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Abstract 

Army installation managers and planners have limited sources of scientifi-
cally reliable information that can be used to examine potential climate 
impacts on local flora and fauna. The present work evaluated the viability 
and versatility of applying statistical multivariate analysis to define the 
current and projected future range probability for species of interest to 
Army land managers. A software program called Maxent was used to per-
form range-extent analyses for two animal species of interest to Army land 
managers: the Red-Cockaded Woodpecker (RCW) and the common musk 
turtle. The technology was used to determine how climate change might 
affect species thresholds of survival at Army installations. The software da-
ta input requirements and output capabilities are described. The analytical 
methodology applied to the study of both species is discussed in detail, and 
validation of results is addressed.  

The authors conclude that Maxent analyses can provide impartial, data-
based results that reflect scientific consensus on related climate-change 
issues while avoiding emphasis on the extremes of scientifically collected 
data. Analysis results indicate that climate change will alter RCW habitat 
threshold values on some installations beyond the point where Army-
managed mitigation is possible. In contrast, musk turtle habitat will in-
crease at least until 2025. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Climate model projections summarized in the 2007 Intergovernmental 
Panel on Climate Change report (IPCC 2007a) indicate that global surface 
temperature is likely to rise between 1.1 and 6.4 °C during the 21st century. 
In February 2010, in response to climate-change forecasts, the President’s 
Council on Environmental Quality (CEQ) issued draft guidance to all Fed-
eral agencies concerning the manner in which climate change should be 
included in the evaluation of environmental effects under the National En-
vironmental Policy Act (CEQ 2010).  

Agencies should consider the specific effects of the proposed action (in-

cluding the proposed action’s effect on the vulnerability of affected eco-

systems) . . . . 

The Quadrennial Defense Review (QDR) was the first Department of De-
fense (DoD) publication (QDR 2010) to address the issue of the growing 
need to consider risks and response strategies for climate change. In the 
QDR, the DoD explicitly acknowledged that climate change will likely af-
fect the nature and scope of future missions, as well as training and testing 
assets of military installations.  

Climate change issues are being addressed in the Army’s Integrated Natu-
ral Resources Management Plan (Legacy 2009). The purpose of the man-
agement plan at an installation is to enable planners to implement 
landscape- or ecosystem-level management and to coordinate with other 
stakeholders in the region, over time periods reflecting that natural com-
munities require multiple decades to mature and evolve. The goal the inte-
grated and local plans is to ensure good resource stewardship that is 
compatible with no net loss of land necessary to support the military mis-
sion.  

Army installation managers and planners have limited sources of scientifi-
cally reliable information that can be used to examine potential climate 
impacts on local flora and fauna. Most literature examining climate-
change effects on military installations to date has dealt with impacts of 
rising sea levels on coastal areas, a concern more important to Navy and 

http://en.wikipedia.org/wiki/Climate_model
http://en.wikipedia.org/wiki/Surface_temperature
http://en.wikipedia.org/wiki/Surface_temperature
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Marine Corps operations than Army installations. However, the authors 
have performed a series of previous studies examining climate-related im-
pacts on the ecosystems of various installations (Lozar 2011 2012a, 2012b, 
2013, Westervelt 2011). 

The present study was funded under Research, Development, Test, and 
Evaluation Program Element A896, “Base Facilities Environmental Quali-
ty,” as part of a work package entitled “Prediction and Adaptation of Mili-
tary Natural Infrastructure in Response to Climate Change.” The overall 
purpose of the work in part is to  

analyze the influence of climate change on environmental impacts of in-

terest to military planners and decision-makers. The analytical frame-

work integrates rigorous, large-scale models of the global climate system 

with analytically tractable model linkages to regional assessments of cli-

mate change, weather, ecological stressors, watershed processes, and 

landscape evolution. 

The most basic question to be answered is, “What climatic factors current 
and future determine the probability range of species of interest to the 
Army at a given installation?” The present work evaluated the viability and 
versatility of applying statistical multivariate analysis to answer this ques-
tion. 

An initial assumption in research design was to begin with established 
knowledge of species extent as a geographical basis for predicting impacts 
driven by a set of temporally changing bioclimatic characteristics. Starting 
with one species of high interest, the red-cockaded woodpecker (RCW), 
several different documented “standard” ranges were found in the litera-
ture. Figure 1 shows two “standard” RCW ranges that differ significantly. 
Study could arguably begin with the potential range, or the current plus 
previous range, or even locations where the species has been sighted. Pre-
dictably, preliminary modeling incorporating this kind of conflicting range 
information produced incoherent results. Problems that soon became ob-
vious resulted from issues such as multiple conflicting definitions of sin-
gle-species range, sightings that did not result from systematic 
professional surveys, absence data that might reflect absence of observa-
tions rather than absence of species, misidentified species sightings, and 
sightings from various different time periods. 



ERDC/CERL TR-14-17 3 

Figure 1. Plots of contradictory RCW range data. 

 
Notes: Yellow areas show current RCW range and hatched areas represent previous range (NatureServe 
2013). Blue areas indicate county locations of RCW habitat determined by Jackson (1971) and Hooper 
et al. (1980). 

Existing sources of information on species extent are not uniformly accu-
rate because distributions have been modified by agriculture and urbani-
zation. Historical data are spotty and inconsistent, and historic sightings 
by county are not the results of a professional systematic survey. The mul-
tiple sources examined for RCW distributions present several questions:  

• Does land-use change make a difference to the potential range of the 
RCW?  

• Is population in some areas overweighed because of data redundancy? 
• Is the presence of outlier counties real, or is the species misidentified in 

those locations?  
• Are holes in the coverage real, or just due to lack of observation?  
• Are the denser clusters of sightings due to greater species density or 

due to a clustering of observers?  

Such problems pertain not only to RCW data, but potentially to any spe-
cies of interest. These observations and questions make it obvious that an 
alternative methodology is needed to provide objectivity and consistency 
in the definition of species range before climate-change impacts can be ef-
fectively studied.  
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Most basic data about a species occurrence takes the form of individual 
sightings, but rarely is a lack of sighting equivalent to the absence of a spe-
cies. Therefore, the work focused on ways to define distribution based on 
presence-only techniques, of which several are established. BIOCLIM, the 
online climate database accessible at http://worldclim.org/bioclim, pre-
dicts suitable conditions in a “bioclimatic envelope” of observed presence 
values in each environmental dimension (Busby 1986, Nix 1986). 
DOMAIN, a modeling procedure for mapping potential distributions of 
plants and animals, uses a “similarity metric” that produces a predicted 
suitability index by computing the minimum distance in environmental 
space to any presence record (Carpenter et al. 1993). GARP, a genetic algo-
rithm approach for creating ecological niche models for species, has been 
applied to several presence-only studies (Anderson 2003, Joseph and 
Stockwell 2002, Peterson and Kluza 2003, Peterson and Robins 2003, Pe-
terson and Shaw 2003). 

Multivariate analysis is the basis of modeling software package called 
Maxent (Phillips 2006), which applies a multivariate technique called 
maximum entropy analysis. In this context, “entropy” is a measure of im-
age information content. Maxent is designed to determine the maximum 
information content expressed by the data that is input using a technique 
deriving from the Second Law of Thermodynamics. This multivariate ap-
proach can be applied to define species range of extent. The program de-
velops an unbiased probability distribution on the basis of partial 
knowledge. In addition, it offers a suite of statistical analysis tools that are 
highly useful in evaluating the quality of the resulting range map and an-
cillary outputs.  

1.2 Objective 

The objective of this study was to test and evaluate the capability of multi-
variate analysis using Maxent software to determine how climate change 
might affect species thresholds of survival at Army installations.  

1.3 Approach 

The bioclimatic data used to do the analysis are described in some detail, 
both in terms of their validity and suitability for application in the analy-
sis. Also, the salient features of Maxent analysis are explained. 

http://worldclim.org/bioclim
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After each analysis was run, the outputs were evaluated in terms of their 
statistical viability, and various sensitivity tests were applied. The particu-
lar focus was on how the major analyses would affect two species of inter-
est on Army lands: the Red-Cockaded Woodpecker (Picoides borealis) and 
the common musk turtle (Sternotherus odoratus). The Red Cockaded 
Woodpecker is a threatened/endangered species (TES) that nests in pine 
trees of the United States southeastern region. Its presence on military in-
stallations requires that federal land managers set aside tracts of land for 
the species preservation and augmentation. The issue that results from 
their presence is that these lands may also be desirable for the purposes of 
military training and testing; conflicts may arise. In the face of climate 
change, installation planners need to know what might happen to the spe-
cies and how that may affect the planner’s need to manage training lands 
with the appropriate financial resources. The common musk turtle is a fa-
miliar amphibian species that ranges throughout the Eastern United 
States. Its preservation is less problematic for the Army, so it provides a 
good complement to the TES species analysis. 

1.4 Scope  

The primary thrust of this work was to examine the affects of climate 
change on species of importance to Army land managers. To accomplish 
this it was necessary to generate species distributions and comparable 
changes in those distributions over time. Those distributions were gener-
ated using a rigorous statistical approach. However, the primary goal did 
not include the submission of a new standard distribution map for each 
species studied; the distribution maps were a means to achieve the end of 
defining effects of climate change. 

This investigation inspects currently available data and analysis tech-
niques. The authors did not attempt to generate new climatic predictions 
or to program new software. Also, this report deals with scientifically vali-
dated climate-change data, not data on weather or weather extremes. Fur-
thermore, it is assumed that military missions at installations will remain 
the same as they are today.  

1.5 Mode of technology transfer  

With the demonstrated utility of the maximum entropy approach for spa-
tially identifying areas that are suitable for a given purpose, based on 
known suitable areas, this approach is now being applied in other studies. 
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We are currently using the methodology to study the current and forecast 
habitat extents for a variety of reptiles (three turtle and four snake species) 
that live in the southeastern United States. Controlled laboratory studies 
are being performed to validate the identification of climate thresholds for 
several of these species. The method is also being applied to the study of 
climate-change-induced modifications to ecosystems around military in-
stallations, with the goal of illuminating the potential for ecosystem shifts 
in response to climate change. The method also will be applied to under-
stand and forecast urban security issues associated with megacities in de-
veloping countries.  
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2 Data and Analytical Tools 

2.1 Selection of climate change data 

Research scientists are particularly sensitive to the issue of choosing data 
biased toward a particular predisposition. Although military groups do 
have preferred data sets for climate change research, the authors were very 
careful to follow guidelines in the choice of data that would assure the 
greatest viability and overall acceptance. These guidelines included using 
data: 

• generated by others with more expertise than the authors 
• from independent sources 
• generated in a well documented, industry-accepted manner 
• that are freely available to all so that this research can be easily and ac-

curately replicated. 

The most widely accepted global climatic models (GCMs) all generate pre-
dictions based on a set of conventions disseminated through the IPCC. 
Such standardization is meant to facilitate comparison between models. 
The IPCC reports (IPCC 2007b) are intended to reflect the scientific con-
sensus among the experts in the field. All data used in this research follow 
the IPCC standards. 

The IPCC has established a series of standard future scenarios to assist 
with coordination and comparison between modeling efforts. This interna-
tional standard set of scenario types is named after the Special Report on 
Emissions Scenarios (SRES). The SRES was prepared by the IPCC for the 
Third Assessment Report (TAR) in 2001 on future emission scenarios to 
be used for driving GCMs to develop climate change scenarios. The SRES 
were also used for the Fourth Assessment Report (AR4) in 2007. For this 
study, the following SRES were used: 

• A1(B): globally homogenous rapid economic growth (with B variation = 
a balanced usage of both fossil and non-fossil fuel energy sources. 

• A2: locally heterogeneous, regionally oriented economic growth 
• B1: globally homogenous sustainable economic growth. 
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Twenty-one major GCMs were prepared while participating in AR4. For 
this research, those models having the greatest number of validation stud-
ies and those with the longest-period of development (10–20 years) were 
used. They are: 

1. GFDL Model - NOAA Princeton (gfdl_cm2_1) 
2. NASA GISS (giss_model_er) 
3. United Kingdom Hadley Model (ukmo_hadcm3) 
4. Canadian (CCCma) Model (cccma_cgcm3_1_t47) 
5. NCAR Boulder (ncar_ccsm3_0) 
6. Australian Model (csiro_mk3_5). 

The most recent model results (the AR4) were used in this study.1  

2.1.1 Climate data characteristics 

The GCM data used here has been downscaled or refined from their initial 
resolution by integrating into it more local concerns such as topography, 
surface winds, evaporation, and local precipitation2. Downscaling using 
statistical approaches produces bits of information down to 30 arc-
seconds (~0.8 km) on an edge. It is this scale data used here.  

The data used have been averaged over a 30 year period. In this report, for 
purposes of brevity, we refer to an entire period using its midpoint date. 
For example the period of 2010–2039 is referred to as “2025”.  

To represent “current” conditions, we used the WorldClim, dataset which 
represents downscaled data from weather stations averaged over a period 
of 1950–2000 (available directly from the WorldClim site at 
http://www.worldclim.org/current). In this report, whenever the term 
“current” is used, it will refer to these WorldClim data as the 1990 data set. 

The International Centre for Tropical Agriculture (CIAT) has downscaled 
predictive climate projections from the IPCC. At 30 arc-seconds resolu-
tion, its degree of detail is comparable to the resolution of the current 
WorldClim data.  

                                                                 

1 AR5, the Fifth Assessment Report is in progress at the time of this writing. While the data is just be-
coming available, the types available are not nearly as mature as those based on the AR4 work. 
http://www.ipcc-wg2.gov/AR5/ar5.html. 

2 Basic information from http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html. 

http://www.worldclim.org/current
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For each of the time intervals, the 18 layers (from the 6 GCMs and three 
scenarios) that represent the time interval were averaged together. By this 
action, the data used in this research represent the scientific consensus of 
the best models available. This selection also should avoid the controversy 
that seems to emerge when extreme values from one model are unfavora-
bly compared with those of another model. Finally, it simplifies and clari-
fies the task of comparing the results of the multivariate analyses.  

The only research that did not use the averaged data used the original in-
dividual GCM/scenario data presented in section 3.3.4.  

2.1.2 Bioclimatic parameters 

Both the WorldClim and CIAT datasets include 20 bioclimatic concerns 
useful in characterizing the biological environment based on the predicted 
GCM changes (http://ccafs-climate.org/download_down.html). These 20 
parameters (Table 1) represent many of the concerns that characterize the 
living environment in a locality. They are derived directly from the base 
temperature and precipitation data. Characteristics of the data are well 
documented at the CIAT website. These are the data types used in these 
analyses. 

Table 1. Bioclimatic categories used for climate change evaluations. 

Derived from maximum and minimum temperature (deg C*10): 

BIO1 = Annual Mean Temperature  

BIO2 = Mean Diurnal Range (Mean of monthly (max temp -min temp)) 

BIO3 = Isothermality (mean diurnal range/temperature annual range) 

BIO4 = Temperature Seasonality (standard deviation *100) (deg C*10) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (P5-P6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

Derived from precipitation(in millimeters) : 

BIO12 = Annual Precipitation  

http://ccafs-climate.org/download_down.html
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Derived from maximum and minimum temperature (deg C*10): 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

BIO20 = Consecutive Months – the maximum number of consecutive dry months 
of <100 MM in a year. 

 

2.2 Description of the Maxent application 

Maxent is a software program based on the maximum entropy analysis 
technique. The developers of Maxent currently offer freely downloadable 
compiled versions of the software for Microsoft Windows users.3 The soft-
ware was developed to define the ranges of species based on a multivariate 
approach. 

Entropy in this context is a measure of image information content. Maxent 
is designed to determine the maximum information content expressed by 
the data submitted to it. Shannon (1948) described entropy as “a measure 
of how much ‘choice’ is involved in the selection of an event.” E.T. Jaynes 
suggested that the best approach for approximating an unknown probabil-
ity distribution is to ensure that the approximation satisfies any con-
straints on the unknown distribution; and that, subject to those 
constraints, the distribution should have maximum entropy (Jaynes 1957).  

The maximum entropy approach is theoretically derived from the Second 
Law of Thermodynamics, which states that in closed systems, processes 
move toward greater entropy (disorder). As applied to the distribution of a 
species, the hypothesis is that the sum of the species population behavior 
will also tend to follow this constraint, and thus result in habitat usage that 
reflects maximum entropy for it. Since there may be outside influences not 
included in the input data for a species, the distribution is likely to be larg-
er than the observed delineation. Thus, the maximum entropy approach 

                                                                 
3 http://www.cs.princeton.edu/~schapire/maxent/. 

http://www.cs.princeton.edu/~schapire/maxent/
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can be expected to generate a “potential distribution” for each species 
based on the inputs available. 

The Maxent technique develops unbiased probability distribution on the 
basis of partial knowledge (Phillips 2006). It uses a “presence only” ap-
proach, called an unconditional model, rather than including data that re-
flect known-absence sighting (a conditional model). In addition, it 
provides a collection of statistical analysis tools that are highly useful in 
evaluating the quality of the resulting range map and ancillary outputs. 
Maxent “takes as input a set of layers or environmental variables (such as 
elevation, precipitation, etc.), as well as a set of georeferenced occurrence 
locations, and produces a model of the range of the given species” (Phillips 
2008). The idea behind Maxent is to estimate a target probability distribu-
tion by finding the probability distribution of maximum entropy (i.e., that 
is most spread out, or closest to uniform surface), subject to a set of con-
straints that represent the incomplete information about the target distri-
bution. This is accomplished using a deterministic sequential-update 
algorithm (Dud´ık et al. 2004). The process iteratively adjusts a weight so 
as to minimize the resulting regularized log loss. The algorithm is guaran-
teed to converge to the Maxent probability distribution. Probabilities must 
sum to 1, so each “raw” probability is typically extremely small. The 
Maxent software by default presents a “cumulative” probability distribu-
tion where the value assigned to a pixel is the sum of the probabilities of 
that pixel and all other pixels with equal or lower probability, multiplied 
by 100 to give a percentage. 

The advantages of Maxent4 for the current work include: 

• Maps of ranges are generated based on natural, not human-restricted, 
concerns. 

• Efficient deterministic algorithms have been developed that are guar-
anteed to converge to the optimal (maximum entropy) probability dis-
tribution.  

• Modelers are allowed to use the original data values. 
• Maps have numerical variations based on objective data. 
• Statistical evaluations demonstrate the relative importance of each of 

the inputs. 
• Statistical evaluations show species tolerance levels objectively. 

                                                                 
4 A more detailed discussion can be found in Phillips 2006, p 234. 
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• The selection of specific input layers becomes less important because 
the output indicates how important each one was to the analysis. 

• It is well suited for defining the potential ranges of invasive species, so 
land managers can find out if their installation is prime habitat for a 
noxious invasive and prevent or prepare for its appearance. 

• Maxent is used by other government agencies.5 

                                                                 
5 http://www.fws.gov/Asheville/htmls/Maxent/Maxent.html (Kumar 2009). 

http://www.fws.gov/Asheville/htmls/Maxent/Maxent.html
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3 Modeling RCW Distribution 

3.1 Generating the RCW probability distribution 

3.1.1 Sample locations 

RCW site data acquired from the U.S. Geological Survey Gap Analysis Pro-
gram (GAP)6 were adopted as the species sample locations for the follow-
ing reasons: 

• The data are based on a consistent set of objective and stated criteria 
that are supported by literature and field descriptions. 

• GAP digital maps are standard and readily available.  
• The data model results show only likely presence. 
• The GAP spatial resolution at 30 meters (1 sec=30.9 m) provides more 

detail than the resolution of the bioclimate data (463.5 m at 32.5 deg 
north), and is also better than that of other sources.  

The limiting spatial resolution for this research, however, was set by the 
bioclimatic source layers at 0:00:15 deg. This was the standard resolution 
for all data layers used in the study.  

The study area is defined as the maximum extent of the outer limits of the 
GAP occurrence map. Figure 2 is an example for the RCW on Fort 
Benning. It illustrates that the RCW locations are really areas of likely hab-
itat. The GAP cell locations were translated into point data for input into 
the program. This meant that no change in resolution was required for the 
RCW locations, and also that each bioclimatic cell could have multiple 
sample locations for RCW.  

3.1.2 Bioclimatic data 

All 20 bioclimatic layers listed previously in Table 1 were used for the in-
put environmental layers. Some of the other analyses used additional data 
layers, as described in those sections.  

                                                                 
6 Available from http://gapanalysis.usgs.gov/species/data/download/.  

http://gapanalysis.usgs.gov/species/data/download/


ERDC/CERL TR-14-17 14 

Figure 2. GAP cell locations for likely RCW habitat around Fort Benning. 

 

3.1.3 RCW probability result 

The result of the Maxent logistic run with all 20 bioclimatic input layers is 
shown in Figure 3. This is a probability map, in which probabilities range 
from 0 to 1. The graphic is the average result of running the RCW model 21 
times. Much of the following discussion addresses the summary of the 21 
runs. The edge of the deep red areas has a probability of about 0.1. The 
highest values range near 0.6. One needs to emphasize that this image is 
generated only on the basis of the 20 bioclimatic concerns already listed. 
Not included may be other concerns of significance in defining the RCW 
range. The affects of integrating some of these other concerns into the 
Maxent analysis is discussed in section 3.2.6.  
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Figure 3. Probability map of Maxent logistic run with all 20 bioclimatic input layers.  

 

The results are shown in shades of red determined from only the 20 bio-
climatic layers and the GAP sites. Outlined in dotted blue is the combina-
tion of the two sources for historical distributions. Realize the historic 
distributions were in no way used to generate the distribution; they repre-
sent two independent sources. It is interesting to note that 

• the range is extended significantly to the north of the area suggested by 
the GAP locations  

• the Maxent northern boundary better coordinates with the historic 
range data, in some places almost exactly, than most of the GAP north-
ern limit data 

• the Maxent range fills in the questionable holes seen in the historic 
range data (i.e., the lack of observations does not necessarily mean the 
absence of species in an area) 

• even though the historic range indicates most of Florida should be in-
cluded, the Maxent range cuts it off north of Tampa. 

These observations suggest that Maxent-generated distributions solve 
problems inherent in distributions found from other sources. 
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3.2 Evaluation of the RCW model 

3.2.1 Statistical assessment of results 

As previously stated, the advantage of using Maxent is that it generates 
several statistical evaluations of the quality of its output. Here we review 
some of those assessments for the RCW model.  

Figure 4 shows the omission rate and predicted area as a function of the 
cumulative threshold. During the modeling, 80% of the GAP sites were 
used to train the model and 20% were set aside to serve as the testing data, 
which Maxent would use to check for correct fit with the model output. 
The lack of correctness, or omission rate — the fraction of the test localities 
that fall into pixels not predicted as suitable — is calculated both on the 
training records (blue line), and on the test records (pink). If the model is 
good, the omission rate should be close to the predicted omission (black, 
which is nearly covered by the salmon area). In this model the lines are 
very similar, meaning the model is very good.  

Figure 4. RCW omission rate and predicted area 
as a function of the cumulative threshold. 

 

The salmon color indicates the standard deviation of all 21 runs in the 
mean omission. It is tight about the mean, so there is not much variation. 
If the training and test lines lay well below the predicted line, that would 
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imply the two were not independent, meaning they could be spatially auto 
correlated. In this case, according to Maxent, they are not. The fraction of 
background pixels predicted to be RCW habitat that is actually not (the ar-
ea below the red line) drops immediately to a low value and stays low, 
showing the model and background areas are not confused. 

In Figure 5 the receiver operating curves (ROCs) for both training and test 
data are shown. (An ROC is a plot of sensitivity versus specificity, or ran-
domness; its name derives from its original use in the field of radar tech-
nology.) The black line shown in the ROC represents what one would 
expect if the model resulted in a useless test—one that has no discrimina-
tory power. The size of the area between the black line and the red lines in 
the ROC reflects the ability of a test to discriminate between presence and 
non-presence of RCW across the range of potential cutoffs. The blue area 
shows one standard deviation from the mean in all 21 model runs. There is 
little variance in this summary model. The area under the curve (AUC) 
provides a single measure of model performance independent of any par-
ticular choice of threshold. The AUC can be interpreted as the probability 
that a random positive instance and a random negative instance are cor-
rectly ordered by the classifier. The larger the AUC, the better the model 
has performed. The RCW value of 0.905 is very high. 

Figure 5. ROC for both RCW model training and test data. 
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If we examine the ROCs from some of the individual runs (Figure 6 is an 
example), we can obtain additional information about our model. The 
black line shows the plot one would expect if this model were no better 
than random (AUC =0.5). The red (training) line shows the fit of the mod-
el to the training data (AUC = 0.907). The blue (testing) line indicates the 
fit of the model to the testing data, and is the real test of the model’s pre-
dictive power. The further toward the top-left portion of the graph that the 
blue line is, the better the model is at predicting the presence of RCW con-
tained in the test sample of the data. With a test sample AUC of 0.908, this 
single run of the RCW model predicts distribution extremely well. 

Figure 6. ROC from an individual run for the Maxent RCW model. 

 

As noted above, the data were split into two model-training and -testing 
partitions. It is normal for the training (red) line to show a higher AUC 
than the testing (blue) line, but in the current case, the two are almost the 
same. If the blue line (the test line) fell below the black line, that would in-
dicate the model performs worse than a random model would. If we used 
the same data for training and for testing, then the red and blue lines 
would be identical. We did not, but those curves are extremely similar. It is 
important to note that AUC values tend to be higher for species with nar-
row ranges, relative to the study area described by the environmental data. 
This does not necessarily mean that the models are better; instead, this 
behavior is an artifact of the AUC statistic. The input data covers all of 
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CONUS, so a range covering all of the southeastern United States is not 
large, but neither is it narrow. Therefore, this caveat only marginally ap-
plies to this particular test. 

Because test data were set aside, the Maxent program automatically calcu-
lated the statistical significance of the prediction. Table 2 shows some met-
rics for the same single RCW model as above (Figure 6) under a series of 
differing threshold levels. The table displays a P-value test, showing only 
whether the habitat is suitable or unsuitable. To do a test, a decision must 
be made as to what threshold value constitutes a suitable habitat (i.e., 
what probability value is the minimum value for suitable habitat). There is 
no rule for these thresholds, so to be conservative, a several different tests 
were run with a variety of reasonable thresholds. The more tests the model 
passes, the more confident we can be that it is a valid model.  

Table 2. Maxent tests for the viability of the RCW model. 

Cumulative 
Threshold 

Logistic 
Threshold 

Test 
Description 

Fractional 
Predicted Area 

Training 
Omission Rate 

Test 
Omission Rate 

P-Value 

1.000 0.182 Fixed cumulative value 1 0.222 0.002 0.004 0E0 

5.000 0.339 Fixed cumulative value 5 0.199 0.019 0.023 0E0 

10.000 0.411 Fixed cumulative value 10 0.181 0.060 0.072 0E0 

0.148 0.009 Minimum training presence 0.258 0.000 0.000 0E0 

13.399 0.433 10 percentile training presence 0.171 0.100 0.109 0E0 

18.224 0.462 Equal training sensitivity and 
specificity 

0.158 0.158 0.162 0E0 

3.327 0.299 Maximum training sensitivity 
plus specificity 

0.207 0.009 0.010 0E0 

17.458 0.458 Equal test sensitivity and 
specificity 

0.160 0.149 0.160 0E0 

3.505 0.302 Maximum test sensitivity plus 
specificity 

0.206 0.010 0.010 0E0 

1.179 0.209 Equate entropy of threshold and 
original distributions 

0.220 0.002 0.004 0E0 

 
For example, for the 10 Percentile Training Presence test (the fifth test un-
der Test Description in Table 2), a 10% minimum threshold was used to 
define the minimum probability of suitable habitat. If the data we are us-
ing is likely to contain errors, then this threshold limits the effect of those 
errors in evaluating the model. Therefore, we define suitable habitat to in-
clude 90% of the data we used to develop the model. If we were more cer-
tain of the quality of the data, we may have used a 5% threshold or one of 
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the other more stringent tests. Each threshold (cumulative and logistic) 
was used to obtain a binary (presence vs absence) test for the species. Out-
put column headings (Table 2) are: 

• Thresholds (Cumulative and Logistic) used for the test 
• Test Name 
• Fractional Predicted Area, the proportion of total area predicted to 

contain the species  
• Training Omission Rate, the rate of failure to predict a species’ occur-

rence where it is known to occur with the training data. 
• Test Omission Rate, the rate of failure to predict a species’ occurrence 

where it is known to occur with the test data 
• P-values, the probability for each threshold that the model’s predic-

tions are random using a one-tailed binomial test. 

Statistical literature describes each test in detail; here Maxent applies 
some common tests to the RCW model. 

The tests in Table 2 are one-sided probability (P-values) for the null hy-
pothesis test, “Points are predicted no better than by a random prediction 
with the same fractional predicted area.” All p-values are vanishingly 
small, so the hypothesis “the RCW model is close to random” is false under 
all tests.  

3.2.2 Analysis of variable contributions 
While the RCW model is being trained, in each iteration of the 21 runs 
Maxent keeps track of which environmental variables are making the 
greatest contribution to the model. The results averaged from all 21 runs 
are shown in Table 3. As each step of the Maxent algorithm incrementally 
changes the model, Maxent assigns the increased (or decreased) im-
provement amount to the environmental variable(s) that the feature de-
pends on. Converting this total value to percentages at the end of the 
training process, Maxent generates the Percent Contribution column. For 
each environmental variable in turn, the value of that variable on training 
presence and background data are randomly permuted. The model is 
reevaluated on the permuted data (another graph like Figure 6 is generat-
ed), and the resulting drop in training AUC is shown in the table (normal-
ized to percentages) as the Permutation Importance column. Higher 
permutation values show higher potential for changes in the percent con-
tribution column. In this case, we see that there is some potential varia-
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tion, but those in the top ranks (the top three or four) will remain the most 
important in any case. 

Table 3. Input variable importance and permutation for the RCW model. 
Variable Percent Contribution Permutation Importance 

bio17 38.4 18.2 

bio12 21 5 

bio10 14.5 7.1 

bio1 12.5 3.5 

bio6 3.2 3.3 

bio4 2.2 9.8 

bio11 1.7 3.8 

bio14 1.6 4.2 

bio8 1.4 5.8 

bio3 0.9 7 

bio13 0.7 6.7 

bio9 0.6 8 

bio20 0.5 0.5 

bio2 0.3 2.4 

bio19 0.2 1.6 

bio18 0.2 7.9 

bio15 0.1 1.6 

bio7 0.1 0.8 

bio5 0.1 1.4 

bio16 0 1.3 

 
An alternate estimate of which variables are most important in the model 
can be determined by a “jackknife” analysis. For a jackknife analysis, dur-
ing a program run for a single analysis of the 21 runs, a number of sub-
models are created. Each layer variable is excluded in turn so that a model 
is created with the remaining variables. Then a model is created using each 
variable in isolation. Finally, a model is created using all variables, as be-
fore. The jackknife analysis produces three bar charts, as described below. 

Figure 7 shows the gains in viability based on the “training” locations. The 
red line at the bottom of the graph shows the complete RCW model with 
all variables for one of the 21 runs. The environmental variable with high-
est gain when used in isolation (the blue bar) is Bio17, Precipitation of Dri-
est Quarter, which therefore appears to have the most useful information 
by itself.  
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Figure 7. Jackknife test gain in viability based on the “training” locations. 

 

In this particular run, this is followed by Bio12, Annual Precipitation. 
Bio17 and Bio12 are both in the top four in Table 3. By contrast, bio2 
(Mean Diurnal Range) makes almost no contribution in gain. It can be 
dropped from the analysis with little consequence. In general, the “with 
only variable” analysis varies among the layers, so making a model with 
only a single input can be important. The environmental variable that de-
creases the gain the most when it is omitted (the green bar) is bio8, Mean 
Temperature of Wettest Quarter, which therefore appears to have the most 
information that isn’t present in the other variables. However, it appears 
that no variable contains a substantial amount of useful information that 
is not already contained in the other variables, because omitting each vari-
able in turn did not decrease the training gain considerably. In general, the 
“without variable” analysis stays about the same across the board, so elim-
inating one variable really is not important. In fact, for all three jackknife 
charts (Figure 7 – Figure 9), the “without variable” stays near the model 
maximum value (the red bar). This means that dropping any one variable 
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is not important; the information lost from a dropped variable is contained 
among the others. 

Figure 8 shows the gains based on the “testing” locations. Bio17 and Bio12 
remain most important and bio2 the least important among the “with on-
ly” variables. Among the “without” variables there is little change in the 
bar lengths once again, so they have little effect. 

Figure 8. Jackknife test gain in viability based on the “testing” locations. 

 

Finally, Figure 9 shows the same jackknife test using the AUC on test data. 
The AUC plot shows once again that bio17 is the most effective single vari-
able for predicting the distribution of the occurrence data that were set 
aside for testing, when predictive performance is measured using AUC. 
Bio20 and Bio12 follow. It is not surprising that bio20 rates highly because 
consecutive dry months is very similar to Precipitation of Driest Quarter. 
Bio2–Mean Diurnal Range, was the least effective for prediction. 
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Figure 9. Jackknife test using AUC on test data. 

 

This tells us that monthly precipitation variables are helping Maxent to 
obtain a good fit to the model-training data, but the Precipitation of Driest 
Quarter variable generalizes better, giving comparatively better results on 
the set-aside test data. Phrased differently, models made with the Precipi-
tation of Driest Quarter variables appear to be less transferable. This is 
important if the goal is to transfer the model, for example by applying the 
model to future climate variables in order to estimate its future distribu-
tion under climate change. It makes sense that Precipitation of Driest 
Quarter values are less transferable; likely suitable conditions for RCW 
will depend not on precise rainfall values, but on the dry month limits.  

3.2.3 Model ancillary outputs 

The single-concern marginal response curves in Figure 10 show how each 
environmental variable affects the Maxent prediction. The curves show 
how the logistic prediction changes as each environmental variable is 
changed while keeping all others at their average sample value.  
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Figure 10. How environmental variables each singly affect the Maxent prediction. 
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Figure 10 (concluded). 

 
The value shown on the y-axis is predicted probability of suitable condi-
tions, as given by the logistic output format. A value near 1 means the spe-
cies reacts well to this condition. A value near 0.5 means this condition is 
not materially limiting or advantageous to the species. A value near zero 
means it cannot tolerate this condition. In the graph for bio1 (Mean Annu-
al Temperature) there is no significance indicated over the range from  
-5.4–14 °C (x-axis values in the bio1 chart are temperature, in degrees Cel-
sius, multiplied by 10). From 14–20 °C, there is a small positive benefit. 
There is negative bias for the RCW (about 0.44) for Mean Annual Temper-
ature values higher than 20 °C, but not a bias so great that it would pre-
clude the species from existing. If the red line goes to near zero, then that 
is a climatic range that is inappropriate for the species. The blue area 
shows one standard deviation from the mean for all 21 model runs. For 
bio1 the blue areas are wide, so for mean annual temperature there is a 
good deal of variation in what the RCW will tolerate.  

If the variables are strongly correlated, the curves in Figure 10 may be 
hard to interpret. Figure 10 curves show the marginal effect of changing 
just one variable. However the RCW model may take advantage of sets of 
variables changing together. In Figure 11 below the Maxent model was cre-
ated using the indicated variable and statistically related other variables 
(correlated marginal response curves). That is, these plots reflect the de-
pendence of predicted suitability both on the selected variable and on de-
pendencies induced by correlations between the selected variable and 
other associated variables. If there are strong correlations between varia-
bles, Figure 11 is easier than Figure 10 to interpret. Comparing Figure 10 
and Figure 11 below, thresholds almost always coordinate between the two 
graph pairs, but the thresholds are more evident in Figure 11. Also note 
that the charts in Figure 11 exhibit much less variance in one standard de-
viation (indicated by the blue areas) than in the previous figure, so the in-
formation they represent are more stable.  



ERDC/CERL TR-14-17 27 

Figure 11. Correlated marginal response curves for the RCW. 
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Figure 11 (concluded). 

 

When comparing the charts in Figure 10Figure 10 and Figure 11, the out-
lines of two coordinating profiles are similar, but they differ because dif-
ferent feature types allow different possible shapes of response curves. The 
plotted exponent in a Maxent model is a sum of features, and a sum of 
threshold features is always a step function, so the logistic output is also a 
step function (as are the raw and cumulative outputs), as shown in the 
marginal response curves of Figure 10. In comparison, when hinge fea-
tures are applied to the response curves, the lines in the charts become 
smoother. (Hinge features are graph locations where occurrence data 
begin to become common [at least 15 samples], i.e., the lower and upper 
thresholds.) Some lines are curved, especially toward the extreme values of 
the variable, because the logistic output applies a sigmoid function to the 
Maxent exponent. Using all classes together—the default, given enough 
samples—allows many complex responses to be accurately modeled. Fig-
ure 12 shows the four charts listed as the highest-percent contribution 
from Table 3 in more detail. 

Figure 12. Four charts listed as the  
highest percent contribution inputs to the RCW model. 
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3.2.4 Thresholds 

Now it is possible to combine the information from the response curves 
(Figure 11) and Table 3 to generate a table of how important each of the 
bioclimatic layers is to the RCW and what its thresholds are (Table 4). 

Table 4. Bioclimatic thresholds for the occurrence of the RCW. 
Bio 

Num 
 Bioclimatic Concern Lower 

Threshol
d

Severity Occurs 
below 

Threshold? 

Upper 
Threshold

Severity Occurs 
above 

Threshold

% 
Importanc
e in Model

BIO17 
 Precipitation of Driest Quarter 
(cm) 18.0

Moderate 
High No 36.0 Extreme Yes 38.4

BIO12 
 Annual Precipitation (in 
centimeters) 110.0 Extreme No 170.0 Extreme No 21

BIO10 
 Mean Temperature of Warmest 
Quarter (deg C) 24.0 Extreme No 27.8 Extreme No 14.5

BIO1  Annual Mean Temperature (deg C) 14.0 Extreme No 22.0 Very High No 12.5

BIO6 
 Min Temperature of Coldest 
Month (deg C) -4.5 Extreme No 8.0 Very High No 3.2

BIO4 
 Temperature Seasonality 
(standard deviation*10) 4500.0 High No 8100.0 High No 2.2

BIO11 
 Mean Temperature of Coldest 
Quarter (deg C) 4.0 Extreme No 15.0 High No 1.7

BIO14  Precipitation of Driest Month (cm) 5.0
Moderate 
High No 11.3 Extreme Yes 1.6

BIO8 
 Mean Temperature of Wettest 
Quarter (deg C) 7.5 Strange No 27.0 Strange Barely 1.4

BIO3 
 Isothermality (mean diurnal 
range/temperature annual range) 34.0 Very High No 51.0 High No 0.9

BIO13 
 Precipitation of Wettest Month 
(cm) 11.0 Very High No 22.0 Extreme No 0.7

BIO9 
 Mean Temperature of Driest 
Quarter (deg C) 4.5 Extreme No 28.0 Strange Yes 0.6

BIO20
Maximum number of consecutive 
dry months (<100 MM/year) None - - 6.0 Low Yes 0.5

BIO2 

 Mean Diurnal Range (Mean of 
monthly (max temp -min temp)) 
(deg C) 10.4 Very High No 14.3 Extreme No 0.3

BIO19 
 Precipitation of Coldest Quarter 
(cm) 21.0 Very High No 47.0 Extreme No 0.2

BIO18 
 Precipitation of Warmest Quarter 
(cm) 21.0

Moderate 
High No 60.0 Extreme Yes 0.2

BIO15 
 Precipitation Seasonality 
(Coefficient of Variation) 7.0 Extreme No 50.0 Moderate No 0.1

BIO7 
 Temperature Annual Range (P5-
P6) (deg C) 25.0 Very High No 37.5 Very High No 0.1

BIO5 
 Max Temperature of Warmest 
Month (deg C) 31.0 Extreme No 35.0 Extreme No 0.1

BIO16 
 Precipitation of Wettest Quarter 
(cm) 31.0 Very High No 60.0 Extreme No 0

          

 

For the RCW, the controlling bioclimatic factors (60% contribution to the 
RCW model) are the precipitation of driest quarter (winter) and the annu-
al precipitation. For the precipitation of driest quarter, the lower threshold 
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is 18 cm of rain, but it is not a cutoff limit. The upper limit of 36 cm is a 
sharp limit, but above it the RCW will survive. Annual precipitation is very 
important and severely limiting. For the mean annual precipitation, the 
lower threshold is 110 cm, a cutoff limit below which the RCW does not 
occur. The upper limit of 170 cm is also a sharp limit, above which the 
RCW will not survive. Annual precipitation, therefore, is more important 
precipitation of the driest quarter in limiting the RCW potential occur-
rence. Mean temperature of the warmest quarter is the next-most-
important concern (14.5% contribution to the RCW model) followed by 
annual mean temperature (12.5% contribution). Together these four vari-
ables explain 86% of the RCW distribution.  

These results do not reflect weather events, particularly highly unusual 
weather occurrences. However these data suggest that when unusual 
weather events occur, the RCW is resilient to its most important climatic 
concerns, but the RCWs ability to survive is most affected by extreme low 
or high temperatures during summer. 

3.2.5 Using fewer bioclimatic inputs 

If just four bioclimatic factors explain 86% of the model (Table 5), then 
how different would the model be using only those four factors? A corol-
lary question is, “How significant is the remaining 14% of the model to the 
output?”  

Table 5. Most important four inputs of the 20 
bioclimatic factors in the previous RCW model. 

Bio17_PrecipDryQtr 38.4% 

Bio12_AnnPrecip 21% 

Bio10_MeanTempWarmQtr 14.5% 

Bio1_PreWarmQtr 12.5 % 
 
To explore these questions, the model was run using only the top four fac-
tors. The result can be seen in Figure 13, which includes a blue line that 
indicates the RCW probability produced by modeling all 20 bioclimatic 
factors. The output differences between the original model and the four-
factor model are shown in Figure 14, where blue-green areas show in-
creases in distribution and red areas show decreases when modeling only 
the four most-important bioclimatic factors. 
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Figure 13. Maxent RCW probability using only the four most important inputs (red) 
compared with the distribution using all 20 factors (blue dotted line).  

 

Figure 14. Regional distribution changes, with blue-green showing increases, red 
showing decreases, and black dots showing GAP sample data. 

 

The result is similar to the original 20 bioclimatic model (blue double 
dashed line), showing that these four are truly important primary inputs. 
The use of only four factors seems to make the probability distribution 
somewhat less restrictive, particularly along the Mississippi River area in 
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Arkansas and Tennessee. In Figure 14, greater red means areas have con-
tracted from the original distribution, darker blue-green means the areas 
are more definitely RCW territory, and yellow means no change). The 
change values suggested by the figure (a maximum of 0.35 for the de-
creased areas while the increased areas exhibit a much larger 0.55 maxi-
mum change out of a potential range of 1.2). The probability distribution 
using only four variables is similar to the original, but less restrictive. The 
analysis of variable contribution is also similar (Table 6). In terms of the 
relative importance of each of the bioclimatic factors, precipitation of the 
driest quarter remains primary (as well as in all the jackknife tests) while 
mean temperature of the warmest quarter becomes more important than 
annual precipitation by 8.1 percent.  

Table 6. New importance distribution for just the four bioclimatic concerns. 

Variable Percent 
contribution 

Permutation 
importance 

Bio17_PrecipDryQtr 46.8 54.3 

Bio10_MeanTempWarmQtr 24.3 15 

Bio12_AnnPrecip 16.2 10.1 

Bio1_PreWarmQtr 12.7 20.6 
 
Another sensitivity test of the Maxent input is to determine what happens 
when the four least-important inputs (Table 7) are used in a Maxent run.  

Table 7. Least important four inputs of the 20 
bioclimatic concerns in the original RCW model. 

Variable Percent 
contribution 

Permutation 
importance 

Bio15 Precipitation Seasonality 0.1 1.6 

Bio7 Temperature annual Range 0.1 0.8 

Bio5 Maximum Temperature of 
the Warmest Month 0.1 1.4 

Bio16 Precipitation of Wettest 
Quarter  0 1.3 

 
Figure 15 shows the results of defining RCW habitat probability using only 
these four least-important bioclimatic concerns. While using the top-four 
inputs resulted in a probability distribution that was less restrictive com-
pared to using all 20 bioclimatic concerns, using the bottom-four inputs 
resulted in a probability distribution that was surprisingly similar but even 
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less restrictive, particularly on the northern boundary in the central Unit-
ed States.  

Figure 15. Maxent RCW probability distribution using only the four least-important 
inputs (red) compared with using all 20 bioclimatic factors (blue dotted line). 

 

There is some relation between the top-four and bottom-four variables. 
The most important variable in this model was bio16, precipitation of wet-
test quarter, which is roughly equivalent to bio1 precipitation of the warm-
est quarter in the original model for the southeastern United States. The 
second-most-important factor was bio5, maximum temperature of the 
warmest month, which is roughly equivalent to bio10, mean temperature 
of the warmest quarter in the original model. Looking back at the jackknife 
tests (Figure 7 – Figure 9), it can be seen that none of these four least-
important factors predicts the model well on its own, as indicted by the 
length of the blue bars.  

The significant observation for this section is that whatever the climatic 
inputs, the Maxent spatial probability distribution is similar in all cases 
(using all 20 inputs, or just the top four, or just the bottom four). Even the 
use of poorly descriptive environmental inputs will produce a good ap-
proximation of the RCW habitat probability distribution, and the more da-
ta available, the tighter the probability extent will be. 
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3.2.6 Refining potential RCW habitat with additional input layers 

It has often been pointed out that the distribution of RCW is largely coin-
cident with Longleaf and Shortleaf Pines (Conner 1991, Department of De-
fense 1991). These tree species are not found along the Mississippi valley, 
but the Maxent model shows that area to be good RCW habitat based sole-
ly on bioclimatic considerations. From the probability distributions pre-
sented so far, the southern Mississippi valley would appear to be fully 
suitable for RCW nesting based on bioclimatic factors. But the RCW rarely 
inhabits the valley because of the absence of these trees. Tree species 
known to be important to RCW nesting activities do not grow in the Mis-
sissippi Valley, but model output shown up to this point does not reflect 
that because it does not account for critical flora. An interesting question is 
whether the model as configured thus far did capture that fact to any ex-
tent. 

Up to this point, the results of the model runs have been presented in a 
single color to ensure compatibility between different analyses. However, 
the color contrast for the output can be increased to facilitate closer exam-
ination of the results. Figure 16 shows the standard color table used up to 
this point on the left, and a higher-contrast color table on the right. Both 
versions show the RCW sample input points as black dots and the tradi-
tional range definitions within the dotted blue lines. The darker red areas 
(higher probabilities) coordinate more closely with the GAP sample points. 
Using the higher-contrast color table, the decreased quality of RCW habi-
tat becomes apparent along the Mississippi lowlands, the Texas-Louisiana 
Gulf coast, and a section centered on Fort Stewart (the small polygon in 
southeastern Georgia), trending southwest to northeast. Thus, Maxent 
recognized what is already known in the discipline: poorer RCW habitat 
potential exists along the Mississippi lowlands.  
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Figure 16. Comparison of model results when presented 
in standard color table (left) and higher-contrast color table (right). 

 

It seems reasonable to suppose that the model results might be significant-
ly improved if a data layer were included to account for landform charac-
teristics. A survey of data sets accessible on the web found that a 
categorized open-source landform digital map is not available. (The USGS 
landform map7 is an image, not a categorized landform map.) Neverthe-
less, a similar theme to landform would be land physical geography, or 
physiography. A digital version of the classic Physiographic Regions of the 
United States8 map was acquired and submitted as a Maxent input layer.  

In the new analysis of variable contributions, physiography ranked fifth in 
importance, contributing 3.5% to the overall model. Even at that level of 
importance, physiography had a significant influence on model results. In 
the jackknife test, physiographic region was the environmental variable 
with highest gain when used in isolation, therefore apparently having the 
most useful information by itself. It is also the environmental variable that 
most decreases the gain when omitted, therefore apparently having the 
most information that isn’t accounted for by the other variables. This 
might be expected since all the other variables are bioclimatic factors.  

Figure 17 shows the new map on the left and the difference between the 
new map and the original distribution on the right, where increased prob-
abilities are bluer and decreased are redder. It can be seen that the in-
creases and decreases are often closely determined by the edges of 
physiographic regions (black lines) categories (e.g. central Louisiana along 
                                                                 
7 http://pubs.usgs.gov/imap/i2206/. 
8 Fenneman, Nevin M. (January 1917). "Physiographic Subdivision of the United States". Proceedings of 

the National Academy of Sciences of the United States of America 3 (1): 17–22. OCLC 43473694. PMC 
1091163. PMID 16586678. 
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the Mississippi lowland edge). There is a well defined decrease in probabil-
ity of RCW occurrence along the Mississippi lowland (which is what we 
were expecting) while there are also occurrence restrictions in the Appala-
chian region that pulls the preferred habitat further south of the tradition-
al boundaries (blue dotted line). Now with the inclusion of physiography, 
the restrictions along the Appalachian region more closely reflect the dis-
tribution of the GAP input sample points. Similarly there is a noticeable 
decrease in suitable habitat centered on Fort Stewart, GA and trending 
southwest to northeast reflecting a dearth in the presence of input sample 
points. As a weighted sum (cell count * probability value) there is twice as 
much decreased RCW habitat as increased compared to the original 
bioclimate factors only map. Adding the physiography layer to the analysis 
enhances the influence of both the sample data as well as the physiog-
raphy.  

Figure 17. New map (left) showing physiographic regions (black lines) and 
comparison map (right) showing differences with the original distribution (increased 

probabilities are bluer, decreased are redder). 

 

The potential RCW range is also impacted by urban expansion and change 
of land use to agriculture. Such data are time-dependent, reflecting the 
impact of humans over time. The Maxent probability output was examined 
to determine whether that change is reflected in the results. 

The USGS GAP data includes a land-cover map9. That map (Figure 18) 
clearly shows distinctive lowland vegetation along the Mississippi Rive val-
ley. The map, detailed to the “Ecosystem Land Use” level, was used as one 

                                                                 
9 http://gapanalysis.usgs.gov/gaplandcover/data/download/. 

http://gapanalysis.usgs.gov/gaplandcover/data/download/
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of the submission layers in the RCW Maxent model to see what difference 
it might make.10  

Figure 18. USGS GAP land-cover map. 

 

Figure 19 uses the high-contrast color table to show the effect of integrat-
ing the GAP land-use data into the Maxent analysis. It reveals that good 
RCW habitat is restricted along the Mississippi lowland in a manner simi-
lar to that which resulted from the integration of the physiographic regions 
map discussed above. The best locations for RCW potential habitat closely 
correspond with the GAP potential habitat locations (black dots) used as 
the sample points in all of these analyses. In Figure 19, the potential habi-
tat ends at the white regions, which correspond to a probability level of 
0.1. For comparison to the analysis without land use, the extent of the 
original analysis (also at the probability level of 0.1) is shown in the figure 
as the double dashed blue line. Many of the edges are the same. Notable 
exceptions are similar to those already pointed out in the physiographic 
analysis discussion.  

                                                                 
10 Analysis was also done with another land cover map using the ESA GlobCover 2009 input at 

http://due.esrin.esa.int/globcover/. The results were similar. 

http://due.esrin.esa.int/globcover/
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Figure 19. Maxent analysis with integrated GAP land-use data. The GAP potential 
habitat locations (black dots) are used as the sample points in all of these analyses.  

 

Land use was the seventh most important factor affecting this analysis, but 
it contributed 4.2% to the overall model — more than the physiographic 
data did. Although land cover was not the most important factor, it had a 
great influence on the result. In the jackknife test, the environmental vari-
able with highest gain when used in isolation was land cover, which there-
fore appears to have the most useful information by itself. The 
environmental variable that decreases the gain the most when it is omitted 
is also land cover, which therefore appears to have the most information 
that isn’t present in the other variables. As one might expect, the land-
cover type that provided the best habitat was coastal plain pine woodlands. 
Those ecosystem/land-use types that are the best habitats within the red-
dish area of Figure 19 are presented in Table 8 along with their corre-
sponding lambdas. Lambdas provide an indication of the strength of the 
relationship between independent and dependent variables. Most types 
listed are pines, often Longleaf and Shortleaf Pine. This listing confirms 
the common knowledge that the RCW prefers those two pine species. 
There is the single strange category “Managed Tree Plantation.” It is par-
ticularly prevalent in eastern Texas. It is not clear why this land cover ap-
pears in this table. 
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Table 8. Ecosystem/land use types that are 
the best habitats for RCW and their level of fit (Lambda). 

Lambda ECOLSYS_LU 

1.43467 Florida Longleaf Pine Sandhill- Open Understory Modifier 

1.20204 Ozark-Ouachita Shortleaf Pine-Oak Forest and Woodland 

0.95885 Ozark-Ouachita Dry-Mesic Oak Forest 

0.79951 West Gulf Coastal Plain Pine-Hardwood Forest 

0.66324 West Gulf Coastal Plain Wet Longleaf Pine Savanna and Flatwoods 

0.6005 West Gulf Coastal Plain Upland Longleaf Pine Forest and Woodland 

0.59063 West Gulf Coastal Plain Sandhill Oak and Shortleaf Pine Forest and Woodland 

0.52798 East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Open Understory Modifier 

0.5083 East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Loblolly Modifier 

0.49886 Atlantic Coastal Plain Fall-line Sandhills Longleaf Pine Woodland - Open Understory 

0.4886 Atlantic Coastal Plain Fall-Line Sandhills Longleaf Pine Woodland - Loblolly Modifier 

0.46723 East Gulf Coastal Plain Near-Coast Pine Flatwoods - Open Understory Modifier 

0.46598 West Gulf Coastal Plain Southern Calcareous Prairie 

0.45395 Atlantic Coastal Plain Fall-line Sandhills Longleaf Pine Woodland - Scrub/Shrub Understory 

0.44573 Managed Tree Plantation 

0.36079 Southern Coastal Plain Blackwater River Floodplain Forest 

0.33033 East Gulf Coastal Plain Southern Mesic Slope Forest 

0.31563 West Gulf Coastal Plain Small Stream and River Forest 

0.20904 East Gulf Coastal Plain Interior Upland Longleaf Pine Woodland - Offsite Hardwood Modifier 

0.17905 Atlantic Coastal Plain Upland Longleaf Pine Woodland 

0.10639 Atlantic Coastal Plain Dry and Dry-Mesic Oak Forest 

0 South Florida Cypress Dome 

-0.0174 Developed, Low Intensity 

-0.0515 East Gulf Coastal Plain Small Stream and River Floodplain Forest 

-0.0604 Open Water (Fresh) 

-0.1473 Disturbed/Successional - Grass/Forb Regeneration 

-0.4613 Pasture/Hay 

-0.6268 Cultivated Cropland 

 
Adding land cover information to the analysis results in better identifica-
tion of existing RCW likely habitat but detracts from identifying the poten-
tial distribution of habitat.  

The three analyses in this section (changing the color table, integrating 
physiographic regions, and integrating land-cover data) were attempts to 
correct the original identification of the lower Mississippi lowlands as 
suitable habitat. It is significant that all three analyses reduced the suita-
bility of the upper Mississippi lowlands while indicating that the lower 
Mississippi lowlands are still potentially viable habitat. It is possible that, 
bioclimatically, these areas are indeed optimal for supporting RCW popu-
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lations, but the intense human use of this flat landscape for agriculture has 
eliminated tree species required by the RCW. Consideration of the attrac-
tiveness of land for human agriculture may improve future analyses. 

3.3 RCW thresholds and climate change 

3.3.1 RCW thresholds at Army installations 

To answer the question of whether RCW occurrence falls within the de-
fined tolerances at Army installations, the bioclimatic values for two sam-
ple installations are determined to see if the RCW may currently be 
bioclimatically stressed (Table 9). 

Table 9. Bioclimatic threshold values for RCW occurrence at two Army locations. 
Factor  Bioclimatic Concern Lower 

Threshold 
Fort 
Stewart 

Fort 
Benning 

Upper 
Threshold 

BIO17   Precipitation of Driest Quarter (cm) 18.0 20.1 23.0 36.0 

BIO12   Annual Precipitation (in centimeters) 110.0 122.3 120.9 170.0 

BIO10   Mean Temperature of Warmest Quarter (°C) 24.0 26.9 26.4 27.8 

BIO1   Annual Mean Temperature (°C) 14.0 19.2 18.0 22.0 

BIO6   Min Temperature of Coldest Month (°C) -4.5 3.5 1.7 8.0 

BIO4  
 Temperature Seasonality (standard 
deviation*10) 4500.0 6290.0 6844.0 8100.0 

BIO11   Mean Temperature of Coldest Quarter (°C) 4.0 10.7 8.9 15.0 

BIO14   Precipitation of Driest Month (cm) 5.0 5.8 5.2 11.3 

BIO8   Mean Temperature of Wettest Quarter (°C) 7.5 26.9 13.8 27.0 

BIO3  
 Isothermality (mean diurnal 
range/temperature annual range) 34.0 41.0 42.0 51.0 

BIO13   Precipitation of Wettest Month (cm) 11.0 15.9 12.9 22.0 

BIO9   Mean Temperature of Driest Quarter (°C) 4.5 15.2 18.5 28.0 

BIO20 
Maximum number of consecutive dry months 
(<100 mm/year) None 5.0 4.0 6.0 

BIO2  
 Mean Diurnal Range (Mean of monthly (max 
temp -min temp)) (°C) 10.4 12.4 13.2 14.3 

BIO19   Precipitation of Coldest Quarter (cm) 21.0 26.9 33.9 47.0 

BIO18   Precipitation of Warmest Quarter (cm) 21.0 44.2 31.4 60.0 

BIO15  
 Precipitation Seasonality (Coefficient of 
Variation) 7.0 30.0 22.0 50.0 

BIO7   Temperature Annual Range (P5-P6) (°C) 25.0 30.1 31.4 37.5 

BIO5   Max Temperature of Warmest Month (°C) 31.0 33.4 33.0 35.0 

BIO16   Precipitation of Wettest Quarter (cm) 31.0 44.2 35.2 60.0 

 
The table reveals that at both Fort Stewart and Fort Benning, the current 
conditions fall within the RCW thresholds.  
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3.3.2 RCW and climate change 

Maxent allows the user to submit additional changed data to the program. 
In this case, the bioclimatic data for 2025 were submitted to see how dif-
ferent the potential distribution of RCW bioclimatic habitat would be by 
then (Figure 20).  

Figure 20. Initial 1990 RCW distribution (top), 2025 distribution (middle), and 
difference between the two (bottom). Blue shows increase in desirable distribution, 

green shows decrease, pale shows no change, and white polygons show installations.  
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This figure shows the differences between the initial and future distribu-
tions. Notice Fort Benning is in the area of improved habitat quality while 
Fort Stewart is in the area of decreased habitat quality. In the longer time 
frame (Figure 21 animation) it shows the RCW distribution tends to trend 
northeast by 2025 but then the acceptable distribution shrinks in the 
north and southeast by 2085.  

Figure 21. Animation of RCW probability 
distribution 1990–2085 (click to run). 

 

The animation shows that by 2085 the RCW distribution is smaller in ex-
tent and less intensely red (i.e., the probability of good habitat has de-
creased). The RCW distribution decrease is shown by summing the 
probabilities at each time period to generate the chart in Figure 22. Figure 
22 shows that the habitat decreases in the near term (by 2025) by nearly 
10% and by 2085 by over 40%. Thus the RCWs potential existence will be 
challenged by climate-change effects. 

Figure 22. RCW habitat over time due to climate change. 
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3.3.3 Climate change effects on threshold ranges for RCW at Army 
installations 

We now return to a detailed look at the two target Army installations using 
the modeled thresholds to determine the danger to the RCW at Forts 
Stewart and Benning. To accomplish this, a somewhat more objective 
evaluation of the current situation, as compared to that in 2025, was de-
veloped. Using the range between the upper and lower thresholds for each 
of the model input bioclimatic layers, it was assumed that the midpoint of 
that range is the most beneficial situation for the species. For each compo-
nent, the current (i.e., 1990) location of the installation within that range 
as a percentage of distance from the midpoint and the amount of change 
between that value and the similar value for 2025 was identified. The re-
sult is either a positive value (the installation is moving toward the mid-
point) or a negative value (which means it is moving away from the 
midpoint). Finally each change amount was multiplied by the percentage 
contribution of that component to the RCW model. The result was a 
weighted value. Larger positive values for 2025 imply a better habitat, 
smaller values (negatives) a poorer habitat. Table 10 shows the results of 
the calculations.  

This table shows that the first potential problem for either installation 
comes from about a 20% decrease in habitat suitability due to the increase 
in the Mean Temperature of Warmest Quarter. Normally a change of this 
amount is only slightly worrisome. However, at Fort Stewart, that amount 
puts the Mean Temperature of Warmest Quarter above (lighter red box) 
the normal range for RCW. Fort Stewart, therefore, is likely to experience 
much more difficulty in encouraging successful RCW colonies; the instal-
lation will be less inviting to the RCW due to changed climate. The next 
most important inhibiting concern for both installations is the increase in 
the Annual Mean Temperature. In both cases the weighted concern im-
portance is less than 10%. No other concerns exhibit significant negative 
values. Isothermality at both installations falls below the normal RCW 
range.  
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Table 10. Bioclimatic threshold changes for the RCW 
at two Army locations due to climate alteration. 

Bio Num  Bioclimatic Concern % 
Importanc
e in Model

Lower 
Threshol

d

Fort 
Stewart 

1990 
value

Fort 
Benning 

1990 value

Range 
Midpoi

nt

Fort 
Stewart 

2025 
value

Fort 
Benning 

2025 
value

Fort 
Stewart 

2025 
value 

outside 
threshol

d

Import 
Relative 

to 
greatest 

% 
Import 

in 
Model

Stewart 
2025 

weighted 
% dif from 
midpoint

Benning 
2025 

weighted 
% dif from 
midpoint

BIO17 
 Precipitation of Driest 
Quarter (cm) 38.4 18.0 20.1 23.0 27.00 21.9 22.5 0 1.000 28.33 25.00

BIO12 
 Annual Precipitation 
(in centimeters) 21 110.0 122.3 120.9 140 127.7 125.4 0 0.547 11.21 13.31

BIO10 

 Mean Temperature of 
Warmest Quarter (deg 
C) 14.5 24.0 26.9 26.4 25.9 28.2 27.8 1 0.378 -22.85 -18.88

BIO1 
 Annual Mean 
Temperature (deg C) 12.5 14.0 19.2 18.0 18 20.1 19 0 0.326 -8.54 -4.07

BIO6 
 Min Temperature of 
Coldest Month (deg C) 3.2 -4.5 3.5 1.7 1.75 4.1 1.8 0 0.083 -1.57 -0.03

BIO4 

 Temperature 
Seasonality (standard 
deviation*10) 2.2 4500.0 6290.0 6844.0 6300 6550 7128 0 0.057 -0.40 -1.32

BIO11 

 Mean Temperature of 
Coldest Quarter (deg 
C) 1.7 4.0 10.7 8.9 9.5 11.4 9.5 0 0.044 -0.76 0.00

BIO14 
 Precipitation of Driest 
Month (cm) 1.6 5.0 5.8 5.2 8.15 5.9 5.5 0 0.042 1.49 1.75

BIO8 

 Mean Temperature of 
Wettest Quarter (deg 
C) 1.4 7.5 26.9 13.8 17.25 28.2 18.1 1 0.036 -2.05 -0.16

BIO3 

 Isothermality (mean 
diurnal 
range/temperature 
annual range) 0.9 34.0 41.0 42.0 42.5 3.9 4.1 -1 0.023 5.32 5.29

BIO13 
 Precipitation of 
Wettest Month (cm) 0.7 11.0 15.9 12.9 16.5 16.7 14.5 0 0.018 -0.03 0.33

BIO9 
 Mean Temperature of 
Driest Quarter (deg C) 0.6 4.5 15.2 18.5 16.25 16 19.4 0 0.016 0.02 -0.21

BIO20

Maximum number of 
consecutive dry 
months (<100 
MM/year) 0.5 0.0 5.0 4.0 3 4 2 0 0.013 -0.22 0.22

BIO2 

 Mean Diurnal Range 
(Mean of monthly 
(max temp -min 
temp)) (deg C) 0.3 10.4 12.4 13.2 12.35 12.2 13.8 0 0.008 0.03 -0.29

BIO19 
 Precipitation of 
Coldest Quarter (cm) 0.2 21.0 26.9 33.9 34 27.1 34.6 0 0.005 0.14 -0.01

BIO18 
 Precipitation of 
Warmest Quarter (cm) 0.2 21.0 44.2 31.4 40.5 46.2 35 0 0.005 -0.08 0.07

BIO15 

 Precipitation 
Seasonality 
(Coefficient of 
Variation) 0.1 7.0 30.0 22.0 28.5 31 23 0 0.003 -0.02 0.03

BIO7 
 Temperature Annual 
Range (P5-P6) (deg C) 0.1 25.0 30.1 31.4 31.25 30.4 32.9 0 0.003 0.02 -0.03

BIO5 

 Max Temperature of 
Warmest Month (deg 
C) 0.1 31.0 33.4 33.0 33 34.6 34.8 0 0.003 -0.10 -0.12

BIO16 
 Precipitation of 
Wettest Quarter (cm) 0 31.0 44.2 35.2 45.5 46.3 37.7 0 0.000 0.00 0.00

Bioclimatic Thresholds For the Occurance of Red Cockaded Woodpecker at Army Locations

 

It has been demonstrated how climate changes over time will affect the 
range of the RCW. The next issues are to determine how the bioclimatic 
changes will affect the survivability of RCW at Army installations and 
whether climate change makes the job of RCW preservation for land man-
agers impossible. Using an approach similar to Table 10 above, an analysis 
of what will happen at all of the Army installations within the RCW range 
(plus a 50 mile buffer, to be inclusive) was performed. Table 11 presents 
the results for the two time frames of 1990 and 2025. It represents an 
abridged version of Table 10, and addresses all the regional installations in 
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less detail. In Table 11, if a bioclimatic concern for that installation is be-
low a threshold, it is color-coded dark red, those above a threshold are col-
or coded light red. The table shows those concerns that define 91.8% of the 
Maxent RCW model. 

Table 11. Bioclimatic threshold modifications for the RCW 
because of climate change at all installations within its range. 

Bioclimatic Concern

Within 
RCW 
Range

?

% Importance to RCW Model

Installation Name 1990 2025 1990 2025 1990 2025 1990 2025 1990 2025 1990 2025
Anniston Army Depot Yes 263 269 1380 1436 254 269 160 171 -10 -6 7418 7704
Camp MacKall Yes 243 254 1188 1266 252 264 159 170 -12 -6 7469 7629
Craney Island Disposal Area Yes 234 249 1127 1201 249 261 152 163 -3 3 7661 7801
Fort Benning Yes 211 225 1198 1254 264 278 180 190 16 18 6835 7128
Fort Bragg Military Yes 235 246 1191 1269 251 263 158 168 -9 -4 7470 7615
Fort Gillem Heliport Yes 260 265 1283 1346 251 265 160 171 -2 1 7255 7521
Fort Gordon Yes 231 244 1190 1257 256 270 168 178 0 4 7032 7300
Fort Jackson Yes 229 243 1189 1264 257 270 168 178 3 8 7140 7344
Fort Lee Yes 248 256 1116 1192 244 256 143 154 -29 -21 7924 8056
Fort McClellan (Closed) Yes 270 277 1411 1469 249 264 156 167 -15 -11 7399 7680
Fort McPherson Yes 263 267 1296 1358 251 265 159 170 -3 0 7329 7589
Fort Monroe Yes 234 248 1114 1189 250 262 152 163 -2 4 7733 7865
Fort Rucker Yes 259 271 1382 1419 264 278 185 195 27 29 6486 6785
Fort Story Yes 237 248 1116 1189 247 259 152 163 0 5 7538 7670
Military Ocean Terminal Sunny 
Point Yes 263 277 1405 1475 257 268 172 182 12 16 6774 6923
Fort Eustis Yes 225 239 1097 1173 245 257 147 158 -16 -8 7812 7959
Fort Polk Yes 302 298 1446 1443 267 284 186 197 22 27 6703 7059
Fort Stewart Yes 199 219 1226 1277 269 282 192 201 36 41 6265 6550
Hunter Army Airfield Yes 189 207 1255 1304 268 281 190 200 39 44 6353 6622
Longhorn Ordnance Army 
Ammo Plant Yes 236 230 1225 1211 272 290 182 194 14 17 7221 7619
Louisiana Ordnance Plant Yes 254 244 1284 1274 269 287 177 189 5 8 7427 7824
Pine Bluff Arsenal Yes 260 242 1280 1274 266 284 168 180 -2 1 7815 8191
Red River Army Depot Yes 262 247 1229 1214 266 285 172 184 -5 -1 7646 8062
Camp Joseph T. Robinson Barely 258 245 1258 1253 265 283 163 175 -17 -12 8147 8520
Fort Chaffee (Closed) Barely 172 174 972 965 261 280 159 171 -30 -26 8226 8612
U.S. Army Ammunition Depot No 178 181 1108 1103 266 285 162 174 -26 -23 8326 8740
Fort Pickett (Closed) No 255 257 1101 1177 237 250 137 148 -40 -32 7888 8047
Blossom Point Field Test Facility No 231 234 1017 1094 240 252 136 147 -34 -25 8245 8354
Fort A. P. Hill No 242 248 1071 1148 237 249 134 145 -42 -33 8170 8278
Fort Campbell No 248 240 1265 1285 248 264 142 154 -41 -34 8479 8704
Milan Arsenal And Wildlife 
Management Area No 267 264 1355 1371 249 266 145 158 -37 -31 8319 8583
Redstone Arsenal No 271 275 1407 1451 252 267 155 167 -18 -13 7710 7984

Bio17 Bio10Bio12 Bio1 Bio4Bio6

Precipitation 
of Driest 
Quarter 
(10Xcm) 

 Mean 
Temperature 
of Warmest 

Quarter 
(10Xdeg C)

Annual 
Precipitation 

(10Xcm)

 Annual Mean 
Temperature 
(10Xdeg C)

Temperature 
Seasonality 
(10Xdeg C)

Min 
Temperature 

of Coldest 
Month 

(10Xdeg C)

38.4 14.521 12.5 2.23.2
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Table 11 shows that the top 15 Army installations are and will remain with-
in the threshold limits for the RCW. Fort Eustis is interesting in that the 
annual precipitation is currently too low although by 2025 it will increase 
so the RCW will be more at home at that location. Several installations 
(Fort Polk, Fort Stewart, Hunter Army Airfield, Longhorn Ordnance Plant, 
Louisiana Ordnance Plant, Pine Bluff Arsenal, and Red River Army Depot) 
that are currently within all of the thresholds presented in Table 11 will 
move above the threshold for the important concern of Mean Temperature 
of Warmest Quarter. This is a bioclimatic change threat to the continued 
existence of the RCW at these locations. Previously, Table 4 showed that 
the threshold cut is considered “extreme,” so passing the threshold is sig-
nificant. Longhorn will be over 1 °C above the threshold. These results in-
dicate that land managers will have a difficult time preserving RCW at 
these installations despite their best efforts because the environment will 
be less suitable. At these locations, the Army has reason to request that the 
US Fish and Wildlife Service (FWS) revise the requirements on the Army 
to carry out a RCW recovery program because the problem the species fac-
es is beyond the ability of the Department of Defense to solve. (Red River 
Army Depot will have the additional problem that the Temperature Sea-
sonality will drift above that threshold. However, Temperature Seasonality 
only accounts for 2.2% of the model, so it is not a major concern.) Camp 
Joseph T. Robinson, Fort Chaffee, U.S. Army Ammunition Depot, Fort 
Pickett, Blossom Point Field Test Facility, and Fort A.P. Hill are located at 
the edge of the RCW natural range. Multiple bioclimatic problems crop up 
at these sites. Attempts to carry out RCW recovery programs at these loca-
tions are likely to be futile. The rest of the installations (Fort Campbell, 
Milan Arsenal and Wildlife Management Area, and Redstone Arsenal) are 
currently outside the RCW range but have bioclimate values within the 
threshold needed for the RCW. These are prime locations for the estab-
lishment of RCW enhancement programs—particularly at Milan, which is 
already designated a wildlife management area. Not shown in Table 11, but 
from an extended version of it, there are threshold limit problems particu-
larly with the Bio8: Mean Temperature of the Wettest Month and Bio15–
Precipitation Seasonality concerns. Both problems represent less than 2% 
of the model importance. 

3.3.4 RCW and the individual climate change models 

To this point, all evaluations using the average of several GCMs have been 
presented. The average is used to find scientific-consensus results. How-
ever, looking at the issue of thresholds, two issues must be addressed: (1) 
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whether this species survival is secure under all scenarios and (2) which 
scenarios make a difference. To address these issues, the original data 
were used, and the Maxent procedure was run on data from individual 
scenarios to compare the results with those already presented. The specific 
models used are: 

• GFDL Model – NOAA Princeton (gfdl_cm2_1), ranked as a moderate 
model 

• United Kingdom Hadley Model (ukmo_hadcm3), ranked as a more ex-
treme model 

• Canadian (CCCma) Model (cccma_cgcm3_1_t47), ranked as moderate 
to extreme model 

The specific scenarios used are: 

• A1(B)—globally homogenous rapid economic growth (with B variation 
= a balanced usage of both fossil and non-fossil fuel energy sources.) 

• A2—locally heterogeneous, regionally oriented economic growth. 

The model/scenario combinations represent six alternatives (of the 18 
used in the average “consensus evaluations”) that were used in the RCW 
Maxent runs. Since each combination had 20 bioclimatic concerns, it was 
necessary to generate 120 maps to support a single combination. The 
model/scenario combinations were chosen to show those situations that 
might generate the greatest variation in RCW viability based on climatic 
concerns. This would be in contrast with the average of all 18 analyses pre-
sented to this point.  

Table 12 presents the thresholds derived from running the Maxent model 
on the different individual scenario/model combinations11. 

                                                                 
11 The average of the 18 different combinations is not the same as the average of the 6 combinations 

presented here. 
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Table 12. Bioclimatic thresholds for RCW 
derived from six GCM/scenario combinations. 

Scenerio/Model (2025)
Bio 

Num 
 Bioclimatic Concern Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold
Lower 

Threshold
Upper 

Threshold

BIO17 
Precipitation of Driest 
Quarter (cm) 18.0 36.0 19.0 None 17.0 None 18.5 None 20.0 None 17.0 None 21.0 None

BIO12 
Annual Precipitation (in 
centimeters) 110.0 170.0 109.0 172.0 110.0 170.0 110.0 17.0 110.0 170.0 112.0 160.0 110.0 175.0

BIO10 
Mean Temperature of 
Warmest Quarter (deg 24.0 27.8 25.0 28.0 25.0 28.0 25.5 30.0 25.0 29.5 26.0 31.0 26.0 30.8

BIO1 
Annual Mean 
Temperature (deg C) 14.0 22.0 15.0 22.0 15.0 22.0 15.0 22.8 15.5 22.5 16.5 23.0 16.0 22.7

BIO6 
Min Temperature of 
Coldest Month (deg C) -4.5 8.0 -3.5 9.5 -4.0 5.5 -3.3 8.0 -4.8 8.0 -2.0 10.0 -3.0 7.5

BIO4 
Temperature 
Seasonality (standard 4500 8100 4900 8800 5000 8800 4900 9000 5000 8900 4500 8200 4700 8500

BIO11 
Mean Temperature of 
Coldest Quarter (deg C) 4.0 15.0 4.5 15.0 4.0 15.5 4.5 15.5 4.0 16.0 6.0 17.0 5.0 17.0

BIO14 
Precipitation of Driest 
Month (cm) 5.0 11.3 4.1 None 4.8 None 5.2 None 5.0 None 4.0 None 4.5 None

BIO8 
Mean Temperature of 
Wettest Quarter (deg C) 7.5 27.0 7.7 28.0 6.5 28.0 6.3 32.0 6.0 28.0 10.5 29.0 10.0 29.0

BIO3 
Isothermality (mean 
diurnal 34.0 51.0 28.0 43.0 18.0 41.0 34.0 49.0 32.5 48.5 35.0 50.0 35.0 57.0

BIO13 
Precipitation of Wettest 
Month (cm) 11.0 22.0 12.0 21.5 12.0 23.0 12.0 24.5 11.0 23.0 12.0 21.5 13.0 22.0

BIO9 
Mean Temperature of 
Driest Quarter (deg C) 4.5 28.0 4.2 None 4.0 None 11.0 None 6.0 None 7.5 None 5.5 None

BIO20
Maximum number of 
consecutive dry months None 6.0 None 6.0 None 4.0 None 7.0 None 7.0 None 8.0 None 6.0

BIO2 
Mean Diurnal Range 
(Mean of monthly (max 10.4 14.3 8.0 12.8 4.3 12.5 9.9 14.8 10.0 14.6 12.0 16.0 10.9 17.5

BIO19 
Precipitation of Coldest 
Quarter (cm) 21.0 47.0 20.0 48.0 21.0 47.0 22.0 46.0 21.0 47.0 20.0 47.5 22.0 50.0

BIO18 
Precipitation of 
Warmest Quarter (cm) 21.0 60.0 22.0 60.0 22.0 61.0 22.0 63.0 22.5 61.0 20.0 59.0 21.0 62.0

BIO15 
Precipitation 
Seasonality (Coefficient 7.0 50.0 11.0 42.0 18.0 48.0 16.0 50.0 18.0 40.0 15.0 46.0 10.0 36.0

BIO7 
Temperature Annual 
Range (P5-P6) (deg C) 25.0 37.5 22.5 37.0 23.5 37.5 26.0 40.0 26.0 40.0 24.0 39.0 27.0 42.0

BIO5 
Max Temperature of 
Warmest Month (deg C) 31.0 35.0 29.5 34.0 27.0 34.5 32.0 37.5 32.0 37.5 33.5 39.0 33.0 39.5

BIO16 
Precipitation of Wettest 
Quarter (cm) 31.0 60.0 34.0 61.0 31.0 62.0 31.0 64.0 31.0 63.0 31.0 60.0 31.0 63.0

A1B/ukmo

Bioclimatic Thresholds For the Occurance of Red Cockaded Woodpecker (Picoides borealis)

A2/ukmoA2/cccma A2/gfdl 
Average 18 

Scenerios/GMCs A1B/cccma A1B/gfdl

 

With these data in hand, it is possible to revisit Table 11. Instead of detail-
ing the effect of the average climate change on RCW thresholds, Table 13 
shows the frequency at which individual models predict a climate change 
beyond the tolerance of the species.  
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Table 13. The frequency in which individual GCM/scenarios 
exceeded RCW bioclimatic thresholds. 

Bioclimatic Concern

Within 
RCW 

Range?

Precipitat
ion of 
Driest 

Quarter 
(10Xcm) 

Annual 
Precipitat

ion 
(10Xcm)

 Mean 
Temperat

ure of 
Warmest 
Quarter 
(10Xdeg 

C)

 Annual 
Mean 

Temperat
ure 

(10Xdeg 
C)

Min 
Temperat

ure of 
Coldest 
Month 

(10Xdeg 
C)

Temperat
ure 

Seasonali
ty 

(10Xdeg 
C)

Bio17 Bio12 Bio10 Bio1 Bio6 Bio4
% Importance to RCW 

Model
38.4 21 14.5 12.5 3.2 2.2

Installation Name
Anniston Army Depot Yes 0 0 0 0 0 0
Camp MacKall Yes 0 0 0 0 0 0
Craney Island Disposal 
Area

Yes 0 0 0 1 0 0

Fort Benning Yes 0 0 0 0 0 0
Fort Bragg Military Yes 0 0 0 0 0 0
Fort Gillem Heliport Yes 0 0 0 0 0 0
Fort Gordon Yes 0 0 0 0 0 0
Fort Jackson Yes 0 0 0 0 0 0
Fort Lee Yes 0 0 2 3 1 0
Fort McClellan (Closed) Yes 0 0 0 0 0 0
Fort McPherson Yes 0 0 0 0 0 0
Fort Monroe Yes 0 0 0 1 0 0
Fort Rucker Yes 0 0 0 0 0 0
Fort Story Yes 0 0 2 1 0 0
Military Ocean Terminal 
Sunny Point

Yes 0 0 0 0 0 0

Fort Eustis Yes 0 0 2 2 0 0
Fort Polk Yes 0 0 2 0 0 0
Fort Stewart Yes 0 0 2 0 0 0
Hunter Army Airfield Yes 1 0 2 0 0 0
Longhorn Ordnance Army 
Ammo Plant

Yes 0 0 2 0 0 0

Louisiana Ordnance Plant Yes 0 0 2 0 0 0

Pine Bluff Arsenal Yes 0 0 2 0 0 0
Red River Army Depot Yes 0 0 2 0 0 0

Camp Joseph T. Robinson Barely 0 0 2 0 0 2

Fort Chaffee (Closed) Barely 4 6 2 0 1 2
U.S. Army Ammunition 
Depot

No 4 1 2 0 1 2

Fort Pickett (Closed) No 0 0 6 6 2 0
Blossom Point Field Test 
Facility

No 0 5 3 6 1 1

Fort A. P. Hill No 0 0 6 6 3 1
Fort Campbell No 0 0 0 3 3 2
Milan Arsenal And 
Wildlife Management 
Area

No 0 0 0 2 2 2

Redstone Arsenal No 0 0 0 0 0 0  

Table 13 presents the same six most important bioclimatic concerns shown 
in Table 11, but Table 13 only shows the changes that occur by 2025. Fur-
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ther, the interpretation of Table 13 is different than that of Table 11. Table 
11 showed dark red and light red for each location/bioclimatic-concern 
that went below or above (respectively) the average of the GCM/scenarios. 
In Table 13, the darkness of the red indicates how frequently an individual 
GCM/scenario indicated an installation would be out of the tolerance 
ranges (but not indicating if it was above or below that range). Twelve pos-
sibilities were checked, but only a maximum value of six was possible (be-
cause a value cannot be both above and below the range).  

Table 13 shows problems seen at Fort Lee, Fort Story and Fort Eustis were 
averaged away in Table 11. Bio 10 Mean: Temperature of Warmest Quarter 
remains the biggest issue at Fort Polk, Fort Stewart, Hunter Army Airfield, 
Longhorn Ordnance Plant, Louisiana Ordnance Plant, Pine Bluff Arsenal, 
and Red River Depot. As previously mentioned, Army installations farther 
outside the Maxent-defined range will more frequently have problems in 
being out of those thresholds.  

The analysis shows that installations nearer the edge of the Maxent proba-
bility distribution will tend to experience more difficulty preserving an 
RCW population. It also shows that consensus approach does represent 
the issues well but, as can be expected, problems suggested by individual 
GCM/scenario combinations can be overlooked because of the averaging 
procedure. 
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4 Modeling Musk Turtle Distribution with 
Maxent 

4.1 Generating the musk turtle probability distribution 

4.1.1 Musk turtle data 

The Maxent approach was applied to the analysis on another species, 
Sternotherus odoratus (common musk turtle, Figure 23). The musk turtle 
was chosen because it is a common, non-threatened species that lives on 
several eastern U.S. installations. It is also a species that is currently under 
study by other researchers (at Savannah River Laboratory) under the same 
umbrella project.  

Figure 23. Sternotherus odoratus (common musk turtle). 

 

The Maxent sample point location data was provided by Savannah River 
Laboratory (SRL). As described in the source paper (Buhlmann 2009): 

Point locality data for all freshwater turtles and tortoises, but not marine 

turtles, were obtained from museum-verified records, published ac-

counts, and databases (Iverson 1992b; Iverson et al. 2003; Kiester and 

Bock 2007); from the literature published since 1992; and from un-

published records provided by the authors. 
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4.1.2 Initial Maxent musk turtle outputs 

The SRL sample locations and the same 20 bioclimatic layers were used to 
run Maxent for the musk turtles. The probability output map is shown in 
Figure 24. 

Figure 24. Maxent probability output map for the musk turtle 
(SRL sample locations displayed as dots and the traditional range as a dotted line). 

 

Table 14 shows the contribution of each bioclimatic input to the model. 
Bio10–Mean Temperature of Warmest Quarter, Bio14–Precipitation of 
Driest Month, and Bio17–Precipitation of Driest Quarter are the top three 
contributors, and explain 85.7% of the model inputs. So warmth and dry-
ness matter to the musk turtle. 

Table 14. Input variable importance and permutation for the musk turtle model. 

Variable Percent contribution Permutation importance 

bio10 35.8 30.8 

bio14 32.7 31.6 

bio17 17.2 7.5 
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Variable Percent contribution Permutation importance 

bio3 3.2 4.1 

bio6 3 1.2 

bio4 2 1.5 

bio12 1.2 3.4 

bio5 0.8 5.3 

bio8 0.8 2 

bio20 0.8 2.1 

bio15 0.6 1.1 

bio1 0.4 2.6 

bio9 0.4 0.3 

bio7 0.3 1.4 

bio18 0.3 0 

bio2 0.2 3.5 

bio13 0.1 0.3 

bio19 0.1 0.1 

bio16 0 0.1 

bio11 0 1.2 
 

4.1.3 Integrating additional layers into the Maxent analysis 

Since the habitat for the musk turtle is largely confined to the lowlands12, 
additional non-dynamic data layers were integrated into the analysis. The 
caveat to keep in mind is that the source location data for the turtle may 
not be accurate enough to correlate with the non-dynamic data. (For ex-
ample, the source data may be a county-size sighting record while the non-
dynamic location data may be accurate within minutes or seconds of lati-
tude/longitude). Nevertheless, the musk turtle prefers creeks, pools, 
brooks, and medium river areas that are permanent with a slow current 
(Figure 25)  

                                                                 
12 NatureServe. 2013. NatureServe Explorer: An online encyclopedia of life [web application]. Version 

7.1. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: July 
29, 2013 ). 
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Figure 25. Prime musk turtle habitat along Upatoi Creek on Fort Benning. 

 

For the purposes of modeling the turtle range, this suggests that potential-
ly useful non-dynamic input maps might be: 

• a landform map showing uplands, lowlands, etc. (categorical data)  
• a watershed accumulation map which might be able to indicate loca-

tions of middle-sized streams (continuous data)  
• small streams as accumulation locations of value 3 or greater 
• stream orders (categorical data) 
• a separate map showing uplands only (i.e., a category to weigh heavily 

against). 

As a potential input, “avoidance of urban areas” was rejected because the 
turtle source points are partly based on historical sightings, in which case 
the current urban extent is possibly misleading.  

An analysis of various combinations of the non-dynamic inputs was run. It 
found: 

• Every time a landform concern is added, the turtle is more constrained 
to riverine areas.  

• If small streams (accumulations of at least three or greater) are includ-
ed, modeling is fully constrained to riverine areas because the input 
maps contain values that remove those locations from any further 
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analysis. Therefore, using the accumulation map instead is more ap-
propriate. 

• Adding only the accumulation model and the landform morphology 
derived from the topographic data produced the most appropriate re-
sults. The resulting probability distribution for the musk turtle is 
shown in Figure 26. 

Figure 26. The Maxent musk turtle distribution determined by adding to the 
bioclimatic data the accumulation model and the landform morphology derived from 

the topographic data. 

 

Looking at those locations near Fort Benning, most of the area appears to 
be the same. Even though the color table used for the national distribution 
makes the entire Fort Benning area look like all the same good habitat, the 
probability values in this small region range from 0.735459 to 0.308126. 
Figure 27 shows what the region surrounding Fort Benning looks like if 
the color table is stretched to reflect this local variation. 
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Figure 27. Detailed view of musk turtle habitat around 
Fort Benning using the two topographic inputs in the model. 

 

The local difference is obvious: Fort Benning, particularly along the Upatoi 
Creek (see Figure 25), is good musk turtle habitat while just to the south-
east, the abundance of quality habitat is decreased. The model has tended 
to favor lowlands, which conforms with the habitat descriptions for the 
musk turtle. 

4.2 Evaluation of the musk turtle model 

4.2.1 Musk turtle model chart evaluation 

As for the RCW, a review of the statistical evaluation of the Maxent model 
was done. Test procedures were similar to the RCW runs, so most details 
need not be repeated here. Figure 28 shows the omission rate and predict-
ed area as a function of the cumulative threshold. Eighty percent of the 
SRL sites were used to train the model, and 20% (called “testing” data) 
were set aside so that Maxent could check whether the set-aside data actu-
ally fit correctly with the model output. The lack of correctness, or the 
omission rate (the fraction of the test localities that fall into pixels not pre-
dicted as suitable), is calculated both on the training records (blue) and 
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the test records (pink). In this model, the lines are similar, meaning the 
model is good. Since the training line (blue) is only slightly below the 
omission line (black) and the test line (pink) follows it closely, the model is 
good under this test. The fraction of background pixels predicted to be 
musk turtle habitat that actually is not (area below the red line) drops im-
mediately to a low value and stays low, showing that the model and back-
ground areas are not confused. 

Figure 28. Graph of the omission rate and predicted area 
as a function of the cumulative threshold. 

 

In Figure 29, the receiver operating curve (ROC) for both training and test 
data are shown. Since the black line shown in the ROC represents a useless 
test that has no discriminatory power, and the size of the area between the 
black line and the red lines (which reflects the ability of a test to discrimi-
nate between presence and non-presence of musk turtles across the range 
of potential cutoffs) is also large, the test indicates a good model. In fact 
the area under the curve (AUC) for the musk turtle has the very high value 
of 0.919. 
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Figure 29. ROC for both training and test data. 

 

Table 15 shows some metrics for the same musk turtle model as above un-
der a series of differing threshold levels. All p-values are vanishingly small, 
so the hypothesis “The musk turtle model is close to random” is false un-
der all tests. These evaluations suggest the turtle model is acceptable.  

Table 15. A series of different Maxent tests for the viability of the musk turtle model. 
Cumulative 
threshold 

Logistic 
threshold 

Description Fractional 
predicted 
area 

Training 
omission rate 

Test 
omission 
rate 

P-value 

1.000 0.083 Fixed cumulative value 1 0.285 0.004 0.005 0E0 

5.000 0.258 Fixed cumulative value 5 0.238 0.031 0.052 0E0 

10.000 0.327 Fixed cumulative value 
10 

0.209 0.055 0.078 0E0 

0.570 0.031 Minimum training 
presence 

0.304 0.000 0.005 0E0 

16.354 0.366 10 percentile training 
presence 

0.179 0.099 0.119 0E0 

23.270 0.404 Equal training sensitivity 
and specificity 

0.152 0.152 0.192 0E0 

7.780 0.307 Maximum training 
sensitivity plus specificity 

0.221 0.039 0.067 0E0 

20.326 0.388 Equal test sensitivity and 
specificity 

0.163 0.126 0.161 0E0 

11.291 0.335 Maximum test sensitivity 
plus specificity 

0.202 0.062 0.078 0E0 
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Cumulative 
threshold 

Logistic 
threshold 

Description Fractional 
predicted 
area 

Training 
omission rate 

Test 
omission 
rate 

P-value 

0.570 0.031 Balance training 
omission, predicted area 
and threshold value 

0.304 0.000 0.005 0E0 

3.960 0.224 Equate entropy of 
thresholded and original 
distributions 

0.246 0.025 0.041 0E0 

 

4.2.2 Thresholds 

The correlated marginal response curves in Figure 30 show how each envi-
ronmental variable affects the Maxent threshold predictions for the musk 
turtle. The curves illustrate the logistic prediction changes as each envi-
ronmental variable is changed based on the dependence of predicted suit-
ability both on the selected variable and on dependencies induced by 
correlations between the selected variable and associated variables. The 
value shown on the y-axis is predicted probability of suitable conditions, as 
given by the logistic output format.  

The cutoffs for the musk turtle are generally less severe than for the RCW, 
implying that the turtle is, overall, a more vigorous species. Interestingly, 
topographic morphology is hardly restricting while there is a significant 
preference in the accumulation data for the lowest (i.e., smallest stream) 
locations. 

Figure 30. Musk turtle correlated marginal response curves. A value near 1 means 
the condition is beneficial; a value near 0.5 means the condition is neither limiting or 

advantageous; a value near zero means the condition is intolerable. 
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Figure 30 (concluded). 
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4.2.3 Analysis of variable contributions 

Of these 22 variables, which ones matter most in defining the extent of the 
musk turtle? While the musk turtle model is being trained, Maxent keeps 
track of which environmental variables are making the greatest contribu-
tion to the model. The results are shown in Table 16. Higher permutation 
values show higher potential for changes in the Percent Contribution col-
umn. In this case, some potential variation is seen, but those in the top 
ranks (the top three or four) will remain the most important in any case. 

Table 16. Input variable importance and permutation 
for the musk turtle model adding the two topography derived data sets. 

Variable Percent contribution Permutation importance 

bio10 37.9 34.1 

bio14 32.1 24.5 

bio17 17.2 6.2 

bio3 2.9 4.1 

bio19 1.2 1.5 

bio8 1.1 2.6 

bio9 1 1.4 

bio20 0.9 2.7 

bio5 0.8 1.6 

bio12 0.8 3.2 

bio7 0.7 6 

bio11 0.5 0.5 

bio18 0.5 0.1 

bio13 0.4 0.2 

dem_acc 0.4 0.5 

bio2 0.4 4.1 

bio15 0.3 0.5 

bio4 0.2 0.2 

bio6 0.2 2.6 

dem_morph 0.2 0.4 

bio1 0.2 3 

bio16 0.1 0.2 

 
It is interesting that the two topographically derived layers are so low on 
the ranking of percent contribution. It is clear from Figure 27 above that 
streams were given a high preference, yet this table suggests that the bio-
climatic concerns drastically outweighed the influence of topography. Evi-
dently the topography concerns are locally important but not globally so 
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important in defining the habitat extent. It also suggests that components 
that contribute less to the distribution map are still very important. Now it 
is possible to combine the information from the response curves (Figure 
30) and Table 16 to generate a table of how important each bioclimatic 
layer is to the RCW and what its threshold is (Table 17). 

Table 17. Bioclimatic thresholds for the occurrence of the musk turtle. 
Bio 

Num 
 Bioclimatic Concern Lower 

Threshold
Severity Occurs 

below 
Threshold

? 

Upper 
Threshold

Severity Occurs 
above 

Threshold?

% Importance 
in Model

BIO10 
Mean Temperature of 
Warmest Quarter (deg C) 18.0 Moderate No 30.0 Very High No 37.9

BIO14 
Precipitation of Driest 
Month (cm) 2.0

Moderate 
Low No 10.0 Extreme Yes 32.1

BIO17 
Precipitation of Driest 
Quarter (cm) 7.5 Low No None - Yes 17.2

BIO3 

  
diurnal 
range/temperature 
annual range) 25.0 Very High No 54.0 Extreme No 2.9

BIO19 
Precipitation of Coldest 
Quarter (cm) 10.0 High No 45.0 Extreme Barely 1.2

BIO8 
Mean Temperature of 
Wettest Quarter (deg C) 0.5 Extreme No 27.0 Extreme Barely 1.1

BIO9 
Mean Temperature of 
Driest Quarter (deg C) -8.0 Very High No 28.0 None Yes 1

BIO20

Maximum number of 
consecutive dry months 
(<100 MM/year) None - - 11.0 Low Yes 0.9

BIO5 
Max Temperature of 
Warmest Month (deg C) 25.0 High No 36.0 Very High No 0.8

BIO12 
Annual Precipitation (in 
centimeters) 55.0

Moderate 
Low No 170.0 Extreme Barely 0.8

BIO7 
Temperature Annual 
Range (P5-P6) (deg C) 18.0

Moderate 
Low Yes 40.0

Moderate 
Low Some 0.7

BIO11 
Mean Temperature of 
Coldest Quarter (deg C) -9.0

Moderate 
Low No 20.0 Extreme Barely 0.5

BIO18 
Precipitation of Warmest 
Quarter (cm) 18.0 Moderate No 60.0 Extreme Yes 0.5

BIO13 
Precipitation of Wettest 
Month (cm) 8.5 High No 25.0 High Some 0.4

dem_
acc

y g   
Model from Digital 
Elevation Model 0.0 Extreme Barely 1.0 Extreme No 0.4

BIO2 

Mean Diurnal Range 
(Mean of monthly (max 
temp -min temp)) (deg C) 8.0

Moderate 
High Some 15.5 Very High No 0.4

BIO15 
Precipitation Seasonality 
(Coefficient of Variation) None - Yes 80.0 Low No 0.3

BIO4 
Temperature Seasonality 
(standard deviation*10) 3400.0 Very High No 10000.0 Very High No 0.2

BIO6 
Min Temperature of 
Coldest Month (deg C) -15.5 High No 15.0 Very High No 0.2

dem_
morp
h

Landform Morphology 
from Digital Elevation 
Model None - Yes 5.5 High Barely 0.2

BIO1 
Annual Mean 
Temperature (deg C) 6.0 Very High No 24.0 Very High Barely 0.2

BIO16 
Precipitation of Wettest 
Quarter (cm) 20.0 Very High No 63.0 Extreme Barely 0.1  

For the musk turtle, the controlling bioclimatic factors (70% contribution 
to the musk turtle model) are the mean temperature of warmest quarter 
and precipitation of driest month. The detailed marginal response curves 
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for the three most important bioclimatic concerns are shown in Figure 31. 
Bio10–Mean Temperature of Warmest Quarter has both and upper and 
lower threshold; the lower threshold is 18 °C and the probability increases 
moderately from that point. The upper limit of 30 °C is a semi-sharp limit 
above which the musk turtle will not survive. Mean temperature of warm-
est quarter is limiting. However, both Bio14–Precipitation of Driest Month 
and Bio17–Precipitation of Driest Quarter have only lower thresholds 
(which make sense for an amphibian), but neither is severe. They are simi-
lar to each other in concept. For the precipitation of driest month, the low-
er threshold is 2 cm, a cutoff limit below which the musk turtle does not 
occur; while the upper limit of 10 cm is also a sharp limit above which 
musk turtle will not survive. Mean temperature of warmest quarter there-
fore is more important in limiting the musk turtle potential occurrence. 
Precipitation of Driest Quarter is the next most important concern (17.2% 
contribution to the musk turtle model).  

Figure 31. The detailed marginal response curves for the musk turtle 
for the three most important bioclimatic concerns. 

  

 

Together, the three charts in Figure 31 explain 87% of the musk turtle dis-
tribution. Note that the thresholds for the musk turtle are generally less 
severe than they were for the RCW and the ranges of between the thresh-
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olds are broader. Perhaps the greater versatility suggested by those obser-
vations contributes to a better species survival possibility. These charts 
suggest that when it comes to climatic-change concerns, the turtle is more 
robust than the RCW. The results do not reflect weather events, particular-
ly highly unusual weather occurrences. However, the data imply that when 
unusual weather events occur, the musk turtle is resilient to its most im-
portant climatic concerns. The musk turtles’ ability to survive is most af-
fected by extreme low precipitation and very high temperatures during the 
summer. 

Once again, we can turn to an alternate estimate of which variables are 
most important in the model—the different “jackknife” analyses. Figure 32 
shows the gains in viability based on the “training” locations. The red line 
at the bottom shows the complete musk turtle model with all variables for 
one submission.  

Figure 32. Jackknife analysis for the gains 
in viability based on the “training” locations. 
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The environmental variable with highest gain when used in isolation (the 
blue bar) is Bio17–Precipitation of Driest Quarter, which therefore appears 
to have the most useful information by itself. In this particular run, this is 
followed by Bio12–Annual Precipitation. Bio17 is in the top four in Table 
17 above, but Bio12 shows up only in tenth place. On the other hand, 
Bio14–Precipitation of Driest Month, which is next in amount of contribu-
tion to the jackknife analysis, is second in importance in Table 17. The en-
vironmental variable that decreases the gain the most when it is omitted 
(the green bar) is Bio10–Mean Temperature of Warmest Quarter, which 
therefore appears to have the most information that is not present in the 
other variables. However, it appears that no variable contains a substantial 
amount of useful information that is not already contained in the other 
variables, because omitting each variable in turn did not decrease the 
training gain considerably. In general the “without variable” analysis stays 
about the same across the board, therefore eliminating one variable really 
is not important. In fact, for all three jackknife charts (Figure 32 – Figure 
34), the “without variable” stays near the model maximum value (the red 
bar). This implies that dropping any one variable is not important; that the 
information lost from that variable is contained among the other variables. 

Figure 33 shows the gains based on the “testing locations. Bio17 and Bio12 
remain most important, and dem_morph the least important among the 
“with only” variables. Among the “without” variables there is little change 
in the bar lengths once again, so they have little effect. 
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Figure 33. Jackknife analysis for the gains in viability based on the “test” locations. 

 

4.3 Musk turtle thresholds and climate change  

4.3.1 Musk turtle distribution effects over entire range 

The bioclimatic data for 2025 was submitted in order to see how different 
the potential distribution of musk turtle bioclimatic habitat would be by 
2025. Figure 34 shows the initial 1990 distribution (top) the 2025 distri-
bution (middle) and the difference between the two. Notice how definitive-
ly the south has lost its previously high-quality habitat areas (Fort Benning 
much more than Fort Stewart) while the middle portion of the eastern 
United States has improved, and Canada, Michigan, Pennsylvania, New 
York, and New England has greatly increased the distribution of quality 
musk turtle habitat. 
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Figure 34. The initial 1990 musk turtle distribution (top), 2025 distribution (middle), 
and difference between the two (bottom); blues are decreases in desirable habitat 

distribution, greens are increases, and pale yellow represents no change). 

 

In the longer time frame (Figure 35 animation) we can see that the musk 
turtle distribution tends to trend northeast and the best probability distri-
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bution shrinks in the southeast and increases in the northeast by 2085. 
(Double click the file name and it will open the animation in internet ex-
plorer.) In fact southern Canada will have some of the best musk turtle 
habitat by 2085. 

Figure 35. Animation of musk turtle probability 
distribution, 1990–2085 (click to run). 

 

If this is the case, it is interesting to see what happens at the Army installa-
tions in detail. If we zoom in onto Fort Benning (Figure 36) and enhance 
the color table for that small region, a better idea of the problems the natu-
ral resources managers will be facing in a few decades can be seen. 

Figure 36. Animation of local area of musk turtle 
probability distribution, 1990–2085 (click to run). 

 

The animations indicate that by 2085 the musk turtle distribution will 
shift from primarily the southeast to the middle of the eastern United 
states, and also to northeastern United States and southeastern Canada. 
To see how much the musk turtle distribution may change, and how, the 
probabilities at each time period were summed, and the chart in Figure 37 
was generated showing a summary probability value for the turtle’s entire 
range for each of the time slices available. Figure 37 shows that the habitat 
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of this resilient amphibian increases slightly in the near term (by 2025), by 
nearly 12% by 2055, and over 15% by 2085. Thus, the musk turtle potential 
existence will be enhanced by the predicted climate changes over its entire 
potential range. Whether the musk turtle will be able to take advantage of 
these changes by dispersal of its species across potential boundaries (lakes, 
roads, and cities) remains to be seen. 

Figure 37. Summary probability value for the turtle’s 
entire range for each of the time slices. 

 

4.3.2 Fort Benning turtle habitat 

Returning the focus to military installations, Fort Benning was considered 
prime musk turtle habitat in 1990. The value was 0.622 at a point near the 
mouth of Upatoi Creek, out of a possible 0.735 in its entire range. Howev-
er, the quality of the range is projected to decrease by over 40% (down to 
0.367) by 2085 (Figure 38).  

Figure 38. Potential turtle habitat decrease at two Fort Benning locations. 
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What Figure 38 shows is that the musk turtle habitat decreases near the 
mouth of the Upatoi Creek much more dramatically by 2025 than was the 
case for the RCW in the same time period. Then the decrease continues 
but at a slower pace so that by 2085, 40% of the potential habitat at that 
location is lost. This means that if, in 1990, there was a musk turtle sight-
ing once a week, in 2025 a musk turtle sighting at that same location may 
occur only once every 8.5 days, and by 2085 it may occur only about once 
every 12 days. 

The analyses for the RCW and the musk turtle show that climate change 
will have both winners and losers in terms of species adaptation. For these 
two species, locally, Fort Benning will lose much of its habitat for these 
two species, whereas the musk turtle range will increase to the north. 

4.3.3 Impacts on the habitat threshold ranges at other installations 

After demonstrating how climate change will affect the range of the musk 
turtle, the next issues are to determine how bioclimatic changes affect the 
survivability of musk turtles at Army installations and whether climate 
change makes the job of preserving the musk turtle impossible for installa-
tion land managers. Using an approach similar to the one in Table 11, pre-
viously, an analysis of what will happen at all of the Army installations 
within the musk turtle range (plus a 100 mile buffer to be inclusive) was 
performed. Musk turtle range is defined as the Maxent probability level of 
0.25 because this level most closely matches the “traditional” range as well 
as the default Maxent color table represented in Figure 24 (the first musk 
turtle range). Figure 39 below compares the original traditional range 
(black and yellow dotted line) with the Maxent-determined coverage (red 
area) at the 0.25 probability level. 
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Figure 39. The original traditional range (black and yellow dotted line) with the 
Maxent determined coverage (red area) at the 0.25 probability level. 

 

Table 18 presents the results for the two timeframes of 1990 and 2025. In 
the table, if a bioclimatic concern for that installation is below a thresh-
old13, it is color coded dark red; if it is above a threshold, it is color coded 
light red. The table shows those concerns that define 91.2% of the Maxent 
musk turtle model. 

Table 18 Bioclimatic threshold modifications for the musk turtle  
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  Bio10 Bio14 Bio17 Bio3 Bio19 Bio8 

% Importance to Turtle Model  37.9 32.1 17.2 2.9 1.2 1.1 

Installation Name  1990 2025 1990 2025 1990 2025 1990 2025 1990 2025 1990 2025 

Anniston Army Depot Yes 253 268 75 72 265 271 40 39 388 393 78 106 

Arlington National Cemetery Yes 239 252 70 67 223 230 32 32 223 233 231 241 

                                                                 
13 Thresholds are from Table 17. 
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Army Chemical Center Yes 233 246 74 73 248 255 32 32 251 261 212 223 

Belle Mead General Depot Yes 221 233 72 73 252 262 32 32 252 266 213 219 

Camp Atterbury Millaty Reservation Yes 229 244 65 55 227 210 31 32 227 234 209 182 

Camp Bullis Yes 275 290 44 35 147 138 40 39 147 149 232 237 

Camp Joseph T. Robinson Yes 265 283 79 70 258 245 35 35 295 298 163 173 

Camp MacKall Military Reservation Yes 253 265 74 73 243 254 39 39 281 291 253 262 

Camp Swift N. G. Facility Yes 279 294 46 36 174 161 39 37 178 181 234 238 

Charles Melvin Price Support Center Yes 250 267 49 50 177 186 30 30 177 186 229 196 

Custer Reserve Forces Training Area Yes 209 224 39 41 147 158 29 29 152 161 199 178 

Fort A. P. Hill Military Reservation Yes 237 249 76 73 242 248 35 34 242 253 237 240 

Fort Belvoir Military Reservation Yes 235 247 70 65 223 228 33 33 223 233 229 235 

Fort Benjamin Harrison (Closed) Yes 223 239 58 54 195 201 30 30 195 203 204 191 

Fort Benning Military Reservation Yes 264 278 53 54 209 222 42 41 342 345 104 182 

Fort Bragg Military Reservation Yes 251 263 70 72 233 245 38 38 272 281 251 262 

Fort Campbell Yes 248 264 74 64 248 240 35 35 338 342 141 129 

Fort Chaffee (Closed) Yes 262 281 45 44 172 174 37 37 172 177 241 219 

Fort Devens (Closed) Yes 200 213 87 78 268 260 31 31 282 295 40 24 

Fort Dix Military Reservation Yes 223 235 78 76 257 263 32 31 257 270 216 225 

Fort George G. Meade Yes 237 249 73 70 237 243 32 32 237 247 237 224 

Fort Gillem Heliport Yes 251 265 77 74 260 265 38 38 356 362 80 103 

Fort Gordon Yes 257 271 69 70 227 240 42 41 317 324 92 213 

Fort Hood Yes 282 298 40 32 142 134 36 36 148 153 230 239 

Fort Indiantown Gap Military Res Yes 214 227 69 67 224 232 31 31 224 234 193 203 

Fort Jackson Yes 258 271 70 71 228 243 39 39 284 294 258 270 

Fort Knox Yes 240 256 69 60 245 232 34 34 282 287 132 171 

Fort Lee Military Reservation Yes 244 256 80 75 248 256 36 36 256 269 237 247 

Fort McClellan Military Reservation Yes 249 264 77 73 269 276 40 40 393 398 75 103 

Fort McPherson Yes 251 265 77 74 263 267 38 37 357 363 78 103 

Fort Monmouth Military Reservation Yes 222 234 82 80 274 276 29 28 274 288 218 191 

Fort Pickett Military Reservation Yes 236 248 79 77 258 260 38 37 261 273 236 241 

Fort Polk Military Reservation Yes 269 284 102 84 318 284 40 40 422 405 111 105 



ERDC/CERL TR-14-17 73 
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Fort Ritchie Military Reservation Yes 210 238 76 62 234 210 31 33 234 211 148 205 

Fort Ritchie Raven Rock Site Yes 210 222 77 73 238 245 31 31 238 247 147 175 

Fort Rucker Military Reservation Yes 263 277 73 72 260 272 42 40 385 387 111 186 

Fort Sheridan Yes 210 227 34 37 136 145 26 27 136 145 210 196 

Fort Stewart Yes 269 282 57 59 199 219 41 38 266 272 269 282 

Fort Wolters Yes 280 297 37 35 125 125 37 37 125 128 223 233 

Globecom Radio Receiving Station Yes 234 246 73 71 233 240 32 32 233 244 234 238 

Greencastle Military Reservation Yes 222 235 66 64 209 216 32 33 209 217 201 195 

Hunter Army Airfield Yes 268 281 48 53 188 206 38 35 240 246 264 277 

Indiana Arsenal Army Ammo Plant Yes 235 250 69 60 238 223 34 34 254 259 123 162 

Joliet Army Ammunition Plant Yes 220 236 36 37 137 146 28 29 137 146 199 186 

LaPorte Outdoor Training Facility Yes 216 232 48 51 174 183 28 29 174 184 216 186 

Letterkenny Army Depot Yes 219 232 68 64 213 219 32 32 213 221 198 185 

Lexington-Blue Grass Army Depot Yes 232 244 70 60 258 232 34 34 274 268 214 180 

Longhorn Ordnance Army Ammo Plant Yes 272 290 68 62 236 230 38 38 319 321 222 183 

Louisiana Ordnance Plant Yes 269 287 72 67 254 244 38 38 346 348 91 126 

Malabar Transmitter Annex Yes 271 281 42 41 171 161 46 42 171 161 271 274 

Milan Arsenal / Wildlife Management  Yes 249 266 80 71 267 264 35 35 351 354 146 144 

Military Ocean Terminal Sunny Point Yes 257 268 73 76 263 277 40 39 301 308 253 264 

Natick Laboratories Military Res Yes 202 215 86 77 259 254 32 31 286 299 45 24 

New Cumberland General Depot  Yes 227 240 70 65 220 226 30 31 220 229 205 192 

Newport Army Ammunition Plant Yes 228 244 55 54 193 200 31 31 193 202 209 206 

Pine Bluff Arsenal Yes 266 284 79 68 260 242 36 36 336 338 168 157 

Radford Army Ammunition Plant Yes 212 222 65 60 201 203 39 39 201 207 194 198 

Ravenna Arsenal Yes 204 218 55 56 192 198 31 33 192 198 184 192 

Red River Army Depot Yes 267 286 74 67 261 246 37 37 283 286 172 204 

Redstone Arsenal Yes 252 267 81 74 271 275 38 38 391 396 69 99 

Rock Island Arsenal Yes 229 245 29 32 111 119 26 27 111 119 229 219 

U.S. Army Ammunition Depot Yes 266 285 49 48 178 181 34 34 178 182 206 216 

U.S. Army Reserve Center Yes 207 219 82 79 260 259 29 28 321 335 12 35 

U.S. Garrison, Fort Detrick Yes 226 238 65 61 205 211 33 33 205 214 205 203 
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Vint Hill Farms Station Military Res Yes 232 245 70 67 217 225 34 34 217 226 211 220 

Warrenton Training Center  Yes 234 246 72 69 223 232 35 35 223 232 234 231 

West Point U.S. Military Academy Yes 202 215 83 84 271 283 29 29 271 286 135 149 

Camden Test Annex Barely 191 205 77 77 247 262 29 30 272 284 94 60 

Fort Drum Barely 187 201 61 61 204 218 28 29 226 239 86 88 

Iowa Army Ammunition Plant Barely 229 246 31 34 114 123 27 28 114 123 208 206 

Kansas Army Ammunition Plant Barely 254 273 35 34 121 123 31 31 121 123 190 204 

Picatinny Arsenal Barely 202 215 80 82 269 281 32 32 269 283 180 180 

Savanna Army Depot Barely 216 232 28 29 101 108 27 28 101 108 216 205 

Seneca Army Depot Barely 200 214 44 44 143 156 29 30 149 160 200 182 

Aberdeen Proving Ground No 239 249 73 71 246 251 32 31 247 258 239 227 

Badger Army Ammunition Plant No 205 221 25 25 87 92 27 28 87 92 192 210 

Blossom Point Field Test Facility No 240 252 71 68 231 234 33 32 231 242 240 241 

Camp Dodge Military Reservation No 224 242 21 22 75 80 27 28 75 80 204 209 

Camp Grayling Military Reservation No 181 194 30 32 116 121 29 31 116 122 170 179 

Camp Johnson No 196 210 44 46 148 164 27 28 153 168 196 205 

Camp Williams No 200 216 24 23 83 88 28 30 83 88 188 205 

Edgewood Arsenal No 238 251 73 71 245 250 32 32 247 257 238 229 

Fort Ethan Allen Military Reservation No 182 196 52 55 176 194 27 28 185 200 182 192 

Fort Eustis Military Reservation No 245 257 71 68 226 240 33 31 255 269 245 251 

Fort Leavenworth Military Reservation No 244 262 25 25 88 93 30 30 88 93 225 233 

Fort Leonard Wood Military Res No 236 254 50 50 188 194 35 35 188 194 177 176 

Fort McCoy No 199 215 23 22 80 85 28 29 80 85 187 205 

Fort Monroe Military Reservation No 250 262 73 72 234 248 30 29 260 274 245 257 

Fort Riley Military Reservation No 247 265 18 18 66 69 30 30 66 70 223 233 

Fort Sill Military Reservation No 271 288 27 24 95 93 35 34 95 94 208 224 

Fort Story Military Reservation No 247 259 73 73 238 249 31 29 262 275 243 256 

Lake City Army Ammunition Plant No 243 261 33 32 106 112 30 30 106 112 222 220 

Sunflower Army Ammunition Plant No 247 265 29 28 95 100 29 29 95 100 226 223 
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For Army installations that are within or on the edge of the 1990 musk tur-
tle range, Table 18 shows that all will remain within the threshold limits 
for the turtle. Fort Polk is indicated to be above the Precipitation of the 
Driest Month threshold. But since the marginal response curve shows that 
the upper threshold really is not limiting, Fort Polk should have no prob-
lems in the 1990 to 2025 timeframe. Fort Stewart, Hunter Army Airfield, 
and Malabar Transmitter Annex will each have a problem by 2025 because 
they go over the Mean Temperature of Wettest Quarter threshold. Fortu-
nately, this bioclimatic concern only contributes 1.1% to the model. Fort 
Riley is the only other location where problems appear in the Precipitation 
of Driest Month and Precipitation of Driest Quarter bioclimatic concerns. 
Since Fort Riley is not within the probability range of the musk turtle, this 
result is of no practical interest.  



ERDC/CERL TR-14-17 76 

5 Summary and Recommendations 

5.1 Conclusions  

It was found that applying the Maxent procedure to the two species of Ar-
my interest resulted in objective, well justified definitions of the habitat 
extent and quality. Furthermore, the outputs supported answers to climate 
change questions that are useful for Army land managers.  

The results of these analyses illustrate that there will be both “loser” and 
“winner” species in the face of climate change. The results indicate that 
RCW habitat will decrease by about 40% by 2085, but overall habitat for 
the musk turtle will increase by nearly 20%.  

Below are specific conclusions addressing the applicability of the Maxent 
software package and the results of analyses of RCW and musk turtle pop-
ulations up to about 70 years into the future. 

5.1.1 Maxent performance 

The traditional means of defining the distribution of a species has proved 
to provide contradictory, incomplete, and questionable results for analysis 
of species range change over time. For purposes of climate change studies 
and species management, an alternative to the traditional species range 
delineation was needed. The Maxent modeling program can define the 
ranges of species based on a multivariate statistical approach. The theoret-
ical basis is derived from a first principle of physics—the Second Law of 
Thermodynamics. In this application, entropy is a measure of information 
content, so Maxent is designed to determine the maximum information 
content expressed by the data submitted to it. The software package was 
tested, and it was demonstrated that the outputs supported the research 
needs. 

The analyses and tests presented show Maxent’s effectiveness in delineat-
ing the probability distribution of species based on a series of inputs. 

The statistical evaluations generated by the Maxent software of the viabil-
ity of the models it outputs provide consistent, objective appraisals of the 
quality of the models generated. 
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Little variation was found between running the model many times or just 
once. The outputs were reasonably stable. 

The marginal response curves provide thresholds for a species survival. 
Defining species thresholds objectively was a major investigative thrust of 
the overall research work package.  

The thresholds in combination with the ranking of input-layer importance 
gives an individual the ability to objectively categorize which bioclimatic 
concerns will make the biggest difference for a species survival. 

Surprisingly, the tests illustrated that some input layers that ranked in 
mid-importance had significant influences on the output probability dis-
tributions; they seem to be particularly significant on the local level. 

Using Maxent to support climate change studies is very fruitful. By sub-
mitting to the model input data layers that reflect predicted changes, one 
can objectively follow the impacts of those changes on the distribution of a 
species. 

5.1.2 RCW results 

General 

The model produced very similar results for the probability distribution 
among the 21 different runs submitted. The statistical evaluations of the 
models consistently showed a high level of likely confidence. 

Maxent consistently indicated that the RCW northern limit was farther 
north than suggested by the GAP sample points submitted. If there is a 
more southern-northern limit to the RCW range, it is not due to any bio-
climatic concerns. 

The controlling bioclimatic factors are the precipitation of driest quarter 
(winter) and the annual precipitation. For the precipitation of driest quar-
ter, the lower threshold is 18 cm of rain, but that is not a survival cutoff 
limit. The upper limit of 36 cm is a sharp limit, but above it the RCW will 
still survive. Annual precipitation is very important and severely limiting. 
For the mean annual precipitation, the lower threshold is 110 cm, a cutoff 
limit below which the RCW does not occur; the upper limit of 170 cm is 
also a sharp limit above which RCW will not survive. Annual precipitation, 
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therefore, is more important in limiting the RCW potential occurrence. 
The Mean Temperature of the Warmest Quarter is the next most im-
portant concern (14.5% contribution to the RCW model) followed by an-
nual mean temperature (12.5% contribution). In combination, these four 
factors explain 86% of the RCW distribution shown by the model. 

Restricting the input to the Maxent program to either the top four most-
important inputs or the bottom four least-important inputs still provides a 
similar probability distribution. It can be said that the more inputs used, 
the more restricted (better) is the definition of the species-distribution re-
sults. 

Adding additional inputs (e.g., land cover) as layers to the Maxent analysis 
will further restrict and better define the probability distribution. Most ex-
perts limit RCW habitat to outside of the Mississippi valley area. The 
Maxent probability includes this area within the RCW distribution, but at 
a less-intense level. The addition of other concerns (i.e., land cover, physi-
ography) further decreases the RCW presence in the Mississippi valley, but 
does not limit it entirely. Therefore, if the RCW does not occur in the Mis-
sissippi valley, some other factor than those considered in this research is 
causing the restriction. 

Climate change will result in a 9% decrease in the RCW habitat by 2025 
and a 40% decrease by 2085. 

Use of the bioclimatic inputs from each of six Global Climatic Model 
(GCM)/scenario combinations instead of the “average scientific consen-
sus” value did not alter the results significantly. A few more potential 
problems surfaced that the averaging had suppressed, but the general 
trend of the modeled climatic effects are evident in the consensus analyses. 

Army impact 

Of those Army installations that already host RCW populations, the top 15 
are and will remain within the threshold limits for the RCW 

At Fort Eustis, the annual precipitation is currently too low for RCW, but 
by 2025 it will increase so the RCW will be more at home there. 

Seven Army installations (Fort Polk, Fort Stewart, Hunter Army Airfield, 
Longhorn Ordnance Plant, Louisiana Ordnance Plant, Pine Bluff Arsenal, 
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and Red River Army Depot) that are currently within all of the thresholds 
will move above the threshold for the important concern of Mean Temper-
ature of Warmest Quarter. This represents a bioclimatic threat to the con-
tinued existence of the RCW at these locations. The threshold cut is 
considered “extreme,” so passing the threshold is highly significant. Long-
horn will be more than 1 °C above the threshold. Land managers will have 
a difficult time persevering RCW at these installations, even applying an 
intensive level of effort.  

5.1.3 Musk turtle results 

General 

The range of the musk turtle is extensive, covering most of the eastern 
United States. 

The Maxent outputs suggest that the musk turtle is a hardier species than 
the RCW. Unlike the RCW, near-term climate change will increase its 
range by about 3% and encourage it to move toward the north. As the 
range trends northward, traditional habitat areas in the southern United 
States will decrease in quality. 

Warmth and dryness matter most to the musk turtle: 

• Bio10–Mean Temperature of Warmest Quarter provides a 35.8% con-
tribution to the Maxent model 

• Bio14–Precipitation of Driest Month provides a 32.7% contribution to 
the Maxent model 

• Bio17–Precipitation of Driest Quarter provides a 17.2% contribution to 
the Maxent model 

The input layers that best enhanced the musk turtle model were the hydro-
logic accumulation layer and landform morphology derived from the topo-
graphic data. These two contributed to the local variations more than 
modifying the extent of the entire range. 

Army impacts 

All Army installations will remain within the threshold limits for the turtle 
through 2025. 



ERDC/CERL TR-14-17 80 

Fort Stewart, Hunter Army Airfield, and Malabar Transmitter Annex will 
each have a problem by 2025 because those locations will exceed the Mean 
Temperature of Wettest Quarter threshold. Fortunately, this bioclimatic 
concern only contributes 1.1% to the model. Therefore, it is not anticipated 
that the Army will need to fund a musk turtle habitat maintenance pro-
gram related to climate change by 2025. 

It is noted that even for the musk turtle, there will be localized losers in the 
overall population. At Fort Benning, habitat will decrease by about 40% 
for the musk turtle near the mouth of the Upatoi Creek by 2025.  

5.2 Recommendations 

The application of Maxent software to the question of climate change im-
pacts on species of interest to the Army provided objective and supporta-
ble results using a cost-effective methodology. Therefore, it is 
recommended that: 

• the demonstrated Maxent analysis methodology be applied to addi-
tional species of Army interest to identify habitat changes  

• researchers check Maxent distribution patterns against ground-truth 
surveys to validate the probabilities 

At Fort Polk, Fort Stewart, Hunter Army Airfield, Longhorn Ordnance 
Plant, Louisiana Ordnance Plant, Pine Bluff Arsenal, and Red River Army 
Depot, which currently fall within all of the RCW thresholds, climate 
change will move Mean Temperature of Warmest Quarter above the RCW 
threshold. At those locations, there will be no feasible way for Army land 
managers to mitigate the negative impacts of climate change. Therefore, it 
is recommended that the Army consider requesting that the U.S. Fish and 
Wildlife Service reduce the Army’s obligation to carry out RCW recovery 
programs at those installations.  

Because all Army installations will remain within the threshold limits for 
the common musk turtle through 2025, there will be no need to expend 
funds to promote musk turtle habitat maintenance to mitigate climate 
change impacts. 
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