
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
OCTOBER 2014

2. REPORT TYPE
CONFERENCE PAPER

3. DATES COVERED (From - To)
SEP 2012 – SEP 2014

4. TITLE AND SUBTITLE

RANDOM FILL CACHE ARCHITECTURE (PRE PRINT)

5a. CONTRACT NUMBER
FA8750-12-2-0295

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
Other

6. AUTHOR(S)

Fangfei Liu and Ruby Lee

5d. PROJECT NUMBER
DHS2

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER
IN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Princeton University
Princeton, NJ 08544

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2014-051

12. DISTRIBUTION AVAILABILITY STATEMENT
Distribution Approved For Public Release; Distribution Unlimited. This report is the result of contracted fundamental
research deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated
10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
© 2014 IEEE/ACM. Proceedings IEEE/ACM International Symposium on Microarchitecture (MICRO). Cambridge, UK,
13-17 Dec 2014. This work was funded in whole or in part by Department of the Air Force contract number FA8750-12-
2-0295. The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive,
irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf
of the Government. All other rights are reserved by the copyright owner.

14. ABSTRACT
Correctly functioning caches have been shown to leak critical secrets like encryption keys, through various types of
cache side-channel attacks. This nullifies the security provided by strong encryption and allows confidentiality breaches,
impersonation attacks and fake services. Hence,
future cache designs must consider security, ideally without degrading performance and power efficiency. We introduce
a new classification of cache side channel attacks: contention based attacks and reuse based attacks. Previous secure
cache designs target only contention based attacks, and we show that they cannot defend against reuse based attacks.
We show the surprising insight that the fundamental demand fetch policy of a cache is a security vulnerability that
causes the success of reuse based attacks. We propose a novel random fill cache architecture that replaces demand
fetch with random cache fill within a configurable neighborhood window. We show that our random fill cache does not
degrade performance, and in fact, improves the performance for some types of applications. We also show that it
provides information-theoretic security against reuse based attacks.
15. SUBJECT TERMS
Cache; Security; Side Channel Attacks; Cache Collision Attacks; Secure Caches; Computer Architecture

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ROBERT DIMEO

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

14

Random Fill Cache Architecture

Fangfei Liu and Ruby B. Lee
Princeton Architecture Laboratory for Multimedia and Security (PALMS)

Department of Electrical Engineering, Princeton University
Princeton, NJ 08544, USA

{fangfeil, rblee}@princeton.edu

Abstract—Correctly functioning caches have been shown
to leak critical secrets like encryption keys, through various
types of cache side-channel attacks. This nullifies the secu-
rity provided by strong encryption and allows confidentiality
breaches, impersonation attacks and fake services. Hence,
future cache designs must consider security, ideally without
degrading performance and power efficiency. We introduce a
new classification of cache side channel attacks: contention
based attacks and reuse based attacks. Previous secure cache
designs target only contention based attacks, and we show that
they cannot defend against reuse based attacks. We show the
surprising insight that the fundamental demand fetch policy
of a cache is a security vulnerability that causes the success
of reuse based attacks. We propose a novel random fill cache
architecture that replaces demand fetch with random cache
fill within a configurable neighborhood window. We show that
our random fill cache does not degrade performance, and in
fact, improves the performance for some types of applications.
We also show that it provides information-theoretic security
against reuse based attacks.

Keywords-cache; security; side channel attacks; cache colli-
sion attacks; secure caches; computer architecture.

I. INTRODUCTION

Recent findings on cache side channel attacks [1]–[7] have
shown that correctly functioning caches may leak critical
secrets like cryptographic keys, nullifying any protection
provided by strong cryptography. These attacks are easy to
perform and are effective on all platforms, from embedded
systems to cloud servers, that use hardware caches. There-
fore, future cache designs must take into account security,
ideally without degrading performance and power efficiency.

In cache side channel attacks, an attacker exploits the
large timing difference between cache hits and cache misses
to infer the key-dependent (i.e., security-critical) memory
addresses, and hence the secret information, during the
execution of cryptographic programs. We introduce a new
classification of cache side channel attacks, depending on
how the attacker infers memory addresses: contention based
attacks versus reuse based attacks. In contention based
attacks [2], [3], [5], the key-dependent memory accesses
may contend for the same cache set with the attacker’s
memory accesses, and result in eviction of one by the other,
in a deterministic way. This enables the attacker to infer the
memory address according to which cache set it maps to. In
contrast, the reuse based attacks [4], [6], [8], [9] do not rely

on any resource contention. Instead, they only exploit the
reuse of a previously accessed (and cached) security-critical
data to correlate the addresses of two memory accesses. We
point out that reuse of the cached data is exactly the purpose
of a cache, therefore reuse based attacks strike at the heart
of a cache and are much harder to defend against.

Several recent work [8], [10]–[14] investigated how to
design secure caches to provide built-in defenses against
cache side channel attacks. Wang and Lee proposed two
general design approaches [11]: the partition-based approach
[8], [11], [13], [14] that eliminates the cache contention, and
the randomization-based approach [10]–[12] that randomizes
the cache contention. However, these approaches only target
contention based attacks and are not effective in defeating
reuse based attacks. There are also some efforts that try
to achieve constant execution time by either not loading
security-critical data into the cache at all, or trying to ensure
all cache hits whenever security-critical data is accessed, by
frequently preloading or reloading all security-critical data
[8], [14], [15]. This approach may potentially defeat the
reuse based attacks, but at the cost of significant performance
degradation, and sometimes enabling other types of attacks.

In this paper, we try to find a general approach against
reuse based attacks, as a complement to existing secure
cache design approaches. We show that, contrary to conven-
tional wisdom, constant execution time is not the necessary
condition to defeat reuse based attacks. Surprisingly, we
find that the fundamental demand fetch policy of a cache
is a security vulnerability that causes the success of reuse
based attacks. With the demand fetch policy, the cache fill
is always correlated with a demand memory access, hence
the state of a cache reveals information about previous
memory accesses. Hence, we propose a general approach
against reuse based attacks: re-design the cache fill strategy
so that it is de-correlated with the demand memory access.
We propose a novel random fill cache architecture with
a new security-aware cache fill strategy. The random fill
cache architecture takes advantage of the random access
pattern found in cryptographic algorithms. Hence, it does
not degrade performance. In fact, it is more general and
flexible than the demand fetch strategy, and even enables
performance improvements for some types of applications.
Our main contributions are:

• A new classification of cache side channel attacks as
contention based and reuse based attacks,

• A new general approach for securing caches against
reuse based attacks: the cache fill strategy must be
re-designed to de-correlate the cache fill and demand
memory accesses,

• A novel random fill cache architecture with a flexible
cache fill strategy, which replaces the demand fetch
with random cache fill within a configurable neighbor-
hood window,

• An information-theoretic proof of the security provided
by our random fill cache architecture,

• Performance evaluation of the proposed cache architec-
ture and study of the broader performance implications
of the random cache fill strategy to programs that are
not demand-fetch amenable.

The rest of the paper is organized as follows: Section
II gives some background on cache side channel attacks
and section III discusses past work. We introduce our new
random fill cache architecture in section IV. We provide
an information-theoretic proof of the security provided by
our random fill cache architecture in section V. We evaluate
the performance of our cache architecture in section VI.
We discuss the broader performance implications of our
cache architecture in section VII. We compare security and
performance with past work in section VIII and conclude in
section IX.

II. BACKGROUND

A. Overview of Cache Side Channel Attacks

The majority of cache side channel attacks exploit the
interaction of the key-dependent data flow in a program
with the underlying cache (mostly L1 data cache) to learn the
secret information. We primarily consider the information
flow in which the secret information is directly modulated
onto the memory address, in the form of key-dependent
table lookups. This is commonly found in the software
implementation of cryptographic algorithms. For example,
the substitution box (S-box) in the block ciphers (e.g., Data
Encryption Standard (DES), Advanced Encryption Standard
(AES), Blowfish), and the multipliers table in the public-key
algorithms (e.g., RSA) are all implemented as lookup tables
indexed by a linear function of the secret key. The attacker is
an unprivileged user-level process that aims to infer the key-
dependent memory addresses, indirectly through the cache
behavior.

B. Classification of Cache Side Channel Attacks

Table I summarizes the classification of all known cache
side channel attacks. Cache side channel attacks have
been conventionally classified as access-driven attacks and
timing-driven attacks [1], based on what can be measured
by the attacker. In the access-driven attacks, the attacker
can observe which cache lines the victim has accessed by

measuring the impact of the victim’s cache accesses to the
attacker’s own accesses. In the timing-driven attacks, the
attacker can measure the execution time of the victim pro-
cess. However, this classification is not helpful in identifying
root causes and potential countermeasures. We introduce
a new classification: contention based attacks and reuse
based attacks, based on how the attacker infers the memory
address.

Table I
CLASSIFICATION OF CACHE SIDE CHANNEL ATTACKS

Contention based
Attacks

Reuse based
Attacks

Access-driven
Attacks Prime-Probe Attacks

Flush-Reload
Attacks

Timing-driven
Attacks Evict-Time Attacks

Cache collision
Attacks

1) Contention based Attacks: The attacker may contend
for the same cache set with the victim process and the
contention results in eviction of one’s cache line by the other.
If the contention and eviction is deterministic, the attacker
can infer the memory address of the victim according to
which cache set it maps to. Figure 1 illustrates how this
works. There are two variations of contention based attacks:

Prime-Probe Attack [3], [5]: The attacker repeats the
following operations: 1) Prime: the attacker fills one or more
cache sets with his own data. 2) Idle: the attacker waits for a
pre-specified Prime-Probe interval while the victim process
is running and utilizing the cache. 3) Probe: the attacker
process runs again and measures the time to load each set
of his data. The Probe phase primes the cache for subsequent
observations. If the victim process uses some cache sets
during the Prime-Probe interval, some of the attacker’s cache
lines in these cache sets will be evicted, which causes cache
misses and thus a longer load time during the Probe phase.

Evict-Time Attack [5]: The attacker repeats the following
operations: 1) Evict: the attacker fills one specific cache set
with his own data and hence evicts the victim’s data in that
cache set. 2) Time: the attacker triggers the victim process
to perform a cryptographic operation, and measures the total
execution time. If the victim accesses the evicted data, his
execution time tends to be statistically higher, due to the
victim having a cache miss.

Memory Cache

Victim’s lookup table

K=0

K=1

K=2

K=3

K=4

contentionAttacker’s memory

3-ways

6 sets

Figure 1. How cache contention can be used to infer information. Each
square represents a cache line. Each memory line of the victim’s lookup
table is indexed by a different value of key bits K. The attacker occupies
one cache set. The contention with the victim tells the attacker that the
victim process has accessed the memory line corresponding to K = 2.

2) Reuse based Attacks: Contention based attacks rely on
cache contention to learn where a memory line is placed in
the cache. However, reuse based attacks do not care about
the location of a memory line in the cache. Instead, they
only rely on the fact that a previously accessed data will be
cached, hence the reuse of the same data by a later memory
access will result in a cache hit. There are two variations of
reuse based attacks:

Flush-Reload Attack [6]: The attacker and the victim pro-
cess may share some address space. In particular, security-
critical data such as the lookup tables can be shared through
a shared library. The attacker repeats the following opera-
tions: 1) Flush: the attacker flushes the security-critical data
out of the cache to eliminate the impact of any previous
accesses to the security-critical data. 2) Idle: the attacker
waits for a pre-specified Flush-Reload interval while the
victim process is running and utilizing the cache. 3) Reload:
the attacker process runs again and measures the time
to reload the security-critical data. If the victim process
accesses some security-critical data during the Flush-Reload
interval, the attacker will get a significantly lower reload
time, since it will hit in the cache.

Cache Collision Attack [4]: The Flush-Reload Attack
exploits reuse of the shared data between the victim and
the attacker. However, sharing of security-critical data is not
common and can easily be disabled by not declaring the
security-critical data as read-only. The more serious threat
of reuse based attacks is to exploit the reuse of the cached
security-critical data within the victim process, which rep-
resents the intrinsic information leakage of a program. The
reuse of data is commonly called cache collision, meaning
that two memory accesses reference the same memory line.
The basic idea of a cache collision attack is to exploit
the impact of cache collision on the victim’s aggregated
execution time.
Premise of Cache Collision Attacks: Consider a series of
security-critical accesses to lookup table T :

...T [•], T [•], T [xi], T [•], T [•], T [xj], T [•], T [•]... (1)

Denote the memory block address of x as 〈x〉. For any pair
of accesses to xi and xj , when 〈xi〉 = 〈xj〉, access to xj
will hit in the cache, whereas when 〈xi〉 6= 〈xj〉, access to
xj may or may not hit in the cache, depending on the rest
of the sequence and prior cache contents. Statistically, the
execution time of the cryptographic operation when 〈xi〉 =
〈xj〉 will be less than that when 〈xi〉 6= 〈xj〉. Assume xi
and xj both depend on the key K, where xi = f(K), and
xj = g(K). If the attacker learns 〈xi〉 = 〈xj〉 from the
timing measurement, he can establish a relationship for the
secret key as 〈f(K)〉 = 〈g(K)〉.

3) Discussion: As pointed out by Wang and Lee [11],
the root cause of contention based attacks is the deter-
ministic memory-to-cache mappings, causing deterministic
cache contention. The root cause of reuse based attacks is

more fundamental, since reuse of the data is the primary
goal of a cache. We observe that the hidden assumption
of the reuse based attacks is that the access to a security-
critical data will bring the requested memory line into the
cache (if not yet cached), which is exactly the demand fetch
policy of all existing caches, that take advantage of both
temporal and spatial locality of a program. With the demand
fetch policy, cache fills are always correlated with memory
accesses in a deterministic way, and the state of the cache
can “remember” information of previous demand accesses.

Resource contention of shared micro-architectural com-
ponents (either memoryless or storage components) [10],
[16]–[18] have been well-known as sources of information
leakage. Reuse based attacks are fundamentally different
since they do not rely on any resource contention, and
represent new threats specific to storage structures such as
cache and buffer structures that exploit the locality principle
to store recently-used data of a larger storage structure.

C. Case Study: Cache Collision Attacks against AES

As a concrete example, we show how the cache collision
attack works to extract the AES encryption keys (e.g., in the
OpenSSL implementation of AES). AES is a block cipher
that has 128-bit blocks with three possible key sizes: 128,
192, 256 bits. Depending on the key size, AES performs
10, 12 or 14 rounds, respectively [19]. We use 128-bit keys
in our discussion. The output of each round will be the
input for the next round, and the operations in each round
are implemented as table lookups for performance reasons.
OpenSSL uses ten 1-KB lookup tables, five for encryption
and five for decryption. Four tables are used in each round
except that the final round uses a different lookup table.

To perform the attack, the attacker sends random plaintext
blocks to the victim to do AES encryption, and measures the
time for each block encryption. Before triggering the next
block encryption, the attacker cleans the cache so that each
block encryption starts from a clean cache. Cache collision
attacks assume that the attacker either knows the plaintext
(first-round attack) or the ciphertext (final-round attack).
First-round attack: The index of the first round table
lookup xi is related with the key byte ki and plaintext
byte pi as xi = ki ⊕ pi. If the attacker learns that two
memory accesses collide, i.e., 〈xi〉 = 〈xj〉, he can infer that
〈ki ⊕ kj〉 = 〈pi ⊕ pj〉.
Final-round attack: The index of a final round table lookup
x10u of table T4 is related with the final round key byte k10i
and ciphertext byte ci as T4[x10u] ⊕ k10i = ci. Hence, by
learning two table lookups x10u and x10w collide in the final
round table lookups, the attacker can infer that k10i ⊕ k10j =
ci ⊕ cj .

Since a cache collision of two memory accesses xi and
xj means a lower execution time on average, the attacker
can aggregate the time measurements according to the value
of the XORed plaintext (or ciphertext) bytes and find the

0 50 100 150 200 250 300
−200

−100

0

100

c
0
 ⊕ c

1

t a
v
g

k
0

10
=21, k

1

10
=181

Figure 2. Timing characteristic chart for c0 ⊕ c1. The minimum average
encryption time occurs at c0 ⊕ c1 = 160, implying k100 ⊕ k101 = 160.

minimum encryption time. Figure 2 shows the average
encryption time for the samples with the same value of
XORed c0 ⊕ c1. The data is collected by running 217 block
encryptions on the cycle-accurate gem5 simulator [20]. The
attacker can easily find the point with minimum average
encryption time, then he can infer k100 ⊕k101 = c0⊕c1 = 160.
He can get similar timing characteristics for 15 XORed
ciphertext bytes (c0 ⊕ ci, i = 1, ..., 15), and thus infer
15 XORed key bytes to recover the full 16-bytes key (by
guessing just one key byte k100).

III. PAST WORK

A. Secure Cache Solutions

Designing secure caches can provide much higher perfor-
mance, and often greater security, than software solutions
for mitigating cache side channel attacks. Two general
approaches that have been used are partitioning the cache
and randomizing the memory-to-cache mapping.
Partitioning the Cache: The cache is partitioned into
different zones for different processes and each process can
only access the cache blocks in its zone, thus eliminating
contention between a victim process and an attacker process.
Partitioning can be achieved statically or dynamically.

NoMo [13] cache uses static cache partitioning by simply
reserving one or more ways of a set for each hardware
thread. However, it only works for the case when the victim
and the attacker processes are executing simultaneously in
a simultaneous multi-threading (SMT) processor.

PLcache [11] performs finer-grained, dynamic partition-
ing, which does not statically reserve any cache lines for
a process; instead it locks a protected cache line into the
cache and does not allow it to be evicted by another process.
Each cache line is extended with the process identifier
and a locking status bit. The architectural support also
includes special load/store instructions for fine-granularity
locking/unlocking. The special load/store instructions are
similar to the normal load/store instructions, except that if
the memory access hits in the cache or causes a cache line
to be fetched into the cache, the locking status bit is set
(lock) or cleared (unlock).
Randomizing memory-to-cache mapping: RPcache [11]
and Newcache [12] are cache designs using memory-to-
cache mapping randomization. In RPcache, there is a per-
mutation table for each trust domain, which can permute
the index bits to the cache set. If a process wants to replace

cache line X in cache set S, which belongs to a process in
another trust domain, a cache line Y in a randomly selected
cache set S′ will be evicted instead of evicting cache line
X . The cache indices of S and S′ will be swapped in the
process’ permutation table and other cache lines in S and
S′ belonging to the process are invalidated. Therefore, the
attacker cannot get useful information from the cache line
eviction and replacement.

Newcache [12], [21] can randomize the mapping to each
single cache line by adopting a logical direct-mapped cache
architecture, hence avoiding the swapping of cache sets
and invalidating of other lines in these swapped cache sets
– resulting in better performance. Newcache introduces a
remapping table as a level of indirection, which stores the
mapping from the index bits of the address to a real cache
line. Protected processes have different remapping tables,
while all unprotected processes share the same remapping
table. Newcache can avoid many conflict misses by using
a longer index (additional bits) than needed for the actual
size of the physical cache – again improving performance.
The remapping table is dynamically updated and random-
ized using a security-aware replacement algorithm, hence
randomizing the cache contention between the victim and
the attacker.

Both Partitioning and Randomization based approaches
only target contention based attacks, and cannot defeat reuse
based attacks. These approaches differ from the conventional
set-associative caches mainly in where the memory line can
be placed in the cache. Consider, for example, the data reuse
between memory accesses xi and xj , in the cache collision
attack. For the Partitioning based approaches, access to xi
will bring the memory line 〈xi〉 into its own cache partition,
and accesses to xj will hit in the cache when 〈xi〉 = 〈xj〉.
Similarly, in randomization based approaches, if memory
line 〈xi〉 was brought into a random location in the cache,
the second memory access would still result in a cache hit if
〈xi〉 = 〈xj〉. Hence, the root cause of cache collision attacks
still holds.

B. Constant Execution Time Solutions

Achieving constant execution time in cache accesses [4],
[8], [14] could potentially eliminate cache side channel
attacks based on the timing difference of cache hits and
misses, including reuse based attacks. One drastic approach
is to disable the cache for security-critical accesses [8] so
that all accesses to security-critical data miss in the cache.
This will severely degrade performance. Getting all cache
accesses to be hits is ideal, and this can be done using other
on-chip storage [22], rather than a cache.

Constant time using a cache can also be approached by
“preloading” all the security-critical data into the cache,
so that all accesses to them are cache hits. This has been
done by rewriting the software cipher to preload all the
critical data before each round [15]. However, performance

is significantly degraded, and the preloaded data can still be
evicted within a round of encryption. With some hardware
support, performance may be improved. [14] proposed to
use the “informing loads” technique [23] to perform the
“preloading”. Critical data is loaded using informing load
instructions, and on a cache miss, a user-level exception
handler is invoked to perform the preloading. Security-
critical data can also be preloaded during context switches
[14] and then “locked” in the cache by the cache line locking
mechanism of PLcache [11]. “PLcache+preload” is simpler
than “informing loads” in terms of hardware and software
changes, and has better performance due to less frequent
invocation of the preloading routine on context switches
rather than cache misses.

Unfortunately, “preloading” based approaches still have
scalability and performance issues, and may cause new
security problems, which we will discuss in detail in sections
VI and VIII.

In this paper, we try to find a general approach against
reuse based attacks, as a complement to existing secure
cache design approaches, which only defend against con-
tention based attacks. Contrary to conventional wisdom, we
also show that constant execution time is not the necessary
condition to defeat cache collision attacks and other reuse
based attacks. Our defense strategy leads to a simpler
hardware based solution, without the need to frequently
preload or reload all the security-critical data into the cache.

IV. RANDOM FILL CACHE ARCHITECTURE

A. Random Cache Fill Strategy

Our key insight is that the root cause of reuse based
attacks suggests that the cache fill strategy has to be re-
designed to de-correlate the cache fill and the demand
memory access. We propose using a random cache fill
strategy to dynamically achieve the de-correlation. On a
cache miss, the missing data is sent to the processor without
filling the cache. To still get performance from the cache, we
fill the cache with randomized fetches within a configurable
neighborhood window of the missing memory line instead.
The idea is partially motivated by our observation that ac-
cesses to the security-critical data in cryptographic programs
usually have random patterns, due to the nonlinearity of
the lookup tables (e.g., S-box) and to the random keys.
Therefore, randomly fetching the neighborhood memory
lines is as good as demand fetching the missing memory
line. The random fetching within the spatial locality of
the neighboring memory locations is like prefetching, and
hence performance may not be degraded, and could even be
improved in some cases.

The random cache fill strategy represents a more general
and flexible cache fill strategy than the demand fetch policy,
and the degree of de-correlation can be configured by
changing the random fill window size. We will show in
section V that our random cache fill strategy can provide an

Figure 3. (a) block diagram of random fill cache, (b) blow up of random
fill engine

information-theoretic security assurance against reuse based
attacks by choosing a proper random fill window size. As a
cache fill strategy, it can be built on any existing secure cache
architecture (e.g., Newcache [12], [21]) to provide built-in
security against all known cache side channel attacks.

B. Random Fill Cache Architecture

A block diagram of the random fill cache architecture is
shown in Figure 3(a). We focus on the L1 data cache since
cache side-channels are most effective (fastest) in L1 data
caches. It is built upon a conventional non-blocking cache
and the hardware addition is very small (highlighted in bold
in Figure 3), essentially a random fill engine, a queue and
a multiplexer.

1) Hardware for No Demand Fill: In a non-blocking and
write-back cache, an entry in the miss queue records the
missing memory line address and the status of the request.
We add a field to miss queue entries to indicate the request
type: normal, nofill or random fill:

• Normal request is a demand fetch as in a conventional
cache that does demand fill; it fills the cache with the
missing line, and the data returned will be sent to the
processor.

• Nofill request is a demand fetch that directly forwards
returned data to the processor while not filling the
cache. This leverages the critical word first technique
typically implemented to reduce the cache miss latency,

RR1 RR2

adder

-a = 11111100 2n-1=000001118 8

RNG

8

R=10010011

R’=00000011

adder

i

8

26

Sign extension

R’ – a = 11111111

Demand miss
line address

26

8

i-1

Critical
path

26

Figure 4. Efficient generation of the address of the random fill request.
The example shows a random fill window [i − 4, i + 3]. RR1 stores the
lower bound −a = −4 and RR2 stores the window size mask 23 − 1.
Both the range registers and RNG are 8-bits in width, and the generated
random fill request is i− 1.

so no extra hardware is required to implement the
forwarding of data.

• Random fill request only fills the cache but does not
send any data to the processor.

2) Random Fill Engine (Figure 3(b)): Upon a cache
miss, the demand requested memory line will not be filled
into the cache. Instead, the random fill engine generates a
random fill request with an address within a neighborhood
window [i − a, i + b] which is a memory lines before
and b memory lines after the demand request for memory
line i. The two boundaries a and b are stored in two new
range registers, RR1 and RR2, which bound the range of
the random number generated from a free running random
number generator (RNG). For example, the RNG can be
implemented as a pseudo random number generator with a
truly random seed. The use of RNG does not impact the
cycle time since it is used only during a cache miss and
hence is not in the critical path of the processor’s pipeline.
Furthermore, the random number can be generated ahead
of time and buffered. Note that when the range registers
are set to zero, randomized cache fill is essentially disabled.
In this case, the demand request will be sent as a normal
request and no random fill request is generated. The random
fill request goes to a random fill queue (a First In First Out
(FIFO) buffer) where it waits for idle cycles to lookup the
tag array of the data cache. If the random fill request hits in
the cache, it is dropped. Otherwise a random fill request is
issued and put into the miss queue.

Table II
ALTERNATIVE SYSTEM CALLS FOR CONFIGURING RANDOM FILL

WINDOW DYNAMICALLY (ONLY 1 NEEDED)

Declaration Description

set RR(int a, int b) set range register RR1 and RR2 to
the given value a and b, respectively

set window(int lowerBound,
int n)

set the lower bound and size of the
random fill window to

lowerBound and 2n, respectively

3) System Interface: The two range registers, RR1 and
RR2, are configurable by the operating system (OS). As
shown in Table II, the OS provides a system call set RR to
set the range registers by the compiler and/or applications.
This system call provides a fine-granularity control of the
use of the random fill cache. By default, the two range
registers are set to zero and the random fill cache works just
like the conventional demand-fetch cache. The system call
can be inserted before the cryptographic operations either
by the compiler or by the applications to enable randomized
cache fill. They can be disabled afterwards by another call
to set RR. The range registers are part of the context of the
processor and need to be saved to, and restored from, the
process control block (PCB) for a context switch.

4) Optimization: Since it may be non-trivial to generate a
random number within an arbitrary bound, we also propose
an optimization that constrains bounds a and b so that
a + b + 1 = 2n, i.e., the window size is a power of two.
Instead of set RR, a different system call set window is
implemented: this takes the lower bound of the random fill
window (i.e., −a) and the logarithm of the window size
(i.e., n) as parameters. Instead of directly storing a and b,
the range registers store the lower bound −a and a mask
for the window (i.e., 2n − 1), as shown in Figure 4. The
masked random number is R′ = 3, which when added to
the lower bound −4 gives the bounded random number −1.
Since the bounded random number can be computed ahead
of time, the critical path only consists of one adder that adds
the demand miss line address i and the bounded random
number (as shown by the dotted arrow).

V. SECURITY EVALUATION

As shown in Table I, reuse based attacks consist of cache
collision attacks and Flush-Reload attacks, which correspond
to two information leakage channels: the timing channel
and the storage channel. By definition, the timing channel
exploits the timing characteristics of events to transfer in-
formation [24], [25], whereas the storage channel transfers
information through the setting of bits by one program and
the reading of those bits by another [24]. We show that our
random cache fill strategy is able to completely close the
known timing channel and provide a strong information-
theoretic security assurance against the storage channel,
when the random fill window of the victim process is
properly chosen.

A. Timing Channel

We analyze known cache collision attacks that exploit the
impact of the reuse of security-critical data on the aggregated
time. Data reuse always comes in a pair of memory accesses
(xi and xj , where xi precedes xj). We abstract the impact
as the difference of the expected execution time under the
conditions of cache collision (µ1) and no collision (µ2),
respectively:

Table III
P1 − P2 AND THE NUMBER OF MEASUREMENTS FOR A SUCCESSFUL CACHE COLLISION ATTACK, FOR VARIOUS WINDOW SIZES

window size: size=1 size=2 size=4 size=8 size=16 size=32

Random fill + 4-way SA P1 − P2 0.652 0.332 0.127 0.044 0.012 0.006
measurements 65,000 1,866,000 16,653,000 no success after trying 224 measurements

Random fill + Newcache P1 − P2 0.576 0.292 0.119 0.045 0.016 0.007
measurements 244,000 2,106,000 no success after trying 224 measurements

µ1 = µ0 + P1 · thit + (1− P1) · tmiss
µ2 = µ0 + P2 · thit + (1− P2) · tmiss

(2)

where µ0 is the expectation of the aggregated time excluding
the security-critical access xj , thit and tmiss are the cache
hit and miss latencies, respectively. P1 and P2 are the cache
hit probabilities under the conditions of cache collision and
no collision, defined as follows:

P1 = P (xj hit|〈xi〉 = 〈xj〉)
P2 = P (xj hit|〈xi〉 6= 〈xj〉)

(3)

The expectation of the timing difference (µ2 − µ1) is the
signal that an attacker wants to extract, which depends on
P1 and P2 as follows:

µ2 − µ1 = (P1 − P2)(tmiss − thit) (4)

This means that no information can be extracted from the
timing characteristics if P1 − P2 = 0 for any arbitrary pair
of security-critical accesses. In fact, P1 − P2 (or µ2 − µ1)
directly reflects the difficulty of the attack. The number of
measurements required for a successful attack is related to
P1 − P2 as:

N ≈ 2Z2
α(

(P1 − P2)(tmiss − thit)
σT

)2 (5)

where α is the desired likelihood of discovering the secret
key, and represents how we define a successful attack. Zα
is the quantile of the standard normal distribution for a
probability α. σT is the variance of the execution time.
Equation (5) is obtained using a derivation similar to that
in [26] and [27]. It indicates that when P1 − P2 = 0, the
attack cannot succeed (infinite number of measurements are
required).

The purpose of the random cache fill strategy is to
zero out the signal that an attacker can extract, not just
simply add noise to the attacker’s measurements. In the
following, we show how the random cache fill strategy
achieves P1 − P2 = 0. Assume the security-critical data
is contained in a contiguous memory region with M cache
lines, starting at M0. Consider two memory accesses xi
and xj to the security-critical memory lines i and j where
i, j ∈ [M0,M0 +M − 1], respectively. Further assume 1)
the memory line i is not cached yet (i.e., the cache warm-
up phase) and the memory access xi initiates a random fill
within window [i− a, i+ b], 2) there are no other accesses

to memory line i in between xi and xj , 3) the cache state
is clean. This represents the best case for the attacker. Then
we can calculate the two conditional probabilities:

P1 =
1

a+ b+ 1

P2 =

1

a+ b+ 1
, j ∈ [i− a, i+ b]

0, j /∈ [i− a, i+ b]

(6)

Equation (6) indicates that for arbitrary i and j, if j is in
the random fill window of i, P1−P2 = 0 always holds. The
sufficient and necessary condition that gives j ∈ [i−a, i+b]
is a, b ≥ M − 1. This means that when the random fill
window is sufficient to cover the whole lookup table, the
random fill cache ensures that P1 − P2 = 0 for any pair of
security-critical accesses, and hence completely closes the
timing channel. However, if we examine P1 − P2 for the
conventional set-associative cache, and for the Partitioning
and Randomization based secure caches, we find that P1 −
P2 ≈ 1 always holds under the same assumptions, since the
memory access xi will always bring the memory line i into
the cache.

Note that a cryptographic program may contain multiple
independent lookup tables, so the total size of all the
security-critical data may not be small – this is why other
solutions which require pre-loading all the security-critical
data may fail to scale when the size of security-critical data
is large. However, an individual table is usually small and the
random fetch window size is determined by the individual
table size, and thus is usually relatively small.
Case Study – Cache Collision Attacks against AES: In
fact, the timing channel can be substantially mitigated even
when the window size is small. In this section, we use cache
collision attacks against AES as a case study to investigate
how the random fill window size impacts the security of
a random fill cache. Consider the final round AES table
T4. It is 1 KB in size and contains 16 cache lines (assume
cache line size is 64 bytes). So, a random fill window with
a = b = 15 is large enough to cover the whole AES table
for any table lookup. There are 16 table lookups to T4 for
each block encryption. We use Monte Carlo simulation to
calculate the average P1 − P2 for all the table lookup pairs
within the 16 table lookups. We perform 100,000 trials in the
Monte Carlo simulation and each trial does AES encryption
of one block of random plaintext.

Table III shows the average P1−P2 for different random
fill window sizes. We include results for two cases: 1)
the random fill cache built upon a conventional 4-way set-
associative (SA) cache (32 KB in size); 2) the random fill
cache built upon Newcache (with the same cache size as
the SA cache). The first column with “size=1” in Table
III also represents the 4-way SA cache and Newcache with
the demand fetch policy. We use a bidirectional random fill
window [i − 2n, i + 2n − 1], because the randomized table
lookups in cryptographic algorithms do not favor the forward
direction over the backward direction, so a bidirectional
random fill window has the best security.

We make the following observations: 1) Both SA cache
and Newcache have a large P1 − P2, thus are vulnerable
to cache collision attacks (the first column with “size=1”).
2) Our random cache fill strategy is effective against cache
collision attacks for both SA cache and Newcache. In fact, as
a cache fill strategy, it can be built on any cache architecture.
3) P1−P2 drops dramatically as the window size increases.
Note that due to the inaccuracy of the Monte Carlo method,
we cannot achieve exactly P1 − P2 = 0 when the window
size is 32.

We further verify our conclusions by performing real
cache collision attacks [4]. The simulator configuration is
similar to what we use for the performance evaluation (Table
IV) except we minimize the impact of a non-blocking cache
by using only 1 miss queue entry for 1 non-blocking cache
miss. This configuration favors the attacker since we find
that it requires about 1 order of magnitude less samples
compared to the baseline configuration in Table IV, which
has 4 miss queue entries. The results are shown in Table
III. When the window size increases, the number of mea-
surements required increases drastically. When the window
size is larger than 4, the attacks all fail after collecting 224

measurements. (It takes more than three weeks of continuous
simulation on gem5 to collect 224 measurements). Note that
attacking Newcache requires slightly more measurements
than attacking the SA cache because cache collision attacks
require each measurement to start from a clean cache, and
completely cleaning Newcache is harder than cleaning the
SA cache, due to Newcache’s random replacement algo-
rithm.

B. Storage Channel

For the storage channel, e.g., in a Flush-Reload attack, we
can directly calculate the channel capacity using the channel
model in [11]. Similar to the proof for the timing channel, we
assume the security-critical data is contained in a contiguous
memory region with M cache lines, starting at M0. The
victim process is the sender who accesses security-critical
memory line i ∈ [M0,M0+M−1], which can be represented
by a random variable S. Let j be the memory line that is
randomly filled into the cache due to the access of i, then
we have j ∈ [M0 − a,M0 +M − 1 + b] for the random fill

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized window size

N
o

rm
a

liz
e

d
 c

h
a

n
n

e
l
c
a

p
a

c
it
y

M=8

M=16

M=64

M=128

Figure 5. Channel capacity for different window sizes. The window size
is normalized to the size of the security-critical data (contains M cache
lines). The channel capacity is normalized to the demand fetch case.

window of the form [i − a, i + b]. Due to the boundary
effect, memory lines that are outside the security-critical
region may be brought into the cache. Here, we assume the
best case for the attacker: the attacker can access the data
outside the security-critical region and hence can determine
which memory line is brought into the cache. Therefore,
the attacker is the receiver who can exactly observe the
symbol j, which can be represented by a random variable R.
Then the conditional probability that the attacker receives a
symbol j given the victim process sends symbol i is

Pij = P (R = j|S = i) =

{
1
W i− a ≤ j ≤ i+ b

0 otherwise
(7)

where W is the window size: W = a+ b+ 1.
The channel capacity is the mutual information of S and

R when S satisfies a uniform distribution, i.e., P (S = i) =
1/M . We have the channel capacity as [28]

C =
∑
i,j

P (S = i, R = j)log
P (S = i, R = j)

P (S = i) · P (R = j)

=
∑
i,j

1

M
Pij · log

M · Pij∑
i

Pij

(8)

where M is the number of cache lines of the security-critical
data, Pij is the conditional probability defined in Equation
(7).

Figure 5 shows how the window size impacts the channel
capacity for various sizes of security-critical data. The chan-
nel capacity is normalized to the demand fetch case and the
window size is normalized to the size of the security-critical
data. Due to the boundary effect, the storage channel cannot
be completely closed. However, we find that the channel
capacity drops dramatically as the window size increases.
For example, the channel capacity is already reduced by
more than one order of magnitude when the window size
is twice the size of the security-critical region. The impact

Table IV
SIMULATOR CONFIGURATIONS

Parameter Value
ISA ALPHA

Processor type 4-way out-of-order
L1 instruction cache 4-way 32 KB

L2 cache 8-way 2 MB
Cache line size 64 bytes

Cache replacement algorithm LRU
miss queue entries 4
L1/L2 hit latency 1 cycle / 20 cycles

DRAM frequency/channels DDR3-1600/1

of the boundary effect is smaller for larger security-critical
regions. As mentioned in section II, the Flush-Reload attack
requires the attacker and the victim to share the security-
critical data, which can be easily disabled by not declaring
the security-critical data as read-only, hence the information
leakage through the storage channel is a less serious threat
than the information leakage through the timing channel.
Nevertheless, our random fill cache still provides a strong
information-theoretic security assurance against this type of
side channel leakage even when sharing is allowed.

VI. PERFORMANCE EVALUATION

We implemented our random fill cache on a cycle-accurate
simulator, gem5 [20]. We use a 4-way, out-of-order proces-
sor with two levels of caches in our performance evaluation,
and the baseline configuration is shown in Table IV. The
baseline cache is a set-associative cache with least recently
used (LRU) replacement algorithm and without a prefetcher.
The DRAM models the detailed timing of a single channel
DDR3-1600.
Performance impact on cryptographic algorithm: We first
study how the random fill cache performs for cryptographic
algorithms. Our workload is the OpenSSL’s AES encryp-
tion that takes a 32 KB random input and does a cipher
block chaining (CBC) mode of encryption. The results are
shown in Figure 6 for various cache sizes and associativity.
The Instruction Per Cycle (IPC) metric is normalized to
the baseline demand-fetched cache with the same cache
size and associativity. We also compared the performance
with two previous constant-time solutions against the cache
collision attacks: the “disable cache” approach disables the
cache for security-critical accesses to the 5 AES tables
for encryption. The “PLcache+preload” approach pre-loads
all the 5 AES tables and uses the locking mechanism
provided by the PLcache to lock these tables in the cache.
We chose the “PLcache+preload” approach because it has
better performance than the “informing loads” approach
[14]. The random fill window is configured to be of the
form [i − 16, i + 15], which can cover the whole table for
any pair of security-critical accesses to the table.

As can be expected, the “disable cache” solution degrades
the performance by 45% for all the cache configurations,
since security-critical accesses contribute about 24% of

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

DM 2way 4way DM 2way 4way DM 2way 4way

N
o

rm
al

iz
e

d
 IP

C

8 KB 16 KB 32KB

baseline PLcache+preload disable cache Random fill

Figure 6. Performance impact on cryptographic program

80.00%

90.00%

100.00%

110.00%

1 2 4 8 16 32N
o

rm
al

iz
e

d
 IP

C

Window size

8KB DM 32KB 4-way SA

(a)

80.00%

90.00%

100.00%

110.00%

1 2 4 8 16 32

N
o

rm
al

iz
e

d
 IP

C

Window size

8KB newcache 32kB Newcache

(b)

Figure 7. Impact of window size for the random cache fill strategy built
on (a) SA cache, (b) Newcache, when running AES

the total accesses to the data cache. The performance of
“PLcache+preload” is sensitive to the cache size and asso-
ciativity. When the cache size is small (8KB), more than
half of the cache lines are locked for the security-critical
data. It incurs 15% degradation for the direct-mapped (DM)
cache and 3% degradation for the 4-way SA cache when the
cache size is 8 KB. “PLcache+preload” also does not work
well when the associativity is low; it incurs more than 4%
degradation for the DM cache even when the cache size is
32 KB. The random fill cache is less sensitive to the cache
size and associativity. The performance degradation is less
than 3.5% even when the cache size is 8 KB, and there is
no degradation for larger caches.

Note that our conclusions are not specific to AES. The
reason why the random fill cache can maintain good perfor-
mance is that it still takes advantage of the spatial locality
of the key-dependent data flow. The slight performance
degradation when the cache size is small is due to fetching
of unused data that is outside the security-critical region. We
also study how the performance is impacted when both the
L1 and L2 caches are random fill caches. We find that the
performance impact is negligible since the L2 cache is large
and can better tolerate the potential cache pollution due to
the random fill of unused data.
Impact of window size: Figure 7(a) shows that when
the random fill cache is built upon the SA cache, the
performance is not sensitive to the window size for both
the worst case (8 KB DM cache) and the best case (32 KB
4-way SA cache). When built upon Newcache (Figure 7(b)),
our random fill cache works slightly worse than for the SA
cache, when running AES. As the window size increases,

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

sj
e

n
g

lb
m

lib
q

u
an

tu
m

h
2

6
4

re
f

as
ta

r

m
ilc

b
zi

p
2

h
m

m
e

r

av
e

ra
ge

sj
e

n
g

lb
m

lib
q

u
an

tu
m

h
2

6
4

re
f

as
ta

r

m
ilc

b
zi

p
2

h
m

m
e

r

av
e

ra
ge

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t baseline PLcache+preload Randomfill+SA Newcache Randomfill+Newcache
16 KB 32 KB

Figure 8. Performance impact on other programs running concurrently

Figure 9. Effectiveness of random cache fill strategy for general workloads

the performance also decreases (maximum degradation is
9% when the window size is 32 for the 8 KB cache). This
is because when the window size is large, it is more likely
to fetch unused data into the cache and evict frequently-used
data through the random replacement algorithm.
Performance impact on other concurrent programs:
Since a random fill window of [0, 0] is used by default,
there is no impact to a non-cryptographic program when it
runs alone. Instead, we study how the performance of a non-
cryptographic program is impacted when it runs concurrently
with a cryptographic algorithm in a simultaneous multi-
threading (SMT) processor. To stress the cache, the crypto-
graphic program continuously does both AES decryption and
encryption of 32 KB random data. In this case, the security-
critical data includes 10 AES tables for both encrytion and
decryption. A bidirectional random fill window with a size
of 32 lines is used for the crpytographic program. The non-
cryptographic programs are 8 SPEC2006 benchmarks and
are run for 2 billion instructions with reference inputs. We
consider two cache configurations: 16 KB DM cache and
32 KB 4-way SA cache. The results are the normalized
throughput (IPC) for the non-cryptographic program.

As shown in Figure 8, for all the benchmarks, we observe
no impact of the random fill cache on the throughput of
the non-cryptographic programs, for both the case when
the random fill cache is built on the SA cache and when
it is built on the Newcache. This is because our ran-
dom fill cache does not need to reserve any cache lines;
for the non-cryptographic algorithms, random fill request

is no different than a demand fetch request. In contrast,
“PLcache+preload” incurs significant impact on the non-
cryptographic programs. When the cache size is relatively
small (16 KB), the performance degradation is 32% on
average. Even when cache size is 32 KB, it still incurs
an average degradation of 1%. Therefore, scalability is a
serious problem for the “PLcache+preload” approach. When
the size of the security-critical data is large (relative to the
cache size), the cache available for other data is reduced –
causing performance degradation of both the cryptographic
algorithm and other concurrently running programs. The
scalability issue is especially problematic for the L1 data
cache. L1 data cache is usually small but cache side channel
attacks are most effective on the L1 data cache, rather than
on the L2/L3 caches.

VII. PERFORMANCE BENEFITS OF RANDOM FILL
CACHE

Although our random fill cache is proposed for security,
it also provides architectural support for a more flexible and
general cache fill strategy than the demand fetch policy. We
now study the extent to which a general non-cryptographic
program can benefit from the random cache fill strategy to
improve its performance. The performance implication of
random fill is that it can take advantage of spatial locality
beyond a cache line, while the demand fetch strategy can
only take advantage of spatial locality within a cache line.

We first investigate the effectiveness of the random cache
fill strategy through profiling. Specifically, we study how

0

20

40

60

80

100

120

astar bzip2 h264ref sjeng milc hmmer lbm libquantum

M
P
K
I

[0,0] [0,1] [0,3] [0,7] [0,15] [0,31] [-1,0] [-2,1] [-4,3] [-8,7] [-16,15](a)

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

astar bzip2 h264ref sjeng milc hmmer lbm libquantum

N
o

rm
al

iz
e

d
 IP

C

[0,0] [0,1] [0,3] [0,7] [0,15] [0,31] [-1,0] [-2,1] [-4,3] [-8,7] [-16,15]
(b)

Figure 10. (a) L1 data cache MPKI and (b) IPC for random fill cache with different random fill window sizes. [−a, b] indicates a range of a memory
lines before, to b memory lines after, the demand requested memory line

the performance of non-cryptographic programs is impacted
when a L1 data cache exploits random fill strategy. The
baseline configuration is the same as that in Table IV. We tag
each randomly filled memory line with an offset (denoted as
d) with respect to the associated demand requested memory
line. The effectiveness (reference ratio) of the random fill is
defined as the ratio of the number of cache lines that are
referenced before being evicted after being brought into the
cache, over the total number of fetched memory lines:

Eff(d) =
Nreferenced(d)

Nfetched(d)
(9)

Note that the profiling method essentially provides a way
to sample the spatial locality of a program. The profiling
results are shown in Figure 9, with a maximum d of ±16. We
find that many workloads only have spatial locality spanning
about four neighborhood cache lines or less. Therefore,
demand fetch will work well for these workloads. However,
there are some benchmarks that do not perform well under
demand fetch. For example, lots of irregular streaming
access patterns can be found in libquantum and lbm, which
shows wider spatial locality beyond a cache line, especially
in the forward direction. The random access patterns, as can
be found in AES, also show wide spatial locality beyond a
cache line.

Figure 10 shows the L1 data cache Misses Per Kilo
Instructions (MPKI) and IPC for the SPEC benchmarks
with different random fill window sizes (both forward and
bidirectional windows). The MPKI counts the number of
cache misses that cause a data fetch request to the L2 cache,
excluding outstanding misses to the same cache line. Note
that the random fill window [0, 0] means demand fetch only
(first bar for each benchmark in Figure 10). We simulate two
billion instructions using the reference inputs. We insert the
system call for setting the range registers of the random fill

cache at the beginning of the program, which essentially
enables random fill for all the memory accesses.

The MPKI results agree well with the profiling results in
Figure 9. Figure 10(a) shows that for benchmarks without
wide spatial locality, a larger random fill window tends to in-
crease the L1 cache MPKI, compared to demand fetch. Two
exceptions are lbm and libquantum. In these two bench-
marks with irregular streaming patterns, a larger random
fill window actually reduces the L1 cache MPKI compared
to demand fetch, especially with a forward window. Figure
10(b) shows that as the MPKI increases for larger window
sizes, the overall performance in IPC decreases, as expected
– except for lbm and libquantum.

For these streaming applications, we notice that the IPC
seems to improve more than the L1 MPKI decreases. For
libquantum, the best performance is achieved when the
random fill window is [0, 15]: the MPKI is reduced by 31%
while the IPC is increased by 57%. This is likely due to the
fact that our random fill cache reduces L2 MPKI in addition
to reducing L1 data cache MPKI. Consider the following
case: if a demand request to X[i] misses in both the L1 data
cache and the L2 cache, and the random fill request triggered
by the demand request also misses in the L2 cache, both the
cache line containing X[i] and one of its neighboring cache
lines will be brought into the L2 cache. Since these two
cache lines brought into the L2 cache are likely to be used
in the future, the L2 cache miss rate may be significantly
reduced. Meanwhile, although the cache line containing X[i]
does not fill the cache, which may cause extra cache misses
for the subsequent accesses to the same cache line, this need
not increase the overall L1 MPKI because a random fill
request for a neighboring cache line is generated and fetched
into the L1 data cache (if not already there), and this is likely
to be referenced in the near future, especially for irregular
streaming applications like libquantum, as shown in Figure

9. Also, the extra cache misses for the accesses X[i + 1],
etc., in the same cache line as X[i], do not take a whole
cache miss latency in non-blocking caches (like the one we
simulate with 4 miss queue entries), if they occur during the
time X[i] is being fetched or in the miss queue.

Note that a random fill cache does increase L2 cache and
memory traffic due to extra random fill requests. For lbm
and libquantum, the traffic to the L2 cache is increased by
48% and 56%, but the traffic to the memory is increased
only by 0.03% and 22%, respectively.

Note that the streaming patterns in lbm and libquantum
are irregular and may be too complex for a simple hardware
prefetcher [29]. The use of our random fill cache may give
better performance than the demand-fetched cache with a
simple prefetcher for these benchmarks. For example, we
compare the result with a commonly used tagged prefetcher
[30], that associates a 1-bit tag with the cache line to
detect when a demand-fetched or prefetched cache line is
referenced for the first time, to fetch the next sequential
line. We find that the tagged prefetcher can only improve the
IPC performance by 11% for lbm and 26% for libquantum,
while our random fill cache improves IPC by 17% for lbm
and 57% for libquantum. Further performance improve-
ments with the random fill cache may be possible by getting
spatial locality profiles for different phases of the program,
and setting the appropriate window size for each phase.

While more sophisticated prefetchers can certainly give
better performance, our goal here is to show that design-
for-security need not necessarily degrade performance, but
may even improve performance, as shown by the random fill
cache for streaming applications like libquantum and lbm.

VIII. COMPARISON WITH PAST WORK

Our random fill cache provides architectural support for
a security-critical program to protect itself against reuse
based attacks, by properly configuring its own random
fill window size. A random fill cache hardly incurs any
performance degradation, and can sometimes even improve
the performance of programs that have irregular streaming
patterns. The hardware addition is very small, and only the
cache controller needs to be changed slightly. Also, only
trivial software changes are required: to set the window size
at the beginning of the cryptographic routine or the security-
critical or streaming program.

We now compare our Random Fill cache with the past
work described in section III. The Partition and memory-to-
cache mapping Randomization based secure cache designs
only target the contention based attacks and cannot defeat
the reuse based attacks, since they still exploit the demand
fetch policy, which we have identified as the root cause of
reuse based attacks. Our random fill cache can complement
these prior secure cache designs.

Although the constant execution time solutions, like
“PLcache+preload” and “informing loads” [14], may also

defeat reuse based attacks, they may also introduce new
security problems which could potentially be more danger-
ous than even cache side-channel attacks. (We refer to both
these techniques as hardware-assisted preloading, or just
preloading based approaches.) For example, the “informing
loads” approach may create a new vulnerability, since now
an attacker can essentially supply malware to be executed on
every cache miss. Also, the user-level exception handler for
each cache miss is not protected and can easily be attacked.
Both these hardware-assisted preloading based approaches
are also vulnerable to Denial-of-service (DoS) attacks. For
example, an attacker can abuse the locking mechanism of
PLcache by locking a lot of cache lines to prevent other
processes from utilizing the cache. For the “informing loads”
approach, if the attacker frequently evicts the security-
critical data, the exception handler for informing loads will
be frequently invoked, leading to huge slowdown for the
victim. In other words, the defense mechanism itself can be
abused by the attacker to create more havoc.

In contrast, the configurable random fill window in our
solution cannot be abused by an attacker, since using a large
random fill window for his own attack process only makes
his measurements harder, and the attacker cannot set the
victim’s window size. Also, since the random fill cache does
not need to preload all the security-critical data, it has much
lower performance overhead, and also better scalability to
larger amounts of security-critical data (section VI), than
the preloading based approaches. Furthermore, our random
fill cache is simpler in both hardware and software changes
required, and has a much simpler programming model
than the preloading based approaches. For example, the
“informing loads” approach requires writing and installing
of a correct and incorruptible user-level exception handler
to preload all the security-critical data, and also rewriting of
each cipher to use the new informing load instructions.

IX. CONCLUSIONS

Reuse based cache side channel attacks are serious new
sources of information leakage in the microprocessor, in
addition to the better-known contention based side channel
attacks. They do not rely on any resource contention and are
threats especially relevant to storage structures (like caches
and TLBs) which exploit the locality of data accesses to
store data from larger storage structures. We found that the
fundamental demand fetch policy in conventional caches is
the security vulnerability that causes the success of reuse
based attacks. We proposed a random fill cache architecture,
which is able to dynamically de-correlate the cache fill with
the demand memory access. We proved that the random
fill cache provides information-theoretic security against
reuse based attacks. We showed that our random fill cache
incurs very slight performance degradation for cryptographic
algorithms and has no performance impact on concurrent
non-security-critical programs. A very interesting result is

that our random fill strategy can be built on existing secure
cache designs, e.g., Newcache, to provide comprehensive
defenses against all known cache side channel attacks –
without degrading performance. Furthermore, our random
fill cache provides a more general cache fill strategy than the
demand fetch strategy, and can provide performance benefit
to some applications that are not demand-fetch amenable,
by exploiting spatial locality beyond a cache line.

ACKNOWLEDGMENT

We thank the reviewers for their helpful comments. This
work was supported in part by DHS/AFRL FA8750-12-2-
0295 and NSF CNS-1218817.

REFERENCES

[1] D. Page, “Theoretical Use of Cache Memory as a Crypt-
analytic Side-Channel,” Cryptology ePrint Archive, Report
2002/169, 2002.

[2] D. J. Bernstein, “Cache-timing Attacks on AES,” Tech. Rep.,
2005.

[3] C. Percival, “Cache Missing for Fun and Profit,” in The
Technical BSD Conference (BSDCan’05), 2005.

[4] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks
against AES,” in Cryptographic Hardware and Embedded
Systems (CHES’06), 2006, pp. 201–215.

[5] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks
and Countermeasures: the Case of AES,” in Cryptographers’
Track at the RSA Conference (CT-RSA’06), 2006, pp. 1–20.

[6] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice,”
in Proc. IEEE Symposium on Security and Privacy (SP’11),
2011, pp. 490–505.

[7] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
VM Side Channels and Their Use to Extract Private Keys,”
in Proc. ACM conference on Computer and Communications
Security (CCS’12), 2012, pp. 305–316.

[8] D. Page, “Partitioned Cache Architecture as a Side-Channel
Defence Mechanism,” Cryptology ePrint Archive, Report
2005/280, 2005.

[9] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke,
“Differential Cache-Collision Timing Attacks on AES with
Applications to Embedded CPUs,” in Cryptographers’ Track
at the RSA Conference (CT-RSA’10), 2010, pp. 235–251.

[10] Z. Wang and R. B. Lee, “Covert and Side Channels Due to
Processor Architecture,” in Proc. Annual Computer Security
Applications Conference (ACSAC’06), 2006, pp. 473–482.

[11] Z. Wang and R. B. Lee, “New Cache Designs for Thwart-
ing Software Cache-based Side Channel Attacks,” in Proc.
ACM/IEEE International Symposium on Computer Architec-
ture (ISCA’07), 2007, pp. 494–505.

[12] Z. Wang and R. B. Lee, “A Novel Cache Architecture with
Enhanced Performance and Security,” in Proc. IEEE/ACM
International Symposium on Microarchitecture (MICRO’08),
2008, pp. 83–93.

[13] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks,” ACM Trans. on
Architecture and Code Optim., vol. 8, no. 4, pp. 1–21, 2012.

[14] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Hardware-
Software Integrated Approaches to Defend against Software
Cache-based Side Channel Attacks,” in Proc. IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA’09), 2009, pp. 393–404.

[15] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
Mitigations to Hedge AES against Cache-based Software Side
Channel Vulnerabilities,” Cryptology ePrint Archive, Report
2006/052, 2006.

[16] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing Channel
Protection for a Shared Memory Controller,” in Proc. IEEE
International Symposium on High Performance Computer
Architecture (HPCA’14), 2014, pp. 225–236.

[17] Y. Wang and G. E. Suh, “Efficient Timing Channel Protection
for On-chip Networks,” in Proc. IEEE/ACM Intl. Symposium
on Networks-on-Chip (NOCS’12), 2012, pp. 142–151.

[18] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kast-
ner, F. T. Chong, and T. Sherwood, “SurfNoC: A Low Latency
and Provably Non-interfering Approach to Secure Networks-
on-chip,” in Proc. ACM/IEEE International Symposium on
Computer Architecture (ISCA’13), 2013, pp. 583–594.

[19] R. B. Lee, Security Basics for Computer Architects. Syn-
thesis Lectures on Computer Architecture, Morgan Claypool,
2013.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[21] F. Liu and R. B. Lee, “Security Testing of a Secure Cache
Design,” in Hardware and Architectural Support for Security
and Privacy (HASP’13), 2013.

[22] R. B. Lee and Y.-Y. Chen, “Processor Accelerator for AES,”
in Proc. IEEE Symposium on Application Specific Processors
(SASP’10), 2010, pp. 16–21.

[23] M. Martonosi, M. D. Smith, T. C. Mowry, and M. Horowitz,
“Informing Memory Operations: Providing Memory Per-
formance Feedback in Modern Processors,” in Proc.
ACM/IEEE International Symposium on Computer Architec-
ture (ISCA’96), 1996, pp. 260–260.

[24] J. C. Wray, “An Analysis of Covert Timing Channels,”
Journal of Computer Security, vol. 1, no. 3, pp. 219–232,
1992.

[25] Z. Wang, “Information Leakage Due to Cache and Processor
Architectures,” PhD Thesis, Electrical Engineering Depart-
ment, Princeton University, 2012.

[26] S. Mangard, “Hardware Countermeasures against DPA—A
Statistical Analysis of Their Effectiveness,” in Cryptogra-
phers’ Track at the RSA Conference (CT-RSA’04), 2004, pp.
222–235.

[27] K. Tiri, O. Aciicmez, M. Neve, and F. Andersen, “An
Analytical Model for Time-driven Cache Attacks,” in Fast
Software Encryption (FSE’07), 2007, pp. 399–413.

[28] T. M. Cover and J. A. Thomas, Elements of Information
Theory. Wiley-Interscience, 1991.

[29] J. Mars, D. Williams, D. Upton, S. Ghosh, and K. Hazelwood,
“A Reactive Unobtrusive Prefetcher for Multicore and Many-
core Architectures,” in Workshop on Software and Hardware
Challenges of Manycore Platforms (SHCMP’08), 2008.

[30] S. P. Vanderwiel and D. J. Lilja, “Data Prefetch Mechanisms,”
ACM Comput. Surv., vol. 32, no. 2, pp. 174–199, 2000.

