

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis was performed at the MOVES Institute

Approved for public release; distribution is unlimited

DEVELOPMENT OF A WEB-BASED DISTRIBUTED
INTERACTIVE SIMULATION (DIS) ENVIRONMENT

USING JAVASCRIPT

by

Chen-Fu Hsiao

September 2014

Thesis Advisor: Christian J. Darken
Thesis Co-Advisor: Donald McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DEVELOPMENT OF A WEB-BASED DISTRIBUTED INTERACTIVE
SIMULATION (DIS) ENVIRONMENT USING JAVASCRIPT

5. FUNDING NUMBERS

6. AUTHOR(S) Chen-Fu Hsiao
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

This thesis investigated the current infrastructure for web-based simulations using the DIS network
protocol. The main technologies studied were WebSockets, WebRTC and WebGL. This thesis sought
readily available means to establish networks for interchanging DIS message (PDUs), so the WebSocket
gateway server from Open-DIS project was used to construct a Client-Server structure and PeerJS API
was used to construct a peer-to-peer structure. WebGL was used to create a scene and render 3D models
in browsers. A first-person-shooter tank game was used as a test application with both WebSocket and
WebRTC infrastructures.

Experiments in this thesis included measuring the rate of sending and receiving DIS packets and
analysis of the tank game by profiling tools. All the experiments were run on Chrome and Firefox browsers
in a closed network.

The experimental results showed that both WebSocket and WebRTC infrastructures were competent
enough to support web-based DIS simulation. The results also found the significant differences of
performance between Chrome and Firefox. Currently, the best performance is provided by the combination
of Firefox using the WebRTC framework. The analysis of the tank game showed that most of the browser’s
computational resources were spent on the WebGL graphics, with only a small percentage of the
resources expended on exchanging DIS packets.

14. SUBJECT TERMS Distributed interactive simulation (DIS), WebSocket, WebRTC,
WebGL, client-server, peer-to-peer, web-based simulation

15. NUMBER OF
PAGES

113
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEVELOPMENT OF A WEB-BASED DISTRIBUTED INTERACTIVE
SIMULATION (DIS) ENVIRONMENT USING JAVASCRIPT

Chen-Fu Hsiao
Captain, Republic of China (Taiwan) Air Force

B.S., Chung Cheng Institute of Technology, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
 MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Chen-Fu Hsiao

Approved by: Christian J. Darken
Thesis Advisor

Donald McGregor
Thesis Co-Advisor

Christian J. Darken
Chair, MOVES Academic Committee

Peter J. Denning, Ph.D.
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigated the current infrastructure for web-based simulations

using the DIS network protocol. The main technologies studied were

WebSockets, WebRTC and WebGL. This thesis sought readily available means

to establish networks for interchanging DIS message (PDUs), so the WebSocket

gateway server from Open-DIS project was used to construct a Client-Server

structure and PeerJS API was used to construct a peer-to-peer structure. WebGL

was used to create a scene and render 3D models in browsers. A first-person-

shooter tank game was used as a test application with both WebSocket and

WebRTC infrastructures.

Experiments in this thesis included measuring the rate of sending and

receiving DIS packets and analysis of the tank game by profiling tools. All the

experiments were run on Chrome and Firefox browsers in a closed network.

The experimental results showed that both WebSocket and WebRTC

infrastructures were competent enough to support web-based DIS simulation.

The results also found the significant differences of performance between

Chrome and Firefox. Currently, the best performance is provided by the

combination of Firefox using the WebRTC framework. The analysis of the tank

game showed that most of the browser’s computational resources were spent on

the WebGL graphics, with only a small percentage of the resources expended on

exchanging DIS packets.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
II. BACKGROUND .. 5

A. MOTIVATION ... 5
B. TECHNOLOGIES ... 6

1. Networking ... 6
2. DIS Protocol ... 7
3. JavaScript... 8
4. Web Server with WebSockets ... 9
5. WebRTC .. 9
6. WebGL .. 12
7. JSON DIS Format ... 12
8. Binary DIS Format ... 13

III. EXPERIMENTAL DESIGN ... 15
A. NETWORKING FRAMEWORK ... 15

1. Client-Server Architecture (WebSocket) 15
a. Open-DIS WebSocket Gateway Server 15
b. Framework ... 16

2. Peer-to-Peer Architecture (WebRTC) 16
a. PeerJS .. 17
b. Framework ... 17

B. PERFORMANCE WITH WEBGL ... 18
1. Without WebGL Elements ... 18
2. With WebGL Elements .. 19

a. 3D Models .. 19
b. Game Design ... 19

C. PERFORMANCE IN DIFFERENT BROWSERS 21
IV. IMPLEMENTATION .. 23

A. SERVER PREPARATIONS ... 24
1. WebSocket Gateway Server and Web Server 24
2. WebRTC: PeerServer and Primary Peer 25

B. BROWSER INITIATIVE PROCESSES AND BEHAVIORS 25
1. Import Libraries ... 26

a. WebSocket ... 26
b. WebRTC ... 26
c. WebGL ... 26
d. Others .. 26

2. Checking Web Browser Brand and Initiating WebSocket
or WebRTC ... 27
a. WebSocket ... 27
b. WebRTC ... 28

3. Create Canvas, Scene, Camera, and Own Entities 30

 viii

4. Game Control and Graphics Rendering............................... 31
5. Convert Coordinate Systems .. 33
6. Send DIS Packets .. 35
7. Receive and Decode DIS Messages 37

a. Receive by WebSocket ... 37
b. Receive by PeerJS .. 37
c. Decoding DIS Messages ... 38

8. Miscellaneous .. 40
a. Loading 3D Objects .. 40
b. Entity Collision Detection ... 41
c. Checking Existence .. 42
d. Dead Reckoning .. 42

V. PERFORMANCE TESTS .. 43
A. SENDING AND RECEIVING ABILITY ... 43
B. PROFILING JAVASCRIPT PERFORMANCES 51
C. NETWORK LOADING TIME .. 55

VI. RESULT DISCUSSIONS .. 59
A. SENDING AND RECEIVING EFFICIENCY 59
B. JAVASCRIPT PERFORMANCE .. 62

1. Chrome Developer Tools .. 62
2. Firefox Developer Tools .. 64

C. LOAD OF NECESSARY ARCHIVES ... 65
D. GAME SCALABILITY .. 66

VII. CONCLUSION AND FUTURE WORKS ... 69
A. CONCLUSION ... 69
B. FUTURE WORKS .. 71

1. Performance Tests and Web Applications on Mobile
Devices ... 71

2. Improvement of WebRTC Sending Capability in Chrome
Browser and Benchmark Test .. 72

3. Disadvantages of Web-based Simulation 73
4. Feasibility of Other Web-based DIS Applications 73
5. Performance Tests in Public Networking Environments ... 73

APPENDIX A. TABLE OF ENTITY STATE PDU FIELDS 75
APPENDIX B. FIREFOX DEVELOPER TOOLS PERFORMANCE PROFILE

RESULTS ... 77
A. APPENDIX B-1. FIREFOX PROFILING OF SENDING ESPDUS 77
B. APPENDIX B-2. SENDING SECTION IN APPENDIX B-1 78
C. APPENDIX B-3. FIREFOX PROFILING OF RECEIVING ESPDUS .. 79

APPENDIX C. TANK GAME RESULTS .. 81
A. APPENDIX C-1. FIREFOX PROFILING IN THE WEBSOCKET

FRAMEWORK ... 81

 ix

B. APPENDIX C-2. FIREFOX PROFILING IN THE WEBRTC
FRAMEWORK ... 82

APPENDIX D. NETWORK LOADING TIME ... 83
APPENDIX E. COMPARISONS OF RECEIVING FIRST TEN 10,000 DIS PDUS

IN THE LINEAR FORM... 85
APPENDIX F. SCREENSHOTS OF MULTIPLAYERS IN THE TANK GAME...... 87
LIST OF REFERENCES .. 89
INITIAL DISTRIBUTION LIST ... 93

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. JSEP architecture(from Dutton, 2013). ... 11
Figure 2. WebSocket networking framework. .. 16
Figure 3. WebRTC networking framework. .. 18
Figure 4. Tank game design. ... 21
Figure 5. Experimental environment. ... 24
Figure 6. Install and execute PeerServer. ... 25
Figure 7. Relationships of importing libraries and other JavaScript programs. .. 27
Figure 8. Creating WebSocket code. ... 27
Figure 9. Initiate a PeerJS client. ... 28
Figure 10. Architecture and sequences of creating peer connections. 29
Figure 11. Creating canvas in a web page. ... 30
Figure 12. Creating scenes and adding graphical elements. 31
Figure 13. Creating tank meshes and ESPDUs in ourEntity objects. 31
Figure 14. Function of keydown events. .. 32
Figure 15. Function of keyup events and window event handlers. 33
Figure 16. Earth centered, earth fixed; and east, north, up coordinates

(“Axes conventions,” n.d.) ... 34
Figure 17. Conversion between ECEF and ENU. .. 35
Figure 18. Heartbeat function. ... 36
Figure 19. PeerJS sending method. .. 36
Figure 20. Set format and attach functions. ... 37
Figure 21. PeerJS event listener. .. 37
Figure 22. Example code of receiving events function. 38
Figure 23. Example code of dis.PduFactory(). .. 39
Figure 24. Code of updating entity states and 3D model. 41
Figure 25. MeasureDIS function for sending DIS packets. 44
Figure 26. Measuring function of receiving DIS packets in WebSocket. 44
Figure 27. Measuring function of receiving DIS packets in PeerJS. 45
Figure 28. Purely sending and receiving capabilities. .. 46
Figure 29. Purely receiving capabilities. .. 47
Figure 30. Comparisons of receiving capabilities between the presences of

WebGL. .. 48
Figure 31. Running measureDIS function for a long period-of-time. 52
Figure 32. Running measureDIS function for a short period-of-time. 52
Figure 33. Tank game profile using WebSocket framework in Chrome. 54
Figure 34. Tank game profile using WebRTC framework in Chrome. 55
Figure 35. Screenshot of tank model. .. 56
Figure 36. Screenshot of terrain model. .. 57
Figure 37. Comparisons of receiving first ten 10,000 DIS PDUs. 61
Figure 38. A Chrome profiling sample of invoking one renderFunc function. 63
Figure 39. A Chrome profiling sample of invoking one websocket.onmessage

and one heartbeat function. .. 64

 xii

Figure 40. A Firefox profiling sample of invoking renderFunc functions. 65
Figure 41. Firefox profiling of sending ESPDU in the WebSocket framework. 77
Figure 42. Sending section in Appendix B1. .. 78
Figure 43. Firefox profiling of receiving ESPDU in the WebSocket framework. ... 79
Figure 44. Firefox profiling of the tank game in the WebSocket framework. 81
Figure 45. Firefox profiling of the tank game in the WebRTC framework. 82
Figure 46. Network loading time. ... 83
Figure 47. The comparisons of receiving first ten 10,000 DIS PDUs in the

linear form. ... 85
Figure 48. Screenshots of multiplayers in the tank game I. 87
Figure 49. Screenshots of multiplayers in the tank game II. 87
Figure 50. Screenshots of multiplayers in the tank game III. 88
Figure 51. Screenshots of multiplayers in the tank game IV. 88

 xiii

LIST OF TABLES

Table 1. TCP, UDP, and SCTP comparison (from Ristic, 2014). 11
Table 2. t-tests of receiving capability in WebSocket and WebRTC

frameworks without WebGL components. The experiment at left
had the higher performance. .. 49

Table 3. t-tests of receiving capability between browsers without WebGL
components in WebSocket framework. .. 49

Table 4. t-tests of receiving capability between browsers without WebGL
components in WebRTC framework. .. 50

Table 5. t-test between presences of WebGL components 51
Table 6. Fields of entity state PDU. .. 76

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

API Application programming interface
CC Chrome sent to Chrome browser
CF Chrome sent to Firefox browser
CPU Central processing unit
CSS Cascading style sheets
DIS Distributed interactive simulation
DTLS Datagram transport layer security
EBV Enumeration and bit encode values
ECEF Earth-centered, Earth-fixed
ENU East, north and up
ESPDU Entity state PDU
FC Firefox sent to Chrome browser
FF Firefox sent to Firefox browser
FSP Frames per second
GPU Graphics processing unit
GUI Graphical user interface
HOV High-occupancy vehicle
HTML Hypertext markup language
IDE Integrated development environment
IEEE Institute of electrical and electronics engineers
IETF Internet engineering task force
JBUS Joint simulation bus
JCATS Joint conflict and tactical simulation
JIT Just-in-time
JSEP JavaScript session establishment protocol
JSON JavaScript object notation
LVC Live, virtual, and constructive
MOVES Modeling, virtual environments and simulation
OneSAF One semi-automated forces
OS Operating system

 xvi

PDU Protocol data unit
SCTP Stream control transmission protocol
SDP Session description protocol
SISO Simulation interoperability standards organization
SSL Secure sockets layer
SVG Scalable vector graphics
TCP Transmission control protocol
TCP/IP Transmission control protocol/Internet protocol
UDP User datagram protocol
VBS2 Virtual battlespace 2
W3C World wide web consortium
WebGL Web graphics library
WebRTC Web real-time communication
WWW World wide web

 xvii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and thanks to my Advisor,

Professor Christian Darken, and co-Advisor, Donald McGregor, for their expert

guidance and endless patience. Their assistance on web-based 3D graphics

knowledge, DIS networking interoperability and other technique support was

priceless. In addition, I also want to thank the MOVES faculty who prepared an

admirable laboratory for supporting my thesis experiments. Finally, a special

thanks to my family, JETC colleagues, and friends, who gave me invaluable

support and help, so I could focus on achieving my study and research.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In the military domain, simulation is widely used for training, education,

and analysis. Many simulation systems have been developed to support different

missions, such as flight simulators for training and educating pilots, or Virtual

Battlespace 2 (VBS2) for educating platoon leaders. After multiple simulation

systems have been established, users may want to integrate them for joint

training purposes. Therefore, the requirement for interoperability among systems

becomes an important topic.

In the 1990s, the Simulation Interoperability Standard Organization (SISO)

reached an agreement on a distributed interactive simulation (DIS) protocol.

SISO also had the DIS protocol ratified as an IEEE standard, so it is now

available for anyone to read and implement. Currently, the DIS protocol has been

used to develop many simulation systems or communicate among existing

systems by formatting the exchanged data. There are many existing simulation

systems that have implemented the DIS protocol by different programming

language (Rogerson, 1997; McGregor, Brutzman & Grant, 2008). One purpose of

military simulation is to construct a live, virtual and constructive (LVC)

environment for military training, education, and analysis (Farlane et al., 2004).

“Live” refer to real people operating real systems such as real pilots flying F-16

fighters. “Virtual” refers to real people operating simulated systems, such as real

drivers in high-occupancy vehicle (HOV) simulators. “Constructive” describes a

simulation in which both people and systems are simulated such, as a simulated

opponent force—an opponent fighter with AI—in a simulated system. In order to

achieve LVC architecture, simulation systems have to exchange information with

each other, and DIS protocol represents a standardized format for

communicating data.

With the developments of web technology and the improvements of

computer performance, more and more applications can be run in web browsers.

This thesis implemented several web technologies that mainly included

 2

WebSocket, WebRTC, and WebGL to discuss the feasibility of applying DIS

protocol to multiple-user web-based simulation. The client/server and peer-to-

peer architectures can be used to develop web-based simulations, and their

respective technologies are WebSocket and WebRTC. This thesis compared the

performance of sending and receiving DIS messages in these two different

networking architectures, and incorporated WebGL components to develop a

first-person-shooter game to analyze the performance in different browsers.

This thesis also discussed the advantages of web-based simulation. The

features of web-based simulation are easier to upgrade (centralized content), are

cross-platform, and are widely accessible via computers, tablets, and mobile

devices. For example, when people want to execute simulation systems, they

have to set up an environment for execution. This environment includes a

physical desktop setup, an operating system install, a simulation software install,

and a peripheral device setup. Typically, computers have pre-installed operating

systems with peripheral device setups. The simulation system, however, has to

be installed additionally, and each one has its own compatible operating system

(e.g., Windows 7, Windows Server 2012, UNIX, and different versions of Linux).

When users want to run a specific simulation system on computers, they have to

check and configure all operating systems and system setups before running the

simulation. The computer preparation for running this specific simulation system

may be a tedious and inefficient process.

Web-based simulation can relieve the above situation and increase the

efficiency of system readiness. Nowadays, the major browsers that most people

use on desktop and laptop computer are Chrome, Firefox, Internet Explorer, and

Safari. All the experiments, comparisons and analysis in this thesis, however,

were run in Chrome and Firefox because both Chrome and Firefox support the

same web technologies. In addition, both Chrome and Firefox provide installers

for mainstream operating systems such as Windows, Mac OS, and Linux, so

web-based simulation can run on almost every operating system through these

two platforms (Chrome and Firefox).

 3

The thesis begins by describing the motivation and the benefits of

browser-based simulation and outlining the technologies for constructing the

infrastructures. Next, the thesis describes design and implementation for testing

the performance among several variables. The latencies and the results were

discussed at the end with commentary for future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

In the past, developing a networked and interactive simulation system

usually required complex programming skill. Many programming language and

technologies have been developed to reduce the complexity of programming.

The following sections describe motivations and several present technologies for

developing a small-scale and interactive simulation.

A. MOTIVATION

With the prosperity of the Internet, more and more web applications have

been developed. With the development of web technologies and the increasing

of computational power, the possibility of developing interactive and complicated

applications in web is promising, and because of the elements of interaction and

logical computation capability, web-based simulation systems are more

achievable. Web-based simulation is exploiting resources and technologies

offered by the World Wide Web (WWW) to represent traditional simulation

systems (Fishwick, 1996). In other words, web-based simulation uses web

browsers as graphical interfaces to link users and simulation systems. The

benefits of exploiting web-based simulation are cross-platform, collaboration,

model reusing, deployment, wide availability, versioning control, etc. Modern

browser companies provide browser installers for different operating systems,

and most modern browsers support the same web technologies (e.g., JavaScript,

JSON, binary data format, WebGL, and WebSocket), which increases the cross-

platform capability. Collaboration is useful in that web simulations can be

designed to help people involved in a common task to accomplish goals. Model

reusing is that many existing 3D graphic formats such as .dae, .obj, .blend can

be imported into web applications, so software engineers can focus on the

design of web applications rather than making 3D models. Web applications also

increase their accessibility and deployment to users because every operating

system has its compatible browsers that support the same web technologies. On

 6

server side, web applications can ease the burden of versioning control for

system managers. They only need to update archives on server and ask users to

reload and refresh web contents. Additionally, web applications are easy to

execute because browsers do not need further configuration or plug-in to run

applications. For the military domain, state-of-the-art web technologies can not

only construct web-based simulations (McGregor & Brutzman, n.d.), but also

enable communication between web applications such as Google Maps and

existing simulation systems such as VBS2, OneSAF, and JCATS via proper

gateways(McGregor, Blais, & Brutzman, n.d.). The ability of interoperating with

other systems increases the practicability of web-based simulation. Furthermore,

inventors of web technologies also ease the learning curve of developing web

applications. HTML5 and JavaScript are easy to learn and practice programming

languages, and developers do not require compilation JavaScript manually or

extra procedures for users to run web applications.

B. TECHNOLOGIES

In order to establish a web-based simulation with the abilities of easy

deployment and maintenance, many elements have to be applied. These include

networking architecture, DIS protocol, JavaScript, web server with WebSocket,

Web Real-Time Communication (WebRTC), WebGL, JSON format DIS, and

binary format DIS messages.

1. Networking

Networking is separated into five layers: application, transport, network,

link, and physical. Most of the applications are implemented in the application

layer over TCP/IP protocol, a framework for communication between devices.

TCP/IP is a software concept that allows one machine to send bytes to another,

without knowing the content or meaning of those sent bytes. Applications are

used to interpret TCP/IP sending data. Modeling and simulation (M&S)

networking protocols are standardized in the application layer, and all the M&S

applications such as JCATS and OneSAF relay on this layer, too.

 7

Network architecture usually contains more than two hosts (Steed &

Oliceira, 2010, Ch. 4) in military simulations, so it is important to define models

for multi-host connections: simple peer-to-peer, peer-to-peer with master host,

peer-to-peer with rendezvous server, and client/server. Simple peer-to-peer

communication means that each host has a configuration file to record necessary

information of all the participants (as well as address/port data) and then sends

updates to all the other hosts within the network group. Peer-to-peer with master

means that one the participants will be the rendezvous access point. The

rendezvous point has a well-known IP and port number, so any host who wants

to join the network can obtain other participant information from the master. The

advantage over the simple peer-to-peer model is that there is no need to collect

every participant’s IP address, port number and other information beforehand.

The peer-to-peer with rendezvous server model uses a server that has

information for all participants. Every host who wants to join the network has to

connect to the rendezvous server first to ask for network environment

information. The difference between peer-to-peer with master and peer-to-peer

with rendezvous server is that the master is one of the network participants but

the rendezvous server, who is not a participant in the network, is only the

distributor with all the hosts’ information for a new host who wants to join the

network. Client-server architecture means that each host connects to the server,

and the server is responsible for every communication between hosts.

2. DIS Protocol

DIS is a standardized protocol used to communicate and exchange

information in a multiplayer simulation system (DIS IEEE Std 1278.1-2012–

Standard for Distributed Interactive Simulation–Application Protocols, 2012). It

also allows two or more different types of simulators to interact or interoperate,

especially those simulators that have human-in-the-loop elements. For example,

a joint forces exercise uses ship simulators and flight simulators to train the

capability of cooperation. The method that DIS uses to interchange information is

based on protocol data unit (PDU) messages; there are many kinds of PDUs,

 8

such as entity state PDU (ESPDU), detonation PDU and entity damage status

PDU. Different PDUs have different lengths and fields to contain the variety of

information, so simulation system can communicate with each other by sending

and receiving PDUs. Although there are many kinds of PDUs with different fields

for restoring information, every PDU starts with the same header that is used to

differentiate PDU types when receiving DIS packets. Appendix A displays a table

containing entity state PDU fields, and shows that the common PDU header used

the first 96 bits. The table also shows the other fields of ESPDU. ESPDU is the

most frequent PDU in DIS simulation, and it is used for interchanging the

information of entity’s state. The information includes entity ID, entity type,

location and orientation in the simulated world, entity appearance, entity

capabilities, etc.

The DIS uses a heartbeat strategy, in which entities periodically send out

their PDUs even if they do not change their properties or states. A critical issue,

however, is the rate at which each entity sends its PDUs—sending data too often

would cause networking congestion, latency or losing data, etc. In a large-scale

scenario, some of the entities are relatively slow or even in a static state (e.g.,

tanks or infantry), but some of the entities move quickly (e.g., airplanes).

Therefore, the developer has to set different update rates for different kinds of

entities to avoid redundant DIS packets transferring in network. Another principle

is not to let the late-joining hosts wait too long for those slow-moving entities. DIS

simulation is mainly used in military domains, and it usually assumes that DIS

simulation is implemented in a high-performance intranet with high security, one

in which participants will not send fake or swindling messages. Additionally, in

order to simplify data transfer, DIS usually broadcasts or multicasts its PDUs

based on UDP socket.

3. JavaScript

JavaScript is the scripting language of the web, and all modern web

browsers support JavaScript (w3schools, n.d.). JavaScript lets browsers have the

 9

capability of logical computation and client-side scripting that let users change or

interact with web content depending on user input, which is in contrast with

server-side scripts such as PHP, Java and Python (Flanagan, 2011; Powers,

2010).

4. Web Server with WebSockets

Traditional web servers only talks to a user’s page once, when user loads

the content from the web server; this is because the web pages were designed to

be static originally. This causes a problem for web pages that need highly

interaction with users. With WebSocket, JavaScript opens a TCP socket to

establish a communication channel to the server and request this special type of

TCP socket to be opened for delivering arbitrary application protocols between

client and server (Grigorik, 2013, Ch. 17). This specialized TCP socket can

remain open, so web pages can keep updating its contents periodically with

some JavaScript program. Furthermore, WebSocket also has features of low

latency compared to HTTP polling; and higher bandwidth. WebSocket makes

possible to run interactive and real-time applications in web browsers.

5. WebRTC

WebRTC—whose API is defined by W3C and protocol is defined by

IETF—is a plugin-free real-time communication API that is used for high-quality

audio, video and data communication with low cost (“WebRTC,” n.d.). The

features of WebRTC are binding a UDP socket, peer-to-peer connection, and

cross-platforms interaction. Four main tasks for WebRTC are acquiring audio and

video, establishing a connection between peers, communication audio and video,

and communicating arbitrary data. In order to achieve the above tasks, three

main JavaScript APIs–MediaStreams (a.k.a. getUserMedia),

RTCPeerConnection and RTCDataChannel are applied. So far, WebRTC can

run in Chrome, Firefox, and Opera.

MediaStreams, acquiring audio and video, represents a stream of

synchronized media, and it can contain multiple audio and video tracks. To

 10

obtain a MediaStream, JavaScript provides a method called

navigator.getUserMedia(). When invoking navigator.getUserMedia(), a web

browser will pop out a HTTPS prompt and ask the user’s permission for

accessing the camera and microphone. While developing web apps using

WebRTC API, developers can combine video and audio streams with JavaScript

Canvas and WebGL. In the mobile devices with multiple cameras or

microphones, users can choose input devices through WebRTC API. Another

function of WebRTC is getUserMedia() for capturing user’s screen, which is

useful for desktop sharing or online remote teaching.

RTCPeerConnection is implicitly used for audio and video communication

between peers. A web browser takes the media streams from getUserMedia(),

plugs them into the peer connection and sends them off to the other side. The

peer connection is responsible for many things (e.g., signal processing, codec

handling, peer to peer connection, security, and bandwidth management).

WebRTC hides most of the complexity from web developers, so developers can

get media streams easily and plug them into peer connection.

RTCPeerConnection, however, needs servers to broker a connection when the

peers want to make connections. Therefore, a process called signaling is

applied, which is like making a telephone call. When a caller makes a phone call,

the telephone network sends a message to a callee. After the callee answers the

call, the callee sends a message back to activate a connection. WebRTC does a

similar thing. When a peer wants to establish a connection, its application first

signals to the server and then sends session description objects that contain

parameters and Internet information to the browser for setting up the peer-to-

peer route. Figure 1 describes the technique of making peer-to-peer connections

between browsers. WebRTC allows users using any mechanism, protocol, or

even JSON to make connections to maximize compatibility with established

technologies, which is defined by JavaScript session establishment protocol

(JSEP) (Dutton, 2013).

 11

Figure 1. JSEP architecture(from Dutton, 2013).

RTCDataChannel is a bidirectional communication of arbitrary data

between peers, and all the data is encrypted by Datagram Transport Layer

Security (DTLS), which is a derivative of SSL. RTCDataChannel is much like a

WebSocket, but it relies on the Stream Control Transmission Protocol (SCTP),

which runs on top of the UDP socket. A comparison of TCP, UDP, and SCTP is

in Table 1. Based on the features of SCTP, RTCDATAChannel is suitable for

arbitrary data transfer or multiplayer gaming.

Table 1. TCP, UDP, and SCTP comparison (from Ristic, 2014).

 12

6. WebGL

Web graphics library (WebGL) is a JavaScript API for rendering 2D or 3D

graphics in any compatible browser (i.e., most modern browsers such as IE

v11.0, Opera v23.0, Chrome v36.0, Firefox v31, or Safari v7) (Deveria, n.d.-a).

WebGL can be used for processing 2D images, creating visually 3D graphics and

visualizing different kinds of data. For example, D3.js is a JavaScript API that

visualizes varieties of data in browsers by using HTML, SVG, and CSS. Many

WebGL libraries are game engines for rendering graphics in browsers; these

include pixi.js, Phaser, and three.js. WebGL provides the web pages with the

capability of efficiently creating interactive 2D and 3D graphics to simulate

objects in web-based simulations.

7. JSON DIS Format

JavaScript Object Notation (JSON) is a text-data format that facilitates

data interchange between different languages (“JSON,” n.d.). The purpose of

JSON is to store and exchange text information. It is like XML, but smaller, faster,

and easier to parse. JSON is used to describe data objects not only for

JavaScript, but also for other programming languages. It is language-

independent because most of the programming languages have their own

methods and libraries to parse JSON text. JSON and JavaScript syntactically use

the same method to describe objects, so when JavaScript receives JSON format

files, JavaScript uses a built-in eval() function to generate JavaScript objects.

JSON format is based on two kinds of structure: pairs of name and value, and

ordered lists. Pairs of name and value is similar to object, record, struct,

dictionary, hash table, keyed list, or associative array in other languages.

Ordered list is like array in other languages.

DIS protocol can be formatted in the form of JSON, which uses a tag-

value approach to make JavaScript objects containing PDU information. This DIS

JSON can be sent by WebSocket or WebRTC API after invoking JSON.stringify(),

a JavaScript method, to convert a JavaScript object to JSON. Another browser

 13

can receive this DIS JSON and decode as a JavaScript object. Although JSON

exchanges data well, it has some inevitable drawbacks. JavaScript object uses a

tag-value approach, so both publisher and subscriber must have agreement

regarding field names in the messages. This feature increases the flexibility of

creating objects, but it uses more bandwidth in messages.

8. Binary DIS Format

DIS protocol has been approved by IEEE, and it is widely used in many

existing simulation applications. Using binary format to exchange messages

between browsers has a better performance than JSON. Not only the message

size in DIS binary is smaller than JSON with full DIS messages, but also the

decoding speed in DIS binary is faster than JSON messages (McGregor et al.,

n.d.). Another advantage of binary DIS format is that DIS is a standardized

protocol, and using it eliminates the intermediary gateways for protocol

translation. Additionally, many existing gateways convert different protocols into

DIS protocol such as JBUS—Joint Simulation Bus—and this increases the

interoperability between existing simulation systems and web-based simulations.

Using the above elements—which included networking, DIS protocol,

programming language, web server with specialized TCP socket, WebRTC, 3D

graphics, and DIS JSON formatting or binary formatting message—it is possible

to create an interactive web-based simulation with human-in-the-loop features.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. EXPERIMENTAL DESIGN

To understand the performance of running DIS in browsers, this thesis

created an experimental design with several variables that included networking

framework (WebSocket and WebRTC), application of WebGL and different

browsers. The experimental devices included a wired router, two desktop

computers as clients and one laptop computer as WebSocket server and

WebRTC server. The specifications of the two desktop computers are as follow:

Intel® Xeon® CPU E5-1603 0 @ 2.8 GHz, 6 GB memory, NVIDIA Quadro 4000

graphics card, and Windows 7 64-bit operating system. The specifications of the

server are as follow: Intel® Core™2 Duo CPU L9400 @ 1.86 GHz, 2 GB memory,

NVIDIA GeForce 320 M graphics card and Windows 7 32-bit operating system.

A. NETWORKING FRAMEWORK

There are many ways to make communication among computers, such as

client-server architecture or peer-to-peer architecture. Because of the emergence

of web technologies (WebSocket and WebRTC), many networking architectures

can be applied to web-based applications.

1. Client-Server Architecture (WebSocket)

WebSocket is a TCP-based socket, which means it has all the features of

TCP socket such as reliable and ordered data interchange, and it can be used to

transport arbitrary data type for different web applications.

a. Open-DIS WebSocket Gateway Server

Open-DIS is an open-source implementation of the DIS protocol in many

languages (McGregor, Grant, Smith, Harder & Snyder, n.d.). It was developed

mainly by the Modeling, Virtual Environment, and Simulation (MOVES) Institute

at the Naval Postgraduate School. From the Open-DIS official website, users

can download a “javascript.zip” archive to obtain WebSocket gateway server.

The archive has example applications including sending and receiving native DIS

 16

messages and WebSocket/Javascript/WebGL applications. For this experiment,

the WebSocket application was run in NetBeans, which is a free integrated

development environment (IDE) for developing desktop, mobile and web

applications with JAVA, C++, HTML5, JavaScript and more.

b. Framework

The DIS implementation of WebSocket gateway server is client-server

architecture, shown in Figure 2. Every DIS message that is sent from the web

browser must go through the WebSocket gateway server. The server will repeat

received DIS messages to all connected web browsers. Because all the client

browsers are connected to the server, the server plays a vital role in a client-

server web-based simulation. If the server loses its networking connection, all the

browsers will lose their ability to interoperate, and then the web-based simulation

will become a single-player game or crash.

Figure 2. WebSocket networking framework.

2. Peer-to-Peer Architecture (WebRTC)

Unlike the WebSocket, WebRTC uses UDP sockets that have no flow

control and no congestion control. They are also unreliable and offer unordered

data exchange to transfer data. The WebRTC data channel, however, uses

SCTP—which is a protocol on top of the UDP sockets—to configure data

reliability and to order and control data flow and congestion. The networking

architecture of WebRTC is like a peer-to-peer with rendezvous server model.

 17

a. PeerJS

PeerJS is an application programming interface (API) based on WebRTC

(Bu & Zhang, n.d.). It wraps WebRTC implementation and provides a fully

documented and easily configurable API for developers to create peer-to-peer

connections in web browsers with nothing but a unique ID. Client browser

creates a unique ID and connects to PeerServer, and the server uses this ID to

identify and deliver connection information to the prospective peers. The ID is

formed with numbers and letters. If a client browser connects to a PeerServer

without a unique ID, the PeerServer would create an ID for this active client. If a

client-browser connects to a PeerServer with an ID that has been used for other

client browser, this client would connect as failed, and the server would respond

with error messages to the client.

On each connection between a pair of browsers, audio, video, and

arbitrary data can be sent. Although WebRTC is peer-to-peer connections, the

client’s browser must first signal to a PeerJS server to get connection information

that is based on a session description protocol (SDP). WebRTC uses SDP to

describe a session profile, which contains information such as transportation

address, media information, and related metadata. Browsers use this session

profile to create peer connections. PeerJS provides PeerServer on Cloud, a

public server that everyone can use by registration on the PeerJS Website, and

PeerServer application for installation in a private network.

b. Framework

This thesis used PeerJS to create a data channel to interchange DIS

messages between peers. The framework is in Figure 3. Before a peer-to-peer

connection, each peer has to initially connect to a PeerServer to get another

peer’s information and a web server to receive web content. Once the peer

browsers construct data channels and receive web content, the peers no longer

need the PeerServer.

 18

Figure 3. WebRTC networking framework.

B. PERFORMANCE WITH WEBGL

WebGL is one of the critical elements in web-based simulation. Users feel

more immersed if a simulation has lifelike models, especially 3D models in a vivid

virtual environment. Running 3D graphics, however, is resource consuming,

which means computers have to devote lots of CPU or GPU resources to

computing the change of 3D graphics (e.g., movement, scaling, rotation).

Therefore, this thesis designed a comparison for applying WebGL or not. All the

experimental 3D models were made with Blender, which is free and open-source

software for computer 3D graphics. Blender has an add-on function to export 3D

graphics, and a library implemented WebGL (three.js), which has loaders for

importing .js models into web pages.

1. Without WebGL Elements

Purely DIS messages send and receive without WebGL elements in

different networking frameworks. In order to find out the capability of sending and

receiving speed in modern browsers, two browsers were opened on two

computers with the same hardware devices; one was for sending DIS packets

and the other was for receiving DIS packets. The sending browser repeatedly

converted an ESPDU JavaScript object to binary format DIS messages before

sending those messages. The receiving browser decoded the binary message,

 19

converted it a JavaScript object and distinguished PDU types every time it

received DIS messages.

2. With WebGL Elements

WebGL enables web browsers to render 3D graphics without plugins, but

it also takes a lot of computational resources. This thesis created a

demonstrating game that used WebGL and the three.js library to render 3D

graphics and DIS PDUs to exchange entity information.

a. 3D Models

This thesis designed three major 3D models (terrain, tank and tank

ammunition) to demonstrate the feasibility of web-based simulation. The

demonstration was a simple and first-person-shooter tank game. The players

controlled a single tank to search, aim, and shoot other tanks in a virtual

environment in a web browser. This game was designed for multiple players.

Each player, and each browser page, created its own virtual environment

(including scene, skybox, light, camera, terrain, a controllable tank, tank

ammunition, etc.) when the browser connected to a web server and got the game

html file. Browsers started sending and receiving DIS messages once they

connected to a WebSocket gateway server or established a WebRTC data

channel. Other tank models and ammunition models were created when a

browser received ESPDUs whose entity IDs were new to that browser, which

meant that each opponent tank model had a corresponding entity ID. If an

incoming ESPDU’s entity ID already had a representative 3D object, the browser

would update the state and location of this 3D object in the virtual world.

b. Game Design

There are three different types of DIS PDUs in this tank game: entity state

PDU (ESPDU), collision PDU and fire PDU. Figure 4 describes the mechanism of

this tank game. The upper section is about sending DIS PDUs, and the lower

describes receiving DIS PDUs. When the game started and a controllable tank

 20

was created in the scene, the tank could move and search for targets. At the

same time, the tank issued ESPDUs every ten milliseconds, which was the same

rate at which WebGL updated its canvas.

The ESPDUs are the major interchanging PDUs in DIS simulations, and

contain all the basic information of entities (e.g., entity ID, entity type, entity

location, and entity orientation). The collision PDU contains information about

collision events, and is issued when a collision happens between two simulated

entities or between a simulated entity and another object in the virtual world. In

this tank game, a collision PDU was issued only when a tank’s projectile hit

another tank. The fire PDU is used to support visual, aural, and other effects, and

identify an entity that fired a weapon or expendable. The fire PDU in this game,

however, was only used to communicate firing events and showed the firing

information on screen.

To play this game, the player has to eliminate all other tanks in the virtual

battlefield. If a tank gets hit while searching for targets, it will issue a collision

PDU. The information in a collision PDU includes the issuing entity ID, colliding

entity ID, event ID, location, etc. If a tank finds a target and shoots it, the tank will

issue a fire PDU regardless of whether it hits its target. A fire PDU contains the

fields firing entity ID, target entity ID, location, etc. for describing the firing event.

If a tank hits a target, the tank’s projectile will issue a collision PDU. In the

receiving section, when the browser receives a DIS message, the message will

be decoded and categorized into ESPDU, collision PDU or fire PDU. If a browser

receives an ESPDU and the ESPDU’s entity ID is new to this browser, the

browser loads a 3D object to represent this entity ID. Otherwise, the browser

updates the state and location of this 3D object. If browsers receive fire PDUs,

they display the fire information in the upper-left corner of the window. If a

browser receives a collision PDU, it checks whether its controllable tank issued a

collision PDU within two seconds (a game setting). If the answer is yes, the tank

is killed, and the game is over. If no, there might be some latency or lag in

 21

networking traffic that created an asynchronous situation, so the game would

continue.

Figure 4. Tank game design.

C. PERFORMANCE IN DIFFERENT BROWSERS

Modern browsers such as Chrome, Firefox, and Safari use different

JavaScript engines to execute JavaScript. Chrome uses V8 as its JavaScript

engine. V8 is an open-source and high-performance JavaScript engine that is

written in C++ and implements ECMAScript as specified in ECMA-262, 5th

Edition (“Chrome V8,” n.d.). V8 can be run on most modern operating systems

such as Windows (XP or newer), Mac OS X (10.5 or newer) and Linux systems.

Firefox’s JavaScript engine is called SpiderMonkey, which is written in C/C++

(“Firefox SpiderMonkey,” n.d.). The latest JavaScript just-in-time (JIT) compiler

for SpiderMonkey is called IonMonkey, which is implemented in the latest Firefox

browser and can be installed in most modern operating systems. Safari uses

 22

another JavaScript engine Nitro, but this thesis did not use Safari for experiments

because Safari does not support WebRTC yet.

Different JavaScript engines cause variations in browser performance.

There are many web applications for benchmarking JavaScript performance

among different versions of browsers or different brands of browsers, including

SunSpider, Kraken, and Octane. The benchmarking tests are varied, and it is

hard to measure the performance precisely because there are too many

variables (e.g., CPU, memory, browser version) to affect the benchmarking

results. The common benchmarking tests include OS kernel simulation

benchmark, 3D ray tracer, cryptography test, code decompression, PDF reader

implementation, etc. There is an existing website showing benchmarking

comparisons between modern browsers within different operating systems, and

the website visually displays the differences among those modern browsers

(“Arewefastyet,” n.d.).

Currently, WebSocket is supported widely by almost every browser

(Deveria, n.d.-c). WebRTC is supported by a few browsers, including Chrome,

Firefox, and Opera. The global usage of Chrome, Firefox and Opera is 28.39%,

4.69% and 0.36%, respectively (Deveria, n.d.-b). Therefore, the comparison of

performance between browsers mainly focuses on Chrome and Firefox in this

thesis.

 23

IV. IMPLEMENTATION

In order to implement experiments, four services were run on the server

side: WebSocket gateway, web service, PeerServer and primary peer. The

experimental environment can be divided into two parts: WebSocket and

WebRTC. This thesis, however, used one computer to run these four services.

Figure 5 shows the experimental environment for this thesis. The first part was

client-server framework using WebSocket gateway server. The server, which

was downloaded from the Open-DIS project website, provides web server and

server-side implementation of WebSocket.

Second part was peer-to-peer framework using PeerServer. PeerServer

only has the capability to help broker connections between peers, so the

experiments in this thesis used the web server from WebSocket gateway server

for users to download web content, WebGL elements, 3D models and JavaScript

code. One of the features of PeerJS is using unique IDs to make peer

connections, so the newly-joined peer has to obtain the IDs of others to create

peer connections beforehand. The primary peer was a webpage that collected

the peer IDs and distributed a list of live peers to all connected peers. Although

every client has a data channel with the primary peer, they would not send any

DIS packets to the primary peer. A connected peer list was the only distributed

data under this data channel.

 24

Figure 5. Experimental environment.

A. SERVER PREPARATIONS

The following section describes preparatory works for the above-

mentioned four services that were used to support the performance tests in this

thesis.

1. WebSocket Gateway Server and Web Server

WebSocket gateway server ran on a computer with NetBeans installed.

This server also had the capability of web server, so clients could get web

content from a server IP address on port 8282. Port 8282 is a default setting for

this server. This server also can receive native DIS messages that were

broadcast from other simulation systems using UDP socket with port 3000, but

this function was turned off manually in the experiments. The WebSocket was

client-server architecture, so the expression in Figure 5 was that Client A sent

DIS messages to WebSocket gateway server and then the server distributed the

receiving DIS messages to Client B, and vice versa.

 25

2. WebRTC: PeerServer and Primary Peer

PeerServer is Node.js-based application, so the server computer must

install Node.js before running PeerServer. Node.js is a V8 (JavaScript engine)

based platform for developing fast and scalable network applications. Figure 6

shows how to install and execute PeerServer after having Node.js installed.

Node.js can be obtained from its official website: http://nodejs.org/. PeerServer

used port 9000 to help broker connections between peers. The primary peer was

one of PeerServer clients, so the primary peer could be executed after

PeerServer was on. WebRTC is peer-to-peer connection with a rendezvous

server; the framework is shown in Figure 3.

Figure 6. Install and execute PeerServer.

B. BROWSER INITIATIVE PROCESSES AND BEHAVIORS

Once the server and services were established, client browsers could

connect to the server to receive web contents. The web contents helped the

browsers initiate a virtual world inside the window and interact with users. The

initiative processes included importing necessary libraries; checking browser

brands, and creating a canvas, scene, virtual objects, etc. Once the browser was

initiated, it began sending and receiving DIS PDUs via WebSocket or WebRTC

data channels. At the same time, the browser was ready to interact with users via

the computer keyboard. The following describes the processes of initiating web

browsers and the behaviors of exchanging DIS packets and interacting with

users.

 26

1. Import Libraries

The “dis.js” archive is an essential library for experiments in this thesis,

and it can be downloaded from the Open-DIS project. It includes all DIS PDU

classes and methods that convert from DIS PDU objects into binary format DIS

and vice versa.

a. WebSocket

WebSocket is a native capability in web browsers that support WebSocket,

so no specific library needs to be imported for WebSocket.

b. WebRTC

WebRTC is included in the web browser, and PeerJS wraps the browser’s

WebRTC implementation. This thesis used PeerJS as an API to create

WebRTC data channels, so the “peer.js” library obtained from the PeerJS

official website must be imported at the beginning.

c. WebGL

WebGL is native in browser. This thesis applied “three.js,” which is layered

on top of WebGL as a library for 3D graphics in web browsers (Parisi, 2012). It

can be used to create scene graphs, camera, light, skybox, and basic 3D

graphics, and it also can manipulate imported 3D models by applying different

materials or shaders.

d. Others

Other libraries included OrbitControls.js as well as various loader and self-

defined js archives. OrbitControls.js was used to control the camera by mouse in

browsers, and the different loaders were for loading different formats of 3D

models such as obj, js, mtl, and max. Figure 7 shows the relationships of

importing libraries and other JavaScript programs.

 27

Figure 7. Relationships of importing libraries and other JavaScript programs.

2. Checking Web Browser Brand and Initiating WebSocket or
WebRTC

Different browsers have different engines to implement JavaScript, so

when an end user downloads web content from a web server, JavaScript code

must check what kind of browser is being used. WebSocket and PeerJS that

implements WebRTC have different ways to check browser brands.

a. WebSocket

WebSocket is widely supported by many browsers. The main browsers

this thesis had to differentiate were Chrome and Firefox. Figure 8 shows the

JavaScript code for distinguishing browser brands and establishing a connection

to the server.

Figure 8. Creating WebSocket code.

 28

b. WebRTC

The WebRTC is wrapped by the PeerJS API, and it automatically checks

browsers for web application developers. To initiate a peer object, a user has to

randomly produce a peer ID to signal to the PeerServer, and then wait for a

connection from other peers. If the ID is not given, the PeerServer will generate

one for this client. Figure 9 shows the code for creating a peer object and

signaling to PeerServer.

Figure 9. Initiate a PeerJS client.

There are two situations for creating peer connections: pre-known the ID

of prospective peer and unknown the ID of prospective peer. Figure 10 shows

the architecture and sequence of creating connections among peers for

performance tests in this thesis. The following three steps describe the

mechanism of creating peer connections in the situation of an unknown

prospective peer ID. This thesis uses the primary peer to help distribute an ID list

to all connected peers. If the peer ID, however, is pre-known, a peer can create a

peer connection to another peer directly with the help of PeerServer. For

example, in Figure 10 the game client A creates a peer connection to primary

peer because client A has known the ID of primary peer beforehand. Only the

following step 1 and step 2 are involved in this case.

Step 1: The primary peer maintains a list of all the peers connected in the

tank game. It must be running before any game clients start. When game clients

begin execution, they contact the primary peer and provide their IDs. The

Primary Peer in turn informs the game clients of the IDs of other peers. This

allows the game clients to establish pair-wise connections for communication.

Step 2: When the first game client starts, it first contacts the PeerServer to

get the information necessary to establish a connection to the Primary Peer. It

then connects the Primary Peer and provides its ID.

 29

Step 3: When a second game client starts it also first contacts the Peer

Server as the first step for contacting the Primary Peer. It contacts the Primary

Peer and provides its ID, and is in turn informed of the IDs of all other game

clients. Any other game clients are informed of the ID of the new game client. All

game clients can then establish pairwise connections between each other. The

tank game client A established a WebRTC connection to game client B, and

game client B establishes a connection to game client A.

In reality, each connection is a bidirectional channel. For example, if client

A established a connection with client B, client B could use this connection to

exchange data with client A. This thesis, however, constructed two data channels

between each pair of clients for convenient configurations of sending and

receiving behaviors.

Figure 10. Architecture and sequences of creating peer connections.

 30

3. Create Canvas, Scene, Camera, and Own Entities

HTML5 has a “canvas” element for drawing 2D and 3D graphics on web

pages, and the three.js library provides methods to create and display animated

3D computer graphics on browsers that support WebGL. Figure 11 shows the

codes to create a canvas and Figure 12 shows the basic elements in the scene.

Every computer graphical elements—such as 3D graphics, light and camera—

were added into the scene in the tank game.

At the same time, a controllable tank model was loaded by the JSON

loader after the scene was created, and two JavaScript objects were created.

One was to contain this controllable tank and an ESPDU that represents the

states of this tank. Another object comprised a tank’s ammunition mesh and a

different ESPDU that restored information of this ammunition. Figure 13 shows

codes of JavaScript objects that contained the tank object and its corresponding

ESPDU. It also shows some numbers were assigned in the field of entity type.

These numbers were used to identify military hardware, and they referred to a

SISO document called the “Enumeration and Bit Encode Values” (EBV). The

EBV document is a long listing of standardized enumeration for simulation

interoperability (Simulation Interoperability Standards Organization (SISO)

Reference for: Enumerations for Simulation Interoperability, 2013).

Figure 11. Creating canvas in a web page.

 31

Figure 12. Creating scenes and adding graphical elements.

Figure 13. Creating tank meshes and ESPDUs in ourEntity objects.

4. Game Control and Graphics Rendering

Human-in-the-loop simulations must contain input devices for users to

give orders, and all the web applications are run on computers and mobile

devices. The development of this thesis’s demonstration was based on using the

keyboard and mouse as input devices. Players used the keyboard to control the

 32

tank, fire missiles, and switch cameras; they used the mouse to change player

perspective views. JavaScript provides corresponding key codes that are

associated with keyboard characters for web application developers to develop

different functions in different keys (Lautenschlager, n.d.). JavaScript also

provides event handlers for keydown and keyup events in the window. The

example tank game used keys “W” and ”S” to move the tank forward and

backward, keys “A” and “D” to turn the tank left and right, keys “Q” and “E” to

adjust the tank’s barrel, key “Space” to fire a missile, and keys “1” and “2” to

switch cameras. Figures 14 and 15 show examples of using JavaScript key

codes to program different actions.

Figure 14. Function of keydown events.

 33

Figure 15. Function of keyup events and window event handlers.

The frequency of rendering 3D graphics affects the fluidity of the game.

Most video games use 30 frames per second (fps) or 60 fps and some, such as

Halo3, are locked at 30 fps maximum (“Frame rate,” n.d.). JavaScript provides a

setInterval method that repeatedly calls a function in a specific interval. In the

tank game, the rendering frequency was set to ten milliseconds, which equals to

100 fps, and all the game events and animations were based on that timestamp.

5. Convert Coordinate Systems

The DIS uses the ECEF (Earth-centered, Earth-fixed) coordinate system,

which defines point (0, 0, 0) as the center of the earth. The positive x-axis is

defined as running from this point out to where the equator and the Prime

Meridian intersect. The positive y-axis runs from the center point out to where the

equator intersects the 90 degree east meridian, and the positive z-axis points

from the center toward the North Pole. The “dis.js” library provides methods to

convert coordinates between ECEF and ENU (east, north and up), which is a set

 34

of local coordinates with a given geodetic point. Figure 16 presents the

coordinate systems of ECEF and ENU. The “dis.js” also helps convert between

ECEF and latitude, longitude and altitude.

The tank game is a self-interactive game, which means players are always

in the same local coordinate system. The game, however, still converts its local

coordinates from ENU to ECEF in case other DIS simulations want to

communicate with it in the future. Besides the conversion of location, the entity’s

orientation must also be converted. Rotation in three.js is based on quaternion,

which uses four numbers to represent an entity’s orientation in a 3D world. On

the other hand, ESPDU only provides three fields that are Euler angles to

express orientation. There are many examples of conversion between quaternion

and Euler angles on the Internet. Figure 17 is an example of a conversion

between coordinates.

Figure 16. Earth centered, earth fixed; and east, north, up coordinates
(“Axes conventions,” n.d.)

 35

Figure 17. Conversion between ECEF and ENU.

6. Send DIS Packets

DIS simulation uses heartbeat strategy that periodically sends DIS

packets to update entity information and maintain entity existence; the “dis.js”

library provides methods to convert every DIS PDU from JavaScript object into

binary format DIS messages. In the demonstration tank game, entity state PDUs

were sent periodically to the server or other PeerJS clients.

Collision PDU and fire PDU, on the other hand, are event-oriented.

Collision PDUs were issued when there was a collision event between a tank

missile and opposing tank. Fire PDUs were issued whenever someone was

 36

shooting. The periodic sending of DIS PDUs also helped maintain entity

existence in other clients, because each client browser would check the receiving

time for every entity. If an entity’s last receiving time was 3 seconds ago, which

was a game setting, this entity would be removed from client browsers. Figure 18

shows example code of a heartbeat function in setInterval method, and a

trimmed DIS message that was transferred via the WebSocket.

Figure 18. Heartbeat function.

PeerJS uses a similar method to send DIS messages, but the sending

mechanism is via PeerJS DataConnection object. Figure 19 shows how to create

a DataConnection object from a peer object, and the sending method. The

trimmedData is the same with WebSocket.

Figure 19. PeerJS sending method.

 37

7. Receive and Decode DIS Messages

The codes used to receive data are different between WebSocket and

PeerJS. The decoding processes, however, are the same.

a. Receive by WebSocket

Before receiving data from WebSocket, the format to receive binary

messages and attach functions for various events must be set. Figure 20 shows

the code for setting the WebSocket. WebSocket.onmessage is the function used

to handle receiving data from the server site.

Figure 20. Set format and attach functions.

b. Receive by PeerJS

After creating a peer object, developers have to set listeners for peer

events. The main method this thesis used was “peer.on,” and the listening event

was “connection,” with a function to handle the incoming messages. This event

will receive a dataConnection object, which wraps WebRTC’s DataChannel, and

pass this object to the handling function. Figure 21 shows the code to listen for

events.

Figure 21. PeerJS event listener.

 38

The DataConnection class contains three methods: “send,” “close” and

“on.” The “send” method sends data to the remote peer, and “close” closes the

data connection and cleans up underlying DataChannels and PeerConnections.

The “on” method can be set for listening for data connection events: “data,”

“open,” “close” and “error.” The thesis experiments used the “data” event that is

emitted when data is received from remote peers to receive and handle DIS

messages. Figure 22 shows the example code.

Figure 22. Example code of receiving events function.

c. Decoding DIS Messages

The mechanism of decoding DIS packets is the same in WebSocket and

WebRTC because both rely on the “dis.js” library to interpret DIS messages. The

function of the WebSocket and the WebRTC is to send and receive application

data. The first step in interpreting DIS messages is to allocate packets to

different types of PDUs using a method called dis.PduFactory(). Different PDUs

contain different information with different data lengths. Every PDU, however,

has the same PDU header, which has 96 bits to restore basic information such

as protocol version (8-bit enumeration), exercise ID (8-bit unsigned integer), and

 39

PDU type (8-bit enumeration). The dis.PduFactory() method uses the PDU type,

which is the third byte in the PDU header, to distinguish what kind of PDU should

be assigned. The demonstration game in this thesis used three different types of

PDUs: entity state PDU, collision PDU, and fire PDU. The respective lengths of

these three DIS PDUs are 1152 bits, 480 bits and 768 bits, and the respective

enumeration numbers of these three PDUs are 1, 4, and 2. Figure 23 shows how

to use dis.PduFactory().

Figure 23. Example code of dis.PduFactory().

After differentiating the PDU type, it is time to deal with receiving the DIS

messages: entity state PDU, collision PDU, and fire PDU. ESPDU is used to

update entity states in client browsers. Every client would create a JavaScript

object, which is used to record all remote entities from other game participants. If

the receiving ESPDU’s entity ID did not previously exist, client browsers will

recode the new ESPDU in an all-remote-entity object, and create a

corresponding 3D model loaded by JSON loader to represent this entity ID. If

there is a 3D model having the same entity ID corresponding with the receiving

ESPDU, browsers will update this 3D model’s states such as location, velocity,

and orientation. Collision PDUs will be issued when a collision occurs between

entities. In the demonstration tank game, collision PDUs were issued whenever a

tank got hit; both the firing missile and the hit tank issued collision PDUs. Fire

PDU in this scenario was for showing all firing events on the screen.

 40

8. Miscellaneous

There are some miscellaneous things that have not been mentioned, but

which are also very important for creating a browser-based DIS simulation.

These include how to load meshes, how to detect collision in a virtual

environment, how to ensure entity existence, and the application of dead

reckoning.

a. Loading 3D Objects

Creating the 3D graphics took longer than creating a JavaScript object.

When a client browser received an ESPDU whose entity ID was new to this client,

the client would create a 3D model to represent this new entity. The 3D model,

however, could not be located immediately in the virtual world before it was fully

loaded. In the tank game example, a function continued updating entity states

and the corresponding 3D model each time the clients received the same

ESPDUs. Once the 3D model was fully loaded into the virtual world, an opposing

tank would show in the browser. The following code describes a way to update

entity and 3D model properties. Figure 24 shows the code of updating the entity’s

model and states.

 41

Figure 24. Code of updating entity states and 3D model.

b. Entity Collision Detection

The “three.js” library provides methods for ray casting that can be used to

detect collision in a virtual world. The way of using ray casting is to push all

prospective collided objects into an array before doing ray casting. In the

demonstration game, ray casting was used for checking collisions between: tank

and terrain, tank and tank, and tank and skybox. Tanks cast a ray to minus the y-

axis (i.e., toward the ground), so that they could rise and fall on (i.e., “follow”) the

terrain by having a collision between tank and terrain. Tanks also cast rays in

another four directions—front, rear, right, and left—for detecting other tanks and

any vertical terrain. Ray casting in this game was used not only for collision

 42

detection, but also for pointing out missile directions: shooting a ray from a turret

to find a collision point, and then using this point to determine projectile path by

computing between colliding point and turret.

c. Checking Existence

The DIS is a heartbeat-based simulation, so every client should receive

ESPDUs periodically from other clients. There is a field in the PDU header for

timestamp. This field can be used to record the last time heard from other

ESPDUs. If a simulation participant did not receive ESPDUs from remote peers

in a period-of-time, the participant removed 3D models and properties that

belonged to those remote peers. There were six elements removed when the

client browser did not hear any ESPDU from a specific peer: tank mesh and

ammunition mesh in the scene, tank, and ammunition properties in the all-

remote-entity object, and tank and ammunition objects in the collision array.

d. Dead Reckoning

Dead reckoning is used to predict an entity’s next position by using the

entity’s current position with a dead-reckoning algorithm, linear acceleration,

angular velocity, and other parameters when the entity does not receive the next

prospective ESPDUs to update its position. Dead reckoning can be utilized to

cover an entity’s stutters caused by the heartbeat period. The demonstration tank

game used dead reckoning for a projectile’s movement to reduce visual jumping,

in-browser, of other game participants. A projectile’s movement with dead

reckoning that complements intervals between two consecutive ESPDUs also

increases the accuracy of issuing collision PDUs, because the heartbeat strategy

might cause the projectile to “jump” over an opponent’s tank without any collision

or intersection.

 43

V. PERFORMANCE TESTS

This thesis investigated two networking frameworks, WebSocket and

WebRTC, and used these two frameworks in performance experiments and the

resulting data. The WebSocket was constructed as client-server architecture. In

contrast, the WebRTC was based on peer-to-peer architecture after a data

channel was constructed. This thesis also incorporated WebGL components as a

comparable factor, which compared the presences of WebGL components in the

browser. WebGL enabled the browser’s rendering of 2D and 3D graphics, but it

also increased CPU and GPU loadings by computing graphics transformation,

scaling, rotation, translation, etc. Furthermore, different browsers used different

JavaScript engines, so the differences between the browsers (Chrome version

36.0.1985.143m and Firefox version 24.7.0) were compared. Measuring tools for

this thesis included self-created functions, Chrome developer tools, and Firefox

developer tools.

A. SENDING AND RECEIVING ABILITY

To measure the sending performances in different networking framework

and browsers, this thesis created a function to send ESPDU packets. The

receiving numbers were increased when the onmessage function was called and

packets were received by the WebSocket. The PeerJS received PDUs when the

dataConnection object heard ‘data’ events. Figure 25 shows the measureDIS

function for sending DIS packets in WebSocket. The measurement evaluated

how much time was needed for sending 10,000 DIS packets, with millisecond as

the time unit. The function had a ‘sendercounter’ variable to cumulate the total

number of sending. At the same time, this function also converted the total

number to a serial number for dropping test into the entityAppearance field in

ESPDU. PeerJS used connectTo (a dataConnection object) to send the trimmed

data (see Chapter IV, Section 6, Send DIS Packets).

 44

Figure 25. MeasureDIS function for sending DIS packets.

Figure 26 shows the example of a WebSocket receiving DIS packets. The

measurement was the same with the sending function that measured how much

time was needed for receiving 10,000 PDUs. Figure 27 shows the method that

the PeerJS used to receive data.

Figure 26. Measuring function of receiving DIS packets in WebSocket.

 45

Figure 27. Measuring function of receiving DIS packets in PeerJS.

The following section shows the transformed outcomes of running the

above functions 20 times based on a one-on-one situation, one sender, and one

receiver. As a result, 20 runs of a specific time were spent on sending and

receiving 10,000 PDUs. The thesis used MS Excel to convert the results into the

number of Entity State PDUs that were sending and receiving per second, and

used JMP for statistics.

Figure 28 shows the outcome of pure sending and receiving rates in

different combinations of browsers. The left eight experiments are receivers, and

the remaining experiments are senders. The green lines are the means of each

experiment, and the blue bars can be used to visually compare the statistical

difference between any pair of experiments. If a pair of bars overlaps from each

other, these two experiments are not significantly different, and vice versa. CC

means that the Chrome browser sent to the Chrome browser; CF means the

Chrome browser sent to the Firefox browser, and so on. Figure 28 shows that

senders were overwhelmingly faster than recipients, because the sending rates

were counted by executing the measureDIS function instead of actually sending

out to the browsers. In addition, none of the experiments found message losses

in the WebSocket framework, and rarely were the DIS packets lossed in the

WebRTC framework. The sending data was not sent out by browsers; instead, it

was queued in the senders’ memory. For example, if a sender’s browser invoked

a function that used WebSocket to send 10,000 ESPDUs per second, but the

receiver only got 7,000 PDUs per second; the remaining 3000 ESPDUs per

 46

second would buffer in the sender’s memory. Hence, the performances of

sending and receiving DIS messages in different frameworks in different

browsers should refer to the receiving throughputs.

Figure 29 focuses on the DIS receiving rates, and shows that the

WebSocket had relatively stable receiving rates (around 7,000 to 8,000 per

second in different browsers). According to the WebSocket framework—which

was client-server architecture—the recipients received DIS packets from the

WebSocket gateway server, which means the receiving performances are

dependent on the server’s capability. In contrast, the receiving abilities of PeerJS,

which implemented WebRTC and were based on peer-to-peer connections, were

varied. The recipients received around 2,000 per second in Chrome sent to

Chrome and Chrome sent to Firefox, but had better performance of around

11,000 to 13,000 per second in Firefox sent to Chrome and Firefox sent to

Firefox.

Figure 28. Purely sending and receiving capabilities.

 47

Figure 29. Purely receiving capabilities.

According to the above conclusions, sending rates did not correspond to

the receiving rates, so the performance with WebGL elements should focus on

the receiving capabilities. Figure 30 shows comparisons between the presences

of WebGL, and reveals that these were graphically different among the mean

lines. It seems like that WebGL had some level of influence on receiving the DIS

messages, because the receiving capabilities with WebGL elements are lower

than without WebGL elements.

 48

Figure 30. Comparisons of receiving capabilities between the presences of
WebGL.

To understand the differences among receiving rates, this thesis used a

student’s t-tests to find out if pairs of receiving rates were significantly different

from one another. By looking up rates in the table of t-distribution, the p-value

could be found to compare with the alpha level. This thesis used 0.01 as the

alpha. If the p-value greater than the alpha, there was no significant difference

between the comparing pair, and vice versa. The p-value only indicated the

degree of difference; it did not indicate any better performance. Table 2 shows

the performances of that the WebSocket framework versus the WebRTC

framework was significantly different, because all the p-values are less than

0.0001. The differences can be checked graphically in Figure 29.

 49

Comparison between
P-

valueexperimental
combination

average number of
receiving PDUs

experimental
combination

average number of
receiving PDUs

CC+WebSocket 7203.79 CC+WebRTC 2272.54 <.0001
CF+WebSocket 8212.41 CF+WebRTC 2300.51 <.0001
FC+WebRTC 12917.75 FC+WebSocket 7311.62 <.0001
FF+WebRTC 11239.30 FF+WebSocket 7695.37 <.0001

Table 2. t-tests of receiving capability in WebSocket and WebRTC
frameworks without WebGL components. The experiment at left

had the higher performance.

Table 3 presents paring comparisons between browsers using the

WebSocket framework; all the p-values are greater than 0.01, which means there

were no significant difference of receiving rates between browsers when using

WebSocket framework. Greater p-value represents less difference between the

comparing pair. The WebSocket framework had stable performances in both

Chrome and Firefox browsers.

Comparison between
P-

valueexperimental
combination

average number of
receiving PDUs

experimental
combination

average number of
receiving PDUs

CF+WebSocket 8212.41 CC+WebSocket 7203.79 0.2151
CF+WebSocket 8212.41 FC+WebSocket 7311.62 0.2681
CF+WebSocket 8212.41 FF+WebSocket 7695.37 0.5247
FF+WebSocket 7695.37 CC+WebSocket 7203.79 0.5453
FF+WebSocket 7695.37 FC+WebSocket 7311.62 0.6368
FC+WebSocket 7311.62 CC+WebSocket 7203.79 0.8944

Table 3. t-tests of receiving capability between browsers without WebGL
components in WebSocket framework.

On the other hand, Table 4 shows paring comparisons between browsers

using WebRTC framework. In all cases, Firefox is shown to send via WebRTC

significantly faster than Chrome does. The p-value 0.9725 indicates that using

 50

the Chrome browser to send DIS packets to the Chrome browser had similar

performance when using the Chrome browser to send DIS packets to the Firefox

browser. The p-value 0.0395 indicates that using the Firefox browser to DIS

packets to the Chrome browser had similar performance as using the Firefox

browser to send DIS packets to the Chrome browser, because the alpha level

was 0.01. These results show that the same sender had similar receiving rates in

recipient browsers.

Comparison between

P-valueexperimental
combination

average number of
receiving PDUs

experimental
combination

average number of
receiving PDUs

FC+WebRTC 12917.75 CC+WebRTC 2272.54 <.0001
FC+WebRTC 12917.75 CF+WebRTC 2300.51 <.0001
FF+WebRTC 11239.30 CC+WebRTC 2272.54 <.0001
FF+WebRTC 11239.30 CF+WebRTC 2300.51 <.0001
FC+WebRTC 12917.75 FF+WebRTC 11239.30 0.0395
CF+WebRTC 2300.51 CC+WebRTC 2272.54 0.9725

Table 4. t-tests of receiving capability between browsers without WebGL
components in WebRTC framework.

The last pairing comparisons were the differences between the presence

of WebGL materials (see Table 5). It is hard to decide whether the presences of

WebGL materials affected the PDU sending and receiving performance, because

there were two p-values that were less than 0.01. Most comparisons, however,

were not significantly different from each other. Besides focusing on Table 5, the

comparisons with less than 0.01 p-values had very good performances on

sending and receiving DIS messages. Figure 30 shows that both

FF+WebRTC+WebGL and CF+WebSocket+WebGL had the capability of

sending and receiving more than 5,000 DIS packets per second, which was

much faster than using the Chrome sent to Chrome and the Chrome sent to

Firefox in the WebRTC framework.

 51

Comparison between

P-
valueexperimental

combination

average
number of
receiving

PDUs

experimental
combination

average
number of
receiving

PDUs
FF+WebRTC 11239.30 FF+WebRTC+WebGL 8562.47 0.0011

CF+WebSocket 8212.41 CF+WebSocket+WebGL 6008.55 0.007
CC+WebSocket 7203.79 CC+WebSocket+WebGL 5568.12 0.0448
FF+WebSocket 7695.37 FF+WebSocket+WebGL 6096.03 0.0497
FC+WebSocket 7311.62 FC+WebSocket+WebGL 5727.37 0.0519
FC+WebRTC 12917.75 FC+WebRTC+WebGL 11403.85 0.0632
CC+WebRTC 2272.54 CC+WebRTC+WebGL 1877.29 0.6267
CF+WebRTC 2300.51 CF+WebRTC+WebGL 1931.61 0.6499

Table 5. t-test between presences of WebGL components

B. PROFILING JAVASCRIPT PERFORMANCES

This thesis used Chrome developer tools and Firefox developer tools to

profile experimental browsers. The profiling tools were used to record JavaScript

performances in a period-of-time, and the recording data included percentages of

time spent and explicit time spent for each function in this period-of-time. For

example, if a user starts profiling then running the measureDIS function for two

different lengths of time—one long and the other short—the measureDIS function

would occupy a small percentage of the long period, but more in the short period.

Figure 31 shows running the measureDIS function in a long period-of-time, and

Figure 32 shows running the same function in a short period-of-time. The

difference was through running the measureDIS function with a shorter time

(39062.7 ms) in a short period; this function still captured more (19.06%) than the

one that recorded for a long period-of-time (40247.1 ms with 10.15%). The ‘Self’

column indicates the time to complete the current function that excludes any

functions it called. The ‘Total’ column shows the time to complete the current

function and any functions it called (“Profiling JavaScript Performance,” n.d.).

 52

Figure 31. Running measureDIS function for a long period-of-time.

Figure 32. Running measureDIS function for a short period-of-time.

Firefox developer tools also have profiling tools. Furthermore, the package

includes a function to select a certain section to analyze JavaScript

performances, so the behaviors of sending and receiving DIS PDUs can be

examined. Looking at the above results of sending and receiving DIS packet

capabilities, however, the data interchanging rates should refer to the receiving

capabilities; this means that, although the browser consumes all resources to

execute the measureDIS function, the efficient outputs would not reflect on the

receivers. Therefore, it is not worthwhile to check the JavaScript performance of

purely sending DIS packets. Appendix B-1 is a profiling example of sending DIS

PDUs in the WebSocket framework. Appendix B-2 selects a section that focused

on the sending function. Appendix B-3 is the corresponding receiver in this

example, which evenly consumed approximately 5–7% of the browser resource.

 53

After understanding the characteristic of profiling tools, it is difficult to

analyze a browser’s behavior by profiling it with the measureDIS function,

because the time to invoke the measureDIS function and the time to complete

sending and receiving DIS messages varies in different networking environments

and different combinations of browsers. Therefore, this thesis used the profiling

tools to record the JavaScript performances in the demonstration tank game as a

practical application, instead of executing the measureDIS function. Based on the

above results, applying WebGL materials decreased PDU receiving capability in

both the WebSocket and WebRTC frameworks, but the amount of receiving DIS

PDUs remained at approximately 1,900 per second.

Figures 33 and 34 display the recording of the tank game for a period-of-

time in different networking frameworks. The game setting was that each browser

had a controllable tank and a projectile that could be fired every two seconds.

The tank and projectile sent ESPDUs every ten milliseconds, which was different

from the measureDIS function that sent 200,000 ESPDUs, successively. The fire

PDU and collision PDU were sent when the corresponding events happened.

The advantage of profiling the tank game is that it is easy to analyze the sending

and receiving performances with WebGL elements in different networking

frameworks, and in client-server versus peer-to-peer configurations. Because the

profiling tools used the percentage of function executing time and most of the

functions were invoked periodically (which included graphical rendering and DIS

heartbeat functions), the different profiling times did not influence the results.

This tank game sent approximately 200 ESPDUs per second, which is

below the receiving capabilities in any situation. Figure 33 is a profile of the tank

game using the WebSocket framework. The profile showed that the renderFunc

function consumed 32.99% of the recording time to execute this function. The

renderFunc function is a major function in this tank game, used to render

graphics and check collisions between 3D objects in the virtual world. It

contained the tank.update function and many ‘THREE’ functions, which indicated

the browser spent most of its resources on the WebGL materials. In addition, the

 54

websocket.onmessage, heartbeat and munitionHeartbeat functions could be

found near the bottom of the Function column. The respective percentages for

these three functions are 0.78%, 0.41%, and 0.33% in the ‘Total’ column. These

results showed that the exchange of DIS messages did not give browsers a

heavy workload. Figure 34 is a profile of the tank game using the WebRTC

framework, and it shows a similar performance with using WebSocket framework.

The function of _dc.onmessage near the bottom of the Function column is similar

to the function of websocket.onmessage in WebSocket for listening to incoming

events. Firefox developer tools profiled similar results, which are shown in

Appendix C-1 and C-2. C-1, used the WebSocket framework, and C-2 used the

WebRTC framework.

Figure 33. Tank game profile using WebSocket framework in Chrome.

 55

Figure 34. Tank game profile using WebRTC framework in Chrome.

C. NETWORK LOADING TIME

Besides the JavaScript performances, developer tools also provide

function to record networking behaviors. The recording network information

included file name, path, status, size, loading time, etc. When a browser visited a

website initially, it downloaded cached web contents from the web server to the

local disk. The purpose of caching web contents was to reduce network loading,

because if the browser visited the same website in a specific period-of-time, the

browser would verify the status of web contents to decide whether to download

the web content via the network or access the content from the local disk. For

example, if a file status showed 200, it meant the file was new to this browser

and it was downloaded via the network. If a file status showed 304, it meant the

file had not been modified since the last time it was cached, so the browser

 56

would access the file from the local disk. These numbers are HTTP status codes

that can be looked up on the Internet. In this thesis, the web server’s default time

of caching web content was 604,800 seconds, or one week. All the performance

tests and tank games were run in a closed networking environment, so the speed

of loading web contents was very fast. The total loads of the tank game were

around 6 MB for a single player (see Appendix D). Most of the data consisted of

graphical models and textures. This thesis used a simple tank model and rough

terrain model to create a virtual world in browsers. Figure 35 and Figure 36 are

screenshots of the tank model and the terrain models. The file sizes of these two

models (hovertank10.js and bterrain.js) were not large; however, the textures for

these two models were relatively larger than other necessary archives. The

tank’s texture was 1.1 MB, and the terrain’s texture was 2.5 MB. Other

JavaScript files (including three.js, peer.js, dis.js, etc.) only made up a small

percentage of the total web contents.

Figure 35. Screenshot of tank model.

 57

Figure 36. Screenshot of terrain model.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

VI. RESULT DISCUSSIONS

According to the sending and receiving ability tests, this thesis found that

different combinations of browsers and different networking frameworks had

various capabilities of sending and receiving DIS PDUs. The outcomes showed

that estimates of the PDU exchange rate should be based on the rate of PDU

receipt. By analyzing the senders’ memory change, it was discovered that

sending pages buffered their sending data in their memory, instead of sending

the data immediately. Although senders queued the sending data in their

memories, Chrome and Firefox handled their sending events differently, which

made for different efficiencies. Secondly, analyzing the profiling results showed

that browsers spent their resources mostly on WebGL components that included

rendering 3D models and computing intersections between 3D objects. The

interchange of DIS messages did not account for a big usage of browser

resources. Thirdly, the web contents that necessarily were downloaded from the

web server to local browsers did not give any trouble in a local network in the

experiments. Downloading web contents by remote users might cause latent

problems such as slowing download or losing data if the necessary files were on

the Internet or public network with poor connection, which might also affect the

capability of exchanging DIS messages. Finally, according to the performance

tests, the scale of web-based simulation using DIS protocol can be proposed.

A. SENDING AND RECEIVING EFFICIENCY

According to the performance tests, WebSocket framework had consistent

receiving rates in both Chrome and Firefox, because the receiving rates were

based on the outputting rate from the WebSocket gateway server. After taking a

deeper look at WebSocket gateway server, the server’s receiving rate of DIS

messages was close to the receiving rates in recipient browsers, which indicated

the WebSocket gateway server was efficient in transferring DIS packets.

Additionally, this server neither use multicast nor broadcast, which were the

 60

customary ways to distribute DIS packets on the UDP socket. Instead, the server

delivered DIS PDUs to clients one by one because WebSocket is constructed on

top of the TCP socket. For example, if there are only two clients connecting to

the server, client A and client B, when client A is sending DIS messages, the

server only distributes the receiving data to client B. If there are three or more

clients, the server has to distribute the receiving data to all connected clients

one-by-one, except for the sender itself. Therefore, the server distributing data to

multiple clients decreased the receiving efficiency on recipient clients.

PeerJS had different performances in different browsers. Implementing

the WebRTC, PeerJS used peer-to-peer architecture to transfer data, so that the

sending rate would correspond to the receiving rate. The above results, however,

indicated that actually the sending rates should refer to the receiving rates. The

results also showed recipients had better receiving capabilities when using

Firefox to send data. The method of distributing data in PeerJS was one-by-

one—which was the same with the WebSocket gateway server—but the

WebSocket framework used a central server to distribute data. The WebRTC

framework is set up so that every participant can distribute data to their

connected peers, and if there are multiple connections to a peer, the receiving

rates on connected peers will decrease in an inverse ratio (i.e., peer A can send

2,000 PDUs per second to peer B in a one-on-one situation). If peer A has to

send to two connected peers, peer B and peer C, the receiving rate in both peer

B and peer C will be 1,000 PDUs per second.

By analyzing the receiving rates between browsers, this thesis found

Firefox had better performances for sending data authentically in both

frameworks. Figure 37 presents comparisons of receiving rates between different

networks with different combinations of browsers. The x-axis represents the time

for receiving 10,000 DIS PDUs, and the y-axis represents the first ten 10,000 DIS

packets. WebSocket and WebRTC were the networking architectures for data

transferring. When senders started to send 10,000 DIS PDUs for twenty times,

receivers should have begun to receive data immediately. The figure shows,

 61

however, that when data was sent from the Chrome browsers, the recipients took

longer to receive the first 10,000 PDUs. Another expression of these data in

linear form is in Appendix E.

Figure 37. Comparisons of receiving first ten 10,000 DIS PDUs.

This thesis attempted to send a huge amount of ESPDUs (50,000

ESPDUs for 50 times), which crashed the Chrome sender after flushing and

filling all the memory, and the receiver stopped receiving DIS packets. Firefox

reacted in a different way. Although the Firefox browser indicated that it was not

responding to the sender, the receiver continued to receive DIS PDUs

persistently from a slow rate to a fast rate, allowing Firefox to successfully

receive all 2,500,000 DIS packets after a long period-of-time. Furthermore, the

transferring data was not lost in the WebSocket framework, and was only rarely

lost in the WebRTC framework, which might be because the WebSocket is based

on the TCP socket, while the WebRTC used the SCTP socket to configure data.

If there was trouble with sending data in the WebSocket framework, then the

 62

WebSocket would close, which meant that the webpage had to be reloaded or a

WebSocket reconstructed in the browser. If the trouble happened in PeerJS, it

would complain that the DataConnection object could not send data, but the data

channel was still on; the browser could continue to send data after dropping all

the unsent messages.

B. JAVASCRIPT PERFORMANCE

Profiling of the tank game showed that most of the browser resources

were consumed on WebGL components. The sending and receiving functions

only occupied small portions of the total percentage of browser resources. To

see the detailed performances of each JavaScript function, Chrome and Firefox

developer tools provide functions to see the explicit times of each function used.

This capability could help application developers and designers know how much

time is spent on each function.

1. Chrome Developer Tools

The profiling sample of Figure 33 showed the Chrome browser consumed

32.99% of the total time to run the renderFunc function, which spent 6455.8 ms

during the entire period-of-time. This function, however, only spent 28.4 ms on

itself. The rest of the time was spent on other functions that were invoked by this

function. Chrome Developer Tools also provides Flame Chart view, which is a

visual representation of JavaScript performance over time that thus offers a

different way to view the profiling data. It also provides the running time of each

function with single invoking, which is different from the aggregated time of

running a specific function repeatedly. Figure 38 is a sample of invoking one

renderFunc function in Flame Chart view. The information of the Flame Chart

view included the name of this function, self time, total time, URL, aggregated

self time, and aggregated total time. The aggregated total time of the renderFunc

function was 6.46 s that corresponded to the time 6455.8 ms in Figure 33. Figure

39 was a portion of the recording profile that included the websocket.onmessage

and the heartbeat functions. Looking at the details of this flame chart, found that

 63

the running times of both functions, respectively, were less than 1 ms per

invoking, and the aggregated total time of the heartbeat function was 81.103 ms,

which was much shorter than 6.46 s.

Figure 38. A Chrome profiling sample of invoking one renderFunc function.

 64

Figure 39. A Chrome profiling sample of invoking one websocket.onmessage
and one heartbeat function.

2. Firefox Developer Tools

Firefox developer tools also have the ability to to look up the explicit time

of each function consumed. Figure 40 is a small sample of profiling the tank

game with two players in the WebRTC environment. This sample range was from

2,353 to 2,403 of the complete profile, and the total running time is 49ms. If the

running time is greater than the self, then there is an arrow at the left of the

function’s name to expand the function tree. In this example, the renderFunc()

function spent 20 ms in running time, but the self time was zero, which means

this function was expandable. This example also showed that five renderFunc()

functions were executed in this 49 ms, which corresponded to the 10ms

rendering rate. The executing time of each renderFunc() can be found by

selecting one of these five functions and expending this selected function to see

the details of self time.

 65

Figure 40. A Firefox profiling sample of invoking renderFunc functions.

After analyzing the JavaScript performances of the tank game, both

profiling tools showed that even though the heartbeat and the munitionHeartbeat

functions were invoked at the same rate with the rendering function, the browser

devoted a large part of its resources to executing WebGL components rather

than exchanging DIS PDUs. Therefore, the native capabilities of both WebSocket

and WebRTC in browsers are competent enough to support web-based DIS

simulations.

C. LOAD OF NECESSARY ARCHIVES

Loading page content from the server was no problem in this

demonstration tank game because of the following reasons. First, all the tests

were executed in a local networking environment. Second, the distributed files

were only around 6M B for each client, and there were not many clients. Third,

the client computers had very powerful CPUs and graphic cards. If someone

wants to improve the sophistication of the tank game, however, then the archival

size of models and textures must be increased. The sophistication of the model

also increases the burden of computational power in clients. There are many

 66

existing 3D models in various formats on the Internet, and it is easy to find a

sophisticated model over 10 MB. Although web browser has capability to cache

files from web server, it still has to load every necessary archive at the first time.

If there are several large-size 3D models that have to be downloaded as web

contents, the data distribution via public network would become a fundamental

issue for building up web-based simulations. There are some popular techniques

for reducing the impact of loading large data into web page such as minify

JavaScript, apply Content Delivery Network, remove duplicate scripts (Souders,

2007).

D. GAME SCALABILITY

According to the results from performance tests, receiving rates were the

major references for interchanging DIS PDUs in the network. Hence, the

receiving rate can be used to scale the size of web-based multi-player games or

simulations. For example, the lowest receiving rate in the experiments was

around 1,900 PDUs per second, which was achieved when sending PDUs by

Chrome browser in a peer-to-peer connection. Based on this result, a suggested

number of players can be found by using equation (1).

Three variables that had to be considered: number of entity that sent

ESPDU repeatedly, heartbeat rate, and number of clients; multiplying these three

variables should result in a number less than 1,900. This tank game had two

entities: tank entity and tank’s ammunition entity; both entities sent ESPDU

frequently. Each entity had its own heartbeat rate. Summing up the heartbeat

rates multiplied by the corresponding entity would give the total amount of

sending ESPDUs routinely, which excluded sending collision PDU and fire PDU.

The game setting of the heartbeat frequencies for both tank and tank’s

ammunition was 10ms, which was equal to sending 100 ESPDUs per second.

Therefore, the total amount of sending ESPDUs was around 200 per second.

The last variable was the number of clients, because the sending technique was

one-by-one on peer-to-peer connections and WebSocket gateway server. The

 67

multiplier of the client number should be the total number of clients, minus the

one that was the sending client itself. Back to the question, the suggested

maximum number of players to play the tank game was 10 (the calculating result

was 10.5 with the equation (1*100+1*100)*(TC-1) = 1900).

1

* 1 2000
n

i i
i

E HR TC

 (1)

where,

 = total number of entities.

 = each entity

 = heartbeat rate for the corresponding entity.

 = total number of client

Ten players were not the maximum number playing the tank game.

Different networking frameworks with different browsers had different capabilities

of exchanging DIS packets. In addition, there are other ways to adjust the game

capacity, such as changing the number of entities that frequently sent ESPDUs,

and adjusting the heartbeat rate. One example was modifying the JavaScript

program so that the tank’s ammunition sent ESPDUs only when a tank fired,

instead of the projectile sending ESPDUs periodically; the projectile would only

send ESPDUs when its velocity was not zero. Another way was to adjust

heartbeat rate on each entity. The rate of heartbeat affected game animation in

participant’s browsers because browsers used receiving ESPDUs to update

entity positions and states. At 100 ESPDUs per second, the effective rendering

rate is 100 fps in the remote participants, and it is not necessary to set an

identical rate on both heartbeat and canvas rendering. In modern video games,

30 fps is qualified enough to be a commercial game, if this tank game lowered its

heartbeat rates, the capacity of the number of players and/or the number of

entities must be increased. Appendix F shows screenshots of multiplayers in the

example tank game.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

VII. CONCLUSION AND FUTURE WORKS

A. CONCLUSION

The objectives of this thesis were to discuss and prove the feasibility of

developing DIS web-based simulations using JavaScript. This thesis

incorporated many web technologies and DIS protocol to outline infrastructures

that supported web-based simulation. The major web technologies included

JavaScript, WebSocket, WebRTC, and WebGL; there were many existing APIs

that wrapped WebRTC and WebGL to help developers create web applications.

This thesis suggested two different networking architectures, client-server and

peer-to-peer, for interchanging DIS messages; and tested the capability of

sending and receiving DIS PDUs between browsers. Furthermore, this thesis

also integrated the above technologies to develop a browser-based tank game

as a test application, and analyzed the performance of the tank game in different

networking frameworks. At the same time, taking the advantage of cross-platform

in browsers, both performance tests and the tank game can be executed and

analyzed in Chrome and Firefox browsers, Internet Explorer and Safari did not

support WebRTC yet. Other benefits of using web-based simulation included

model reusing, collaboration, deployment, accessibility, and versioning control.

According to the performance tests and analysis of the demonstrating tank

game, this thesis found that the modern web technologies are capable enough to

construct web-based simulations. The performance tests included the capability

of simply sending and receiving DIS PDUs in different networking frameworks;

comparing the performance between the applying of WebGL materials; and

cross-browser performances between Chrome and Firefox. The analysis of the

tank game contained the resource consumption of rendering WebGL materials

and interchanging DIS messages; and the page loads of necessary files from

web server. The followings are the conclusions for the performance tests and the

game analyses.

 70

The performance tests showed that the speed of executing the sending

ESPDUs function was faster than both WebSocket and WebRTC sent DIS

messages. In fact, the measurements of sending rates were much higher than

the receiving rates, meaning it was better to use receiving throughput as a

reference to scale the size of web-based simulation. Both Chrome and Firefox

have similar performances of sending and receiving DIS PDUs using the

WebSocket framework. The performances of the WebRTC framework, however,

favored Firefox. While using Firefox to send DIS packets via the WebRTC

framework, both Chrome and Firefox had a better performance than any

experiments with the WebSocket framework. While using Chrome to send the

PDUs via the WebRTC, both Chrome and Firefox had worse performances than

all the experiments with the WebSocket framework. Therefore, the Firefox and

WebRTC combination is currently better than other combinations provided

WebRTC is implemented using PeerJS.

This thesis used the worst-case performance of receiving rate (around

1,900 PDUs per second) as a guidance for scaling the tank game. The tank

game had two entities that repeatedly sent 200 ESPDUs per second. The

calculating result showed that this tank game was suitable for up to ten players.

In addition, there were variables that could be adjusted to enlarge the capacity of

the tank game, such as the heartbeat rate or the amount of entity that periodically

sent ESPDU. The capacity of ten players was good enough to create an online

game. For example, ten players can be divided into five-versus-five players.

Famous examples of five-versus-five games include League of Legends and

Defense of the Ancients (DotA) in Warcraft III; however, they are not web-based

games.

This thesis used Chrome and Firefox developer tools to profile the tank

game and recode the time of loading web contents. Profiling tools contained

percentages of time that each function used, and explicit times of each function

spent. The profiling results showed most of the browser resources were spent on

WebGL components, and the function for exchanging DIS packets only used a

 71

small portion of the browser resources (see Figure 33, Figure 34, Appendix C-1,

and Appendix C-2). The times of loading web contents showed browsers

received all necessary web contents quickly in a closed network (see Appendix

D).

Based on the above results, the DIS protocol could be applied in web-

based applications. Both WebSocket and WebRTC frameworks were capable of

supporting a ten-player first-person-shooter game in a browser, and the size of

the game was expandable by adjusting the variables. WebGL created 3D

graphics shows in web browsers without any plugins, and the performance of

WebGL was dependent on the power of computers and the degree of model

complexity, which was a trade-off among budget, performance, and the quality of

3D models. Methods of using the DIS protocol and the game styles are varied.

This thesis showed that web-based DIS simulation is workable, and simulation

designers could refer to the basic capability of exchanging DIS messages to

develop web-based simulation for different purposes.

B. FUTURE WORKS

This thesis sought quick ways of constructing networking environments to

interchange DIS between different browsers, so simulation developers could

focus on the functions and scenarios for different purposes. This thesis also

focused on developing an example game as a practical application to verify the

feasibility of web-based simulation. There were some experiments and

improvements that were not performed in this thesis, such as: performance

testing of mobile devices; improvement of the WebRTC sending capability in

Chrome browsers; benchmark testing of the WebSocket and the WebRTC in

different browsers; discussions of disadvantages of web-based simulations; and

comparisons between web-based DIS simulations and traditional DIS simulations.

1. Performance Tests and Web Applications on Mobile Devices

The development of mobile devices has flourished in the past few years,

and most of the mobile devices have installed web browsers such as iOS Safari,

 72

Opera Mini, Android Browser, and Chrome for Android. One of the advantages of

web applications is cross-platform, which indicates mobile devices can execute

web applications in their compatible web browsers. Currently, almost every

browser supports WebSocket, except Opera Mini; however, only Chrome for

Android supports the WebRTC. This thesis did not measure the performance of

interchanging DIS PDUs between browsers in mobile devices. This result would

be a consideration for developing web applications, because the computational

performance on mobile devices is typically slower than personal computers or

laptop computers. Other considerations include WebGL components and input

mechanisms. WebGL is one of the major elements that uses a lot of browser

resources. So far only Chrome for Android supports WebGL, but the next version

of iOS Safari will begin supporting WebGL(Deveria, n.d.-a). In addition, mobile

devices usually do not attach to a keyboard or mouse, and the main input device

for mobile device is a touch screen. Therefore, development of web applications

for mobile devices has to take into consideration input mechanisms using

graphical user interfaces (GUI) for users.

2. Improvement of WebRTC Sending Capability in Chrome
Browser and Benchmark Test

According to the results in Chapter V, Performance Tests, the lowest

receiving rates were from Chrome sent to Chrome and Chrome sent to Firefox.

This thesis used PeerJS that wrapped WebRTC to create data channels between

browsers. PeerJS is an easy and convenient API for developers to create web

applications that apply WebRTC functions in a browser. However, because

PeerJS is a wrapped API, it is difficult to modify or change the JavaScript code

inside the API. Additionally, there is no benchmark application for testing

WebRTC performance between Chrome and Firefox. Comparing with the

receiving capability that sending from Firefox browser (Figure 29), it seems like

Chrome should have space for improvement in the performance of the WebRTC

framework. Therefore, further studies directed at WebRTC technology are

required to improve the sending performance of the Chrome browser.

 73

3. Disadvantages of Web-based Simulation

This thesis discussed the advantages of web applications, along with the

establishment of infrastructures that exchange DIS messages, and the

development of the tank game. Some disadvantages of web-based simulations

were not studied or discussed in this thesis, such as security vulnerability, GUI

limitation, and latency. In addition, further study and discussion should contain

comparisons between web-based DIS simulation and traditional DIS simulation.

4. Feasibility of Other Web-based DIS Applications

This thesis only developed a first-person-shooter tank game as an

example of a DIS simulation in a browser. However, applications that use DIS

protocols are varied. Further research is needed to discover which web-based

domains can be applied to DIS simulations. For example, the WebSocket

gateway server can receive native DIS from a UDP socket, so browsers can

receive DIS packets from other simulation systems such as VBS2. Is it possible

to create a battlefield viewer by receiving DIS messages in browsers, or to create

a simplified interactive game interface in browsers? On the other hand, WebRTC

emphasizes real-time communication between browsers, and is designed for

audio and video communication. Is it possible to incorporate audio and video in

web-based DIS simulations? What is the benefit of incorporating audio and video

in web-based simulations, and does it affect the performance of sending and

receiving DIS PDUs?

5. Performance Tests in Public Networking Environments

All the experiments and performance tests in this thesis were done in a

closed-networking environment. Both WebSocket and WebRTC were competent

enough to support web-based DIS simulations; however, a public networking

environment is much more complex. Both WebSocket gateway servers and

WebRTC peers used one-by-one mechanisms to distribute DIS packets, but the

bottom layers were different. The WebSocket was based on a TCP socket, and

the WebRTC used a UDP socket. This thesis did not examine performances on a

 74

public network or Internet environments. Additional experiments should be done

to compare the performance between the WebSocket and the WebRTC on a

public network.

 75

APPENDIX A. TABLE OF ENTITY STATE PDU FIELDS

Appendix A shows the fields of entity state PDU, and DIS simulation uses

ESPDU to communicate information about an entity’s state.

 76

Table 6. Fields of entity state PDU.

 77

APPENDIX B. FIREFOX DEVELOPER TOOLS
PERFORMANCE PROFILE RESULTS

A. APPENDIX B-1. FIREFOX PROFILING OF SENDING ESPDUS

Appendix B-1 shows a result of using Firefox developer tools to profile the

sending behavior in the WebSocket framework for a short period-of-time.

Figure 41. Firefox profiling of sending ESPDU in the WebSocket framework.

 78

B. APPENDIX B-2. SENDING SECTION IN APPENDIX B-1

Appendix B-2 shows the sending section in Appendix B1.

Figure 42. Sending section in Appendix B1.

•

II;
~

j ~ •
"" I g . ·~ 9ifi~
: h-H
i ~ !jhl t:> 1 J,..c.
l ! f

! .
• a•fl[lt-

i ~ccc.:e •••::.--
l l I!C:fl!l-
0

j ...
0 0

 79

C. APPENDIX B-3. FIREFOX PROFILING OF RECEIVING ESPDUS

Appendix B-3 shows a result of using Firefox developer tools to profile the

receiving behavior in the WebSocket framework for a short period-of-time.

Figure 43. Firefox profiling of receiving ESPDU in the WebSocket framework.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX C. TANK GAME RESULTS

A. APPENDIX C-1. FIREFOX PROFILING IN THE WEBSOCKET
FRAMEWORK

Appendix C-1 shows a result of profiling the tank game using Firefox

developer tools in the WebSocket framework.

Figure 44. Firefox profiling of the tank game in the WebSocket framework.

 82

B. APPENDIX C-2. FIREFOX PROFILING IN THE WEBRTC FRAMEWORK

Appendix C-2 shows a result of profiling the tank game using Firefox

developer tools in the WebRTC framework.

Figure 45. Firefox profiling of the tank game in the WebRTC framework.

 83

APPENDIX D. NETWORK LOADING TIME

Appendix D is an example of recording the time of loading web contents.

Figure 46. Network loading time.

a ·
0 •

• 5

'
'

J • •
• •
' ' I f l ~ & : I ~ ! l : £ : I ~ ~ I I ! ! ! ~ ! I I I l ! & 1. j

A ~ • I • !! • , • ~ 0 = = = • - • = = = = = = = = = = = ~ ~ = ~ • • I
u ~ • n ~ - - ~ ~ : a - ~ • ~ i ~ = ; ~ ; ; ~ ~ ~ ~ ~ - . ; ~ ~

I • • 1 • a • • • • • • • • • • • a • • ~ a • • a • • • • • • a a • •

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX E. COMPARISONS OF RECEIVING FIRST TEN 10,000
DIS PDUS IN THE LINEAR FORM

Appendix E is the comparisons of receiving first ten 10,000 DIS PDUs in

the linear form. It shows that the times of receiving first one 10,000 DIS PDUs

were slower when the senders were Chrome.

Figure 47. The comparisons of receiving first ten 10,000 DIS PDUs

in the linear form.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

APPENDIX F. SCREENSHOTS OF MULTIPLAYERS
IN THE TANK GAME

Appendix F shows that it is possible to create a web-based DIS simulation

for many users.

Figure 48. Screenshots of multiplayers in the tank game I.

Figure 49. Screenshots of multiplayers in the tank game II.

 88

Figure 50. Screenshots of multiplayers in the tank game III.

Figure 51. Screenshots of multiplayers in the tank game IV.

 89

LIST OF REFERENCES

Arewefastyet. (n.d.). Retrieved August 20, 2014, from http://arewefastyet.com/

Axes conventions. (n.d.) Wikipedia. Retrieved August 29, 2014, from
http://en.wikipedia.org/wiki/Axes_conventions

Bu, M., & Zhang, E. (n.d.). PeerJS. Retrieved July 31, 2014, from
http://peerjs.com/docs/#api

Chrome V8. (n.d.). Retrieved August 20, 2014, from
https://developers.google.com/v8/intro

Deveria, A. (n.d.-a). Can I use WebGL. Retrieved August 4, 2014, from
http://caniuse.com/webgl

Deveria, A. (n.d.-b). Can I use WebRTC. Retrieved July 31, 2014, from
http://caniuse.com/#search=webrtc

Deveria, A. (n.d.-c). Can I use Websocket. Retrieved July 31, 2014, from
http://caniuse.com/#search=websocket

Dutton, S. (2013). WebRTC in the real world: STUN, TURN and signaling.
Retrieved from
http://www.html5rocks.com/en/tutorials/webrtc/infrastructure/

Farlane, D. M., Ryan, P., Davis, R., Rekkas, G., Davies, M., Ross, P., …
Carpenter, R. (2004). Distributed simulation guide. Canberra, Australia:
Australian Defence Simulation Office.

Firefox SpiderMonkey. (n.d.). Retrieved August 20, 2014, from
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

Fishwick, P. (1996). Web-based simulation: some personal observations. … of
the 28th Conference on Winter Simulation (pp. 772–779). Coronado, CA:
Winter Simulation Conference.

Flanagan, D. (2011). JavaScript - The definitive guide. (M. Loukides, Ed.) (Sixth.,
p. 1078). Sebastopol, CA: O’Reilly Media.

Frame rate. (n.d.) Wikipedia. Retrieved August 2, 2014, from
http://en.wikipedia.org/wiki/Frame_rate

Grigorik, I. (2013). High performance browser networking. Retrieved from
http://chimera.labs.oreilly.com/books/1230000000545

 90

JSON. (n.d.). Retrieved July 31, 2014, from http://json.org/

Lautenschlager, S. (n.d.). Javascript Key Codes. Retrieved August 1, 2014, from
http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-
codes

McCall, J. M. (2012). DIS IEEE Std 1278.1-2012 - Standard for Distributed
Interactive Simulation –Application Protocols (p. 729). IEEE.

McGregor, D., Blais, C., & Brutzman, D. (n.d.). A Javascript implementation of
the binary DIS protocol. Monterey, CA: MOVES Institute.

McGregor, D., & Brutzman, D. (n.d.). Networked virtual environments with
Javascript, WebSockets and WebGL. Monterey, CA: MOVES Institute.

McGregor, D., Brutzman, D., & Grant, J. (2008). Open-DIS: An open source
implementation of the DIS protocol for C++ and Java. Simulator
Interoperability Working Group (SISO) Fall …. Retrieved from
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Open-
DIS+:+An+Open+Source+Implementation+of+the+DIS+Protocol+for+C++
++and+Java#0

McGregor, D., Grant, J., Smith, P., Harder, R., & Snyder, S. (n.d.). Open-DIS.
Retrieved from http://open-dis.sourceforge.net/Open-DIS.html

Parisi, T. (2012). WebGL: Up and running (p. 230). Sebastopol, CA: O’Reilly
Media.

Powers, S. (2010). JavaScript cookbook. (S. St.Laurent, Ed.) (p. 528).
Sebastopol, CA: O’Reilly Media.

Profiling JavaScript Performance. (n.d.). Retrieved July 31, 2014, from
https://developer.chrome.com/devtools/docs/cpu-profiling

Ristic, D. (2014). WebRTC data channels. Retrieved from
http://www.html5rocks.com/en/tutorials/webrtc/datachannels/

Rogerson, S. (1997). Implementation of a distributed interactive simulation
interface in a Sea King Flight Simulator. Retrieved from
https://tspace.library.utoronto.ca/handle/1807/11813

Simulation Interoperability Standards Organization (SISO) Reference for :
Enumerations for Simulation Interoperability. (2013).

Souders, S. (2007). High performance web sites (p. 146). Sebastopol, CA:
O’Reilly Media.

 91

Steed, A., & Oliceira, M. F. (2010). Networked graphics–Building networked
games and virtual environments (p. 522). Burlington, MA: Morgan
Kaufmann.

w3schools. (n.d.). JavaScript tutorial. Retrieved July 31, 2014, from
http://www.w3schools.com/js/

WebRTC. (n.d.). Retrieved July 31, 2014, from http://www.webrtc.org/

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

