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1 Abstract 
Current antivirus software is effective at detecting well known threats but cannot keep up 

with the rate at which new malware is authored nor modern antivirus avoidance techniques, such 
as using polymorphic code. Some studies have investigated augmenting current antivirus 
techniques with machine learning, which could potentially detect some previously unknown 
malware. However, previously proposed methods either do not detect malware with satisfactory 
performance, or they have only been tested on laboratory software databases that cannot suitably 
be projected into realistic performance. 

This work explores several aspects of machine learning based malware detection. First, we 
propose an approach to learn primarily from program metadata, particularly header data in the 
32-bit Windows Portable Executable (PE32) file format. We identify learning methods that learn 
effectively from this metadata, explore which metadata features can be trivially modified and are 
not appropriate for malware detection, test it on approximately realistic datasets, and find that it 
performs favorably compared to Windows API imports, another category of file characteristic 
that shows promise for machine learning based malware detection. 

Additionally, we find and explore the drastic performance drop which occurs when using a 
realistically low proportion of malware in test datasets instead of datasets split evenly between 
malware and benign software. Ensemble learning, which commonly alleviates this problem in 
other similar machine learning applications, does not appreciably help in this context. Training 
with datasets that have the same proportion of malware as the test datasets optimizes 
performance, yet the file characteristics that are informative for malware detection change with 
the proportion of malware in the training dataset. We conclude that file characteristics must be 
trained on and tested in approximately realistic settings in order to demonstrate their robustness 
in operational malware detection, and we propose a test procedure which meets these standards. 

 
Key words: malware, machine learning, class imbalance, ensemble learning, portable 

executable, Windows API 
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3 Introduction 
Modern antivirus software is effective at detecting known threats but can be evaded by 

specially crafted novel malware such as polymorphic malware, which can reprogram itself to 
appear and operate differently while ultimately performing the same functions overall. 
Traditional antivirus programs use signature-based detection, which involves checking potential 
malware against a database of hashes—fingerprints—of the exact files of known malware, yet 
this technique has severe limitations [1], [2]. Modern antivirus products also employ both static 
heuristic checks and dynamic analysis, which use manually crafted rules to detect malware based 
on code structure or behavior. However, a variety of techniques have been published that defeat 
both heuristic and dynamic analysis, as well [3]. 

3.1 Machine Learning in Malware Classification 
One way to potentially keep up with the antivirus avoidance techniques used in modern 

malware is to augment existing detection systems with machine learning classifiers. Machine 
learning classification algorithms facilitate construction of classifiers, which automatically learn 
the characteristics of each class, such as malware and benign files, by learning from example 
data. This kind of approach, while still developmental in malware detection, offers the promise 
of increased robustness in the face of newly adapted threats that are slightly modified, but retain 
some of the characteristics of past malware. 

To use machine learning to classify executable files as malicious or benign, one must first 
build labeled datasets for training. A set of records—one for each benign and malicious file—
comprises the database. Each record contains a set of features and one label (also referred to as 
the class).  The features of each file are derived from some specific characteristics of the file, 
such as the size of the file or the frequency of a certain code snippet in the file; the label is a 
binary value indicating whether or not the file is malicious. Learning algorithms analyze records 
designated for training to generate a mathematical model that maps the relationship of file 
features and labels. That model, which is called the classifier, is used to predict the class of each 
record in the test data, or the records designated for testing. The classifier cannot read the labels 
when making predictions; test data labels are only used when the predictions are compared 
against the true labels in subsequent analysis of performance. 

A variety of features have been studied as potentially effective discriminators between 
malware and benign software. These features can be extracted either through dynamic or static 
analysis. Static analysis extracts features either from the header, which contains metadata, or the 
body, which contains the actual code and data, of an executable file. Dynamic analysis involves 
carefully executing a program in a safe environment and measuring features by recording 
behavior such as interactions with the operating system or network traffic. While dynamic 
analysis can sometimes reveal behavior in malware that would be difficult to extract from static 
analysis [4], dynamic analysis is also more resource intensive than some types of static analysis 
[5], and can currently be defeated in a variety of ways [3]. 
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3.2  Related Results 
A number of researchers have used machine learning to classify malware. Three types of 

features that have been popular in experiments to date are n-grams over machine code 
instructions, API call sequences, and PE32 header data. 

N-gram analysis involves splitting a program’s code into chunks of size “n”—the n-grams. 
File features are derived from frequencies of certain n-grams. Some studies have achieved 
modest success with this technique [6], [7]. However, it has also been argued that, both from a 
theoretic and empirical perspective, n-gram frequencies do not differ enough between malicious 
and benign software to be useful for practical malware detection [8]. That is, machine learning 
cannot effectively differentiate malware and benign software by looking at isolated tiny snippets 
of machine code.  

A classifier can also be constructed using features derived from function calls from the 
operating system API, which are functions a program uses to interact with the operating system. 
These features can either be static, which involve examining which API functions a file imports 
into its code, or dynamic, which involve examining sequences of API functions used during 
execution. Belaoued and Mazouzi show that the difference between Windows API imports in 
malware and benign software is statistically significant [9]. However, there are methods for 
invoking OS functionality while bypassing the API [10], and it is not clear whether the 
discriminative power of API calls or imports alone will be sufficient for an operational malware 
classifier. 

For Windows Portable Executable (PE32) files, the format for executable files on Windows 
operating systems, header data has been found to discriminate well between malicious and 
benign executables. PE32 header data contains many fields which describe the structure of the 
executable file and metadata about the file, such as how large the executable code section is or 
what year the file was created. (For a full description of PE32 header information, see the PE 
specification [11].) In 2012, Yonts published statistical comparisons between the header data of 
clean and malicious PE32 files [12], showing that malicious and benign programs frequently 
differ in certain header components. Yonts also manually designed “detection rules” that 
individually discriminated reasonably well between the malware and benign software in his 
database [12], but did not use the features in aggregate in the way a machine learning classifier 
would. Other studies have highlighted the potential value of PE32 header data as well, yet no 
previous research has proposed a classifier to discriminate between benign and malicious 
software in general [5], [13], [14]. PE32 header data is also an attractive feature source because it 
can be extracted quickly. Some researchers, including Walenstein et al. and Yan et. al, note that 
certain PE32 header data could be easily modified by an attacker, rendering such features 
ineffective in the future [5], [13].  

Many studies have built machine learning classifiers that have achieved high performance in 
lab experiments, but the conditions used do not reflect practical applications. In the real world, 
detecting malware hiding on a computer system with thousands of benign executable files is 
more like finding a needle in a haystack. When building classifiers, studies to date have tended to 
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use a large number of both malware and benign software in the training data1, even though 
benign software outnumbers malware by orders of magnitude on most general use computers. 
However, it is not fair to assume that results obtained from training or testing on balanced 
proportions of malware and benign software imply similar results when training or testing on 
more realistic ratios where benign software greatly outnumbers malware. For machine learning 
in general, it has been widely observed that class imbalance, in which one class greatly 
outnumbers the other in one’s database, often diminishes classifier performance. 

Guo et al. surveyed class imbalance studies, and identified remedies at various phases of the 
learning process. They gave several suggestions for improving the preliminary training stages, 
and pointed out that ensemble learning algorithms are commonly used to address class 
imbalance. Ensemble methods, which train several classifiers to make aggregate classification 
predictions, make predictions in a variety of ways, including “voting” by individual classifiers or 
randomly choosing one classifier to use for the final prediction. The study by Guo et al. 
specifically highlights techniques called Boosting and Bagging for their success in learning with 
imbalanced classes [15]. 

4 Hypotheses and Goals 
This research contributes to the study of machine learning based malware detection through 

several phases. First, it explores the efficacy of using features based on PE32 header data for 
malware detection. We hypothesize that classifiers trained on PE32 header data will perform at 
least as well as previously published malware detection classifiers. To show this, a variety of 
learning algorithms and methods are trained on PE32 header data features in a procedure 
comparable to the predominant ones in the field. Through these experiments, show that, when 
using the predominant methods in the literature, PE32 header data appears to be an effective 
source of features for machine learning based malware detection. 

The next phase of this research addresses the class imbalance problem. First, we conduct 
initial experiments to gauge the performance drop that occurs when a realistically low proportion 
of test data represents malware versus when the test data is split relatively evenly between 
malware and benign software. Furthermore, various methods for mitigating the performance 
drop when malware prevalence in the test data is low are explored on two separate and 
independent sets of features. We hypothesize that classification performance will drop 
substantially when classifiers test on data with a realistically low proportion of malware, and we 
further predict this problem will be resilient to techniques that have helped to mitigate the effects 
of class imbalance in other machine learning applications. If true, this finding would imply that 
more research will be needed to address the class imbalance problem for machine learning based 
malware detection in order for the technique to become useful in practical settings. 

                                                 
1 For a concise summary of the datasets used in previous malware classification work that involves header based 

features, see Walenstein et al. [13]. 
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 Finally, we question the assumption that features which have been demonstrated to be 
useful for machine learning based malware detection when the training data does not contain 
class imbalance are guaranteed to be useful when the training data does have a class imbalance. 
To our knowledge, no previous work has questioned this assumption. Experiments will be 
conducted to assess the independence of relative feature utility and the prevalence of malware in 
the training data. We hypothesize that the assumption will not hold. If so, we will propose novel 
criteria for demonstrating the robustness of a given feature for machine learning based malware 
detection. 

5 Methodology 
5.1 Data 

Before our experiments could begin, a database of known clean and malicious PE32 files was 
needed. The malicious files were randomly selected from a collection we obtained from Open 
Malware, a group dedicated to safely distributing known malware for research purposes [16]. In 
total, we scanned 122,799 unique malicious files in constructing our database. To obtain a 
diverse sample of benign files, we scanned all the PE32 files in the C:\Windows and 
C:\Program Files directories from the following clean installations of Microsoft Windows:  

- Windows Vista Enterprise 
- Windows 7 Professional 
- Windows Server 2008 R2 Standard 
- Windows 8.1 Professional 
 
Additionally, we scanned the PE32 files from clean installations of a diverse set of 46 known 

benign Windows applications such as LibreOffice, FileZilla, Chrome, Firefox, QuickTime, 
Microsoft Office, Python, Java, VLC, etc. [17], [18]. After removing duplicates, our database 
contained 42,003 benign files, for a collection of 164,802 files total.  

We used pefile [19], an extension to the Python programming language, to write a 
program that would measure 38 different features from the PE32 headers, plus 2 features derived 
from the section entropies of a PE32 file, for any file given to it. These features were chosen for 
their discriminatory potential as identified by Yonts [12] and because they cannot be trivially 
modified without affecting file execution. This program was used to build a database containing 
the values of all 40 features for each of our 122,799 files. We also used pefile to extract the 
Windows API imports of each file and built a separate database with a feature for each of the 
2,067 uniquely named Windows API functions indicating whether or not a file imported the API 
function corresponding to that feature [20]. Each database was structured as a set of records—
one for each file—that each contained the features and label of the corresponding file. 
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5.2 Learning Methods 
In our experiments, we used several standard learning algorithms and ensemble learning 

methods. More specifically, we used the scikit-learn Python module [21] to implement the 
following:  

- Naïve Bayes, assuming Gaussian feature distributions 
- Logistic Regression using  regularization 
- Classification and Regression Tree (CART) with splits computed based on entropy 
- Random Forest  
- AdaBoost  
- Bagging  

Naïve Bayes is a popular classification algorithm derived from Baye’s rule: 

 

where  is the label and  are the values for the  features for a given record. 
When given a test record, a Naïve Bayes classifier predicts the label that, based on the feature 
values in the record, has the highest probability. This learning algorithm was chosen because 
Baye’s rule parallels the detection rules in the study by Yonts [12]. The algorithm is considered 
“naïve” because each feature is assumed to be probabilistically dependent upon the label and 
independent of the other features. While not always true, this assumption allows for much more 
computationally feasible models and has still achieved high performance in a variety of other 
applications [22]. 

Ng argues that Logistic Regression will ultimately tend to have lower error rates than Naïve 
Bayes when enough data is used for training [23]. Whereas Naïve Bayes predicts 

 by estimating  from the training data, Logistic 
Regression directly creates a function that models  from the training data. 
We used  regularization in our implementation of Logistic Regression. This variant of the 
standard algorithm attempts to prevent overfitting, a situation in which a classification model 
erroneously reflects some of the noise in the training data in addition to the underlying 
relationship between the features and the label. 

Decision Trees were the most effective classifier in a previous study on PE32 header based 
features [5]. This class of algorithm builds classifiers that make predictions by following a “tree” 
model, which can be thought of as a flow chart, based upon the records in the training data. We 
used the scikit-learn implementation of the CART decision algorithm, which builds trees 
by picking the feature and threshold with the highest information gain for each node in the tree. 
To measure information gain, we used information cross-entropy: 

 

where the cross-entropy  of feature  on node  is a function of proportion  of 
class  observations on node  [21]. 
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In addition to these individual machine learning algorithms, we implemented three ensemble 
learning methods: random forests, AdaBoost, and Bagging. Ensemble learning methods have 
been used to mitigate performance loss due to class imbalance in other machine learning 
applications, with AdaBoosting and Bagging being particularly useful [15]. Random forests train 
a forest of multiple decision trees. The classifier makes predictions based on the average 
probabilistic predictions of each tree. We chose to implement this method due to its similarity to 
the decision trees that have yielded high performance in previous studies of PE32 header based 
features. AdaBoost trains a set of simple classifiers over several iterations of modified versions 
of the training data, and the resulting ensemble classifier makes predictions based on a weighted 
majority vote of the simple classifiers. Finally, Bagging iteratively trains a set of complex 
classifiers (as opposed to the simple ones used by AdaBoost) from random samples of the given 
training data [21]. Each of these learning methods was implemented with the default scikit-
learn parameters. 

5.3 The Machine Learning Framework 
Each experiment was broken into a set of trials of four phases. First, we sampled the database 

for sets of training and test data. Then, we trained classifiers from each set of training data. Next, 
each classifier predicted the label for each record in a set of test data that was separate and 
independent of the training data the classifier was trained on. Finally, the performance of each 
classifier was assessed by comparing the predicted labels with the true labels of each record in 
the given set of test data. 

Given a database, our sampling algorithm returns random training and test samples, which are 
collections of records from the database. The training and test samples do not have any records 
in common. We specify the desired number of records that each sample should contain2, as well 
as the , or malware prevalence, which is the percent, expressed as a decimal between 0 and 1, 
of records in the sample that correspond to malicious files. We separately specify  and , 
or the malware prevalence for the training and test samples, respectively. For each trial, we also 
provide a given number of random state seeds3 (ten, unless specified otherwise), each of which 
produces one pair of training and test samples independently of the other seeds. Each seed is 
logged in case future sample reproduction is necessary. Each pair of samples is used in a sub-
trial, in which a new, unique classifier is trained and tested with its given samples. 

5.4   Performance Measurement 
After being trained, classifiers predict the label for each record in the test sample by 

examining only the features contained in the record. These predictions are compared with the 
known true labels to calculate the precision, recall, and F-measure of the sub-trial. Each of these 

                                                 
2 For this study, we always chose a 9:1 ratio of training records to test records. (31,500 and 3,500 total, unless 

specified otherwise.) 
3 Seeds specify the starting state of a random number generator and are useful for reproducing sequences of 

random numbers. 
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calculations provides an indication of the performance of the classifier in a sub-trial. Precision 
and recall are defined as follows: 

 

 

where a “true positive” is a prediction for a record correctly predicted to be malicious, a “false 
positive” is one incorrectly predicted to be malicious, and a “false negative” is one incorrectly 
predicted to be benign. , , and  are the counts of 
true positives, false positives, and false negatives, respectively. 

 In malware detection, precision is the chance that a file predicted to be malware is actually 
malware, and recall is the chance that a malicious file is predicted to be malicious. While both of 
these measures can be useful in some situations, we primarily use them to calculate the 
generalized F-measure, the metric used to assess overall performance [24]:  

 

This metric reflects the harmonic mean, weighted by , between precision and recall. F-
measure ranges from 0 (worst) to 1 (best). We specify the value of  before the trial begins. 
Machine learning studies often use , corresponding to an equally weighted harmonic mean 
of precision and recall. In accordance with this standard practice, we used  scores in our initial 
experiments. 

In discussions with antivirus software engineers, we learned that commercial antivirus usually 
places a premium on minimizing false positives over maximizing true positives—vendors 
believe that most users would be harmed more by having their benign software quarantined or 
deleted than by having a piece of malware on their system. Some organizations and users may 
benefit by accepting a higher false positive rate in order to catch more malware, but this research 
is more focused on addressing the needs of the primary consumer based for standard antivirus 
software. Thus, in later experiments exploring class imbalance, we chose for  a value of 0.3333, 
which corresponds to an F-measure weighted 90% towards precision. For simplicity’s sake, we 
denote this as  instead of . We noted, however, that all observed trends in the results 
were equally valid when using the neutral-weighted F1 score. 

We recorded the average number of true positives, false positives, true negatives, and false 
negatives over each sub-trial in a trial, as well as the parameters used for the trial: , 
number of records per sample, database, random seed, and machine learning algorithm. 
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6 Experiments 
6.1 Learning Algorithm Comparison 

6.1.1 Design. 
This experiment tests the efficacy of PE32 header based features when using a variety of 

learning methods and malware prevalences. Each trial used of 22,500 training samples and 2,500 
test samples. Across the trials, Naïve Bayes, Logistic Regression, and CART trees were 
compared over a variety of combinations of  and . 

6.1.2 Results. 
Figure 1 summarizes the results of the trials in this experiment. Each bar reflects the mean  

score performance of the sub-trials in the trial testing the specified combinations of , , 
and learning algorithm. Trials employing decision trees always outperformed their Naïve Bayes 
and Logistic Regression counterparts at the same malware prevalences.  

 

 
Figure 1  scores of trials with varying malware prevalence and learning algorithms. Tuples on the x-axis 

denote the  and , respectively. 
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6.1.3 Discussion. 
When the training and test data were split evenly between malware and benign software (i.e. 

 and ), as is often the case of machine learning based malware detection 
research, our results for logistic regression and decision trees were competitive with any of the 
literature we reviewed. We cannot inarguably claim that our classifier performed “better” than 
those of other studies, because other studies used different databases and did not always use F-
measures to assess performance. 

Additionally, similar to how Yan et al. found that Decision Trees performed best for 
predicting the families of different malware [5], we find that classifiers trained by the CART 
algorithm performed best regardless of malware prevalence. Furthermore, Naïve Bayes 
outperformed Logistic regression as  decreased. This follows the finding of Ng and Jordan 
that Logistic Regression has a lower asymptotic error rate than Naïve Bayes, but Naïve Bayes 
generally performs better when less data is available (or, in this case, when less data about 
malware is available) [23]. 

6.2 Initial Malware Prevalence Investigation 

6.2.1 Design. 
Operational machine learning based malware detection programs need to be optimized for 

low , as even computers with malware on them tend to contain more benign software than 
malware by several orders of magnitude. This is more difficult than , because the 
abundance of benign software tends to increase the false positive rate. Thus, we hypothesized 
that decreasing  would decrease F-measure performance. However, we initially hypothesized 
that performance would still be maximized by training with , as it would provide as 
much information as possible about both malicious and benign software. This experiment 
compares the performance of trials across a variety of  and  using primarily PE32 header 
based features to train decision trees—the highest performing algorithm in the previous 
experiment. 

6.2.2 Results. 
Figure 2 shows the results of the trials involved in this experiment. As  decreases,  

score performance decreases as well. Additionally, trials with  outperform their 
 counterparts.  
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Figure 2  scores of trials over a variety of training and test malware prevalences. Blue bars correspond to trials 

where ; red bars correspond to trials where  is kept at 0.5. Tuples on the x-axis denote the  and 
, respectively. 
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that decision trees are optimized for testing on data with the same class imbalance as the training 
data, or it could be that there is some inherent quality to PE32 header based features (or malware 
and benign software in general) that causes a realistic  to produce better classifiers than 
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effectively detect malware in the wild. Alternatively, it might suggest that PE32 header data, 
while effective in malware classification at higher prevalences, should be replaced by some other 
feature class at lower malware prevalence. 

We also compare the overall effectiveness of several ensemble methods to the effectiveness 
of CART decision tree classifiers, as a non-ensemble baseline. We chose CART decision tree 
classifiers because they performed best in our previous algorithm comparison experiment on 
PE32 header based features. Although other studies have used ensemble methods for malware 
classification [25], and they generally improve malware detection performance compared to 
traditional methods with roughly equal malicious and benign samples [5], ensemble methods 
have not been explicitly compared against single traditional classifiers in the context of reduced 
malware prevalence. 

We ran a trial for every combination of sets of learning methods, , and . Learning 
methods varied among CART, Random Forest, AdaBoost, and Bagging. In order to get a more 
robust idea about the relationship between  and , we varied them among 0.001, 0.01, 0.1, 
0.25, 0.5, 0.75, and 0.9. We built a table for each algorithm displaying a trial’s average  
performance (where  of any  and . The tables identify variations in 
performance as  and  are varied, and show which  yields optimal  for a given . 

6.3.2 Results. 
Average classifier performance at each combination of learning method and malware 

prevalence is shown in Table 1.  scores tend to increase with , and they tend to reach their 
peak within a given  when  is roughly equal to it. While Random Forests and Bagging 
seem to score slightly higher, score differences between the various learning methods are too 
slight to be conclusive. 

6.3.3 Discussion. 
The results of this experiment show that, regardless of learning method or , classifiers 

perform poorly when  is realistically low, no matter how well they perform when . 
Furthermore, for a given learning method and , classifiers usually perform best when  is 
equal to, or nearly equal to, . Thus, for optimal operational performance, a classifier should 
be trained on data with a realistically low proportion of malware. 
Despite performing well regardless of class imbalance in other applications, ensemble learning 
methods fared no better at mitigating class imbalance than decision trees here. Furthermore, they 
did not perform significantly better overall than decision trees. Thus, our hypothesis is 
confirmed, and ensemble methods do not alleviate our concerns about class imbalance for 
malware detection. 
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Fβ results from training on PE Header Features 

Adaboost Decision Trees 
  mtr mtr   

mte 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.001 0.01 0.1 0.25 0.5 0.75 0.9 mte 
0.001 0.470 0.399 0.187 0.090 0.051 0.021 0.012 0.541 0.403 0.176 0.106 0.068 0.038 0.021 0.001 

0.01 0.721 0.823 0.670 0.455 0.315 0.168 0.099 0.827 0.813 0.649 0.503 0.383 0.263 0.159 0.01 

0.1 0.800 0.946 0.946 0.896 0.832 0.688 0.546 0.873 0.952 0.946 0.914 0.871 0.793 0.673 0.1 

0.25 0.804 0.955 0.975 0.959 0.935 0.867 0.786 0.877 0.964 0.976 0.967 0.951 0.919 0.862 0.25 

0.5 0.806 0.958 0.984 0.983 0.977 0.951 0.918 0.877 0.968 0.987 0.986 0.982 0.971 0.950 0.5 

0.75 0.806 0.959 0.988 0.991 0.990 0.983 0.970 0.878 0.969 0.990 0.993 0.993 0.989 0.982 0.75 

0.9 0.806 0.959 0.988 0.993 0.994 0.993 0.990 0.878 0.969 0.991 0.995 0.996 0.996 0.993 0.9 

Bagging Random Forest 
  mtr mtr   

mte 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.001 0.01 0.1 0.25 0.5 0.75 0.9 mte 
0.001 0.539 0.472 0.240 0.143 0.094 0.049 0.025 0.458 0.584 0.262 0.155 0.098 0.052 0.025 0.001 

0.01 0.729 0.859 0.731 0.590 0.473 0.312 0.183 0.584 0.883 0.760 0.612 0.484 0.329 0.182 0.01 

0.1 0.815 0.956 0.961 0.938 0.906 0.833 0.709 0.643 0.957 0.965 0.943 0.910 0.842 0.709 0.1 

0.25 0.820 0.965 0.982 0.975 0.964 0.936 0.881 0.644 0.963 0.983 0.978 0.966 0.939 0.882 0.25 

0.5 0.820 0.967 0.989 0.989 0.987 0.977 0.958 0.650 0.965 0.989 0.990 0.987 0.979 0.957 0.5 

0.75 0.821 0.969 0.991 0.994 0.994 0.992 0.985 0.648 0.966 0.992 0.995 0.995 0.992 0.985 0.75 

0.9 0.821 0.969 0.992 0.996 0.997 0.997 0.995 0.649 0.966 0.993 0.996 0.997 0.997 0.995 0.9 
Table 1  results from training on primarily PE32 header features. Within each row for each algorithm, blue 
indicates relatively good performance, and red indicates relatively poor performance. 

6.4   Windows API Import Features 

6.4.1   Design. 
Windows API imports are statistically different between malware and benign software [9], 

and so could potentially make viable features for machine learning classification. Repeating the 
previous experiment’s ensemble learning trials on a database of features based on Windows API 
imports, the next experiment examines whether or not the class imbalance trends are unique to 
PE32 header based features. We predict that class imbalance is a problem for malware detection 
generally, and thus hypothesize that similar class imbalance trends would be observed for 
Windows API import features as for header features.  

In addition to examining class imbalance trends, we intend to compare the performance of 
classifiers built on API import features to the performance of classifiers built on PE32 header 
based features. 

This experiment used the 2,067 features describing whether each Windows API was or was 
not imported statically in a given PE32 file. The classifiers were trained on these features as is, 
without transforming them or weeding out any unnecessary ones. While such techniques might 
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optimize overall performance, they are not likely to mitigate the effects of class imbalance and 
thus would not contribute to this experiment. 

Because these features are run through the same trials as the previous ensemble learning 
experiment, the results can be directly compared to those for PE32 header features at any given 

 or . 

6.4.2   Results. 
Table 2 shows the average classifier performance from training on Windows API import 

features. As with PE32 header features,  scores tended to increase with , and, within one 
, optimal scores usually occurred when  nearly equalled . Adaboost was the biggest 

exception: for five different values of ,  produced the optimal score.  
Furthermore, the best classifier performance of each  and learning method using PE32 

header data is shown in Figure 3. Similarly, the best classifier performance of each  and 
learning method using Windows API imports is shown in Figure 4. Although the classifiers 
performed fairly well at higher malware prevalence, they also performed poorly when  was 
low, regardless of which feature type they were trained from. Furthermore, the PE32 header data 
yielded better performance than static Windows API imports at the same  in every case. 
Performance trends did not vary greatly across the four machine learning algorithms applied. 
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Fβ results from training on WinAPI Features 

Adaboost Decision Trees 
  mtr mtr   

mte 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.001 0.01 0.1 0.25 0.5 0.75 0.9 mte 
0.001 0.077 0.066 0.096 0.03 0.02 0.002 0.002 0.168 0.168 0.1 0.062 0.046 0.002 0.002 0.001 

0.01 0.369 0.384 0.45 0.227 0.136 0.018 0.016 0.333 0.604 0.483 0.368 0.277 0.019 0.018 0.01 

0.1 0.35 0.544 0.841 0.725 0.619 0.163 0.151 0.458 0.859 0.88 0.839 0.79 0.178 0.168 0.1 

0.25 0.335 0.565 0.892 0.849 0.805 0.369 0.348 0.461 0.883 0.929 0.916 0.898 0.394 0.376 0.25 

0.5 0.338 0.585 0.909 0.906 0.896 0.635 0.614 0.479 0.894 0.945 0.946 0.941 0.659 0.642 0.5 

0.75 0.333 0.592 0.916 0.925 0.933 0.838 0.826 0.479 0.898 0.951 0.956 0.957 0.853 0.842 0.75 

0.9 0.331 0.593 0.918 0.932 0.944 0.938 0.934 0.478 0.9 0.953 0.96 0.963 0.945 0.941 0.9 

Bagging Random Forest Classifiers 
  mtr mtr   

mte 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.001 0.01 0.1 0.25 0.5 0.75 0.9 mte 
0.001 0.154 0.228 0.136 0.079 0.063 0.002 0.002 0.231 0.254 0.161 0.102 0.068 0.002 0.002 0.001 

0.01 0.324 0.669 0.55 0.44 0.354 0.02 0.019 0.253 0.656 0.6 0.487 0.372 0.02 0.018 0.01 

0.1 0.384 0.865 0.897 0.87 0.838 0.181 0.171 0.291 0.843 0.908 0.884 0.845 0.181 0.17 0.1 

0.25 0.369 0.881 0.937 0.927 0.918 0.4 0.382 0.289 0.862 0.94 0.932 0.921 0.399 0.381 0.25 

0.5 0.377 0.889 0.948 0.95 0.949 0.664 0.649 0.298 0.868 0.948 0.952 0.949 0.664 0.648 0.5 

0.75 0.37 0.892 0.952 0.958 0.96 0.856 0.847 0.299 0.871 0.951 0.958 0.96 0.856 0.846 0.75 

0.9 0.367 0.893 0.954 0.961 0.964 0.946 0.943 0.293 0.872 0.952 0.961 0.964 0.946 0.942 0.9 
Table 2  results from training on Windows API import features. Within each row for each algorithm, blue 

indicates relatively good performance, and red indicates relatively poor perforamce. 
 

 
Figure 3 Performance of PE32 header data at varying test malware prevalence. In each column, the  score is 

the maximum achieved at any training malware prevalence. 
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Figure 4 Performance of Windows API imports at varying test malware prevalence. In each column, the  score 

is the maximum achieved at any training malware prevalence. 

6.4.3   Discussion. 
While less strictly so, classifiers trained on import features still achieve optimal performance 

when  is about equal to . AdaBoost was the largest exception, in which the optimal 
performance is at  for each  in the set . Yet even this 
exception does not significantly deviate from the trend, as 0.1 is the median of that set of test 
malware prevalences. Thus, the primary hypothesis behind this experiment is supported by its 
results. 

Additionally, these results show that PE32 header features outperformed Windows API 
import features at any given learning method or malware prevalence: at each , even the worst 
performing learning method trained by header features (Figure 3) scored higher than the best 
performing learning method trained by API import features (Figure 4). While neither of these 
features were optimized by any feature transformations, this comparison is still useful as a novel 
baseline comparison between these two feature categories.  

It should be noted that Windows API imports extracted through static analysis are not 
expected to be useful in operational classifiers for the long term—malware authors could use 
suspicious operating system functions through dynamic methods that thwart static analysis [10], 
which would make malware look nearly identical to benign software under these features. The 
import features for our malware are still significantly different than those of our benign software, 
but this trend could change as malware authors adapt. This potential weakness does not affect the 
goals of this experiment, but it is worth bearing in mind as a disadvantage to relying upon import 
features in the future. 
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6.5   The Effect of  on Feature Utility 

6.5.1   Design. 
Other studies which compare the utility of various features for malware detection do not 

consider the proportion of malware reflected in their training and test samples; it is implicitly 
assumed that the usefulness of features for machine learning based malware detection are 
independent of the  used to train the classifier. This experiment is designed to test this 
assumption; we hypothesize that the relative value of a PE32 header feature for malware 
detection depends upon the proportion of the training data that is malware. In other words, we 
hypothesize that features that are useful at higher malware prevalence can be different from the 
features that are useful at lower malware prevalence. If this hypothesis is verified, it follows that 
a classifier should not be trained using features that were only found to be useful at a higher  
if the classifier is intended to detect malware when trained at a low .  

The importance of this hypothesis hinges on the finding that classifiers perform best when the 
training data has the same proportion of malware as the test data—a finding we have already 
verified for both PE32 header based features and API import based features. Because benign 
software greatly outnumbers malware in practical settings, an optimal operational classifier 
should train at a low . 

In these trials, we separated our database of primarily header based features into several 
databases of isolated features, in which records for each contained just a file’s label, and the 
value of the one isolated feature in the database. We ran trials on each database using 30 sub-
trials (instead of the typical 10) and the random forest classifier—the classifier which arguably 
performed the best, however slightly, among the methods used in the ensemble learning 
experiments. One trial was performed for every combination of  and  from the set 

. We examined the classifier performances at , which is 
presumably low enough to be comparable to a realistic setting. 

These results were used to perform a two-way ANOVA with replication. A two-way ANOVA 
is a statistical test that allows us to isolate the variance in the  performance of two factors, or 
independent variables. The factors used in this experiment are “feature used” and “ ”. Each 
factor can take on one of several values, or categories. For our test, the different categories of the 
Feature factor were the 40 different features based primarily on PE32 header information, and 
the categories of the  factor were 0.001, 0.01, 0.1, 0.25, and 0.5. 

Furthermore, by using replication, which entails providing the ANOVA calculation with the 
results of each of the 30 sub-trials of each trial, we can evaluate the interaction of the two 
features on performance. If an interaction exists, then the variations in performance across the 
different categories within a factor depend upon the category of the other factor.  

The primary result of an ANOVA test is the p-value calculated for each source of variation. 
Sources of variation include both factors and the interaction. The p-value for factors reflects the 
probability that performance variations between factor categories are merely the result of random 
chance; for interaction, the p-value reflects that probability that variations observed between the 
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two factors’ categories are independent of each other. Any p-value below 0.05, which indicates a 
probability below 5%, is significant enough to rule out the possibility that the variations in 
question are due to random chance only. 

For this experiment, we are primarily interested in the p-value associated with the interaction 
of Feature and . If less than 0.05, this p-value implies that the variations in performance 
between different features depends upon mtr. In other words, a significant p-value for interaction 

means that the relative utility of a feature cannot be considered without also considering the 
malware prevalence in the classifiers’ training data. 

6.5.2   Results. 
Table 3 summarizes the results of the ANOVA test. The column Source of Variation contains 

the name of the source of variation assessed in each row.4 The SS column contains the sum of 
squares of each source of variation. The df column reports the degrees of freedom, or the number 
of values in the calculation that are free to vary, for each source of variation. The MS column 
contains the mean squares, or estimated population variance, of each source of variation; MS is 
calculated by dividing SS by df. The F column refers to the "F-statistic", which corresponds to 
how much variance occurs between different trials versus how much variance occurs within the 
sub-trials of each trial; the F-statistic forms the basis for rejecting the possibility that the 
variations of a source of variation are due to random chance only. The p-value (shown in column 
of the same name) will be below 0.05—the value used to indicate significance—when the F-
statistic is above the critical F-statistic, which is shown in the F crit column.  

For this experiment, only the interaction p-value needs consideration. Because the p-value is 
05, we confidently conclude that the differences in performance between the various PE32 header 
factors cannot be considered without also considering the  the classifier was trained at. 

Table 4 helps to illustrate the results of the ANOVA test; it lists the 10 features 6 which, when 
used in isolation for training at the given , produced the top performing classifiers on average 
when tested on a  sample. A qualitative examination of these lists supports the 
ANOVA results: these two lists only share four features in common, and of those common 
features, one, NumLinenums!=0, actually performs better when  versus when 

. 

                                                 
4 “Within” refers to the within-group factors, which examines the variation within the 30 sub-trials of each trial. 

“Total” examines the variation among all observations. Neither are pertinent for this experiment; they are only 
retained for completeness. 

5 The p-value might not literally equal 0, but the precision of Microsoft Excel 2010 cannot distinguish it from 0. 
6 Most of these features reflect the literal header value for which they are named, which are explained in the PE 

specification [11]. Exceptions include those that end in !=0, which are features that equal 1 if any of the 
sections in the PE32 file have a nonzero value for that header data. For instance, NumLinenums!=0 is true for a 
file if that file has any sections in which the NumberOfLineNumbers field is nonzero. Additionally, samplesize 
is the actual size of the PE32 file, and HighEntropy is a feature set to 1 when any section of a file has an 
entropy greater than 7. 
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2-way ANOVA with replication of feature and  

Source of 
Variation SS df MS F P-value F crit 

 7.268943 4 1.817236 309.0962 2.2E-241 2.373464 
Feature 53.10001 39 1.361539 231.5861 0 1.401407 
Interaction 14.77306 156 0.094699 16.1075 0 1.196534 
Within 34.09931 5800 0.005879 

Total 109.2413 5999         
Table 3 Results of a 2-way ANOVA with replication of feature and . Performance is measured by  at 

. The highlighted cell is the p-value of the interation source of variation. 

Top performing isolated PE header features 

  

Feature 
Mean 

F0.33 Std dev Feature 
Mean 

F0.33 Std dev 

BaseOfCode 0.6039 0.1411 BaseOfCode 0.5249 0.1105 

PointerToLinenumbers0 0.2826 0.1698 BYTES_REVERSED_HI 0.3296 0.0974 

NumLinenums0 0.2357 0.1843 BYTES_REVERSED_LO 0.3282 0.0974 

PointerToRelocations0 0.2012 0.1515 NumLinenums0 0.2569 0.1505 

BaseOfData 0.1789 0.1354 PointerToLinenumbers0 0.2433 0.1117 

PointerToSymbolTable 0.1659 0.1613 RELOCS_STRIPPED 0.237 0.024 

AddressOfEntryPoint 0.1608 0.0795 PointerToRelocations0 0.1816 0.1401 

NumberOfSymbols 0.1293 0.1513 SizeOfStackCommit 0.1518 0.0504 

samplesize 0.1035 0.0741 HighEntropy 0.1472 0.0215 

SizeOfInitializedData 0.0996 0.1336 LOCAL_SYMS_STRIPPED 0.147 0.0132 
Table 4 The highest performing isolated features, tested at . Mean  performance is shown, as well 

as the standard deviation of the  performances among the sub-trials of each trial. Highlighted cells indicate 
features that are on both lists. 

6.5.3   Discussion. 
This experiment verifies our hypothesis that the relative utility of our primarily header based 

features depends upon the malware prevalence of the training sample. Previous machine learning 
based malware detection research has generally assumed that, if a feature is found to successfully 
train a classifier at a high , then the feature will remain relatively informative regardless of 

. However, the results of this experiment contradict this assumption. Thus, the only way to 
demonstrate that a feature is useful when malware is a small proportion of the training data is to 
test it in that situation. 
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7 Conclusion 
This research contributes to the development of machine learning based malware detection 

through several major stages. First, it explores the usefulness of features based on PE32 header 
data, finding that, if ensemble learning methods or decision trees are used for learning, they 
compete well with other features that have been examined in the literature. Other studies have 
noted the potential usefulness of PE32 header data before, but our research is the first to use this 
feature source to build a machine learning classifier that discriminates between malware and 
benign software in general. 

However, while features based primarily on PE32 header data led to high performance when 
there was no class imbalance in the training and test data—the norm for academic literature in 
the field—these features performed abysmally in trials where test data had a realistically low 
proportion of malware. This led us to explore the issue of class imbalance as it applies to 
malware detection, an issue that we have not seen the literature address. Through our 
experiments, we found that classifiers tend to achieve optimal performance when the prevalence 
of malware in the training data roughly equals the prevalence of malware in the test data. This 
trend held regardless of learning method used and for two distinct sets of features: features 
derived from PE32 header data and features derived from static Windows API function imports. 
Even when using ensemble learning methods, which have been able to classify relatively well 
regardless of class imbalance in other machine learning applications, they did not appreciably 
mitigate this trend. Thus, if machine learning based malware detection software is to be used for 
operational malware detection, the classifiers in that software should train on data with a 
realistically low proportion of malware. That said, even our best classifiers did not perform 
satisfactorily on test data with a low malware prevalence, so further research is necessary before 
machine learning based malware detection can substantially augment current antivirus software. 

The final contribution of this research lies in its investigation of the relationship between 
training malware prevalence and the usefulness of features for malware detection. Previous work 
has implicitly assumed that the usefulness of a feature is independent of the malware prevalence 
of training data. However, the experiments in this research show that training malware 
prevalence significantly impacts the relative utility of features derived primarily from PE32 
header data, contradicting the aforementioned assumption. Thus, in order to demonstrate that a 
feature is useful for malware detection when using a particular malware prevalence for training, 
it must be demonstrated as such at that particular malware prevalence. 

This finding will be important as long as optimal malware detection classifiers can only be 
obtained by training at the same malware prevalence that one expects to test at. Since malware is 
relatively rare in practical settings, classifiers must be trained on data in which malware is 
equally rare. To show that a feature is useful for practical malware detection, then, its relative 
utility must be demonstrated on training and test data with a realistically low malware 
prevalence. Furthermore, to show that one class of features is better than another for training 
machine learning based malware detection classifiers, the advantage of a class must be 
demonstrated over a range of training and test malware prevalences. Our comparison between 
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features derived from header data and API function imports, in which features derived from 
header data performed substantially better regardless of malware prevalence, provide an example 
of such a comparison. Without following this procedure, further studies cannot convincingly 
highlight a set of features for their practical effectiveness in machine learning based malware 
detection. 
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