalyst, there is very 

modest reduction of nickel and no iron reduction. The addition of catalyst to the 

lignite coal dramatically increases nickel reduction and leads to conversion of 

most of the iron to a lower reduction state. 
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The geometry of the experimental apparatus is not ideal in that the flow of 

nitrogen for atmosphere control is perpendicular to that required for hydrocarbon 

decomposition products to reach the target oxide. Ensuring greater interaction 

between these decomposition products and the metal oxide powder may be 

achieved by conducting experiments in a tube furnace of vertical orientation, or 

the construction of a vertically oriented containment that can be inserted in a 

bench top furnace.  

While maintaining a similar sample arrangement of coal and catalyst 

mixture separated by stainless steel screen from the metal oxide in a vertical 

tube, the purge gas would force the gaseous pyrolysis products directly through 

the metal oxide. The vertical arrangement would eliminate the sample size 

limitation introduced by the volume of the alumina boat used in this study, 

creating freedom to optimize the mass ratio of oxide, coal and catalyst. 
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VII. CONCLUSION 

This experiment was conducted to test the potential for the SHAR 

technique to reduce metal oxide powders, and promising results were obtained. 

Using gaseous products of hydrocarbon decomposition, complete reduction of 

nickel oxide powder was achieved. Partial reduction of iron oxide powder was 

also achieved, and there is reasonable expectation that the technique may be 

optimized to obtain complete reduction. This constitutes a novel approach to 

producing reduced metal particles in a way not currently in use in industry. 

The low temperature and material requirements for the technique to be 

effective, as well as the batch nature of the process make it a prime candidate for 

as-needed manufacturing techniques that have the potential to dramatically 

impact the supply and logistic infrastructure for hard parts on board naval 

vessels. Reducing the storage requirements for such components in the fleet has 

the benefit of enabling the repurposing of existing storage spaces to house 

mission critical equipment such as sensors and armament. This directly impacts 

fleet readiness and mission effectiveness simultaneously.  

Continued improvement and further study of the SHAR process is vital. 

Future studies should focus on improving the reduction of iron oxide via the 

SHAR method, but also on the reduction of alloying agents common in the 

steelmaking industry, such as chromium, manganese and cobalt. Improving the 

SHAR method for these oxides would open the possibility of using additive 

manufacturing techniques to produce alloy-based components, which quite 

simply could change the way the U.S. Navy does business. 
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