
RESILIENT SOFTWARE SYSTEMS

VANDERBILT UNIVERSITY

JUNE 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-158

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-158 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
WILLIAM McKEEVER
Work Unit Manager

 / S /
MARK H. LINDERMAN
Technical Advisor, Computing &
Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

DEC 2012 – DEC 2014
4. TITLE AND SUBTITLE

RESILIENT SOFTWARE SYSTEMS

5a. CONTRACT NUMBER
FA8750-13-2-0050

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

Gabor Karsai
Abhishek Dubey
Nag Mahadevan

5d. PROJECT NUMBER
ASET

5e. TASK NUMBER
12

5f. WORK UNIT NUMBER
VU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Vanderbilt University
110 21ST Avenue S Ste 937
Nashville TN 37203-2416

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-158
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-3138
Date Cleared:22 JUN 2015
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project developed an approach to modeling resilient software systems and a concrete approach to resilience in
component-based software systems. Two techniques were developed for modeling resilient software architectures: one
based on conventional patterns, and another one based on a more flexible and general approach. While both of them
were useful, the first one suffered from usability problems, while the second one was more generic and less complex.
Vanderbilt analyzed various resilience scenarios using a template developed. The template allows the documentation of
scenarios and can assists a system architect in developing solutions. They developed an approach to facilitate run-time
resilience through a resilience engine. The method encodes the configuration space of the system in a mathematical
model and then uses a general purpose constraint solver to compute solutions that are alternative configurations of the
system that can have failing components. The approach has been prototyped in a demonstration package. It is the
conclusion that model-based development and engineering is necessary for such systems, due to the inherent potential
complexity of these systems.
15. SUBJECT TERMS
Metamodel, Resilience Engine, Software Generators, Resilient Data Model

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM McKEEVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

71

i

TABLE OF CONTENTS

LIST OF FIGURES ... iii

1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 3

4.0 RESULTS AND DISCUSSION .. 3

4.1 Domain-specific modeling language ... 3
4.2 Design patterns and resilience scenarios ... 5
4.3 Software generators for middleware .. 9
4.4 Resilience metrics and calculations ... 9
4.5 Verification of network performance .. 10
4.6 Computational requirements for online verification ... 11
4.7 Tradeoffs between online verification and conventional solutions 12
4.8 Demonstration system ... 12

5.0 CONCLUSIONS.. 15

6.0 REFERENCES .. 16

APPENDIX A: PUBLICATIONS .. 17

APPENDIX B: RESILIENCE SCENARIOS ... 18

B-1. INTRODUCTION ... 18

B-2. RESILIENT SOFTWARE SYSTEMS .. 18

B-2.1 DIVERSIfiED DESIGN ... 19
B-2.2 RECOVERY-ORIENTED COMPUTING ... 20
B-2.3 RESILIENCE PATTERNS ... 20
B-2.4 MODEL BASED SOFTWARE HEALTH MANAGEMENT – LESSONS LEARNED 21

B-3. SYSTEM MODEL – DISTRIBUTED REAL-TIME MANAGED EMBEDDED
SYSTEMS (DREMS) ... 22

B-3.1 DISTRIBUTED APPLICATION MODEL ... 24
B-3.2 SERVICES .. 24

B-3.2.1 Hardware Watchdog ... 24
B-3.2.2 Operating System kernel .. 24
B-3.2.3 Cluster Resource Manager .. 25
B-3.2.4 State Management Service ... 25
B-3.2.5 Deployment Manager Service .. 26
B-3.2.6 Monitoring Services ... 26
B-3.2.7 Additional Features and Services ... 28

B-3.3 COMPONENT MANAGEMENT INTERFACE .. 29

B-4. RESILIENCE SCENARIOS ... 29

B-4.1 SCENARIO 1: COMPUTING NODE FAILURE .. 30

ii

B-4.2 SCENARIO 2: NODE FAILURE DURING DEPLOYMENT ... 33
B-4.3 SCENARIO 3: COMPUTING NODE FAILURE .. 35
B-4.4 SCENARIO 4: TRANSIENT NETWORK FAILURE .. 37
B-4.5 SCENARIO 5: A DEADLOCK IN THE KERNEL .. 38
B-4.6 SCENARIO 6: PRIORITY INVERSION LEADING TO A SYSTEM RESET 40
B-4.7 SCENARIO 7: DEVICE FAILURE ... 42
B-4.8 SCENARIO 8: PROCESS FAILURE ... 44
B-4.9 SCENARIO 9: PROCESS FAILURE – BLABBERING STATE .. 46
B-4.10 SCENARIO 10: BAD SYSTEM STATE .. 47
B-4.11 SCENARIO 11: SECURITY VIOLATION ... 49

B-5. CONCLUSION ... 50

B-REFERENCES ... 51

APPENDIX C: TRADE-OFFS IN FAILURE MANAGEMENT STRATEGIES 53

C-1. INTRODUCTION ... 53

C-2. REDUNDANCY BASED FAULT TOLERANCE STRATEGIES 54

C-3. RADIATION AND PLATFORM SHIELDING ... 56

C-4. ONLINE MODEL CHECKING, FAULT-REPAIR AND RECONfiGURATION 57

C-4.1 RECOVERY-ORIENTED COMPUTING ... 58
C-4.2 MODEL BASED SOFTWARE HEALTH MANAGEMENT... 58
C-4.3 RESILIENT DISTRIBUTED REAL-TIME MANAGED SYSTEMS .. 59

C-5. ANALYZING TRADE-OFFS FOR DESIGNING FAULT-TOLERANT
ARCHITECTURES .. 59

C-6. CONCLUSION .. 62

C-REFERENCES ... 63

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS ... 65

iii

LIST OF FIGURES

Figure 1: Resilience blocks and example model... 4
Figure 2: Example model for using the resilience block .. 5
Figure 3: Resilient run-time system architecture (with design tools) ... 6
Figure 4: Resilience model conceptualization .. 7
Figure 5: Example results for network performance calculations .. 11
Figure 6: Initial configuration of the satellite example ... 13
Figure 7: Fault in the GPU on Satellite Beta .. 14
Figure 8: Result after reconfiguration ... 14

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

In today’s complex technical systems software plays an essential role both as the provider of
functionality and as a universal system integrator. Hence the survivability and resilience of the
system (or the system of systems) critically depends on software: if any component, be it
hardware or software, of a system fails we expect that the system recovers and survives with the
help of algorithms embedded in software. Furthermore, the complexity of the systems has
progressed to the point that zero-defect systems (containing both hardware and software) are
very difficult and expensive to build – thus the system has to be prepared to handle latent defects
that make it into deployment.
The goal of the project was to address the engineering challenge: How to build software
intensive systems that anticipate change: uncertain environments, faults, updates, and exhibit
resilience: they survive and adapt to changes, while being dependably functional?
The project has addressed this issue by developing the following artifacts:

1. A domain-specific modeling language for modeling resilient software architectures. The
language defined by a metamodel, and is supported by a modeling tool based on the
Generic Modeling Environment.

2. A collection of resilience design patterns for software architecture. The design patterns
have been incorporated into the modeling language.

3. A collection of resilience scenarios that capture typical cases and techniques for resilient
software systems.

4. A software generator tool for translating architecture models into deployment plans and a
constraint-based representation of the resilient architecture. The deployment plans can be
used by a run-time engine to configure and instantiate a running software system, while
the representation can be used to facilitate reconfiguration of the running system.

5. A metric for determining the resilience of a software architecture. Additionally, a tool has
been developed that calculates the resilience metric from a model of the architecture. The
calculations have been used to evaluate and compare architectural alternatives.

6. A method for calculating the performance of a distributed architecture, given a network
topology, the performance of the network link as a function of time, the communication
requirements of software components, a model of the software architecture, and a specific
deployment (mapping) of the software architecture on the network. The method has been
implemented in a tool, and has been tested using small examples from the domain of
distributed communications space architectures.

7. A run-time reconfiguration engine based on an Satisfiability Modulo Theory (SMT)
constraint-solver and a fault-tolerant, high-performance database that is capable of the
run-time dynamic reconfiguration of a component-based software architecture upon the
detection of faults. The engine performs on-line verification on the component
architecture, as it verifies that all system goals are satisfied, and it has been tested with
respect to performance impact on a number of examples.

The project report contains a summary of the approach used and the results achieved. Resilient
systems are clearly necessary and relevant, and the outcomes of this project could serve as the
technological foundation for building such systems.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

Software is likely to have latent defects and systems can break down because software breaks.
The defects in software come to light because something changes – in the system or in its
environment that it was not prepared for. Yet, we increasingly depend on software to build
complex systems, including cyber-physical systems (e.g. vehicles, machines, and infrastructure)
where software defects are always unacceptable, and often catastrophic. Hence software-
integrated systems need to be more resilient to changes in the environment and the system, as
well as faults. Our goal with the project was to provide an answer to the question: “How do we
construct systems that are resilient to changes, including faults in the system and radical changes
in the environment?”
Fault tolerance in computing has a long history, but resilience is beyond the capabilities of
current fault-tolerant systems – as resilience means ‘adapting to change’. The DoD OSD defines
a resilient system as: “A resilient system is trusted and effective out of the box in a wide range of
contexts, easily adapted to many others through reconfiguration or replacement, with graceful
and detectable degradation of function.”
In the project we developed an end-to-end comprehensive, model-based approach to the
engineering of resilient software systems. We claim that to realize resilience in a system, several
technologies are needed:
1. A domain-specific modeling language to support architectural modeling of resilient

component-based systems
2. Design patterns for resilience to provide a library of reusable design solutions that can be

applied to architecting resilient systems
3. Verification techniques to enable the verification of the system to achieve dependability
4. Software generators to automate the generation of application-specific code to support

resilience functions
5. Middleware libraries to provide a library of reusable services for resilient systems
Our vision was to build technology and tools for architects and developers that assist them in
creating resilient systems. The implications of such technology on current software development
processes are profound: verified systems that are created with reduced effort yet are able to adapt
to changes and faults, even without human intervention.
Our plan addressed the topics: 1, 2, and 4 of the above list, develop solutions for them, and to
evaluate the solutions on realistic examples, on a small, distributed embedded computing
platform. We have accomplished these goals, as described in the chapters below.
During the performance period, the tasks were extended with the following elements:
A. Develop system architecture trades for robustness and resiliency in spectrum challenged

environments, particularly in missions associated with fractionated space architectures
using strategies such as run time and temporal logic verification methods.

B. Using existing architectures and models from DOD programs, employ model checking at
the hardware, network, and application layer to identify system vulnerabilities in various
system configurations.

C. Using a variety of model checking frameworks including temporal logic, analytic, and
probabilistic, determine the best mix of techniques to verify performance of distributed
heterogeneous dynamic infrastructures such as distributed communications space
architectures.

Approved for Public Release; Distribution Unlimited.
3

D. Understand the embedded computational architecture requirements needed for online
systems verification in distributed heterogeneous information architectures.

E. Investigate cost tradeoffs in large system architectures such as space platforms between
online model checking and fault repair as opposed to redundancy and platform shielding
for hardware and software failure management.

Our plan was to address these questions by using and extending the results of the baseline tasks
(1, 2, and 4 listed above), and create demonstrative examples to show the results.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

The research method we followed was based on rapid development, prototyping, and evaluation
of concepts and solutions. The project was focusing on the implementation, testing, and
evaluation on small examples. Our aim was to develop the software engineering techniques and
technology for building resilient software systems. Based on our prior experience and
background, we have done this work following a model-driven engineering approach.
Model-driven development and engineering (MDE) [1][2] in general, and the particular approach
we use in our research and tools, called model-integrated computing (MIC) [3] relies on the use
of domain-specific modeling languages for creating models of the system to be built, analyze the
systems based on those models, and then generate significant parts of the implementation of the
system. Additionally, the models can also play an active role during run-time, for instance, they
can provide a run-time representation of the architecture of the software system, hence giving
reflective capabilities to it. We have followed the MIC method here: we designed a domain-
specific modeling language for modeling resilient software architectures, we have developed
tools that can verify the system based on the models, and we have developed software generators
that generate code from the model to be compiled and the used in the running system.
Resilience [4] is a system level property – by definition any part of the system can fail, yet the
system can be resilient and recover from failures. Hence our main assumption was that we need
to work towards a solution that makes a system resilient, not just one more of its components.
Hence, our products address system level issues, including architectural solutions to resilience.
The modeling language, the analysis, and the run-time tools created focus on the entire software
architecture, not only on individual components, or elements.
Another assumption was that the software system we are building is component based. In other
words, the software system is constructed from software components that can be individually
started and operated, and all the functions of the system are provided by the active running
components. We have used a fairly generic component model, but our experiments were relying
on using the Linux operating system, running software components loaded into the processes.
We believe the results can be generalized to other platforms as well.

4.0 RESULTS AND DISCUSSION
The main results of the research are described in the subsequent sections.
4.1 Domain-specific modeling language
The modeling of resilient software systems is beyond the capabilities of current architecture
modeling approaches, including AADL or UML. Although it is understood that UML is
extensible through the profiles and stereotyping mechanism, to our knowledge, no work has been
done to specifically address resilience in a UML profile.

Approved for Public Release; Distribution Unlimited.
4

The starting point for the modeling language was our previous work distributed real-time
embedded systems that resulted in a software platform and model-driven development toolchain
called DREMS (for Distributed Real-time Embedded Managed Systems)[5]. We have
significantly revised and extended that modeling language to support resilience features. The
new language is called ReSoSML, for Resilient Software Systems Modeling Language.

In the course of the project we have created two versions of ReSoSML: the first version
supported explicit specification of redundancy and resilience features. The supported
architectural patterns included: self-checking pair, triple-modular redundancy (TMR),
checkpoint/restore, watchdog timer, data re-expression, replication, and others. The figure below
shows a subset of the graphical elements and some illustrative models for these patterns.

Figure 1: Resilience blocks and example model

In the course of the evaluation of this first version of the modeling language, we learned that it
can be quite complex to use, as the modeler has to be very specific about all the details of the
resilience techniques to be used. Furthermore, the models were focusing on the faults in the
specific software components, and it was not possible to express what the system should do if a
hardware node fails. Finally, the solutions were not connected to the functions of the system (i.e.
the services the system should provide through the software applications), rather to the handling
(detection and mitigation) of failures in individual software components.

This led us to the design of the second version of the language that is much simpler, yet more
powerful. The key insight in the new version is that a very generic resilience modeling is
possible if one uses a symbolic and implicit specification of what the system should do and how
it can do that. We have achieved this in two steps:

(1) We explicitly modeled the system functions and their mapping to application software
components. The system functions modeled followed the standard functional
decomposition (based on systems engineering standards, like MIL-STD-499) with the
leaf functions being mapped to software components or combinations of software
components. The combination operators included AND and M-of-N.

Approved for Public Release; Distribution Unlimited.
5

(2) We modeled the allowed and disallowed mapping of components to hardware resources
via logical relationships over sets (expressed as constraints). These models implicitly
represent all possible system configurations.

4.2 Design patterns and resilience scenarios
In the first generation of the modeling language we have built support for the following design
patterns: Voter, Acceptance test, Self-checking pair, Checkpoint/restore, Data re-expression
block, Temporal variance block, and Watchdog timer. These elements could be used in a
‘Resilience Block’ – a special kind of software component that captures fault detection and
mitigation logic. The figure below illustrates the use of the resilience blocks.
The support for the design patterns was implemented in the form of explicit modeling constructs
that can be reused as resilience patterns. Figure 2 shows an illustrative model.

The modeling approach has been tested on
small scale examples but it was somewhat
difficult to use. Modelers had to remember
the various resilience design patterns and how
they were to be used. When a design pattern
was used, the number of elements would have
to change depending on the specific
applications. For instance, a design pattern
like ‘Acceptance Testing Combined with
Voting’ would have to be adjusted to the 3
channel (i.e. triplex), or the 4 channel (i.e.
quadruplex) cases – a rather cumbersome
approach.
Analyzing this situation we concluded that we
need a better approach for modeling
resilience. For that, we need to learn how
resilience can be implemented in actual
systems. As a consequence, we have (1)
developed a documentation template to
describe resilience scenarios, and (2) we have
documented a number of scenarios that we
identified from our experience and from the
literature. The description template is
illustrated on Table 1 below.

Figure 2: Example model for using the
resilience block

Approved for Public Release; Distribution Unlimited.
6

Table 1: Description template for resilience scenarios
Name Short name of the scenario

Description Detailed, narrative description of the scenario

Location Location of the issue initiating the scenario (within a system)

Issue Description of the issue (i.e. the root cause)

Anomaly Anomaly (deviation) locally caused by the issue

Effect Observable functional effect caused by the issue

Impact System-level impact of the issue

Detection Location and process for the detection of the anomaly or effect

Diagnostics Location and process for the diagnostics (i.e. cause identification)

Mitigation Location and process for the mitigation of the effect of the issue

Recovery Location and process for the recovery from the issue

The template allowed us to develop and document a number of resilience scenarios that could
arise in a component-based software system. These scenarios are documented in Appendix B.
The conclusion of this activity was twofold:

(1) Fault tolerance techniques for software are
well-developed and documented [6] [7], but
expressing them as a design pattern supported by a
modeling tool is somewhat problematic. It is
important for a software engineer to know these
techniques, but their graphical representation is
somewhat hard to use.

(2) Implementation of support for resilience in a
system is best understood through examples. We
found the description template (described above)
very useful, as it allows us to document and analyze
quite a number of scenarios.
As a next step, we devised a general approach to
building resilient systems using model-based
techniques. The approach relies on a generic
architecture shown on Figure 3. The top of the
figure shows the model-based design tools that
developers use to create system architectural
models that capture an initial configuration of the
system, as well as a potential configuration space.
A configuration is defined as the set of all possible
system configurations, i.e. system functions mapped

Figure 3: Resilient run-time system
architecture (with design tools)

Approved for Public Release; Distribution Unlimited.
7

to software components that are deployed on hardware resources.
These models are utilized in a run-time system, shown at the bottom. The software applications
are built from components, and they are configured using a Deployment Manager (DM) – a
system service that launches and configures the (distributed) applications. This service is also
responsible for monitoring the running applications, as well as monitoring other deployment
managers running on the other nodes of the network (not shown on the figure). When a fault is
detected in an application or in another host node, a Reconfiguration and Analysis Engine (RAE)
is activated that computes a new configuration for the system and instructs the Deployment
Manager to perform a reconfiguration. The communication and interaction between these two
large components happens via a shared distributed, fault-tolerant database. The details of this
mechanism are described in a publication [P6].
One of the key concepts in this architecture is the way the system is modeled in terms of
functions, hardware resources, software components, and deployments. The UML class diagram
on Figure 4 shows a conceptualization.

Reading the diagram from left to right, first, we model a functional decomposition of the system,
in terms of functions and their sub-functions. These functions are eventually mapped to specific
software components, component assemblies, actors (processes), or applications. This mapping
can be one-to-one, or one-to-many with the qualifiers ‘all’, ‘at least’, ‘exactly’; indicating how
many and which of those function providers are needed. The hardware platform is modeled as
computing nodes that can have attached hardware devices, and are linked through network links.
Software is modeled as a hierarchy of applications containing actors containing assemblies
containing components. Components interact with each other through various interaction

Figure 4: Resilience model conceptualization

Approved for Public Release; Distribution Unlimited.
8

patterns: publish/subscribe and/or client/server. Finally, actors and interactions are mapped to
computing nodes and communication links, respectively.
This modeling approach allows the description of a specific software architecture mapped onto a
specific hardware architecture, but if we allow alternatives in the mappings it can also represent a
configuration space over the architecture.
In the run-time system not only the binary executables of the application (components) are used,
but also a compact representation of the software architecture, specifically: the initial
configuration and the configuration space. This data structure is commonly referred to as the
‘resilient data model (RDM) for the deployment plan’ [P5]. The key observation here is that
system resilience can be implemented with the help of flexibility in the deployment. If a software
component, application, or hardware node or communication link fails, then the software
application(s) can be restarted and/or deployed on the hardware platform in a different
configuration, such that the required system functions are still provided. In other words, the
services are still provided, although via a different arrangement of hardware and software
resources.
The technical solution to representing a configuration space (as opposed to representing a single
configuration) is based on an encoding of the space as a constraint logic programming problem
(CLP) [P6]. The encoding represents the RDM as a set of constraints over integer variables,
where a valuation of the variables represents a particular configuration of the system.
Configuration choices and requirements, like ‘component X can be mapped to nodes A and B’
are also represented as Boolean expressions, like, e.g., 𝑥𝑥 = 𝑎𝑎 ∨ 𝑥𝑥 = 𝑏𝑏 . The constraint-based
representation can encode a potentially very large configuration space, as it does not encode
configurations individually, rather it encodes them in an implicit, symbolic form. System
functions are also represented by variables and their mapping to software components is
represented via relations. In other words, the entire system is represented as complex CLP
problem.
The CLP representation can be solved, i.e. a specific configuration can be computed by using a
constraint solver. Similarly, if a solution is already known, (i.e. the valuation of variables is
given), then it can be validated by the evaluating the constraint expressions; this should yield a
‘true’ value for all expressions. The CLP representation also allows modeling the effect of faults.
If a hardware node fails, a new constraint is added to the constraint system, representing the fact
that no software component can be allocated to that node. Re-running the solver, a new
configuration will be computed, that bypasses the failed component.
In the run-time architecture, a key component is the ‘resilience and analysis engine’ (RAE) that,
in conjunction with the deployment manager (DM) is responsible for managing the software
configuration and providing resilience. The RAE hosts the constraint solver discussed above.
The attached database (DB) stores the RDM in a persistent, distributed, and fault-tolerant
manner. The DB is replicated on each hardware node of the network, and whenever it is updated
on any node, the changes are propagated to all the replicas. (We rely on the MongoDB tool [9] to
achieve this.).
Initially the DB loaded with the RDM that includes the initial configuration of the system. The
DM detects this change and communicates with the RAE to perform the validation of the initial
configuration. The RAE invokes the constraint solver that validates that the configuration (i.e. a
valuation of the encoding’s variables) satisfies the constraints of the system. Once this validation
passes the DM deploys and activates the software components.

Approved for Public Release; Distribution Unlimited.
9

Whenever a fault is detected, the RAE receives a notification about the nature of the fault. The
RAE then inserts a corresponding new constraint into the constraint set and re-runs the solver
that computes a new configuration. This is deposited in the DB, and then the DM is notified that
should modify the current configuration of the software components to reflect the necessary
change. Note that this scheme will find a new configuration if there is one, and if there is none it
is able to report it – due to the fact that the configuration is a solution to the CLP problem.
However, it is acknowledged that the computation of a new solution may take a relatively long
time due the nature of the constraint solving algorithms (which are complex search algorithms).
To summarize, our approach to resilience is as follows:

1. Represent the configuration space of the software system as a CLP problem. The
configuration space is the set of all possible deployments of the software components on
hardware and communication resources. One point in the configuration space is the initial
configuration.

2. At run-time, use an on-line constraint solver engine to validate and compute new
configurations for the software, if something fails in the system. Upon a fault in the
system, a new constraint is added to the CLP problem and a new solution is computed
which does not include the failed component. Then the system is reconfigured
accordingly.

4.3 Software generators for middleware
In the course of the project a new software generator has been developed for generating the
RDM and we have reused existing generators from the ACE/TAO/CIAO/DANCE software
infrastructure [8]. The reused software generators were updated according to the needs of the
project. The most significant change was in the DANCE (Deployment And Configuration
Engine) that was modified to act as the DM and interfaced to the DB.
The developed software generator is a model interpreter (embedded in the Generic Modeling
Environment that has been used as the platform for implementing the modeling tool) that
traverses the models and populates the DB according to the RDM schema. As the modeling
language is already similar to the RDM schema, this mapping is accomplished by a rather
straightforward algorithm whose details are described in the publication [P5].

4.4 Resilience metrics and calculations
The approach to resilience described above allows not only the operational implementation of
resilience, but also the evaluation of architectures with respect to resilience. Our previous work
on an Information Architecture Platform for fractionated satellites has taught us the importance
of understanding a system’s capabilities with respect to faults in the system. In a fractionated
space system functionality is distributed across satellite nodes that run software applications.
Each node may have a dedicated hardware resources (e.g. sensors, compute engines, on-board
storage) and the flexibility of the system comes from the feature that software applications can
be deployed in various ways, using various resources to provide the services needed. Given a
hardware platform (compute nodes, network links, special devices attached to nodes), the
question arises: how resilient is a particular hardware/software architecture to faults in any of the
components? Note that the system’s flexibility comes from the multitude of potential
deployments of the software.
In order to evaluate architectures with respect to resilience we have developed a resilience metric
[P3] that is computed over the (1) hardware configuration, (2) software application architecture,

Approved for Public Release; Distribution Unlimited.
10

(3) deployment constraints (that restrict how the software components can be deployed on the
hardware resources), and (4) an initial configuration (i.e. deployment). The metric is defined as a
pair of integers: 𝑅𝑅 = (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚), where 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚is defined as the least number of failures that the
system will tolerate without any impact on the mission, and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 is defined as the maximum
number of failures that can be sustained while supporting the mission remains feasible. The first
number is also called the worst-case resilience, while the second as best-case resilience. In other
words, (1) the system will always tolerate 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 failures, but with 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 1 the system can fail,
and (2) the system can tolerate up to 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 failures but 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 1 will make the system fail.
Between 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 the system may fail (but this is not certain).
This metric allows the comparison of alternative architectures (i.e. hardware and software
configurations and deployments). It is interesting to note that even for simple systems the size of
configuration space can be quite large. One example system that was based on a fractionated
satellite problem had a space of size 105, while the resilience metric was 𝑅𝑅 = (1,17) (indicating
that the system could tolerate 1 failure in the worst case and 17 in the best case).
The calculation of the resilience metric is not trivial, and we have developed an algorithm that
relies on a CLP solver (more specifically, on an SMT solver). The algorithm encodes the
problem as a CLP problem, exhaustively introduces faults in components and asks the solver to
compute solutions (i.e. configurations). This basic approach is optimized via using a compact
and efficient encoding of the problem. While the algorithm is clearly not an efficient one, it can
compute the metrics with reasonable performance. For instance, for the problem mentioned
above that completed the work in a few minutes on an average desktop machine. A point to note
is that we have used a very efficient SMT solver: the Z3 system from Microsoft Research [10].

4.5 Verification of network performance
In systems where communication resources are constrained design-time verification of
communication performance is important. Based on our earlier work on fractionated satellite
systems, we have developed an approach to accomplish this. The approach is described in detail
in [11], here we give a summary.
The approach is reliant upon a model of the network performance (as a function of time) and a
model of the application requirements (as a function of time). The network performance is
modeled as cumulative function – called the network profile – describes the amount of data that
can be transferred through a network up to a point in time t. The application requirements are
defined for each communication port of each component in the application. This is another
cumulative function – called the application profile — that represents the amount of data that
will be produced by that port up to a point in time t. Now using techniques, similar to the ones
developed in Network Calculus (NC) [12] the network capabilities and the (combined)
application requirements can be composed and the overall system performance validated. Our
approach is slightly different from NC as it operates with cumulative functions, not data rate
functions, yielding more accurate results. The mathematical foundation of the composition is the
‘(min,+)’ calculus (used to substitute the conventional (+,*) operators) applied in a convolution
operation. The network profile is convolved with the summed-up application profiles using the
(min,+) rule, yielding the worst case latency and buffering requirements in the network.
The approach works well for systems where the network profile is a periodic function (in the
rates). This is typical in fractionated satellites due to the orbital mechanics: bandwidth between
satellites tends to fluctuate as a sinusoidal function of time.

Approved for Public Release; Distribution Unlimited.
11

The results of the calculation verify that the network is capable of handling the application
requirements. If the network buffer requirements (and/or delays) grow unboundedly over time,
then the network is not capable of handling the load. If they remain within bounds, then we know
what worst case network latency and buffer utilization we can expect from the system. Figure 5
shows an example. The system (network) provided profile is p[t], the application required profile
is r[t] and the resulting actual profile (data delivered as a function of time) is shown as l[t]. The
maximum vertical difference between r[t] and l[t] gives the worst case buffer size needed, and
the maximum horizontal distance shows the worst-case delay.

Figure 5: Example results for network performance calculations

The analysis results can be used as an admittance test for application deployments, at design-
time. Additionally, as the calculations are rather simple, they can be performed at run-time, on
the newly computed configurations. The paper [P6] describes such a run-time approach, where
the solver-generated new architecture is validated with respect to network performance, prior to
deployment. If the validation fails (i.e. the new configuration would overload the network), then
the solver is forced to compute a new solution. This will be subjected validation before
deployment. The process may iterate until an acceptable solution is found or no more solutions
are available.

4.6 Computational requirements for online verification
The resilience approach described above is clearly reliant on the performance of the RAE. Due to
the encoding of the problem as a CLP problem, we have to rely on a CLP solver to compute new
solutions. This solver acts as an online verification engine that computes new configurations at
run-time. As the computation is based on strict constraints that the solution has to satisfy, the
computed configurations are always valid.
The main computational load for reconfiguration comes from the solver that implements a search
algorithm. Note that all the other components in the run-time system (i.e. DM and DB) are either
deterministic or could be made deterministic. The mapping of the RDM into the encoding of the
problem as a CLP is deterministic and is bounded by the size of the RDM (nodes and edges in
the model). The key performance issue is in the solver that has to compute a valuation for the
solution variables.
As the solver is a very complex, possibly adaptive algorithm, it is not possible to come up with a
closed formula for its performance. In our example system we have used the best known and

Approved for Public Release; Distribution Unlimited.
12

available solver: Z3 from Microsoft Research, an open source tool. This tool uses problem
rewriting, machine learning, multiple solver strategies and heuristics in an overall adaptive
framework that delivers best-of-breed performance. In our, admittedly small scale experiments
the run-time computation of a solution was accomplished in a few seconds (on an average
desktop), and that performance, given the overall speed of reconfiguration of the system, was
acceptable.
To get better, more deterministic behaviors from the solver design-time pre-computation of the
solutions is possible. However, caching the solutions for run-time use may not be feasible, as the
configuration space could be quite large and on-board storage can be limited. However a design-
time analysis and testing of the solver’s performance may be feasible. How to optimize the
search for a given architecture and system could be a very interesting and relevant area of future
research.

4.7 Tradeoffs between online verification and conventional solutions
Resilience can be supported by conventional methods, like classic fault tolerance via redundancy
and very simple failover logic or even static fault protection methods like shielding, or via the
more complex, dynamic scheme that we have proposed and prototyped that relies on online
verification and reasoning. It is important to understand the differences and cost/benefit factors
for both approaches. Our findings are summarized in a report (attached in Appendix C), here we
give only a brief summary.
Shielding of sensitive electronics to achieve resilience against radiation effects is very expensive
in terms of weight and size. The shielding required depends on the orbit’s position situation
(LEO vs GEO). Shielding is simple to implement and it can be low risk to install as it does not
interact with anything in a system (except the geometry and the weight). However shielding
cannot completely isolate the electronics from radiation effects due the function of the
electronics (e.g. sensors), but it can reduce the impact of radiation. Nevertheless, a well-designed
system should have functional (dynamic) means to provide resilience. Arguably, these functional
methods induce less weight and size penalties.
Conventional redundancy is well-established, but it is also expensive in terms of the cost of the
electronics itself, and the resulting weight and power requirements. While it is relatively simple
to implement, some elements may have to be shielded or be made highly radiation tolerant (e.g.
the voter in a TMR). It is medium risk to implement, but it certainly introduce additional
complexity in the system.
The online verification based approach described in this report is the most complex, and
consequently, the most high-risk approach. Its physical size, weight, and power impact are
negligible (it is implemented in software), and if there is a way to recover for the system, it is
able to find it. While the physical properties of the approach are appealing, the additional
complexity is a risk. The RAE described above is quite complex and includes elements that are
hard to test or verify (e.g. the constraint solver). Using it may introduce complexity-related risks
into projects, so it should be used only if benefits (higher flexibility, less redundancy required,
etc.) clearly overtake the risks.

4.8 Demonstration system
We have built a prototype demonstration system that includes a modeling tool, software
generators, design-time analysis tool for resilience metric calculations and network performance
calculations, and a run-time resilience analysis engine. The demo system includes a prototype of

Approved for Public Release; Distribution Unlimited.
13

all architectural elements from Figure 3. It requires a Windows machine to run the modeling and
analysis tools and Windows or Linux machines (or virtual machines) to run the reconfiguration
engine.
The demonstration system is available from the website:
https://phab.resos.isis.vanderbilt.edu.The system requires a GME installation (available from
https://www.isis.vanderbilt.edu) and it comes with its own installer.
The system includes a few models that demonstrate: (1) the modeling approach using the
domain-specific modeling language, (2) the analysis of the models with respect to resilience
metrics, and (3) the execution of a reconfiguration in a run-time system. For the latter, a Z3
solver and a MongoDB setup is also required.
The example uses 3 satellites (compute nodes) linked via a wireless network. The first satellite
called Alpha has a high- and a low-resolution camera and a GPU (for processing), the second
satellite Beta has only a GPU, and the third satellite Gamma has a high-resolution camera. All
satellites have their own satellite bus, ground link, and wireless network link (to communicate
within cluster).
There are three software applications, two related to flight controls, and another one doing wide
area monitoring. The two flight control applications are the (1) ClusterFlightApp that is
responsible for maintaining the coordinated cluster flight and the (2) SatelliteFlightApp
that maintains the orbit of one satellite but directly controlling the satellite bus. The
ClusterFlightApp exists in a single copy on the cluster and it requires the ground
communication link. The SatelliteFightApp requires the interface to the satellite bus and it has to
be located on the same satellite (i.e. it cannot control the bus of another satellite). The wide area
monitoring application requires access to the high- and low-resolution cameras, and the GPU.
All of the above specifications have been captured in the models, from which an RDM can be
instantiated and then the system encoded as a CLP problem.
The figures below show an initial configuration of the system, the situation when a camera fails,
and the result of the reconfiguration. All the drawings were generated from the running
application on a simulated cluster.

Figure 6: Initial configuration of the satellite example

https://phab.resos.isis.vanderbilt.edu/
https://www.isis.vanderbilt.edu/

Approved for Public Release; Distribution Unlimited.
14

The initial configuration shows the required system functions on the top, and their mapping to
software components that are allocated to the hardware nodes.
When the GPU fails on satellite Beta the ImageProcessor (that is the main component of the
wide area monitoring application) cannot function, as it does not have access to the specialized

image processor. Hence a reconfiguration is initiated that results in moving the application to
satellite Gamma that has a functional GPU.

Figure 8: Result after reconfiguration

Figure 7: Fault in the GPU on Satellite Beta

Approved for Public Release; Distribution Unlimited.
15

5.0 CONCLUSIONS

In the course of this project we have developed an approach to modeling resilient software
systems and a concrete approach to resilience in component-based software systems. It is our
conclusion that model-based development and engineering is necessary for such systems, due to
the inherent potential complexity of these systems.
We have developed two techniques for modeling resilient software architectures: one based on
conventional patterns, and another one based on a more flexible and general approach. While
both of them were useful, the first one suffered from usability problems, while the second one
was more generic and less complex.
We have analyzed various resilience scenarios using a template we developed. The template
allows the documentation of scenarios and can assists a system architect in developing solutions.
We have developed an approach to facilitate run-time resilience through a resilience engine. The
method encodes the configuration space of the system in a mathematical model and then uses a
general purpose constraint solver to compute solutions that are alternative configurations of the
system that can have failing components. The approach has been prototyped in a demonstration
package.
Our conclusion is that a flexible, dynamic, and adaptive computational solution to resilience is
feasible. However it should be applied with caution as it significantly increases the complexity of
the system and makes testing and verification problematic.

Approved for Public Release; Distribution Unlimited.
16

6.0 REFERENCES

[1] Soley, Richard. "Model driven architecture." OMG white paper 308 (2000): 308.
[2] Kleppe, Anneke G., Jos B. Warmer, and Wim Bast. MDA explained: the model driven

architecture: practice and promise. Addison-Wesley Professional, 2003.
[3] Sztipanovits, Janos, and Gabor Karsai. "Model-integrated computing." Computer 30, no.

4 (1997): 110-111.
[4] Laprie, Jean-Claude. "From dependability to resilience." In 38th IEEE/IFIP Int. Conf. On

Dependable Systems and Networks, pp. G8-G9. 2008.
[5] Levendovszky, T.; Dubey, A.; Otte, W.R.; Balasubramanian, D.; Coglio, A.; Nyako, S.;

Emfinger, W.; Kumar, P.; Gokhale, A.; Karsai, G., "Distributed Real-Time Managed
Systems: A Model-Driven Distributed Secure Information Architecture Platform for
Managed Embedded Systems," Software, IEEE , vol.31, no.2, pp.62,69, Mar.-Apr. 2014
doi: 10.1109/MS.2013.143

[6] Hanmer, Robert. Patterns for fault tolerant software. John Wiley & Sons, 2013.
[7] Knight, John. Fundamentals of Dependable Computing for Software Engineers. CRC

Press, 2012.
[8] ACE/TAO/CIAO/DANCE middleware software infrastructure, available from

http://www.theaceorb.nl/en/ace-tao-ciao-dance-prod
[9] MongoDB database http://www.mongodb.org/
[10] Z3 high-performance solver http://z3.codeplex.com/
[11] Emfinger, William, Gabor Karsai, Abhishek Dubey, and Aniruddha Gokhale.

"Analysis, verification, and management toolsuite for cyber-physical applications on
time-varying networks." In Proceedings of the 4th ACM SIGBED International
Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems, pp. 44-47.
ACM, 2014.

[12] Le Boudec, Jean-Yves, and Patrick Thiran, eds. Network calculus: a theory of
deterministic queuing systems for the internet. Vol. 2050. Springer Science & Business
Media, 2001.

http://www.theaceorb.nl/en/ace-tao-ciao-dance-prod
http://www.mongodb.org/
http://z3.codeplex.com/

Approved for Public Release; Distribution Unlimited.
17

APPENDIX A: PUBLICATIONS

[P1] Pradhan, S.; Emfinger, W.; Dubey, A.; Otte, W.R.; Balasubramanian, D.; Gokhale, A.;

Karsai, G.; Coglio, A., "Establishing Secure Interactions across Distributed Applications in
Satellite Clusters," Space Mission Challenges for Information Technology (SMC-IT), 2014
IEEE International Conference on , vol., no., pp.67,74, 24-26 Sept. 2014, doi: 10.1109/SMC-
IT.2014.17

[P2] Balasubramanian, D.; Dubey, A.; Otte, W.; Emfinger, W.; Kumar, P.; Karsai, G., "A
Rapid Testing Framework for a Mobile Cloud," Rapid System Prototyping (RSP), 2014 25th
IEEE International Symposium on , vol., no., pp.128,134, 16-17 Oct. 2014, doi:
10.1109/RSP.2014.6966903

[P3] Balasubramanian, D; “Quantifying Resilience in Component-Based Software
Architecture Models”, at S5- Safe & Secure Systems and Software Symposium, 2014

[P4] Balasubramanian, D., Levendovszky, T., Dubey, A., & Karsai, G. (2014). Taming Multi-
Paradigm Integration in a Software Architecture Description Language. In 8th International
Workshop on Multi-Paradigm Modeling MPM 2014 (p. 67).

[P5] Pradhan, S.; Otte, W.; Dubey, A.; Gokhale, A; and Karsai, G.: Key Considerations for a
Resilient and Autonomous Deployment and Configuration Infrastructure for Cyber-Physical
Systems. In:: IEEE. : 11th IEEE International Conference and Workshops on the Engineering
of Autonomic and Autonomous Systems (EASe-2014)., 2014

[P6] Emfinger, W;, Kumar, P; , Dubey, A;, & Karsai, G;, “Towards Assurances in Self-
Adaptive, Dynamic, Distributed Real-time Embedded Systems”, submitted to Software
Engineering for Self-Adaptive Systems III, Lecture Notes in Computer Science

Approved for Public Release; Distribution Unlimited.
18

APPENDIX B: RESILIENCE SCENARIOS

Resilience Scenarios for Managed Distributed Real-time Systems
Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, 37212.

B-1. Introduction

Distributed real-time embedded systems that interact with the physical world are ubiquitous and
pervasive. We are relying on an increasing number of such systems that provide services to a
large number of users. Lately, a new subclass of these systems called Distributed Real-time
Managed Systems (DREMS) [B-1] has emerged that is characterized by (a) requirements for
sharing of computational resources between application provided by different organizations, (b)
ability to support multiple, simultaneous missions operating at different time scales, (c) cloud of
computing nodes with mobile ad hoc networking and dynamic group membership, and (d)
integrated physical constraints and mobility that impacts the software application running on the
system.

Owing to the mobile, distributed and remote nature of the deployed DREMS platforms,
resilience is an important property. A resilient system is expected to provide persistent and
justifiably trustworthy service when subjected to functional, environmental or technical changes.
The changes themselves could be expected or unexpected, and could be persistent, transient or
intermittent with short, medium or long term effects.
In this report, we use a specific implementation of the DREMS architecture described in [B-1].
The architecture consists of a design-time tool suite for modeling, analysis, synthesis,
integration, debugging, testing, and maintenance of application software built from reusable
components and a run-time software platform for deploying, executing, and managing
application software on a network of mobile nodes. The run-time software platform consists of
an operating system kernel, system services and middleware libraries, where each layer is built
upon the guarantees provided by the lower layer.

The outline of the report is as follows. Section 2 present related research and background on
resilient systems. Section 3 presents brief overview of layered reference architecture for a
system, with the guarantees and the assumptions of each layer. We describe the different services
of the platform in Section 3.2. Thereafter, in the following sections we describe the resilience
scenarios.

B-2. Resilient Software Systems

One of the necessary but not sufficient requirements for building a resilient system is fault-
tolerance. In [B-2], Avizienis described fault-tolerance as the attribute of a digital system that
keeps the logic machine performing its set of specified tasks when it encounters various kinds of
failures in its components.

Approved for Public Release; Distribution Unlimited.
19

 Most of the earlier work on software and hardware fault-tolerance focused strongly on using
redundant components and design diversity to tackle design-time faults [B-3][B-4]. In this
approach, the computer system is partitioned into modules, with each module dealing with a
specific sub-function. This federated partitioning provided for fault containment with a set of
identical computing processors running software for several sub-functions. This approach
improved the dependability of the computing system with more efficient use of redundant
hardware. However, this still left the system vulnerable against the software faults and common
mode failures.

B-2.1 Diversified Design
In a diversified design, several variants of the same software are used with an acceptance test
employed at the end to compare the output from each of the variant. The rationale behind this
approach is the expectation that component built differently will fail differently [B-5]. A
diversified design has at least two variants plus a decider, which monitors the outputs of the
variants. Three such strategies for software fault-tolerance are: Recovery Block approach [B-
6][B-7], N-version programming approach[B-8], and the N self-checking programming
approach[B-3][B-9].

The recovery block technique [B-6][B-7] uses the checkpoint and restart technique to recover
from a fault. It uses multiple versions of the same software module as alternates. Upon failure of
an acceptance test, the checkpoint state is used to restart the computation by using the next
alternate version. In this approach, at least two versions of software module are required. If all
alternates fail, the module issues an exception to the rest of the system.

In the N-version programming approach, multiple versions of same programs is executed in
parallel, with a voter selecting the output most likely to be correct. This approach is different
from the recovery-block approach in that it does not require an application dependent voter and
that it needs at least three versions of the same module to work. However, the parallel execution
necessitates the need to ensure input consistency. In 1990, Brilliant, Knight and Leveson
published results from a large-scale experiment conducted in N-version programming [B-10]. In
the experiments, they prepared twenty seven versions of a program at two different universities
and then executed them one million times. The results of the experiment were intriguing. They
noticed that different versions were found to be reliable when used individually with only a small
number of failures. However, when they correlated these failures across different versions they
discovered that the number of input cases when more than one version failed was significantly
large. Upon post failure analysis, they further discovered that correlated failures arise from
logically unrelated faults in different parts of the algorithms. They hypothesized that most of the
faults resulted from the fundamental flaws in the algorithms that the programmers designed.
Therefore, changing the development tools or methods to create new versions did not reduce the
number of correlated failures in N-version software.

N-Self-checking approach [B-3][B-9] is a combination of Recovery block approach and N-
version approach. This approach has two variations. The first variation uses acceptance test for
each version as in the recovery block approach, however, the acceptance test for each version
can be different. By executing these versions in parallel, this approach enables switching of
output in case of errors instead of restarting from previous checkpoint. The other variant uses a
comparison technique. It groups the variants into set of two, with a comparison unit forwarding
the result to a selection unit only if the two versions in a set produce identical results. The

Approved for Public Release; Distribution Unlimited.
20

selection logic then selects the outputs from different version similar to the N-version technique.
The drawback of using this technique is the possibility of running into situation where both
versions in a set produce identical wrong output.

B-2.2 Recovery-Oriented Computing
In [B-11], Brown and Patterson found that the heterogeneity and complexity involved in most
large-scale service systems inherently leads to unforeseen failures. Therefore, in Recovery-
Oriented Computing (ROC)1

[B-11][B-12] they concentrate on reducing time to recover from

faults and thus offer higher availability and aims to reduce total cost of ownership. ROC
emphasizes on testing recovery systems and helps make recovery procedures a holistic part of
the architecture rather than a patch or add-on that leads to extra complexity.

They have proposed six techniques [B-13] for recovery oriented computing.

1. Redundancy: Introduce redundancy to reduce the probability of a fault due to single points of
failures. Note that this generally adds to the initial setup cost of the system. Nevertheless,
they argue that by increasing the number of available resources as a safety margin, the mean
time to recover are reduced that increases availability and hence reduce total cost of
ownership.

2. Partitioning: They advocate the use of partitioning the system such that to ensure fault-
containment and ease of fault-isolation.

3. Testing of recovery mechanisms: They advocate the presence fault insertion capability in live
systems to test recovery process. This they argue helps in running availability benchmarks,
which allows for reduction in time taken to deduct error.

4. Aid in Diagnosis of the cause of error: They advocate that a ROC system should contain
sensors that help an operator determine the cause of a problem.

5. Logging of operator inputs to enable undo: In [B-14], Brown and Patterson have stated that a
system should have the capability to rewind and replay a set of inputs given by a user to
assist in repair. It is a system-wide undo. They have used this technique to build and undo
email store [B-14]. However, since system behavior is not always deterministic, this undo
technique can only work for a class of system and for that system, the cost of storing the
undo trace would be enormous.

6. Orthogonal Mechanisms: Fox and Brewer state that one can reduce the likelihood of a
complete failure and increase availability by using multiple versions for the same function
that are independent from each other.

B-2.3 Resilience Patterns
R. Hamner [B-15] summarizes some of the common architectural and application patterns
relevant towards creating fault tolerant software. The architectural patterns such as Redundancy,
Recovery Blocks, Fault Observer, Maintenance Interface, Software Update, and Units of
Mitigation capture the design strategies to instrument application patterns for Detection,

1http://roc.cs.berkeley.edu/

Approved for Public Release; Distribution Unlimited.
21

Mitigation, Recovery and Fault Treatment. As the name suggests, the Detection patterns: System
Monitor, Voter, Acknowledgement, Heartbeat, Watchdog, Checksum, Routine Audits, Error
Containment, etc. deal with detecting and diagnosing the errors. The mitigation patterns:
Overload Toolboxes, Reassess Overload Decision, Deferrable work, Equitable Resource
Allocation, Fresh Work before Stale, Queue for Resources, and Shed Load deal with mitigating
the effect of the fault. The recovery patterns: Quarantine, Restart, Rollback, Roll-Forward,
Checkpoint, Failover, and Limit retries are associated with recovering the system to its nominal
state. The fault treatment patterns: Reintegration, Reproducible Error, Revise Procedure, Root
Cause Analysis, and Small Patches deal with correcting the faulty portion of the software system.

B-2.4 Model Based Software Health Management – Lessons Learned
As part of a research effort on Model-Based Software Health Management (sponsored by
NASA’s Aviation safety program) we adapted a diagnosis scheme used for Systems Health
Management and applied it towards diagnosis of a software component assembly. The real-time
health management scheme involved a two-level software health management scheme:
Component-level Health Manager (CLHM) provided localized and limited service for managing
the health of individual software components and a System-Level Health Manager (SLHM)
managed the health of the overall system. In the following paragraphs, we summarize the lessons
learned as part of this exercise that can be applied towards building resilient systems.

• Effects of Local Mitigation: While local mitigation actions provide a quick local response
to an anomaly, they could introduce new or modified failure cascades. For example,
consider the case in which based on a certain contract violation, a local mitigation action
stops a data publisher component. While it prevented the publication of bad data (that
could have potentially violated the contracts), the lack of data published can lead to a
problem on the consumer side, due to lack of data or data validity violations. It is
important that higher-level or other related health managers are aware of the mitigation
actions. This would allow other health managers to recognize these effects and act
accordingly.

• Alarm Timing Issues: It is important that all anomalies detected are time stamped using
the local node clock. Apart from the issue of time-synchronization between the nodes, it
is also important to deal with the issues of alarms not arriving at the appropriate health
managers in the order of their detection. This can be either due to the varying network
latency or task preemption. A robust health management scheme could deal with these
issues by using a variety of techniques including robust algorithms that account for
delayed alarms, configurable policies for alarm aggregation with an appropriately sized
moving windows, etc.

• Masking of Fault Effects: The health manager should be aware of the automated fault-
tolerance schemes that are designed into the assembly of software components. The fault-
tolerance schemes are inherently designed to stop the cascade of certain kind of faults. In
order to build a resilient system, the health managers should be made aware of any
discrepancy or fault information that is available through these fault-tolerance and fault-
masking techniques (e.g. Voters, Active Replicas, etc.). This would allow the appropriate
managers to check if appropriate recovery actions can be performed on the faulty
software components or computing nodes.

• Intermittent or Transient Faults and Alarms: It is possible that the failure source or the

Approved for Public Release; Distribution Unlimited.
22

alarms associated with the anomalies are intermittent, i.e. they are observed in one period
but not observed in another. This intermittent behavior can be caused by a partial
masking effect, or intermittent behavior in the original fault source or it can be due to the
mitigation actions. The health-management framework should be capable of handling
such intermittent and transient problems.

• System Hysteresis: It is possible that the despite the mitigation action taken at the system-
level to remove the fault source, the fault cascade remains in the system for a few cycles.
Such hysteresis will result in intermittent alarms during this period and should be ignored
by the health-management scheme. Furthermore, it is important that the health-managers
are made aware of any such intermittence that could be expected, before the mitigation
actions completely fix the problem.

• Alarms placement: Sensor, Alarm, and Monitor placement are an important issue with
software systems as well. While having an alarm for every possible anomaly could help
in isolating the fault source, the large number of monitors could easily overwhelm the
system. The other extreme of using very few monitors would make it harder to identify
and isolate the real fault source. Hence the designers and integrators needing to account
for the trade-offs and possibly employ dynamic schemes to deploy and remove monitors
as needed.

• Distributed Health Management: Component assemblies that have limited or no
interactions and diagnose should be identified and dealt with as independent groups with
a different health manager. This will allow the health managers to focus on a smaller
region and provide a real-time response to the observed fault effects.

B-3. System Model – Distributed Real-time Managed Embedded
Systems (DREMS)

The DREMS platform implementation [B-1] considered in this paper assumes distributed system
architecture with mobile computing nodes and an ad hoc mesh network. A specific and singular
network access point is not assumed. Several mesh network routing protocols exist [B-16]. This
architecture does not constrain the choice of the mesh network. However, we assume that under
nominal conditions at least one network route exists between any two nodes in the cluster.

Distributed applications composed from cooperating processes called “actors” provide services
for the end-user. Actors are specialized OS processes; they have persistent identity that allows
them to be transparently migrated between nodes, and they have strict limits on resources that
they can use. Each actor is constructed from one or more reusable components [B-17] where
each component is single-threaded, though components can be executed concurrently. Note that
though we use the component model described in [B-17] our work is not constrained by this
choice and can be applied to other component models as well. The internal architecture of each
computing node is described in Figure A. As can be seen from the figure, each layer builds upon
the guarantees provided by the previous layer. These guarantees ensures that fault cascades
typically travel in only one direction, from a lower layer that provides the service to the higher
layer that uses the service. For example, the operating system relies on the guarantees provided
by the hardware watchdog which ensures that the system will be reset if a deadlock occurs [B-
18].

Approved for Public Release; Distribution Unlimited.
23

An operating system kernel provides performance isolation between actors of different
applications. This is done by (a) providing separate, protected address spaces per actor; (b)
enforcing that a peripheral device can be accessed by only one actor at a time; and (c) facilitating
temporal isolation between actors by the scheduler. The temporal isolation is provided via
ARINC-653 [B-19] style partitions, which are periodically repeating fixed intervals of the CPU’s
time exclusively assigned to a group of cooperating actors of the same application. The scheduler
guarantees that actors in distinct temporal partitions cannot inadvertently interfere with each
other via CPU usage. The encapsulation of peripheral devices into resource manager actors
enables fine-grain access control to the resource. Readers are referred to [B-20] for further details
on spatial and temporal isolation, both of which are standard mechanisms. Additionally, it
provides strict resource monitoring and guarantees that each actor can consume the available
computation resource up to the maximum budget that they are allowed.

Actors are divided into two categories: application actors and platform actors. The platform
actors provide highly critical services required for the rest of the system to function. Primarily,
three kinds of system services are considered:

B-1. Deployment and Configuration Service: It is required to deploy, configure and
reconfigure distributed applications. One deployment service instance runs on each
computing node.

B-2. Mission Service: The mission service is the operations manager. It is responsible
for orchestrating pre-planned timed configuration changes to the distributed architecture.
Additionally, this service can re-compute a deployment plan if the currently available
computing resources are not enough [B-21].

B-3. Communication (or Cluster) Resource Manager: This service manages the
communication resources, i.e. the mesh networks and the routes used. It ensures that the
mesh network is connected and that other applications can request an updated mesh status
map at any time. It is also responsible for managing the group membership.

Figure A: This figure shows the internal software architecture of one of the nodes of the

Approved for Public Release; Distribution Unlimited.
24

distributed system. As shown, each layer builds upon the guarantees provided by the previous
layer. These guarantees ensure that fault cascades typically travels in only one direction, from a

lower layer that provides the service to the higher layer that uses the service

B-3.1 Distributed Application Model
A distributed software application is a graph of software components that are distributed across
processes 2

and hosted on several interconnected computing nodes. Interaction relationships
between the components i.e. the edges can be generally grouped into kinds: (a) Peer to peer
dependencies and (b) Group interactions.

Peer to peer dependencies, are realized using Facets that are collections of operations (interfaces)
provided by a (server) component and Receptacles that are collections of operations required by
another (client) component. These two ports can be used to implement synchronous and
asynchronous point to point interactions. Generally, a peer to peer dependency implies an order
of deployment between components, i.e. the server providing the facet should be deployed before
the client with the receptacle.

The group interactions are always asynchronous in nature and do not imply ordered deployment.
Group interactions are realized using Publisher and Subscriber ports, which provide a way for
components to interact in a global data space defined over Topics. Publisher ports are the
gateways to post data samples into the global data space, and subscriber ports notify interested
components about arrival of relevant data samples in the space. This feature is provided using the
underlying OMG Data Distribution Services (DDS) middleware.

B-3.2 Services
We require the platform to provide the following services.

B-3.2.1 Hardware Watchdog
The hardware watchdog guarantees that it will reset the hardware and thus operating system if a
deadlock in the kernel occurs due to which it cannot make any progress. Typically, this situation
is result of a critical bug in the kernel code which leads to a state where the task that is
responsible for resetting the watchdog periodically cannot be scheduled. This can happen either
due to a real-time issue such as priority inversion or can occur due to a critical bug which causes
kernel panic and a state of lockup ensues.

B-3.2.2 Operating System kernel
The operating system kernel is responsible for scheduling tasks. It will also ensure that any
device failure is communicated to the device managers 3. The kernel is also responsible for
broadcasting messages about change in status of a process to all parties who are interested in
receiving that message. Any resource limit violations are also broadcast to managing processes.

2 Components hosted within a process are located within the same memory space
3 It is assumed that devices are managed by one process at a time, and this managerial assignment changes
infrequently

Approved for Public Release; Distribution Unlimited.
25

The kernel also guarantees to restart any critical platform process if it dies.

B-3.2.3 Cluster Resource Manager
The cluster resource manager ensures that a route exists from the node to all other nodes in the
cluster. Additionally, it ensures that information about the loss of communication to a computing
node is available to any process that is interested and is privileged to know that information. The
cluster resource managers are also responsible for maintaining the consensus about group of
nodes currently in the cluster. The cluster resource managers guarantee that this information is
available from all CRM instances on all nodes. The CRM also provides information about any
imminent network outages to any other node in the cluster.

B-3.2.4 State Management Service
The state management service plays an extremely critical role in recovering the functionality of
an affected system. While operations such as reset/ restart/ re-deployment (platform or
application) would bring the required services alive, the state of the underlying components need
to be set correctly for them to restore the desired functionality.

The state management services are responsible for providing the necessary infrastructure to
checkpoint and restore the relevant state. The state includes any information that helps restore
the lost services such as,

• State information related to the components that are part of the application and/or
platform services.

• Static deployment information (per node) that includes the actors (and the components)
deployed on each node.

• Dynamic deployment information (per node) that includes the operational state of the
components (active/ passive/ inactive), the connectivity of the component ports
(connected/ disconnected), and the flow information of the connected ports (the service to
which the receptacles are connected).

In order to support state management, the framework should provide the suitable functionality in
the middleware that implements component containers. These standard interfaces should support
output/ checkpoint and input/ restore the component states based on the relevant component
attributes. During check-pointing, the framework code in the container should be able to serialize
the attribute data into an octet stream in a Common Data Representation (CDR) format. During
restore, the framework provided component container should be able to de-serialize and set the
component attributes from the data (octet stream in CDR). The state management service must
be configurable in terms of when the check pointing should be triggered for each component or
component-assembly -whether it is periodic (at a specific rate) or aperiodic (and based on an
event).

While the check pointed data could be stored locally on the node, a better strategy at least for the
more critical data might be to distribute this information across the cluster so that the recovery is
tolerant to node-specific faults. Further, since the distribution of state-information is a costly
operation, the state management service should be configurable in terms of which data is to be
distributed and at what frequency. One possible implementation of the state-management service
could be done by exploiting the ’Durability’ QoS property in DDS data writer objects that
publish the check pointed state information. A PERSISTENT Durability QoS with a history size
of 1 would allow the last check pointed data to be available even if the node or the local state

Approved for Public Release; Distribution Unlimited.
26

management service terminated. A TRANSIENT Durability QoS would also allow the last check
pointed state to be available, but it won’t be tolerant to faults associated with the local state
management service (and hence those of the host-node).

B-3.2.5 Deployment Manager Service
When a distributed application is designed, the developers make assumptions about the
deployment of the processes across various computing nodes. These assumptions are represented
by virtual node assignments. The task of the deployment and configuration service is to initially
set up the system such that all virtual node assignments for an application are mapped to concrete
nodes. Nominally, the deployment infrastructure always maps one virtual node to the same
physical node. Then, the deployment procedure requires instantiating all components, setting up
their port-to-port connections and then activating them. Failures can occur at any time, during the
setup or after the application has been activated. A resilient deployment and configuration
infrastructure must be able to detect and isolate the failure and then trigger the redeployment and
reconfiguration of the affected portions of the application.

The deployment manager service is distributed across the nodes of the cluster. Instances of the
deployment managers maintain their own state (currently deployed application) even across
resets or shutdowns. The deployment managers must guarantee a transactional behavior which
ensures that the state is updated correctly and the application is deployed in a single transaction.
Any error should ensure a correct rollback of the changes. Thus, the deployment managers can
always be queried to supply the current configuration of the deployed system. Additionally,
deployment managers must not block forever waiting for a response from other deployment
managers or an application that is being configured.

B-3.2.6 Monitoring Services
Monitoring services play a critical role in facilitating a resilient system. They provide the crucial
information about the health of the underlying hardware, the infrastructure, the platform and the
application services. This information is useful in detecting the nominal and abnormal states of
different aspects of the system. Listed below are some of the monitoring capabilities that would
be desirable.

• Distributed Node Health Monitor: The Distributed Node Health Monitoring (DNHM)
framework provides information on the health of each node in the cluster. The standard
commercial frameworks such as Nagios, Ganglia, Cacti, Munin, Collectd, can be deployed to
monitor and collect health-status information from each node and report it to a lead/central
node for further analysis and decision making. RFDMon provides a framework that is
tolerant to failures in the lead/ central node. The local services on each node can be
configured to run scripts that provide information on resource status (CPU, memory, disk,
network utilization), variables that indicate the health of hardware (temperature, voltage of
Motherboard, CPU), application performance variables (application response time, queue
size, and throughput), heartbeats (related to the node and/or specific application processes)
and any other conditions specific to the node. It can be configured to report each monitored
variable at specific rates with minimum latency and with bounded resource utilization. Most
of the monitors described below can be configured to run with the DNHM framework,
thereby sharing data and helping to arrive at a consensus.

• Node Heartbeat Monitors: As the name suggests these monitors provide data on the heartbeat

Approved for Public Release; Distribution Unlimited.
27

data observed from other nodes in the cluster. This assumes that each healthy node in the
cluster is providing heartbeat at a fixed rate.

• Node Resource Monitors: These monitors provide data on the resource (CPU, Memory, Disk,
Network, etc.) usage on a node.

• Node Health Monitors: This set of monitors report information that points to the health of the
node. It could include data on the temperature and voltage of the motherboard and CPU.

• Device Status Monitors: These include monitors that observe for device failures on the node,
e.g. disk failures, network interface card failures, memory failures, etc. These monitors could
register with kernel or system libraries and record these errors. Alternately, they could run
dedicated self-tests. They could be configured to report specific failures or warn about
impending resource limitations, e.g. lack of storage space, memory etc.

• Network Connectivity Monitor: These monitors might collect the information from the
cluster resource manager to report the connectivity issues with other nodes in the cluster.
Sharing this information with other nodes could help arrive at a consensus.

• Network Quality/Health Monitor: These monitors periodically collect data on properties that
qualify the health of a network such as bandwidth available, latency etc. These could be
deployed on each node to run on-demand or configured to run periodically on dedicated
nodes.

• Platform Services Monitor: These monitors provide important information on the health and
operational status of the platform services: deployment manager, cluster manager, state
management service, monitoring service, etc. on a node. This could include information on
uptime, downtime, anomalies detected, termination/ restart/ reset of any platform service. It
could also include details on performance and demand variables specific to the services
concerned. These monitors could keep track and report the status/ heartbeat of the monitoring
service (and monitors) that are configured to run on a node.

• Application Process Monitor: These monitors observe the health and operational status of the
application processes or actors. They are similar to the Platform service monitors described
above.

• Timing/Deadline Monitor: These monitors collect and report any deadline timing violations
reported by components associated with platform and application services. While the
components report such errors to their local health managers, these local health managers
might be configured to report to these observations to Timing/ Deadline monitors. These
monitors could be part of the Platform Services Monitors and/ or Application Process
monitors.

• Application Error Monitor: These monitors collect and report other errors and warning
messages detected by application level health managers. The errors collected and reported by
these monitors could correspond to persistent observations that are symptomatic of larger
system-level problems such as loss of connectivity to a specific node or set of nodes, loss of a
specific process etc.

• Restart/ Reset Status Monitor: These monitors report status of reset or restart operation of a
node or platform actor or application actor. These could record and report the history,

Approved for Public Release; Distribution Unlimited.
28

frequency of resets and restarts initiated, and the result (success or failure) of these
operations. These monitors could catch repeated failures to restart a specific process. These
monitors work in conjunction with the platform service monitors and/ or application process
monitors. These monitors are extremely useful in tracking the status of certain mitigation and
recovery actions.

• Event History Recorders: These monitors keep track of the errors and faults detected in
specific regions of the system (node, devices, services, components). They record the
remedial operations performed (resets, restarts, software updates etc.) and their results. This
information could be used in tracking the performance of each element as well as the effect
of the remedial actions. They could be particularly useful in analyzing the effectiveness of
one or more software updates.

B-3.2.7 Additional Features and Services
Certain other features and services that would be very useful to make the system more resilient
are listed below.

• Lead Node Election and Group Consensus: In order to make effective decisions based on the
information received from the monitors running on the different nodes in the cluster, it would
be useful to have an efficient protocol to determine the lead node of the cluster. This lead
node could run additional services that collect data from other nodes to arrive at a consensus
and initiate suitable actions to restore lost services. The platform services on the lead node
could serve as the lead for each platform service category (deployment manager, fault
manger, operations manager, state manager, cluster resource manager, etc.).

• Command Channel: It would be extremely useful if there is a robust fault-tolerant
communication channel that is available to provide commands from a central authority (e.g. a
ground station) to each node. This could be used by the central authority to issue commands
such as to restart the node. Alternately, this channel could also be used by the lead node to
communicate any consensus-data (e.g. non-availability of node or network connectivity), to
the ground station. This channel could also be used by the ground station to try and restore
the network and/or restart a network device.

• Heartbeat service: Each node should provide a heartbeat at a pre-configured rate. If required,
platform services and application processes on each node should be configurable to provide a
heartbeat.

• Acknowledgement service: Each node should include services that initiate an
acknowledgement query and also respond to one. This service could be configurable to query
(and respond) on the status of platform services and/or application actor.

• Hardware/ Software Watchdog and Auto Restarts: While the hardware watchdog (mentioned
above) is extremely critical to revive a node that seems un-responsive, it is useful only when
the problem occurs at the operating system level. Additional software watchdog services may
be deployed to automatically restart certain services, or the entire node in certain failure
cases. The Linux watchdog command might be useful in these situations. Additionally,
certain watchdog services might be run to automatically restart certain critical platform
services.

• Auto restart Limits and Broadcast: It would be useful to broadcast a node restart message to
other nodes. Also, it could be useful to keep track and limit the number of auto-restarts
within a particular time-frame. In case of platform services and application actors, the

Approved for Public Release; Distribution Unlimited.
29

Restart/ Reset Status monitor could monitor this limit.
B-3.3 Component Management Interface
Additionally, each component is required to support management interfaces that can do the
following:

• Change the operational state of a component. When the component is set to an operational
state, it should/ should not perform certain activities. For example, when a component is set
to inactive state it should not do any operation. When it is set to an active state it should
possibly perform all operations. A passive state could be similar to inactive but the
component is likely ready to be switched into active state at any time in future. An additional
state could be semi-passive where the component consumes data to update its state, but does
not provide any service to other components.

• Connect or disconnect the ports in a component.
• Switch the component from one implementation to another one.
• Accept status information about the health, availability, restoration time of the services that a

component’s ports are connected to.

B-4. Resilience Scenarios
This section describes various scenarios that affect different parts of the system described in

previous paragraph. All scenario descriptions follow a specific format and describe several
entries:

• Name: This is a short name that is unique for each scenario. It serves as the title for the
section that describes the scenario.

• Description: This provides a narrative description of the scenario.

• Cause: In here, the triggering cause of the scenario is described on some level of
abstraction. While the ultimate cause can be a specific physical effect, the ’cause’ here
means the relevant initiating event that triggers the scenario.

• Location: The location of the initiating cause may include one or more of the following
entries:

 Processing hardware (CPU, memory, etc.)

 Communication hardware (Network interface)

 Communication medium (Wired or wireless infrastructure)

 Operating system kernel

 C run-time library

 Middleware -Host abstraction layer

 Middleware -CORBA: RMI and AMI support

 Middleware -DDS support

 Component framework

Approved for Public Release; Distribution Unlimited.
30

 System service -Deployment manager

 Application component

 Other

• State: The state of the system when the resilience scenario unfolds is captured here. As
the state space of the system can be very large, it is possible that only a description of the
state can be given, but not a precise definition.

• Anomaly: This describes the observable anomalies induced by the cause. Anomalies are
the observable, detectable, and often measurable consequences of the causes that can be
sensed by hardware and/or software sensors. They can be primary (observed in close
proximity of the originating cause) or secondary or derived (observed in another
component or subsystem, different from the location of the originating cause).

• Effect: Local functional effect induced by the cause are presented here. A functional
effect is a change in function, or in the degree the system is able to provide that function.
It is not measurable through a physical quantity or by the detection through the presence
or absence of an event, but changes one or more functions of the system.

• Impact: Impact refers to the system-level impact induced by the cause. The triggering
cause of a resilience scenario can lead to various impacts on the higher level system
functions, behaviors, services, etc., if left unmitigated.

• Detection: This describes the location and method of detection of the anomaly/ies. The
detection is a decision making process that relies on observations made on the system
(either passive measurements or active probing) and draws a conclusion regarding the
presence or absence of the relevant anomaly/ies.

• Diagnostics: Location and method of diagnostics of the root-cause of the scenario are
mentioned in this entry. The diagnostics is a process that follows detection and
determines the cause(s) of the anomaly (ies). The diagnostics results in one or more
hypotheses regarding causes that could logically explain the detected anomalies.

• Mitigation: The location and method of mitigation is documented in this entry. The
mitigation is a process leading to one or more localized action/s that mitigates the effects
of the cause to eliminate or reduce the effects of the cause on the various functions in the
system. Mitigation is scoped to one or more subsystems and/or functions.

• Recovery: This corresponds to procedure for system-level recovery. Recovery is a pro-
cess that leads to the (complete or partial) restoration of system-level functions, services,
behaviors, properties etc.

B-4.1 Scenario 1: Computing Node Failure

Scenario 1. Computing Node Failure

Approved for Public Release; Distribution Unlimited.
31

Description The scenario unfolds when a node completely fails and goes silent. The node could
be part of a system already under operation or a system under deployment. Some
entity in the system is expected to recognize this anomaly, diagnose its cause,
determine the actual state of the system and initiate a recovery action. The scenario
is a base scenario for other, more specialized scenarios

Cause A complete and persistent node failure (from the perspective of the rest of the
system) could be caused by many different problems, including but not limited to
catastrophic failure of the node hardware, failure of the operating system on the
node, problems in the network interface card, etc.

Location The problem could be located in the node hardware or the operating system
software deployed on the node.

State The problem occurs when the system is operation and the system management
processes are running on all nodes.

Anomaly The node is non-responsive to all queries and the node is not sending any data: all
communications with the node fail. All nodes in the system observe the same
anomaly (i.e. the failure mode is not Byzantine).

Effect Functions assigned to the node are temporarily or permanently lost. In a
distributed application that is partly allocated to the failed node the remaining
healthy parts of the application will degrade or fail (depending on the application).

Impact • There is one less node available for the system to operate, and all resources
(including sensors, actuators, devices, specialized devices) directly attached to that
failed node are unavailable.

Detection There are several, non-exclusive options for anomaly detection.

 When network communication with the node is attempted, the network
stack reports a failure that indicates the loss of connectivity. This detection
mechanism works only if the communication is tried. The Cluster resource
manager in other nodes would indicate the loss of connectivity with the
failed node (Network Connectivity Monitor).

 If the nodes monitor each other via a heartbeat mechanism, the lack of the
heartbeat message will be detected after a timeout. This detection method
needs an active mechanism that keeps testing the connection to the node. If
the Node-Health Monitor includes a heartbeat, the other healthy nodes
would detect a missing heartbeat from the failed node.

 Applications hosted on the failed node become unreachable. The
applications on other nodes would report errors through Application Error
Monitors on the lack of availability of services hosted on the failed node.

 Additionally, failed attempts to get any response to the acknowledgment
queries to node, would further indicate a failed or unreachable node.

Approved for Public Release; Distribution Unlimited.
32

Diagnostics Based on the detection mechanisms listed above on each of the healthy
nodes, an entity such as an operations manager on each node could
conclude that there is a problem with failed node. The healthy nodes could
arrive at a consensus to re-affirm that the either there is a problem with the
failed node or its network connectivity.

Mitigation The goal of the mitigation is to re-allocate the functionality assigned to the failed
node to other nodes in the system. There are many options possible, including:

 Complete relocation: The deployment service may choose to reassign the
entire plan that was dedicated to the failed node to another, alternate and
healthy node.

 Decomposition and reallocation of pieces: The deployment plan meant for
the failed node is broken up into smaller plans, each of which is deployed
on other healthy nodes.

The mitigation process may need state information from the processes that were
running on the failed node. This requires the component state be periodically check
pointed and shared among the nodes (for an eventual recovery when the failure
mode arises).
If the failed node has resources that are absolutely necessary then the re-
deployment cannot be completed and some higher-level entity must make a change
in the system. As part of the mitigation process, all the healthy nodes need to

1 Update their group membership by removing the failed node.

2 Identify the components affected by the failed node.

3 Notify these components about the non-availability of certain interfaces.

4 In case, the failed node was the lead-node of the cluster, the leader-election
process should find the new lead-node and updates other nodes.

5 The operations manager in the lead-node should decide on the suitable
mitigation action to restore the failed services -complete reallocation or
partial reallocation on different nodes.

6 The last check pointed static and dynamic deployment state information of
the failed node can be obtained from the state management service.

7 The lead operations manager should provide the updated plan to its local
deployment manager.

8 In case the node-failure happened during a deployment process, the lead
deployment manager should instruct the healthy nodes to rollback or put-
on-hold the incomplete deployment.

9 The lead deployment manager should start the deployment process for

Approved for Public Release; Distribution Unlimited.
33

reallocating the services of the failed node.

10 Once this deployment process is complete, the local deployment managers
should be instructed to update affected links.

Recovery Provided alternate resources are available in the system, the complete system
functionality can be restored. System functionality the failed node was contributing
to is recovered as the application(s) involved were restarted on other nodes. Note
that the state information used in the mitigation may be stale; hence the recovery
may result in undesirable transients. If alternate resources are insufficient, some
functionality is lost until the failed node is repaired. As part of the recovery
process, all the healthy nodes need to

1 Update their group membership with information on any new healthy node
added to the network.

2 Reset any new/affected components with the correct check pointed state.

3 Start using any links that have been restored.

4 In case certain services could not be restored, the affected ports should be
disconnected.

5 The lead-node should track the health of the restored functionality, through
the event-history monitor.

6 The lead deployment manager should start the process to update and
complete any of the failed/incomplete deployments.

While the anomalies discussed in this scenario suggest that there are some problems with the
node, an assessment of permanent node failure requires records of failed attempts to restart the
failed node. The Restart broadcast messages (from the failed node) (observed by Restart/ Reset
monitors), and the limits recorded by the Event History Recorders could indicate that the node is
not responding despite repeated attempts (up to the set limit). Additionally, a permanent node
failure could be confirmed by sending direct commands through the Command Channel to restart
the node. If all of the above steps fail to restart the node, then it would confirm a diagnosis of
permanent node failure (or permanently unreachable node).

B-4.2 Scenario 2: Node failure during deployment

Scenario 2. Node failure during deployment

Description This is a special case for Computing Node Failure described in Scenario 1.

Cause A complete and persistent node failure (from the perspective of the rest of the
system) could be caused by many different problems, including but not limited to

Approved for Public Release; Distribution Unlimited.
34

catastrophic failure of the node hardware, failure of the operating system on the
node, problems in the network interface card, etc.

Location The problem could be located in the node hardware or the operating system
software deployed on the node.

State A deployment process is underway; the deployment procedure has started but has
not finished yet. There could be other applications running on the system that
could already be partially located on the failed node.

Anomaly The node is non-responsive to all queries and the node is not sending any data : all
communications with the node fail. All nodes in the system observe the same
anomaly (i.e. the failure mode is not Byzantine).

Effect The deployment process cannot be completed due to the failure of one of
the required computing nodes.

Impact There is one less node available for the system to operate, and all
resources (including sensors, actuators, devices, specialized devices)
directly attached to that failed node are unavailable.

Detection In addition to the detection described in the base scenario, the Deployment
Manager in each of the functional nodes might detect the problem or would be
informed about the anomaly.

Diagnostics Based on the detection mechanisms listed above on each of the healthy
nodes, an entity such as an operations manager on each node could
conclude that there is a problem with failed node. The healthy nodes could
arrive at a consensus to re-affirm that the either there is a problem with the
failed node or its network connectivity.

Mitigation The deployment manager should focus on
1 If necessary, redeploying existing applications (as, presumably, already

running applications are more important than newly deployed ones),

2 Continuing the re-deployment of the subject application.

The healthy nodes could be allowed to complete their deployment and be made
aware of the non-availability or delayed availability of the affected portions of the
deployment plan. This would allow a degraded service to start, which would be
later restored to normal when the affected portions of the plan are deployed.

Recovery The interrupted deployment process is completed with one or more
alternate nodes being used and the system functionality provided by the new
deployment is recovered.

While a deployment activity is taking place, one or more of the nodes involved in the
deployment plan may fail, and go silent. The deployment may involve the installation and
activation of new software or the reconfiguration of already running applications. The
deployment engine recognizes the anomaly, diagnoses its cause and determines the state of the

Approved for Public Release; Distribution Unlimited.
35

system, and recovers from it. It may rely on other system components, e.g. an operations
manager component. Upon, successful recovery, interrupted deployment process is completed
with one or more alternate nodes being used and the system functionality provided by the new
deployment is recovered.

B-4.3 Scenario 3: Computing Node Failure

Scenario 3. Computing Node Failure

Description The scenario unfolds when one or more nodes cannot communicate with the any

other nodes in the system. The node could be part of a system already under
operation or a system under deployment. Some entity in the system is expected to
recognize this anomaly, diagnose its cause, determine the actual state of the system
and initiate a recovery action.

Cause A complete and persistent failure of the network could be caused by many different
problems. One problem could be a malfunctioning network hardware that can
bring down the network. The network connectivity could be lost due to the
communication limits imposed by the physical separation (distance, angle, line of
sight) between the communicating nodes in a radio network.

Location The problem could be located in the Communication medium -the infrastructure
associated with the wired or the wireless network.

State When the problem occurs, certain applications in the system could be operational.
It is possible that the software associated with other applications is being deployed,
and the deployment process has not yet finished.

Anomaly The affected nodes cannot communicate with any other node. All
requests to/ from the affected nodes cannot be fulfilled. The affected nodes
cannot send/ receive data to/from other nodes.

Effect Functions that depend on communications/ updates from applications
hosted on the affected node would be severely affected.

Impact The affected nodes and any resources (including sensors, actuators,
devices, specialized devices) hosted on them are unavailable to the rest of
the system.

Detection Detection In the affected nodes, the anomalies are detected when all the
applications encounter problems with the system-calls associated with the
network-layer. In other nodes,

 When network communication with any of the affected node is attempted,
the network stack reports a failure that indicates the loss of connectivity.
This detection mechanism works only if the communication is tried.

 If the nodes monitor each other via a heartbeat mechanism, the lack of the
heartbeat message will be detected after a timeout. This detection method

Approved for Public Release; Distribution Unlimited.
36

coupled with an active mechanism that keeps testing the connection to the
node will detect that there is a problem in connecting to these nodes.

 Monitors such as the Network Quality/Health monitor and Network
connectivity monitor would confirm lack of connection to the affected
nodes.

Diagnostics In case the affected nodes could communicate with the Ground/Base control node

through a special network, then each node could relay the observation to the
Ground/Base control. Ground/Base control could then diagnose that the nodes are
healthy but isolated from the network. If the Ground/Base control has an alternate/
command channel to reach the network hardware, it could ascertain the problem by
running additional tests (distance determination etc.).

 In case of the healthy nodes, some entity (e.g. an operations
manager process) could communicate with its counterparts on other nodes
that reach a consensus that the affected nodes are unreachable. This
consensus about the group membership is shared among all other healthy
nodes.

Mitigation The mitigation of this scenario requires alternate networks that can be started, or
the existence of other dedicated channels (such as TTC) that could be used to
communicate with the ground/base control to get a better grasp on the situation
Mitigation steps could include one or more of the following steps

1. After diagnosis is confirmed, the affected ports in the deployed
components (on healthy connected nodes) should be put in a state that
indicates loss of service. This could help the components throw
appropriate exceptions.

2. In case a back-up/ alternate network exists, then the ground/base
control could bring up the alternate network, which the individual
nodes could detect, join and configure.

3. In case the Ground/Base control has an alternate/ command channel to
reach the network hardware, it could try to revive the network by
restarting the network hardware.

4. If a back-up network device exists, the ground/base control could
revive the network, by starting the back-up device.

5. If the problem is associated with distance/ position limitations (direct
line of sight), the problem could be resolved by directing the
appropriate controls to bring the nodes closer or wait until the nodes are
within reach.

6. If alternate services exist, these components should be set to an active
state (if required). The affected ports on the healthy nodes should be re-
directed/ re-connected to use the services from the alternate
components (replicas).

7. If there is sufficient resource availability in the remaining healthy

Approved for Public Release; Distribution Unlimited.
37

connected nodes, then certain critical services (deployed in the affected
nodes) can be re-deployed on to the healthy nodes. This would require
the lead operational manager to give an updated deployment plan to the
lead deployment manager, which could start the deployment with the
updated plan

Recovery 1. In case the deployment plan is updated, the states of the newly deployed
components should be set by querying the state management service. The
affected ports in the healthy component should be re-directed/ re-connected
to the newly deployed components.

2. Once service is re-established, either by reviving the network or by re-
deploying the essential components on other nodes, it would take some
time for the states in the distributed components/ actors/ applications to
synchronize. This might require rolling back the states in all components to
a previously check pointed state. In any case, the monitoring mechanism
should be prepared for a transient period where some problems could exist
due to inconsistent states.

B-4.4 Scenario 4: Transient Network Failure

Scenario 4. Transient Network Failure

Description This is a special case of network failure discussed in scenario 3. In this scenario,

the applications experience a larger than expected communication delay.
Transmission of data and completion of requests takes abnormally longer time
affecting normal operation. The problem needs to be resolved to recover the
system operation.

Cause An intermittently failing network (communication medium) could be responsible
for the high transmission delay. One or more rogue processes could be hogging the
network and disrupting the traffic by continuously sending out unexpectedly
excessive amounts of data over the network.

Location The problem could be located in the Communication medium -the infrastructure
associated with the wired or the wireless network.

State When the problem occurs, certain applications in the system could be operational.
It is possible that the software associated with other applications is being deployed,
and the deployment process has not yet finished.

Anomaly When the situation unfolds, it would be normal to observe that quite
a large number of requests over the network are either being timed-out or
are taking significantly longer time to complete. In some cases, the data
obtained over the network might not be useful because of the significant
delay. If the problems persist long enough, the message-queue could over-

Approved for Public Release; Distribution Unlimited.
38

flow and it is possible that some messages might be lost forever.

Effect The results output by the distributed applications would be greatly affected.
Specifically, it would severely degrade functionalities where timely information
sharing among the nodes is critical.

Impact The capabilities of the system are severely affected because of the
degraded network.

Detection Special monitors (Network Quality/ Health Monitors) that can
check the network properties such as bandwidth; latency etc. could detect
the problem and make entities such as Operations Manager aware of the
situation.

Diagnostics While the Operations Manager is made aware of the network quality
through special monitors, the request-time-outs and aged-message exception seen
in the applications could be related to the network quality problem. The
Operational Managers could reach a consensus by sharing their observations on
network quality.

Mitigation Additional monitors related to the Node-Health and/or Node-Resource usage could
be used to identify if the problem is cause by a rogue node, and/ or if there is any
set of processes that are exceeding their network-bandwidth bounds. If the source
of the problem is localized to a specific node or to a specific set of processes, these
nodes or processes could be isolated or blocked from using the network
temporarily.

1. If the problem is perceived to be degradation of the network, the
ground/base control could decide to restart the network hardware in the
hopes of fixing it.

2. Alternately, if a back-up network exists, it could be restarted to either share
some of the load or become the primary network.

Recovery Once the network is back to normal operational status, the components/ application
need to synchronize their states to return to normal operation. Applications might
be allowed in a certain order to re-join the network (may be based on priority).
This would allow the high priority applications to sync-up before the bandwidth is
used by the low-priority applications to sync-up.
If the network is revived partially, the operational manager should decide which
applications are important and the quota that could be made available to the
different application categories so that they can operate in a degraded manner.

B-4.5 Scenario 5: A deadlock in the Kernel

Approved for Public Release; Distribution Unlimited.
39

Scenario 5. A deadlock in the Kernel

Description We consider the scenario where the operating System on a node freezes as the

underlying kernel experiences a deadlock. The built-in hardware watchdog times
out and would reset the kernel The entire scenario renders the applications hosted
on the node unavailable and affects the system functionality

Cause The kernel could deadlock due to many reasons -a bug in the kernel, a glitch in one
of the hardware devices that the kennel code is not able to handle, a glitch in a
device-driver that cascades to freeze up the entire operating system.

Location The problem could be located in the Operating system kernel and/or in the
Processing Hardware -CPU, memory etc.

State When the problem occurs, certain applications in the system could be
operational. It is possible that the software associated with other applications is
being deployed, and the deployment process has not yet finished.

Anomaly When the situation unfolds, the application tasks as well as services hosted
on the node freeze. Further, as the watchdog timer trips the node is reset. Any
requests to the node are not serviced and any updates from the node are not
received by other nodes.

Effect The services rendered by the applications hosted on the node are
completely unavailable if the node deadlocks and the applications are not re-
deployed after reset. However, sometimes the services can be intermittently
available in a degraded manner if the node keeps resetting.

Impact Depending on how persistent the problem is, it could affect the
functions served by the applications hosted on the node. If the applications
come back up seamlessly, it might have limited impact.

Detection Special monitors/ services (Restart/ Reset monitors) on the node might be
configured to send a message to other nodes to make them aware of the reset/
restart.

Diagnostics The healthy nodes can arrive at a consensus based on the non-responsive
node and/or reset message. Further, if the Operational manager on the affected
node is restarted automatically after reboot, it can be queried by the other healthy
nodes on the restart or it can inform the other nodes about the restart.

Mitigation The mitigation strategy would involve re-deploying the applications
hosted on the node after restart. Also, the other nodes need be made aware
of the developments on the affected node (Restart/ Reset monitor). This
would include

1. Restart/Reset monitor on the affected node should transmit messages to
other nodes about the restart.

2. The Restart/ Reset monitors on the other nodes observe the above message
and inform the corresponding operations manager

Approved for Public Release; Distribution Unlimited.
40

3. The operations manager on the healthy-nodes could instruct the
deployment manager to inform the affected components so that they do not
rely on the services of the affected node.

4. In case alternate/ replica components exist, the deployment manager could
re-direct the affected ports to use the services from the replicas.

5. On the affected node,. the operations manager should be restarted
automatically.

6. The operations manager might be configured to automatically restart the
deployment manager with its previous states on restart.

7. Once all the services are restarted, the operations manager should inform
the other nodes about the completed restart.

8. The other healthy nodes might query the operations manager/ deployment
manager on the status of the restarts.

Recovery The recovery process could include The operations manager on the
deployment manager about the completed restart on the affected node.

1. The operations manager on the healthy nodes, could inform the deployment
manager about the completed restart on the affected node.

2. The deployment managers could instruct the affected component ports to
start re-using the old connections (if necessary).

3. The components states might need to be set based on an existing
checkpoint.

4. Alternatively, if replicas existed, then the re-started components would
need to set their state based on the last check pointed states of the replica
components.

5. If required, the replicas can be set back to a passivated state.

B-4.6 Scenario 6: Priority Inversion Leading to a System Reset

Scenario 6. Priority Inversion leading to a System Reset due to watchdog time

Description This is a special case of Kernel deadlock. However, this scenario unfolds due to

priority inversion in cases where the system is instrumented to monitor the
progress of a high priority critical task with a watchdog that can reset the system if
the high priority task has not executed for a while. While the reset helps restore the
execution of the high priority task, it does not mitigate the source of the problem,
but is a temporary solution that addresses the symptoms. If the problem were to
manifest often, then this would lead to frequent resets, there by affecting the

Approved for Public Release; Distribution Unlimited.
41

performance of the system.

A classic example of this was seen in the Mars Pathfinder where-in a high-priority
task was waiting for a shared-resource to be released by a low-priority task. The
low-priority task was itself pre-empted by other medium-priority tasks. Whenever
this happened, a watchdog timed-out and triggered a system reset/ reboot. In this
case, the problem could be solved when the priority inheritance was enabled on the
mutex (associated with the shared resource). Enabling the priority inheritance
allowed the low-priority task to assume/ inherit the priority of the waiting high-
priority task and complete its execution without being pre-empted by the medium
priority tasks. Once the mutex was released, the high-priority task could resume its
task.

Cause The real source of the problem in this case is a poor design of the software system
that leads to frequent starvation of high-priority critical tasks.

Location The problem could originate in the critical high-priority tasks associated with the
platform/ system service (Deployment/ Operations manager) and/or the application
processes.

State The problem could occur when the system is operational. It could manifest in the
platform services when the application software are being deployed.

Anomaly The common anomaly would be that sometimes certain high-priority tasks do not
execute while other tasks (of all priority) seem to be execute as planned. When the
high-priority tasks fail to execute, this could lead to problems in other dependent
tasks as well as problems in the state evolution/ update. Also, if the system is so
configured, one could observe that the system resets itself. The reason for the reset
is not quite apparent, unless detailed logs can be generated and manually traced.

Effect The functions supported by the high priority tasks are possibly affected by
this disruption. More so, the system reset can result in other functionalities also
being disrupted.

Impact If priority inversion is the real cause of the problem, the problem is bound
to resurface. If the problem is isolated to a specific node, then the node could be
put on a cautionary/ watch list.

Detection If appropriate monitors exist, then they can detect the problem with the scheduling
of the high-priority tasks. These could be recorded and/ or reported to other nodes
before/ after reset (or other mitigation action).

Diagnostics It might require a lot of hands-on-debugging -careful walk through of the
trace logs to identify the root cause of the priority inversion.

Mitigation Some of the possible steps to mitigate the problem include

1. Resetting or restarting the affected node when the appropriate watch dog
times out.

2. Re-deploying the components and restoring their states to the last check
pointed state.

 For a more permanent fix,

Approved for Public Release; Distribution Unlimited.
42

1. The lead-operations manager instructs the lead deployment manager to re-
deploy the components on to other working nodes.

2. Once re-deployment is complete and/ or replicas exist, the deployment
managers instruct the dependent component to re-wire to the replicas or re-
deployed components.

3. Apply suitable software updates to the affected node to mitigate the
problem.

4. Alternately, if a safe check pointed version exists, then rollback the
software to the prior safe version.

5. Re-deploy the components on the updated (or rolled back) node.
6. Inform the operations manager of other nodes, when the task is complete.
7. Instruct the deployment managers to re-wire the affected components back

to the original set of components.

Recovery While the above mitigation steps might help solve the problem temporarily, the
Event History recorder should be analyzed to identify if the problems still persist
and if a specific re-deployment could mask (or not trigger) the problem.

B-4.7 Scenario 7: Device Failure

Scenario 7. Device Failure

Description In this scenario we consider the failure of hardware devices on a computing node.

These devices could include the hard drive, memory, network interface card on the
affected node.

Cause The problem is triggered from device failures such as

 fault in the hard drive rendering it useless.

 lack of storage space in the hard drive.

 lack of memory when one or more processes starts hogging/ leaking
memory.

 fault in the network interface card.

Location The source of the problem is located in the processing hardware of the associated

computing node.
State When the problem occurs, certain applications in the system could be

operational. It is possible that the software associated with other applications is
being deployed, and the deployment process has not yet finished.

Anomaly When the situation unfolds, the appropriate system calls or library calls return with
an error code as the OS detects the failure. One or more tasks/ processes on the

Approved for Public Release; Distribution Unlimited.
43

node start failing or operate in a degraded mode

Effect Certain services (in the node with device failure) as well as their dependent
services on other healthy node are affected. The functionalities provided by these
services are either unavailable or at-best degraded.

Impact In the worst case, it is possible that the failure might result in the
loss of a node. Otherwise, if it is a temporary glitch then the impact is
probably more on the functional level and there is no permanent impact due
to the fault.

Detection The error messages coming from the libraries or the kernel calls provide an
indication to the problem. Also special monitors (Device Status monitors) could
detect these problems.

Diagnostics The detection through device status monitors could help in the diagnosis of the
specific device faults.

Mitigation The mitigation strategy would be specific to the resource that is unavailable
because of the device failure.

1. In case of memory problems, identifying the terminating processes/ actors
that are using excessive memory could help restore memory availability.
Alternately, some of the non-essential processes might need to be
terminated temporarily to make enough memory available for other critical
processes.

2. In cases when there is no storage availability in the hard drive, it might be
configured to clear some space. Alternately if additional unused space is
available (in the same or new hard drive), it can be configured to be made
available to the node.

3. With regards to the network interface card, restarting the device could help
restore it. Alternatively, if a back-up device is available, it could be
configured to connect to the network.

4. While the above problem is being resolved on the affected node, the
operations managers on other nodes should be informed of the problem.
The deployment manager on the healthy nodes should inform the affected
components and if required disable the affected ports.

5. The lead operations manager could activate replica services that had been
put in a passive state.

6. Alternately, if certain services need to be re-deployed on other nodes
(either temporarily or permanently), then the lead operations manager
should send an updated plan to the lead-operations manager to co-ordinate
and complete the re-deployment.

7. The deployment manager in the healthy nodes could be informed of the
replica service or the new deployment.

8. The deployment manager could direct the ports on the affected components

Approved for Public Release; Distribution Unlimited.
44

could be redirected/ re-connected to use the service from the replicas.

Recovery The recovery process could involve operating certain services in a degraded mode,
until the affected node is completely recovered. Once the device (and node) is
restored, any of the affected components/ processes might be restarted and
carefully monitored for their resource consumption.

B-4.8 Scenario 8: Process Failure

Scenario 8. Process Failure

Description The scenario deals with process failures, specifically those in which the process

terminates unexpectedly. The process could be a platform actor such as a
Deployment / Operations Manager or it could be an application actor that is
operational

Cause Any number of reasons could cause a process to terminate. It could be a bug in the
code, an unexpected error, an exception that was not caught and handled correctly.
Sometimes a process could terminate itself as a design feature that makes it fail
silently in certain conditions.

Location The source of the problem could be any process -an application component, a
platform/ system service (Deployment/ Operations manager).

State The process is typically started and running. It could be any operational
state. It is possible that certain application actors can fail during the
deployment phase. It is also possible that during a deployment cycle, the
deployment manager process terminates unexpectedly.

Anomaly When a process fails unexpectedly, all dependent processes are affected. They
could react to the situation in any of ways including but not limited to

 working in a degraded manner

 handle/ report the dependency failure in a robust manner

 enter a failed / unrecoverable state

 time-out

 terminate

 Moreover, it is possible that if the terminated process was using any shared
resource, it could leave the resource (or process) in a hanging/ unusable
state.

Effect The unexpected process termination could lead to non-availability of
certain associated services/ functionalities. It affects the dependent processes on
same or other nodes. Further it could affect the resources that it was using.

Approved for Public Release; Distribution Unlimited.
45

Impact One or more resources could be temporarily unavailable. One or more
services could be temporarily unavailable.

Detection A special monitor (Application Process Monitor/ Platform Service
Monitor) could detect the termination of the concerned processes. Also,
Application error monitors could detect errors/ exceptions thrown by dependent
components in other processes/ nodes. These application errors could be related to
the process termination.

Diagnostics The detection through special monitors could help in the diagnosis that the
specific process terminated and corroborated with the application errors, timing
and deadline violations detected on other dependent components.

Mitigation The Mitigation process involves

1. The Operations manager reading the information from the Application
Process Monitor and/or Platform Service Monitor.

2. The Operations manager should validate that this is an unexpected
termination.

3. The operations manager instructs the deployment manager to restart the
process and redeploy the contained components and set their state to the
last check pointed state.

4. Once the terminated service/ process restarts, the restart/ reset monitor
broadcasts this information to other nodes.

Recovery The recovery process involves the following steps
1. The operations manager shares this information with the operations

manager of other nodes.
2. The Operations managers in all nodes inform their respective the

deployment manager.
3. The deployment manager in the other nodes, use the information to instruct

the affected dependent components and disable the affected port or redirect
them to an active replica (if exists).

4. Once the operations manager in other undoes are aware of the process
restart, the deployment manager re-connects the affected components to the
re-deployed components.

5. The state of all the associated components is restored to the last check
pointed state.

Approved for Public Release; Distribution Unlimited.
46

B-4.9 Scenario 9: Process Failure – Blabbering State

Scenario 9. Process Failure - Blabbering State

Description • This scenario describes a process failure wherein the process spits

inconsistent data at a rate which is much higher than the nominal expected
rate.

Cause The problem could be caused by a bug in the process code, bug in
the code of another process that it depends on, or a bug in a device (sensor/
actuator) that the process is associated with. This could also result when the
states of the inter-dependent actors are not correctly synchronized. Other
causes include a software update glitch -either in the actor code or with
other services that the actor depends on.

Location The source of the problem could be any process - an application component, a
platform/ system service (Deployment/ Operations manager).

State The process is typically started and running. It could be any operational
state. Platform or management actors such as deployment managers/ operational
managers could be in the deployment, reconfiguration or operational state.

Anomaly In this case, the process produces abnormal or inconsistent data/ output.
Also, it produces the output at an abnormal rate for a consistently long period of
time. The bad data fails the consistency checks/ contracts.

Effect The functions supported by the actor are affected. The dependent services
on other nodes are also affected, compromising some system level function.

Impact In case some hardware resources are involved, unless the bug is
caught early it could damage the devices (actuators) that consume the data/
output. This could affect the resources available.

Detection Special monitors (Application process monitors, Application Error
Monitor, Timing/ Deadline monitor) could observe for problems where the
contract guarantees are violated. The Event History Recorder monitor could help
identify if the problem has been persistent/ recurring over a prolonged period of
time. Additionally, monitors could detect the abnormally data rate of the process if
it is significantly different from the design specifications.

Diagnostics While the special monitors help localize the problem, multiple dependent
services can independently detect the violations in contract requirements, and help
confirm a problem with the actor. Additional tests on verifying the actor output
against one or more independent sources could help confirm them problem.

Mitigation The mitigation process involves

1. Informing the operations manager about the rogue processes that are the
cause for the problem.

Approved for Public Release; Distribution Unlimited.
47

2. Identifying the affected processes based on the Application Error monitors
and Application process monitors.

3. The operations manager could instruct the related deployment manager to
restart the rogue and affected processes, re-deploy the components and
restore their state to the last known checkpoint.

4. Any related hardware resource (sensors/ actuators) could also be restarted.

Recovery The recovery steps could include

1. Monitoring the mitigation process and allow sometime for the processes to
recover and synchronize.

2. Postpone any critical action until the states are synchronized.
3. In case the problems persist, other sources for the problem should be

investigated. The rogue processes could be re-deployed on to other nodes
to check if the problems persist. Alternately, if a replica service exists, the
dependent components could be re-wired to use the replica.

B-4.10 Scenario 10: Bad System State

Scenario 10. Bad System State

Description • The scenario captures problems that might occur when a software update is

applied to the platform code and/ or application code. It is possible that
while the software update solves issues that were present with the earlier
version, it introduces new unintended problems/ bugs in other features/
aspects. It is also possible that the software update cannot work smoothly
with other tools already installed in the node. This could lead to problems
such as deadline violations, inconsistent results, unavailable services etc.

Cause The problem occurs when the updated software does not work correctly with other
parts of the existing system.

Location The problem originates in the layer where the software update is applied. It is quite
possible that the problem does not manifest in the place where the software patch
is applied. It could manifest in a related component with which the updated
software interacts or it could manifest in a completely unrelated entity.

State The problem could occur when the system is operational. It could
manifest in the platform services when the application software is being
deployed.

Anomaly While there isn’t any specific anomaly to watch for, it is quite possible that
depending on the nature of the fault introduced different category of anomalies
could be observed. These could include contract violations, deadline violations,
process failures, or sometimes even node failures.

Effect Depending on the extent of the problem and the usage of the updated

Approved for Public Release; Distribution Unlimited.
48

component/ service, the effect could be minimal and localized to a specific
functionality or affect multiple functionalities and nodes.

Impact It is quite possible that the software update could bring down
specific desired functionalities or render the update nodes as unusable.

Detection The anomalies could be detected by the monitors built for the specific violations in
the platform services and / or application services. These could be part of the
Platform Service monitors or Application process monitors that identify that there
are problems with certain platform services and / or application actors. The errors
observed in the processes could be monitored by the Application error monitors,
Deadline /Timing Violation monitors.

Diagnostics While the diagnosis in this case could point to unrelated faults (due to the
nature of the anomalies), it might be possible to rule out these problems
through additional tests. A look at the past record of the problems prior to
the update could reveal that a bug in the updated software could be the
culprit. A record of the Event History recorder would help identify when
the problems were present and when they were not. If it was due to a
software patch, it could be easily observed that the problems were seen
after certain patch was applied.

Mitigation Some obvious mitigation strategies could include

1. The operations manager could instruct the deployment manager to start
alternate/replica processes where the components are dependent on known
safe versions of the software.

2. The dependent components could be re-wired to use the components based
on older software version.

3. The processes using the faulty version are terminated.
4. If any fix is available in future, the components could be re-deployed with

the updated software library.

Recovery The recovery process as in other cases, involves restoring the component states to
a prior check pointed state. Additionally, the component states need to
synchronize. The observations from the Application Process Monitors, the
Platform Service monitor, the Application Error monitors, the timing/deadline
monitor etc. should be recorded by the Event History Recorder and tracked for any
violations from the rolled back or updated version.

Approved for Public Release; Distribution Unlimited.
49

B-4.11 Scenario 11: Security Violation

Scenario 11. Security Violation

Description The scenario captures problems that might occur when the software system

is compromised because of a security breach.

Cause The problem occurs when there is a security breach
Location The security breach could affect any application or platform service.

State The problem could occur when the system is operational. It could manifest
in the platform services when the application software is being deployed.

Anomaly While there isn’t any specific anomaly to watch for, it is quite
possible that depending on the nature of the attack different category of
anomalies could be observed. These could include denial of service, loss of
communication bandwidth, incorrect system operation, loss of equipment
etc. While some of these anomalies could be observed, it is quite possible
that the security breach could go undetected.

Effect Depending on the extent of the attack, the effect could be minimal and
localized to a specific functionality or affect multiple functionalities and nodes.

Impact It is quite possible that the security violation could bring down specific
desired functionalities or render the one or more nodes as unusable, thereby
bringing down the entire mission.

Detection The detection of the security breaches can be performed by using
specific trained detectors based on a threat model. Such detectors are
trained to understand the nominal system and detect any activity that is
outside of the nominal state. It is quite possible to train such systems for
detecting intrusion attacks, denial of service attacks etc. Further, it is
possible to design security policies and create observers that check for any
violations to the security policies. These violation-observers could serve as
an initial monitor to signal a possible security violation. Also, based on the
system design to thwart such attacks, queries or messages could carry
appropriate labels that are suitably encrypted. Any non-conformity to the
correct label set could indicate a possible violation.

Diagnostics The diagnostics for the security violation is obtained by using the output of
the special detectors and observers that are designed for the purpose as well
as any abnormalities that are witnessed in the system. This could help
understand which part of the system is being attacked by the security
breach.

Mitigation In some cases, when the attack is isolated to a specific service, it would be
appropriate to shut-down the service for the time being and inform any affected
services. Alternately the service could be migrated and restarted on another node.

Approved for Public Release; Distribution Unlimited.
50

If the attack is localized to a specific set of nodes(s), it should be possible to isolate
the appropriate node(s) from the network and re-configure any affected
functionality on alternate nodes. For services that have a active or passive replica
on another node, the traffic could be redirected to the replica. The affected parts of
the system should be made aware of the mitigation action and the downtime to
restore the service.

Recovery The recovery in this case would imply identify the possible loopholes/ bugs in the
system and fixing them with appropriate software and/or policy update.

B-5. Conclusion
This document outlines a possible architecture for resilient systems and the possible resilient
system level services (deployment manager, operations manager, communications/ cluster
resource manager) that would be key to making the system resilient. It discusses the various
monitoring services that could be deployed in the system to observe for specific anomalies and
use them isolate and thereby diagnose the appropriate fault candidate. It discusses specific
services to support recovery mechanisms (re-configuration through deployment manager, group-
consensus and leader election, state management service). It discusses various scenarios where
the system functionality is affected and the resilience strategies that could be developed based on
the detection, diagnosis, and mitigation and recovery services deployed / available in the
framework.

Acknowledgement: This report has been prepared for the Resilient Software Systems project
that has been supported by the Air Force Research Laboratory under Award FA8750-13-2-0050.

Approved for Public Release; Distribution Unlimited.
51

B-References
[B-1] T. Levendovszky, A. Dubey, W. Otte, D. Balasubramanian, A. Coglio, S. Nyako, W.

Emfinger, P. Kumar, A. Gokhale, and G. Karsai, “DREMS: A model-driven distributed
secure information architecture platform for managed embedded systems,” 2013.

[B-2] Avizienis, “Fault-tolerance: The survival attribute of digital systems,” Proceeding of the
IEEE, vol. 66, no. 10, pp. 1109–1125, Oct. 1978.

[B-3] J.-C. Laprie, C. B´eounes, and K. Kanoun, “Definition and analysis of hardware-and
software-fault tolerant architectures,” Computer, vol. 23, no. 7, pp. 39–51, 1990.

[B-4] M. R. Lyu, Software Fault Tolerance. John Wiley & Sons, Inc, 1995, vol. New York,
NY, USA.

[B-5] Avizienis and J. Kelly, “Fault tolerance by design diversity: Concepts and experiments,”
Computer, vol. 17, no. 8, pp. 67–80, Aug. 1984.

[B-6] Randell and J. Xiu, “The evolution of recovery block concept,” Software Fault Tolerance,
pp. 1–21, 1995.

[B-7] Randell, P. Lee, and P. C. Treleaven, “Reliability issues in computing system design,”
ACM Comput. Surv., vol. 10, no. 2, pp. 123–165, 1978.

[B-8] Avizienis, “The n -version approach to fault tolerant software,” IEEE Transactions on
Software Engineering, vol. 11, pp. 1491–1501, December 1985.

[B-9] J.-C. Laprie, “Dependable computing and fault tolerance: Concepts and terminology,” in
Proc. Twenty-Fifth International Symposium on Fault-Tolerant Computing,’ Highlights from
Twenty-Five Years’, June 27–30 1995, p. 2.

[B-10] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis of faults in an n-version
software experiment,” IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 238–
247, 1990.

[B-11] Brown and D. Patterson, “Embracing failure: A case for recovery-oriented computing
(ROC),” High Performance Transaction Processing Symposium, 2001.

[B-12] D. A. Patterson, “Recovery oriented computing: A new research agenda for a new
century,” HPCA, vol. 00, p. 0247, 2002.

[B-13]] A. B. Brown and D. A. Patterson, “Rewind, repair, replay: three r’s to dependability,” in
EW10: Proceedings of the 10th workshop on ACM SIGOPS European workshop: beyond the
PC. New York, NY, USA: ACM Press, 2002, pp. 70–77.

[B-14] ——, “Undo for operators: building an undoable e-mail store,” in ATEC’03:
Proceedings of the USENIX Annual Technical Conference 2003 on USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX Association, 2003, pp. 1–1.

[B-15] R. Hanmer, Patterns for fault tolerant software. John Wiley & Sons, 2013.

[B-16] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” Communications
Magazine, IEEE, vol. 43, no. 9, pp. S23–S30, 2005.

Approved for Public Release; Distribution Unlimited.
52

[B-17] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai, and J. Willemsen,
“F6COM: A Component Model for Resource-Constrained and Dynamic Space-Based
Computing Environment,” in Proceedings of the 16th IEEE International Symposium on
Object-oriented Real-time Distributed Computing (ISORC ’13), Paderborn, Germany, Jun.
2013.

[B-18] D. J. Lu, “Watchdog processors and structural integrity checking,” Computers,
IEEE Transactions on, vol. 100, no. 7, pp. 681–685, 1982.

[B-19] Document No. 653: Avionics Application Software Standard Inteface (Draft 15), ARINC
Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[B-20] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons, C. Szabo, A.
Coglio, E. Smith, and P. Bose, “A Software Platform for Fractionated Spacecraft,” in
Proceedings of the IEEE Aerospace Conference, 2012. Big Sky, MT, USA: IEEE, Mar.
2012, pp. 1–20.

[B-21] S. Pradhan, W. Otte, A. Dubey, A. Gokhale, and G. Karsai, “Towards a Resilient
Deployment and Configuration Infrastructure for Fractionated Spacecraft,” in Proceedings of
the 5th Workshop on Adaptive and Re- configurable Embedded Systems (APRES ’13),
CPSWeek. Philadelphia, PA, USA: IEEE, Apr. 2013.

Approved for Public Release; Distribution Unlimited.
53

APPENDIX C: TRADE-OFFS IN FAILURE MANAGEMENT STRATEGIES

Towards understanding cost trade-offs in failure management strategies for
space missions

Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, 37212.

C-1. Introduction

Engineering space systems is challenging for straightforward reasons. In addition to the remote
nature of the systems, unforeseen phenomena can affect the system at any time. Given the cost
and effort required to launch and establish these systems to orbit, it is understandable the
resilience is one of the most important requirement. One of the cornerstones of resilient design
for any system is ensuring fault-tolerance. A popular and well-established strategy adopted for
improving the resilience in large space system architectures is to deploy redundant components
with design diversity to tackle faults in critical subsystems [C-1], [C-2]. This strategy is coupled
with extensive shielding or hardening techniques to protect the on-board electronics from
radiation exposure in outer space. There are extensive guidelines on establishing the hardness
assurance of space electronics depending on the scope and length of the mission [C-8], [C-10].

Space Missions, in general, can be classified depending on the criticality of their missions. On

one end of this spectrum are missions that can tolerate no downtime or extremely minimal
downtime. Depending on the nature of the mission, some of them can tolerate longer downtimes
provided the system eventually becomes available. The traditional techniques of redundancy
with comparison or acceptance based testing are extensively used in highly critical missions with
requirements for extremely high availability. The redundancy based techniques mask certain
class of persistent and transient faults that may develop in one or more, but not in all of the
redundant components at the same time, thus ensuring that faults do not lead to eventual system
or subsystem failures. These systems also require massive investment to design and develop
techniques that improve the reliability of individual hardware components, for example by
radiation hardening. While these techniques based on redundancy and hardening are often
applied in space system design, the costs involved are prohibitive, which then limits the
possibility of launching multiple independent systems 4 . Rather the design is restricted to
monolithic systems with several redundant subsystems.

Systems on the other end of the spectrum are not very critical and can tolerate reasonable

downtime provided the functionality is eventually restored. In these systems the cost is lowered
by ensuring that the systems are not individually engineered with high availability. Alternative
fault management strategies are available for such systems which depend on anomaly detection,
fault diagnosis, and reconfiguration to restore system functionality. These strategies often

4Probability of failure of two independent systems is the product of probability of failure of
each of the individual system, thereby increasing the chances of mission success

Approved for Public Release; Distribution Unlimited.
54

employ a model-based comparison approach at runtime to detect anomalies, often referred to as
online model-checking. The model-based approach also extends towards diagnosis, and
reconfiguration. They can support detection, diagnosis and recovery from a broad class of faults
and untoward events and can be dynamically updated to support changes in the mission/ system.
However, the performance and fault coverage of these online model-checking and
reconfiguration techniques is dependent on the correctness of the model and the support
infrastructure (sensors, monitors, diagnosis algorithms, schedulers, reconfiguration and
deployment services, etc.). Additional resources are required to operate the model-checking and
reconfiguration strategies. Given the dynamic nature of these methods, understandably, such
online management is not used widely in space systems.

With the advent of recent developments to adopt many small and cheap fractionated satellites

in place of the traditional single monolithic costly satellite, there is a need for architectures to
support critical tasks with minimal or no downtime and employ alternate fault-management
strategies that do not depend exclusively on dedicated redundant resources. They should be able
to handle faults identified at design time as well as unforeseen events discovered at runtime,
allow reconfiguration to restore or add functionality. With this in mind, this report looks at cost
trade-offs to be considered in designing hardware and software failure management strategies in
large system architectures for space mission applications.

The outline of the report is as follows. The next section focuses on the variants of redundancy

based fault management techniques. Section B-3 deals with the radiation exposure in space, its
impact on electronic components and the hardness assurance process employed to deal with this
problem. Section 0 describes the working of the fault-management strategies that depend on fault
detection, diagnosis, mitigation and recovery through online model checking and
reconfiguration. It discusses the software infrastructural support required to implement these
alternative fault-management strategies. Section C-5 discusses the costs, benefits and risks
associated with choosing each of these strategies when designing resilient system architecture.

C-2. Redundancy based Fault Tolerance Strategies

The redundancy based fault tolerance aims to improve the reliability of the system by using
redundant parts, with the assumption that failure of a part is an independent event. Hence, the
failure probability of the overall subsystem is lower as it is a product of the failure-probability of
the individual parts. The redundancy based techniques use a comparison (i.e. a ‘Voter’) or
acceptance check (i.e. an ‘Acceptance Test’) based scheme to decide if the part is working
correctly and pass on the ‘correct’ output to the downstream subsystem.

A voter based redundancy scheme, can tolerate up to n-2 independent faults in the subsystem
with n redundant components. The redundant parts, whose output is compared by a voter, could
be active replicas with variations introduced in terms of design, implementation, or temporal
execution.

In a diversified design, several variants of the same software are used with an acceptance test
employed at the end to compare the output from each of the variant. The rationale behind this
approach is the expectation that components built differently will fail differently [C-3]. A

Approved for Public Release; Distribution Unlimited.
55

diversified design has at least two variants plus a decider, which monitors the outputs of the
variants. Three such strategies for software fault-tolerance are: the Recovery Block approach [C-
4], [C-5], N-version programming approach [C-6], and the N self-checking programming
approach [C-1], [C-7].

The recovery block technique [C-5] uses the checkpoint and restart technique to recover from

a fault. It uses multiple versions of the same software module as alternates. Upon failure of an
acceptance test, the checkpoint state is used to restart the computation by using the next alternate
version. In this approach, at least two versions of software module are required. If all alternates
fail, the module issues an exception to the rest of the system.

In the N-version programming approach, multiple versions of same programs is executed in

parallel, with a voter selecting the output most likely to be correct. This approach is different
from the recovery-block approach in that it does not require an application dependent voter and
that it needs at least three versions of the same module to work. However, the parallel execution
necessitates the need to ensure input consistency. In 1990, Brilliant, Knight and Leveson
published results from a large-scale experiment conducted in N-version programming [C-8]. In
the experiments, they prepared twenty seven versions of a program at two different universities
and then executed them one million times. The results of the experiment were intriguing. They
noticed that different versions were found to be reliable when used individually with only a small
number of failures. However, when they correlated these failures across different versions they
discovered that the number of input cases when more than one version failed was significantly
large. Upon post failure analysis, they further discovered that correlated failures arise from
logically unrelated faults in different parts of the algorithms. They hypothesized that most of the
faults resulted from the fundamental flaws in the algorithms that the programmers designed.
Therefore, changing the development tools or methods to create new versions did not reduce the
number of correlated failures in N-version software.

N-Self-checking approach [C-1], [C-7] is a combination of Recovery block approach and N-

version approach. This approach has two variations. The first variation uses acceptance test for
each version as in the recovery block approach, however, the acceptance test for each version
can be different. By executing these versions in parallel, this approach enables switching of
output in case of errors instead of restarting from previous checkpoint. The other variant uses a
comparison technique. It groups the variants into set of two, with a comparison unit forwarding
the result to a selection unit only if the two versions in a set produce identical results. The
selection logic then selects the outputs from different version similar to the N-version technique.
The drawback of using this technique is the possibility of running into situation where both
versions in a set produce identical wrong output.

The dedicated active redundancy schemes based on simultaneous parallel executions guarantee
extremely high-availability. In case of redundancy through sequential repetitive computation, a
worst case execution time is factored in to the design. Both techniques guarantee availability
even in the presence of broad class of independent persistent and transient faults in the
redundancy components. Of course, this comes at a cost of additional dedicated resources for
redundant operation, as well higher cost towards other aspects such as subsystem design, launch
(payload size, weight), power usage, thermal issues etc. Also, this strategy could limit the scope

Approved for Public Release; Distribution Unlimited.
56

for on-demand adaptation and reconfiguration to meet some unforeseen operational challenges
and/or updates to mission requirements. Moreover, while this strategy is extremely effect when
there are up to a certain number of independent transient and persistent faults in the redundancy
components/ execution schemes, it would require additional support to handle common failure
modes that affect all the redundant units.

C-3. Radiation and Platform Shielding

The space radiation environment can lead to extremely harsh operating conditions for on-board
electronics and the related systems. The radiation environment could change completely based
on the date, time and duration of the mission being considered. The primary radiation sources of
concern include energetic particles trapped by earth’s magnetic field forming the Van Allen
radiation belts in the magnetosphere, the cosmic rays transiting the solar system and the solar
particle events produced by solar flares [C-8]. The radiation belts include electrons and protons
with energies over 30 keV, while the cosmic rays include energetic heavy ions extending to
energies beyond TeV. The solar flares produce primarily energetic protons with energies ranging
up to hundreds of MeV. The interaction of the above environments with satellite structural and
shielding materials also results in the generation of secondary radiation.

The effects of these primary and secondary radiations on space missions are varied. They include
degradation of electronic performance due to accumulation of total ionizing doze as well as
single event phenomena. Single event phenomena broadly include three different effects in
electronic components. Single Event Upset (SEU) produces bit flips in electronic components.
These are transient and do not cause any permanent damage. Single-event latch up (SEL) include
one or more bit flips occurring together (and may be being persistent), resulting in the part
ceasing to function, and drawing excessive current. Operation is restored when the device is
turned off and then back on. The excessive current drawn can destroy the device if the power
supply cannot handle the current. Finally, in case of single-event burnout (SEB), the device fails
permanently.

A rigorous methodology is employed to ensure that the parts and components used in the

space system meet the required Radiation Design Margins (RDM) and thereby are not
compromised by the radiation environment. This is often referred to as Hardness Assurance
Process [C-10]. This involves understanding the system requirements and environmental
definitions to identify the RDM required for each part and thereby the system. This is followed
by part selection and testing to characterize the parts in terms of expected RDM. This could be
followed by design, testing and development efforts to improve radiation hardness through
shielding and radiation tolerant design. Shielding could involve spot shielding of the specific part
or the shielding of the entire box.

The radiation hardening significantly improves the reliability and tolerance to radiation effects

as compared to COTS parts [C-8]. It thereby greatly improves the reliability and fault-tolerance
of the entire system. The process does come at a steep cost in terms of design, manufacturing and
launch costs. In this context it is worth noting that the launch cost to geostationary orbit is
$50,000 /kg, so even a few grams of shielding incur significant cost. Additionally, changes to the

Approved for Public Release; Distribution Unlimited.
57

design to achieve radiation tolerance could impose additional penalties in terms of greater power
consumption and poorer performance as compared to the COTS components. Since these parts
are produced one-off and not for the mass market, the scope for price reduction based on the
market demands is non-existent. Processes to create incremental updates to the designed
components to keep pace with the COTS components are not economically viable. Further, the
significant investment in building these radiation hardened components also implies that
significant operational time to recover the cost. This leads to use of older technology that does
not keep pace with the performance of COTS technologies, sometimes resulting in resource
limitations.

C-4. Online Model checking, Fault-repair and Reconfiguration

Online model checking refers to the process of checking the operational status and detecting any
anomalous behavior by comparing operational data against those expected in some (possibly
active) model of the system. The model could be as simple as a constant threshold stored in a
look-up table, or a discrete behavioral model, or mathematical models of varying degrees of
complexity. The process of detecting anomalies is followed by diagnosis to identify the fault
cause(s) responsible for the anomalies observed. Finally, mitigation and recovery to restore
functionality is achieved through fault-repair and reconfiguration strategies. This approach can
be configured to account for anomalous behavior and their cascading effects due to faults
identified at design time as well as latent bugs, common mode failures or other unforeseen events
or attacks that disrupt the nominal operation. Also, this can be applied to augment the system
reliability when redundancy based fault tolerance strategies are already in place.

The anomaly monitors could be based on observing different aspects of the system such as

heartbeats of the computing nodes and applications, watchdogs associated with the hardware and
software operation, resource utilization of the applications hosted, application data etc. These are
occasionally compared against preset values or thresholds, model outputs or expected behaviors.

The diagnosis schemes could use the status of these anomaly monitors to localize and isolate

the fault source(s) based on a table look-up, or using rule-based or model-based reasoning. They
could employ a hierarchical approach as well as consensus-based schemes between multiple
independent observers.

Fault repair and recovery strategies could be based on simple reactive schemes where a

specific set of pre-determined actions are utilized to mitigate the fault effects and restore the
functionality. Alternately, based on the available resources more deliberative, search-based
strategies based on constraints could be employed to identify the best solution to repair and
restore the system.

While the approach could be configured to handle disturbances (pre-determined and
unforeseen) from a wide-array of potential causes (faults, glitches to updates, security
violations), its success depends on the robust and reliable operation of multiple actors; i.e.
anomaly monitors, diagnosis and fault localization engines, and recovery and reconfiguration
services. This involves allocation of dedicated resources towards these tasks, as well as the

Approved for Public Release; Distribution Unlimited.
58

overheads associated with any support services that might be required to monitor resources used
(and available), dynamic deployment of tasks based on the available resources, state managers
for re-starting state-based services (through checkpoint and restore). The systems need to
designed, tested, verified and validated according to the specifications and requirements and
overheads in terms of resource and system and subsystem downtime needs to be well
understood.

C-4.1 Recovery-Oriented Computing

In [C-11], Brown and Patterson state that the heterogeneity and complexity involved in most
large-scale service systems inherently leads to unforeseen failures. Therefore, in Recovery-
Oriented Computing (ROC)5

[C-11], [C-12], [C-13] they concentrate on reducing time to recover
from faults and thus offer higher availability and aims to reduce total cost of ownership. ROC
emphasizes on testing recovery systems and helps make recovery procedures a holistic part of
the architecture rather than a patch or add-on that leads to extra complexity. They suggest
multiple techniques [C-13] in support ROC, including redundancy to remove single points of
failure, system partitioning for fault containment, aid and testing of diagnosis and recovery
mechanisms.

C-4.2 Model Based Software Health Management

As part of a research effort on Model-Based Software Health Management (sponsored by
NASA’s Aviation safety program) we adapted a diagnosis scheme used for Systems Health
Management and applied it towards diagnosis of a software component assembly. Foundation of
the architecture is a real-time component framework (built upon an ARINC-653 platform) that
defines a specific model of computation for software components [C-14]. This framework brings
the concept of temporal isolation, spatial isolation, and strict deadlines from ARINC-653 and
merges these with the well-defined interaction patterns described by the CORBA Component
Model [C-15].

The real-time health management scheme involved a two-level software health management
scheme: a Component-level Health Manager (CLHM) provided localized and limited service for
managing the health of individual software components, and a System-Level Health Manager
(SLHM) managed the health of the overall system. The SLHM used a diagnosis engine to reason
about fault effect cascades in the system, and isolates the fault source components. This was
possible because the data and behavioral dependencies and hence the fault propagation across the
assembly of software components could be deduced from the well-defined and restricted set of
interaction patterns supported by the framework. Once the fault source is isolated, the SLHM
applied either a pre-determined reactive scheme or a deliberative search based scheme to
reconfigure and recover the system [C-21].

While the work was effective in showcasing the applicability of the online-model checking,
repair and re-configuration strategy, it also shed light on the issues that need to be considered

5 http://roc.cs.berkeley.edu/

Approved for Public Release; Distribution Unlimited.
59

while deploying such strategies [C-20]. This included among other things accounting for local
and system-level effects of mitigation and reconfiguration actions, issues related to monitoring
anomalies (timing, intermittents, false positives and false negatives), fault-masking effects and
the fault-containment regions enforced by fault-tolerance schemes designed into the system.

C-4.3 Resilient Distributed Real-time Managed Systems

More recently, efforts to design and develop a resilient software infrastructure for deploying and
managing distributed real-time embedded systems led to a better understanding of the underlying
functional, design and runtime requirements to support an online mitigation and recovery
strategy [C-19]. Some of the requirements include

• A distributed deployment service that is resilient to faults in the deployed application,
support services, computing nodes and network

• An operational management service that employs additional services to be aware of
operational status, resource usage and availability status, health status of all the hardware
and software services, and status of recovery operations.

• A group consensus and leader election scheme to support the health-management and
recovery efforts across the cluster.

• A distributed state preservation (checkpointing) and restoration service to aid in the
recovery of applications that are state dependent.

• Multiple monitoring services at the level of hardware, operating system, middleware and
data distribution framework, applications and their associated components.

C-5. Analyzing trade-offs for designing fault-tolerant architectures

Like in any other case, the trade-offs in applying different fault protection schemes in the system
architectures should be assessed from the perspectives of the costs involved, the benefits accrued
and the continued risks associated with applying the specific set of strategies.

In the past, a number of approaches have been proposed along to assess the cost-benefit
analysis of model based diagnostic system [C-16], integrated vehicle and systems health
management (IVHM) [C-17], [C-18]. These works look at the benefits in terms of the revenue
generated from the availability of the system, captured in terms of the product of availability and
revenue generated per unit time of availability. They penalize the design in terms of the cost of
detection and cost of risk. The detection cost relates to the cost of development of the IVHM and
the related maintenance and life-cycle costs. The risk cost is related to any failures that might be
introduced and the consequent downtime with its share of loss in revenue.

Additionally, while designing systems to support IVHM, [C-17] considers fitness functions to

evaluate the trade-offs involved in deploying different kinds of monitors and implementing
related fault-detection and diagnosis algorithms. The fitness function is evaluated for each fault
and then summed over all the possible faults. For each fault, the downtime cost, the cost

Approved for Public Release; Distribution Unlimited.
60

associated with downstream failures, the cost of the health management technology, the
associated risk reduction by using the health management technology, and the risks introduced
due to incorrect diagnosis (including false-positives) are taken into account.

Analyzing the value proposition associated with the different fault management strategies in
the system architecture, all the pros and cons need to be looked at from the perspective of

Costs: This will include the cost of designing, development, testing, validation and certification
(if required) of the relevant technology in the context of the problem that it is trying to solve.
Additionally, it will include the operational cost in terms of the additional resources required to
deliver the fault-tolerance/ recovery functionality.

Benefits: The benefit would be estimated against the possible set of faults that can be managed,
the criticality of these faults towards hindering the success of the mission, the availability
guaranteed. It would also take into account the benefits of the mitigation action in containing the
fault and protecting the system.

Risks: The risk should take into account failures in the fault management technology based on
the confidence in its underlying concepts and framework and the related consequence in terms of
system or functionality downtime.

Mission Specification and Requirements: The assessment of the cost-benefit trade-offs is
highly dependent on the use-case or the specific mission requirements. In the case of space
systems, this would involve consideration of the length of the mission (long or short term), the
requirements of re-use across mission, the need to handle flexible requirements be adaptable to
changes in requirements. The mission specification can factor in if single monolithic satellites are
to be used or multiple relatively cheaper fractionated satellites are to be deployed. These issues
would help decide the contexts in which alternate fault tolerant schemes can be explored.

Design Assumptions, Functionalities and Faults: In order to better understand the cost-benefit
analysis of the different fault-tolerance strategies for a specific mission, it is important to
understand
1. The assumptions related to (1) system design, (2) fault monitoring design, (3) fault mitigation

design, (4) redundancy design, (5) hardening design.
2. The possible set of faults in different categories should be considered. These include known

and/or expected faults based on Failure Mode Cause and Effect Analysis (FMECA) on the
hardware components, the radiation induced effects (single event, total ionizing dose),
software issues related to hardware faults and misoperations, latent software bugs, software
update issues, network errors, security problems, and system issues such as transient
scheduling problems. For each fault, information of its downstream effect, its severity,
associated cost and fault-containment area from testing, experience and expert knowledge
would be helpful.

3. The required functionalities (mission specific applications, support services), their criticality,
the services they are dependent on, and their downtime tolerance.

Approved for Public Release; Distribution Unlimited.
61

Comparison in different phases of the life-cycle: The tasks involved in different phases of the
mission life cycle could be factored into the cost-benefit trade-off analysis.
The design and development phase has to deal with
• Systems engineering costs related to design, verification, validation and certification of the

fault management strategy.
• Hardness assurance costs to estimate the required radiation design margin and identify the

process to ensure that the parts satisfy the requirement
• Manufacturing costs of radiation-hardened hardware

The launch, operational and maintenance phases have to deal with
• Costs associated with the weight of the shielding, power usage, additional hardware

resources
• Costs to run additional operations that support the fault management strategies including

redundant computation, comparison or acceptance based testing, monitoring, online model-
checking, diagnosis, fault-repair and reconfiguration operations.

• Cost to update the software and maintain the hardware.

An initial assessment of some aspects of the costs, benefits and risks of the fault management
technologies in accordance with the factors mentioned above can be based on the promises,
limitations, published literature and past experience associated with each of these technologies.

Redundancy based fault tolerance schemes are known to work with minimal downtime and
when used with n-modular redundancy scheme they can tolerate up faults in up to n-2 redundant
parts.
Also, the use of redundancy brings down the failure probability (multiplicative effect) and
thereby increases the reliability of the system. The techniques do not focus on specific set of
faults, but are applicable to a broad class of independent, persistent (or transient) faults. The
approach does not help when the issue is related to a common failure mode across all redundant
components. This breaks the assumption of independent faults and it is quite possible that the
problem does not show up in comparison or acceptance tests. From a risk assessment standpoint,
it would be important to understand the sources of these common failure modes and their
occurrence (failure) rate. The design process should be able to ensure that this failure rate of
common mode faults is extremely small. The extra cost in terms of dedicated redundant resource
usage, weight, power should be factored in to assess the number of redundant parts that can
deliver the most benefits.

Radiation hardening through careful parts selection, very strict manufacturing guidelines,
shielding and redesign of the electronic circuity ensures that the subsystems meet and exceed the
radiation design margin requirements. This increases the reliability of the components to operate
without any downtime. While the hardness assurance process is prohibitively costly, additional
attention in keeping the shielding to a minimum would help reduce payload size and launch cost.
The performance penalty should be kept in mind while redesigning to harden the circuitry.

Commercial technologies exist where radiation hardening is kept to a bare minimum while using
redundant COTS components. In one such case, COTS processors execute on the same

Approved for Public Release; Distribution Unlimited.
62

instruction set in a clock-synchronized environment and the output is compared by a Voter
circuit. Radiation hardening is applied to the most critical element in the chain, i.e. a Voter
circuit. Another strategy employed is to modify the processor to execute each instruction at least
twice and validate consistent output with a rad-hard Voter component. In case of a fault, the third
execution is performed to choose the output. Active Testing and software scrubbing are other
techniques employed to identify and reverse bit flips resulting from SEU and SEL.

Online model checking, fault repair and reconfiguration claims to be more flexible in terms
of the disturbance set (fault, update glitches, security violations) that it can handle and is not
restricted to a prescribed set of faults. Further, since resources are not tied down with dedicated
redundant computation, the architecture could support changes in mission requirements.
However, additional resources are required to support monitoring, diagnosis, reconfiguration and
there is a non-zero downtime before the service is restored.

A rigorous process needs to be applied to understand the limitations and assumptions made in the
model-based approach. With the dynamic nature of these systems, it calls for careful design and
implementation to limit the false-negative and false-positive detections. The costs, benefits and
risk associated with the operation of each component, subsystem and service should be assessed
taking into account the total set of individual faults as well as the number of simultaneous faults
that can be tolerated. Also, the effectiveness of the recovery or redundancy mechanism should be
studied in the context of the function criticality, and its downtime tolerance, as well as the
additional resource requirements.

In extremely mission critical and dedicated long term requirements without much adaptation, a
radiation hardened redundancy based approach would allow for lower downtime across the
longer life span. In case of non-critical mission requirements where there is support from other
independent fractionated satellites that can be easily deployed on-demand, a slightly relaxed
approach towards radiation design margins and radiation hardening can be applied. COTS
hardware that meets the relaxed RDMs can be used on the fractionated satellites.

The online checking and reconfiguration strategy could work well in cases where the functional
requirement is not mission critical, can tolerate well-defined downtimes and there is need for
adaptation including on-demand services. However, it needs to be applied on small well-defined
systems where its operation can be well understood, verified and validated.

C-6. Conclusion

The report outlined the traditional fault management strategies based on redundancy and
radiation hardening as well as alternate strategies based online model-checking to detect
anomalies, diagnose faults, repair and reconfigure to restore functionality. It discusses the pros
and cons of the strategies, the specific mission requirements, the cost factors and the risks that
need to be considered while evaluating the trade-offs in applying each scheme to enable
resilience to space systems. Since the techniques can coexist the best course solution would be to
find an ideal mix of the different strategies based on the mission specification, requirements and
budgetary limits.

Approved for Public Release; Distribution Unlimited.
63

Acknowledgements: This report has been prepared for the Resilient Software Systems project
that has been supported by the Air Force Research Laboratory under Award FA8750-13-2-0050.

C-References

[C-1] J.-C. Laprie, C. B´eounes, and K. Kanoun, “Definition and analysis of hardware-and
software-fault-tolerant architectures,” Computer, vol. 23, no. 7, pp. 39–51, 1990.

[C-2] M. R. Lyu, Software Fault Tolerance. John Wiley & Sons, Inc, 1995, vol. New York,
NY, USA.

[C-3] Avizienis and J. Kelly, “Fault tolerance by design diversity: Concepts and experiments,”
Computer, vol. 17, no. 8, pp. 67–80, Aug. 1984.

[C-4] Randell and J. Xiu, “The evolution of recovery block concept,” Software Fault Tolerance,
pp. 1–21, 1995.

[C-5] Randell, P. Lee, and P. C. Treleaven, “Reliability issues in computing system design,”
ACM Comput. Surv., vol. 10, no. 2, pp. 123–165, 1978.

[C-6] Avizienis, “The n -version approach to fault tolerant software,” IEEE Transactions on
Software Engineering, vol. 11, pp. 1491–1501, December 1985.

[C-7] J.-C. Laprie, “Dependable computing and fault tolerance: Concepts and terminology,” in
Proc. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 'Highlights from
Twenty-Five Years', June 27–30 1995, p. 2.

[C-8] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis of faults in an n-version
software experiment,” IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 238–
247, 1990.

[C-9] J. Wertz and W. Larson, Space Mission Analysis and Design, ser. Space Technology
Library. Springer Netherlands, 1999. [Online]. Available:
http://books.google.com/books?id=veyGEAKFbiYC

[C-10] J. Barth, K. LaBel, and C. Poivey, “Radiation assurance for the space environment,” in
Integrated Circuit Design and Technology, 2004. ICICDT ’04. International Conference on,
2004, pp. 323–333.

[C-11] Brown and D. Patterson, “Embracing failure: A case for recovery-oriented computing
(roc),” High Performance Transaction Processing Symposium, 2001.

[C-12] A. Patterson, “Recovery oriented computing: A new research agenda for a new century,”
hpca, vol. 00, p. 0247, 2002.

[C-13] Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox,
E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N.
Treuhaft, “Recovery oriented computing (roc): Motivation, definition, techniques,,”
University of California at Berkeley, Berkeley, CA, USA, Tech. Rep., 2002.

[C-14] Dubey, G. Karsai, and N. Mahadevan, “A component model for hard real-time systems:
CCM with ARINC-653,” Software: Practice and Experience, vol. 41, no. 12, pp. 1517–1550,
2011. [Online]. Available: http://dx.doi.org/10.1002/spe.1083

[C-15] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the CORBA component model,”
in Component-based software engineering: putting the pieces together. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001, pp. 557–571.

[C-16] J. Kurien and M. D. R-Moreno, “Costs and benefits of model-based diagnosis,” in
Aerospace Conference, 2008 IEEE. IEEE, 2008, pp. 1–14.

Approved for Public Release; Distribution Unlimited.
64

[C-17] J. Kacprzynski, M. J. Roemer, and A. J. Hess, “Health management system design:
Development, simulation and cost/benefit optimization,” in Proceedings of the IEEE
Aerospace Conference. IEEE, 2002.

[C-18] Y. T. C. Hoyle, A. Mehr and W. Chen, “Cost benefit quantification of ISHM in aerospace
systems,” in ASME International Design Engineering Technical Conference, 2007.

[C-19] Karsai, D. Balasubramanian, A. Dubey, and W. Otte, Distributed and managed: Research
Challenges and opportunities of the next generation cyber-physical systems, in 17th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2014, Reno, NV, USA, June 10-12, 2014, 2014, pp. 1{8. [Online].
Available: http://dx.doi.org/10.1109/ISORC.2014.36

[C-20] N. Mahadevan, A. Dubey, and G. Karsai, Architecting Health Management into Software
Component Assemblies: Lessons Learned from the ARINC-653 Component Model," in
ISORC, 2012, pp. 79-86.

[C-21] N. Mahadevan, A. Dubey, D. Balasubramanian, and G. Karsai, “Deliberative, search-
based mitigation strategies for model-based software health management," Innovations in
Systems and Software Engineering”, vol. 9, no. 4, pp. 293-318, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11334-013-0215-x

Approved for Public Release; Distribution Unlimited.
65

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

AADL Avionics Architecture Description Language
ACE Adaptive Computing Environment
AFRL Air Force Research Laboratory
CIAO Component-Integrated ACE ORB
CLP Constraint Logic Programming
DANCE Deployment and Configuration Engine
DB Database
DM Deployment Manager
DoD Department of Defense
DREMS Distributed Real-time Embedded Managed Systems
GEO Geosynchronous Orbit
GME Generic Modeling Environment
GPU Graphics Processing Unit
GUI Graphical User Interface
ISIS Institute for Software Integrated Systems
LEO Low-Earth Orbit
MDE Model-driven Engineering
MIC Model-integrated Computing
NC Network Calculus
OMG Object Management Group
ORB Object Request Broker
OS Operating System
OSD Office of the Secretary of Defense
RAE Resilience and Analysis Engine
RDM Resilient Data Model
ReSoSML Resilient Software Systems Modeling Language
SMT Satisfiability Modulo Theory
TAO The ACE ORB
TMR Triple-Modular Redundancy
UML Unified Modeling Language
XML Extensible Markup Language

	LIST OF FIGURES
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	4.0 RESULTS AND DISCUSSION
	4.1 Domain-specific modeling language
	4.2 Design patterns and resilience scenarios
	4.3 Software generators for middleware
	4.4 Resilience metrics and calculations
	4.5 Verification of network performance
	4.6 Computational requirements for online verification
	4.7 Tradeoffs between online verification and conventional solutions
	4.8 Demonstration system

	5.0 CONCLUSIONS
	6.0 REFERENCES
	APPENDIX A: PUBLICATIONS
	APPENDIX B: RESILIENCE SCENARIOS
	B-1. Introduction
	B-2. Resilient Software Systems
	B-2.1 Diversified Design
	B-2.2 Recovery-Oriented Computing
	B-2.3 Resilience Patterns
	B-2.4 Model Based Software Health Management – Lessons Learned

	B-3. System Model – Distributed Real-time Managed Embedded Systems (DREMS)
	B-3.1 Distributed Application Model
	B-3.2 Services
	B-3.2.1 Hardware Watchdog
	B-3.2.2 Operating System kernel
	B-3.2.3 Cluster Resource Manager
	B-3.2.4 State Management Service
	B-3.2.5 Deployment Manager Service
	B-3.2.6 Monitoring Services
	B-3.2.7 Additional Features and Services

	B-3.3 Component Management Interface

	B-4. Resilience Scenarios
	B-4.1 Scenario 1: Computing Node Failure
	B-4.2 Scenario 2: Node failure during deployment
	B-4.3 Scenario 3: Computing Node Failure
	B-4.4 Scenario 4: Transient Network Failure
	B-4.5 Scenario 5: A deadlock in the Kernel
	B-4.6 Scenario 6: Priority Inversion Leading to a System Reset
	B-4.7 Scenario 7: Device Failure
	B-4.8 Scenario 8: Process Failure
	B-4.9 Scenario 9: Process Failure – Blabbering State
	B-4.10 Scenario 10: Bad System State
	B-4.11 Scenario 11: Security Violation

	B-5. Conclusion
	B-References
	APPENDIX C: TRADE-OFFS IN FAILURE MANAGEMENT STRATEGIES
	C-1. Introduction
	C-2. Redundancy based Fault Tolerance Strategies
	C-3. Radiation and Platform Shielding
	C-4. Online Model checking, Fault-repair and Reconfiguration
	C-4.1 Recovery-Oriented Computing
	C-4.2 Model Based Software Health Management
	C-4.3 Resilient Distributed Real-time Managed Systems

	C-5. Analyzing trade-oﬀs for designing fault-tolerant architectures
	C-6. Conclusion
	C-References
	LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

