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ABSTRACT 

This thesis investigated the current infrastructure for web-based simulations 

using the DIS network protocol. The main technologies studied were 

WebSockets, WebRTC and WebGL. This thesis sought readily available means 

to establish networks for interchanging DIS message (PDUs), so the WebSocket 

gateway server from Open-DIS project was used to construct a Client-Server 

structure and PeerJS API was used to construct a peer-to-peer structure. WebGL 

was used to create a scene and render 3D models in browsers. A first-person-

shooter tank game was used as a test application with both WebSocket and 

WebRTC infrastructures.  

Experiments in this thesis included measuring the rate of sending and 

receiving DIS packets and analysis of the tank game by profiling tools. All the 

experiments were run on Chrome and Firefox browsers in a closed network.  

The experimental results showed that both WebSocket and WebRTC 

infrastructures were competent enough to support web-based DIS simulation. 

The results also found the significant differences of performance between 

Chrome and Firefox. Currently, the best performance is provided by the 

combination of Firefox using the WebRTC framework. The analysis of the tank 

game showed that most of the browser’s computational resources were spent on 

the WebGL graphics, with only a small percentage of the resources expended on 

exchanging DIS packets. 
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I. INTRODUCTION 

In the military domain, simulation is widely used for training, education, 

and analysis. Many simulation systems have been developed to support different 

missions, such as flight simulators for training and educating pilots, or Virtual 

Battlespace 2 (VBS2) for educating platoon leaders. After multiple simulation 

systems have been established, users may want to integrate them for joint 

training purposes. Therefore, the requirement for interoperability among systems 

becomes an important topic.  

In the 1990s, the Simulation Interoperability Standard Organization (SISO) 

reached an agreement on a distributed interactive simulation (DIS) protocol. 

SISO also had the DIS protocol ratified as an IEEE standard, so it is now 

available for anyone to read and implement. Currently, the DIS protocol has been 

used to develop many simulation systems or communicate among existing 

systems by formatting the exchanged data. There are many existing simulation 

systems that have implemented the DIS protocol by different programming 

language (Rogerson, 1997; McGregor, Brutzman & Grant, 2008). One purpose of 

military simulation is to construct a live, virtual and constructive (LVC) 

environment for military training, education, and analysis (Farlane et al., 2004). 

“Live” refer to real people operating real systems such as real pilots flying F-16 

fighters. “Virtual” refers to real people operating simulated systems, such as real 

drivers in high-occupancy vehicle (HOV) simulators. “Constructive” describes a 

simulation in which both people and systems are simulated such, as a simulated 

opponent force—an opponent fighter with AI—in a simulated system. In order to 

achieve LVC architecture, simulation systems have to exchange information with 

each other, and DIS protocol represents a standardized format for 

communicating data. 

With the developments of web technology and the improvements of 

computer performance, more and more applications can be run in web browsers. 

This thesis implemented several web technologies that mainly included 
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WebSocket, WebRTC, and WebGL to discuss the feasibility of applying DIS 

protocol to multiple-user web-based simulation. The client/server and peer-to-

peer architectures can be used to develop web-based simulations, and their 

respective technologies are WebSocket and WebRTC. This thesis compared the 

performance of sending and receiving DIS messages in these two different 

networking architectures, and incorporated WebGL components to develop a 

first-person-shooter game to analyze the performance in different browsers. 

This thesis also discussed the advantages of web-based simulation. The 

features of web-based simulation are easier to upgrade (centralized content), are 

cross-platform, and are widely accessible via computers, tablets, and mobile 

devices. For example, when people want to execute simulation systems, they 

have to set up an environment for execution. This environment includes a 

physical desktop setup, an operating system install, a simulation software install, 

and a peripheral device setup. Typically, computers have pre-installed operating 

systems with peripheral device setups. The simulation system, however, has to 

be installed additionally, and each one has its own compatible operating system 

(e.g., Windows 7, Windows Server 2012, UNIX, and different versions of Linux). 

When users want to run a specific simulation system on computers, they have to 

check and configure all operating systems and system setups before running the 

simulation. The computer preparation for running this specific simulation system 

may be a tedious and inefficient process. 

Web-based simulation can relieve the above situation and increase the 

efficiency of system readiness. Nowadays, the major browsers that most people 

use on desktop and laptop computer are Chrome, Firefox, Internet Explorer, and 

Safari. All the experiments, comparisons and analysis in this thesis, however, 

were run in Chrome and Firefox because both Chrome and Firefox support the 

same web technologies. In addition, both Chrome and Firefox provide installers 

for mainstream operating systems such as Windows, Mac OS, and Linux, so 

web-based simulation can run on almost every operating system through these 

two platforms (Chrome and Firefox). 
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The thesis begins by describing the motivation and the benefits of 

browser-based simulation and outlining the technologies for constructing the 

infrastructures. Next, the thesis describes design and implementation for testing 

the performance among several variables. The latencies and the results were 

discussed at the end with commentary for future work. 
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II. BACKGROUND 

In the past, developing a networked and interactive simulation system 

usually required complex programming skill. Many programming language and 

technologies have been developed to reduce the complexity of programming. 

The following sections describe motivations and several present technologies for 

developing a small-scale and interactive simulation.  

A. MOTIVATION 

With the prosperity of the Internet, more and more web applications have 

been developed. With the development of web technologies and the increasing 

of computational power, the possibility of developing interactive and complicated 

applications in web is promising, and because of the elements of interaction and 

logical computation capability, web-based simulation systems are more 

achievable. Web-based simulation is exploiting resources and technologies 

offered by the World Wide Web (WWW) to represent traditional simulation 

systems (Fishwick, 1996). In other words, web-based simulation uses web 

browsers as graphical interfaces to link users and simulation systems. The 

benefits of exploiting web-based simulation are cross-platform, collaboration, 

model reusing, deployment, wide availability, versioning control, etc. Modern 

browser companies provide browser installers for different operating systems, 

and most modern browsers support the same web technologies (e.g., JavaScript, 

JSON, binary data format, WebGL, and WebSocket), which increases the cross-

platform capability. Collaboration is useful in that web simulations can be 

designed to help people involved in a common task to accomplish goals. Model 

reusing is that many existing 3D graphic formats such as .dae, .obj, .blend can 

be imported into web applications, so software engineers can focus on the 

design of web applications rather than making 3D models. Web applications also 

increase their accessibility and deployment to users because every operating 

system has its compatible browsers that support the same web technologies. On 
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server side, web applications can ease the burden of versioning control for 

system managers. They only need to update archives on server and ask users to 

reload and refresh web contents. Additionally, web applications are easy to 

execute because browsers do not need further configuration or plug-in to run 

applications. For the military domain, state-of-the-art web technologies can not 

only construct web-based simulations (McGregor & Brutzman, n.d.), but also 

enable communication between web applications such as Google Maps and 

existing simulation systems such as VBS2, OneSAF, and JCATS via proper 

gateways(McGregor, Blais, & Brutzman, n.d.). The ability of interoperating with 

other systems increases the practicability of web-based simulation. Furthermore, 

inventors of web technologies also ease the learning curve of developing web 

applications. HTML5 and JavaScript are easy to learn and practice programming 

languages, and developers do not require compilation JavaScript manually or 

extra procedures for users to run web applications. 

B. TECHNOLOGIES  

In order to establish a web-based simulation with the abilities of easy 

deployment and maintenance, many elements have to be applied. These include 

networking architecture, DIS protocol, JavaScript, web server with WebSocket, 

Web Real-Time Communication (WebRTC), WebGL, JSON format DIS, and 

binary format DIS messages. 

1. Networking 

Networking is separated into five layers: application, transport, network, 

link, and physical. Most of the applications are implemented in the application 

layer over TCP/IP protocol, a framework for communication between devices. 

TCP/IP is a software concept that allows one machine to send bytes to another, 

without knowing the content or meaning of those sent bytes. Applications are 

used to interpret TCP/IP sending data. Modeling and simulation (M&S) 

networking protocols are standardized in the application layer, and all the M&S 

applications such as JCATS and OneSAF relay on this layer, too.  
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Network architecture usually contains more than two hosts (Steed & 

Oliceira, 2010, Ch. 4) in military simulations, so it is important to define models 

for multi-host connections: simple peer-to-peer, peer-to-peer with master host, 

peer-to-peer with rendezvous server, and client/server. Simple peer-to-peer 

communication means that each host has a configuration file to record necessary 

information of all the participants (as well as address/port data) and then sends 

updates to all the other hosts within the network group. Peer-to-peer with master 

means that one the participants will be the rendezvous access point. The 

rendezvous point has a well-known IP and port number, so any host who wants 

to join the network can obtain other participant information from the master. The 

advantage over the simple peer-to-peer model is that there is no need to collect 

every participant’s IP address, port number and other information beforehand. 

The peer-to-peer with rendezvous server model uses a server that has 

information for all participants. Every host who wants to join the network has to 

connect to the rendezvous server first to ask for network environment 

information. The difference between peer-to-peer with master and peer-to-peer 

with rendezvous server is that the master is one of the network participants but 

the rendezvous server, who is not a participant in the network, is only the 

distributor with all the hosts’ information for a new host who wants to join the 

network. Client-server architecture means that each host connects to the server, 

and the server is responsible for every communication between hosts.  

2. DIS Protocol 

DIS is a standardized protocol used to communicate and exchange 

information in a multiplayer simulation system (DIS IEEE Std 1278.1-2012– 

Standard for Distributed Interactive Simulation–Application Protocols, 2012). It 

also allows two or more different types of simulators to interact or interoperate, 

especially those simulators that have human-in-the-loop elements. For example, 

a joint forces exercise uses ship simulators and flight simulators to train the 

capability of cooperation. The method that DIS uses to interchange information is 

based on protocol data unit (PDU) messages; there are many kinds of PDUs, 
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such as entity state PDU (ESPDU), detonation PDU and entity damage status 

PDU. Different PDUs have different lengths and fields to contain the variety of 

information, so simulation system can communicate with each other by sending 

and receiving PDUs. Although there are many kinds of PDUs with different fields 

for restoring information, every PDU starts with the same header that is used to 

differentiate PDU types when receiving DIS packets. Appendix A displays a table 

containing entity state PDU fields, and shows that the common PDU header used 

the first 96 bits. The table also shows the other fields of ESPDU. ESPDU is the 

most frequent PDU in DIS simulation, and it is used for interchanging the 

information of entity’s state. The information includes entity ID, entity type, 

location and orientation in the simulated world, entity appearance, entity 

capabilities, etc. 

The DIS uses a heartbeat strategy, in which entities periodically send out 

their PDUs even if they do not change their properties or states. A critical issue, 

however, is the rate at which each entity sends its PDUs—sending data too often 

would cause networking congestion, latency or losing data, etc. In a large-scale 

scenario, some of the entities are relatively slow or even in a static state (e.g., 

tanks or infantry), but some of the entities move quickly (e.g., airplanes). 

Therefore, the developer has to set different update rates for different kinds of 

entities to avoid redundant DIS packets transferring in network. Another principle 

is not to let the late-joining hosts wait too long for those slow-moving entities. DIS 

simulation is mainly used in military domains, and it usually assumes that DIS 

simulation is implemented in a high-performance intranet with high security, one 

in which participants will not send fake or swindling messages. Additionally, in 

order to simplify data transfer, DIS usually broadcasts or multicasts its PDUs 

based on UDP socket. 

3. JavaScript 

JavaScript is the scripting language of the web, and all modern web 

browsers support JavaScript (w3schools, n.d.). JavaScript lets browsers have the 
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capability of logical computation and client-side scripting that let users change or 

interact with web content depending on user input, which is in contrast with 

server-side scripts such as PHP, Java and Python (Flanagan, 2011; Powers, 

2010).   

4. Web Server with WebSockets  

Traditional web servers only talks to a user’s page once, when user loads 

the content from the web server; this is because the web pages were designed to 

be static originally. This causes a problem for web pages that need highly 

interaction with users. With WebSocket, JavaScript opens a TCP socket to 

establish a communication channel to the server and request this special type of 

TCP socket to be opened for delivering arbitrary application protocols between 

client and server (Grigorik, 2013, Ch. 17). This specialized TCP socket can 

remain open, so web pages can keep updating its contents periodically with 

some JavaScript program. Furthermore, WebSocket also has features of low 

latency compared to HTTP polling; and higher bandwidth. WebSocket makes 

possible to run interactive and real-time applications in web browsers. 

5. WebRTC 

WebRTC—whose API is defined by W3C and protocol is defined by 

IETF—is a plugin-free real-time communication API that is used for high-quality 

audio, video and data communication with low cost (“WebRTC,” n.d.). The 

features of WebRTC are binding a UDP socket, peer-to-peer connection, and 

cross-platforms interaction. Four main tasks for WebRTC are acquiring audio and 

video, establishing a connection between peers, communication audio and video, 

and communicating arbitrary data. In order to achieve the above tasks, three 

main JavaScript APIs–MediaStreams (a.k.a. getUserMedia), 

RTCPeerConnection and RTCDataChannel are applied. So far, WebRTC can 

run in Chrome, Firefox, and Opera. 

MediaStreams, acquiring audio and video, represents a stream of 

synchronized media, and it can contain multiple audio and video tracks. To 
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obtain a MediaStream, JavaScript provides a method called 

navigator.getUserMedia(). When invoking navigator.getUserMedia(), a web 

browser will pop out a HTTPS prompt and ask the user’s permission for 

accessing the camera and microphone. While developing web apps using 

WebRTC API, developers can combine video and audio streams with JavaScript 

Canvas and WebGL. In the mobile devices with multiple cameras or 

microphones, users can choose input devices through WebRTC API. Another 

function of WebRTC is getUserMedia() for capturing user’s screen, which is 

useful for desktop sharing or online remote teaching. 

RTCPeerConnection is implicitly used for audio and video communication 

between peers. A web browser takes the media streams from getUserMedia(), 

plugs them into the peer connection and sends them off to the other side. The 

peer connection is responsible for many things (e.g., signal processing, codec 

handling, peer to peer connection, security, and bandwidth management). 

WebRTC hides most of the complexity from web developers, so developers can 

get media streams easily and plug them into peer connection. 

RTCPeerConnection, however, needs servers to broker a connection when the 

peers want to make connections. Therefore, a process called signaling is 

applied, which is like making a telephone call. When a caller makes a phone call, 

the telephone network sends a message to a callee. After the callee answers the 

call, the callee sends a message back to activate a connection. WebRTC does a 

similar thing. When a peer wants to establish a connection, its application first 

signals to the server and then sends session description objects that contain 

parameters and Internet information to the browser for setting up the peer-to-

peer route. Figure 1 describes the technique of making peer-to-peer connections 

between browsers. WebRTC allows users using any mechanism, protocol, or 

even JSON to make connections to maximize compatibility with established 

technologies, which is defined by JavaScript session establishment protocol 

(JSEP) (Dutton, 2013).  
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Figure 1.  JSEP architecture(from Dutton, 2013). 

RTCDataChannel is a bidirectional communication of arbitrary data 

between peers, and all the data is encrypted by Datagram Transport Layer 

Security (DTLS), which is a derivative of SSL. RTCDataChannel is much like a 

WebSocket, but it relies on the Stream Control Transmission Protocol (SCTP), 

which runs on top of the UDP socket. A comparison of TCP, UDP, and SCTP is 

in Table 1. Based on the features of SCTP, RTCDATAChannel is suitable for 

arbitrary data transfer or multiplayer gaming. 

 

 
Table 1.   TCP, UDP, and SCTP comparison (from Ristic, 2014). 
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6. WebGL 

Web graphics library (WebGL) is a JavaScript API for rendering 2D or 3D 

graphics in any compatible browser (i.e., most modern browsers such as IE 

v11.0, Opera v23.0, Chrome v36.0, Firefox v31, or Safari v7) (Deveria, n.d.-a). 

WebGL can be used for processing 2D images, creating visually 3D graphics and 

visualizing different kinds of data. For example, D3.js is a JavaScript API that 

visualizes varieties of data in browsers by using HTML, SVG, and CSS. Many 

WebGL libraries are game engines for rendering graphics in browsers; these 

include pixi.js, Phaser, and three.js. WebGL provides the web pages with the 

capability of efficiently creating interactive 2D and 3D graphics to simulate 

objects in web-based simulations.  

7. JSON DIS Format 

JavaScript Object Notation (JSON) is a text-data format that facilitates 

data interchange between different languages (“JSON,” n.d.). The purpose of 

JSON is to store and exchange text information. It is like XML, but smaller, faster, 

and easier to parse. JSON is used to describe data objects not only for 

JavaScript, but also for other programming languages. It is language-

independent because most of the programming languages have their own 

methods and libraries to parse JSON text. JSON and JavaScript syntactically use 

the same method to describe objects, so when JavaScript receives JSON format 

files, JavaScript uses a built-in eval() function to generate JavaScript objects. 

JSON format is based on two kinds of structure: pairs of name and value, and 

ordered lists. Pairs of name and value is similar to object, record, struct, 

dictionary, hash table, keyed list, or associative array in other languages. 

Ordered list is like array in other languages. 

DIS protocol can be formatted in the form of JSON, which uses a tag-

value approach to make JavaScript objects containing PDU information. This DIS 

JSON can be sent by WebSocket or WebRTC API after invoking JSON.stringify(), 

a JavaScript method, to convert a JavaScript object to JSON. Another browser 
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can receive this DIS JSON and decode as a JavaScript object. Although JSON 

exchanges data well, it has some inevitable drawbacks. JavaScript object uses a 

tag-value approach, so both publisher and subscriber must have agreement 

regarding field names in the messages. This feature increases the flexibility of 

creating objects, but it uses more bandwidth in messages. 

8. Binary DIS Format 

DIS protocol has been approved by IEEE, and it is widely used in many 

existing simulation applications. Using binary format to exchange messages 

between browsers has a better performance than JSON. Not only the message 

size in DIS binary is smaller than JSON with full DIS messages, but also the 

decoding speed in DIS binary is faster than JSON messages (McGregor et al., 

n.d.). Another advantage of binary DIS format is that DIS is a standardized 

protocol, and using it eliminates the intermediary gateways for protocol 

translation. Additionally, many existing gateways convert different protocols into 

DIS protocol such as JBUS—Joint Simulation Bus—and this increases the 

interoperability between existing simulation systems and web-based simulations. 

Using the above elements—which included networking, DIS protocol, 

programming language, web server with specialized TCP socket, WebRTC, 3D 

graphics, and DIS JSON formatting or binary formatting message—it is possible 

to create an interactive web-based simulation with human-in-the-loop features.  
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III. EXPERIMENTAL DESIGN 

To understand the performance of running DIS in browsers, this thesis 

created an experimental design with several variables that included networking 

framework (WebSocket and WebRTC), application of WebGL and different 

browsers. The experimental devices included a wired router, two desktop 

computers as clients and one laptop computer as WebSocket server and 

WebRTC server. The specifications of the two desktop computers are as follow: 

Intel® Xeon® CPU E5-1603 0 @ 2.8 GHz, 6 GB memory, NVIDIA Quadro 4000 

graphics card, and Windows 7 64-bit operating system. The specifications of the 

server are as follow: Intel® Core™2 Duo CPU L9400 @ 1.86 GHz, 2 GB memory, 

NVIDIA GeForce 320 M graphics card and Windows 7 32-bit operating system. 

A. NETWORKING FRAMEWORK 

There are many ways to make communication among computers, such as 

client-server architecture or peer-to-peer architecture. Because of the emergence 

of web technologies (WebSocket and WebRTC), many networking architectures 

can be applied to web-based applications.   

1. Client-Server Architecture (WebSocket) 

WebSocket is a TCP-based socket, which means it has all the features of 

TCP socket such as reliable and ordered data interchange, and it can be used to 

transport arbitrary data type for different web applications.  

a. Open-DIS WebSocket Gateway Server  

Open-DIS is an open-source implementation of the DIS protocol in many 

languages (McGregor, Grant, Smith, Harder & Snyder, n.d.). It was developed 

mainly by the Modeling, Virtual Environment, and Simulation (MOVES) Institute 

at the Naval Postgraduate School. From the Open-DIS official website, users 

can download a “javascript.zip” archive to obtain WebSocket gateway server. 

The archive has example applications including sending and receiving native DIS 
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messages and WebSocket/Javascript/WebGL applications. For this experiment, 

the WebSocket application was run in NetBeans, which is a free integrated 

development environment (IDE) for developing desktop, mobile and web 

applications with JAVA, C++, HTML5, JavaScript and more. 

b. Framework 

The DIS implementation of WebSocket gateway server is client-server 

architecture, shown in Figure 2. Every DIS message that is sent from the web 

browser must go through the WebSocket gateway server. The server will repeat 

received DIS messages to all connected web browsers. Because all the client 

browsers are connected to the server, the server plays a vital role in a client-

server web-based simulation. If the server loses its networking connection, all the 

browsers will lose their ability to interoperate, and then the web-based simulation 

will become a single-player game or crash. 

 

Figure 2.  WebSocket networking framework. 

2. Peer-to-Peer Architecture (WebRTC) 

Unlike the WebSocket, WebRTC uses UDP sockets that have no flow 

control and no congestion control. They are also unreliable and offer unordered 

data exchange to transfer data. The WebRTC data channel, however, uses 

SCTP—which is a protocol on top of the UDP sockets—to configure data 

reliability and to order and control data flow and congestion. The networking 

architecture of WebRTC is like a peer-to-peer with rendezvous server model. 
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a. PeerJS 

PeerJS is an application programming interface (API) based on WebRTC 

(Bu & Zhang, n.d.). It wraps WebRTC implementation and provides a fully 

documented and easily configurable API for developers to create peer-to-peer 

connections in web browsers with nothing but a unique ID. Client browser 

creates a unique ID and connects to PeerServer, and the server uses this ID to 

identify and deliver connection information to the prospective peers. The ID is 

formed with numbers and letters. If a client browser connects to a PeerServer 

without a unique ID, the PeerServer would create an ID for this active client. If a 

client-browser connects to a PeerServer with an ID that has been used for other 

client browser, this client would connect as failed, and the server would respond 

with error messages to the client.  

On each connection between a pair of browsers, audio, video, and 

arbitrary data can be sent. Although WebRTC is peer-to-peer connections, the 

client’s browser must first signal to a PeerJS server to get connection information 

that is based on a session description protocol (SDP). WebRTC uses SDP to 

describe a session profile, which contains information such as transportation 

address, media information, and related metadata. Browsers use this session 

profile to create peer connections. PeerJS provides PeerServer on Cloud, a 

public server that everyone can use by registration on the PeerJS Website, and 

PeerServer application for installation in a private network. 

b. Framework  

This thesis used PeerJS to create a data channel to interchange DIS 

messages between peers. The framework is in Figure 3. Before a peer-to-peer 

connection, each peer has to initially connect to a PeerServer to get another 

peer’s information and a web server to receive web content. Once the peer 

browsers construct data channels and receive web content, the peers no longer 

need the PeerServer. 
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Figure 3.  WebRTC networking framework. 

B. PERFORMANCE WITH WEBGL 

WebGL is one of the critical elements in web-based simulation. Users feel 

more immersed if a simulation has lifelike models, especially 3D models in a vivid 

virtual environment. Running 3D graphics, however, is resource consuming, 

which means computers have to devote lots of CPU or GPU resources to 

computing the change of 3D graphics (e.g., movement, scaling, rotation). 

Therefore, this thesis designed a comparison for applying WebGL or not. All the 

experimental 3D models were made with Blender, which is free and open-source 

software for computer 3D graphics. Blender has an add-on function to export 3D 

graphics, and a library implemented WebGL (three.js), which has loaders for 

importing .js models into web pages. 

1. Without WebGL Elements 

Purely DIS messages send and receive without WebGL elements in 

different networking frameworks. In order to find out the capability of sending and 

receiving speed in modern browsers, two browsers were opened on two 

computers with the same hardware devices; one was for sending DIS packets 

and the other was for receiving DIS packets. The sending browser repeatedly 

converted an ESPDU JavaScript object to binary format DIS messages before 

sending those messages. The receiving browser decoded the binary message, 
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converted it a JavaScript object and distinguished PDU types every time it 

received DIS messages. 

2. With WebGL Elements 

WebGL enables web browsers to render 3D graphics without plugins, but 

it also takes a lot of computational resources. This thesis created a 

demonstrating game that used WebGL and the three.js library to render 3D 

graphics and DIS PDUs to exchange entity information.   

a. 3D Models 

This thesis designed three major 3D models (terrain, tank and tank 

ammunition) to demonstrate the feasibility of web-based simulation. The 

demonstration was a simple and first-person-shooter tank game. The players 

controlled a single tank to search, aim, and shoot other tanks in a virtual 

environment in a web browser. This game was designed for multiple players. 

Each player, and each browser page, created its own virtual environment 

(including scene, skybox, light, camera, terrain, a controllable tank, tank 

ammunition, etc.) when the browser connected to a web server and got the game 

html file. Browsers started sending and receiving DIS messages once they 

connected to a WebSocket gateway server or established a WebRTC data 

channel. Other tank models and ammunition models were created when a 

browser received ESPDUs whose entity IDs were new to that browser, which 

meant that each opponent tank model had a corresponding entity ID. If an 

incoming ESPDU’s entity ID already had a representative 3D object, the browser 

would update the state and location of this 3D object in the virtual world.  

b. Game Design 

There are three different types of DIS PDUs in this tank game: entity state 

PDU (ESPDU), collision PDU and fire PDU. Figure 4 describes the mechanism of 

this tank game. The upper section is about sending DIS PDUs, and the lower 

describes receiving DIS PDUs. When the game started and a controllable tank 
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was created in the scene, the tank could move and search for targets. At the 

same time, the tank issued ESPDUs every ten milliseconds, which was the same 

rate at which WebGL updated its canvas.  

The ESPDUs are the major interchanging PDUs in DIS simulations, and 

contain all the basic information of entities (e.g., entity ID, entity type, entity 

location, and entity orientation). The collision PDU contains information about 

collision events, and is issued when a collision happens between two simulated 

entities or between a simulated entity and another object in the virtual world. In 

this tank game, a collision PDU was issued only when a tank’s projectile hit 

another tank. The fire PDU is used to support visual, aural, and other effects, and 

identify an entity that fired a weapon or expendable. The fire PDU in this game, 

however, was only used to communicate firing events and showed the firing 

information on screen. 

To play this game, the player has to eliminate all other tanks in the virtual 

battlefield. If a tank gets hit while searching for targets, it will issue a collision 

PDU. The information in a collision PDU includes the issuing entity ID, colliding 

entity ID, event ID, location, etc. If a tank finds a target and shoots it, the tank will 

issue a fire PDU regardless of whether it hits its target. A fire PDU contains the 

fields firing entity ID, target entity ID, location, etc. for describing the firing event. 

If a tank hits a target, the tank’s projectile will issue a collision PDU. In the 

receiving section, when the browser receives a DIS message, the message will 

be decoded and categorized into ESPDU, collision PDU or fire PDU. If a browser 

receives an ESPDU and the ESPDU’s entity ID is new to this browser, the 

browser loads a 3D object to represent this entity ID. Otherwise, the browser 

updates the state and location of this 3D object. If browsers receive fire PDUs, 

they display the fire information in the upper-left corner of the window. If a 

browser receives a collision PDU, it checks whether its controllable tank issued a 

collision PDU within two seconds (a game setting). If the answer is yes, the tank 

is killed, and the game is over. If no, there might be some latency or lag in 
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networking traffic that created an asynchronous situation, so the game would 

continue.  

 

Figure 4.  Tank game design. 

C. PERFORMANCE IN DIFFERENT BROWSERS 

Modern browsers such as Chrome, Firefox, and Safari use different 

JavaScript engines to execute JavaScript. Chrome uses V8 as its JavaScript 

engine. V8 is an open-source and high-performance JavaScript engine that is 

written in C++ and implements ECMAScript as specified in ECMA-262, 5th 

Edition (“Chrome V8,” n.d.). V8 can be run on most modern operating systems 

such as Windows (XP or newer), Mac OS X (10.5 or newer) and Linux systems. 

Firefox’s JavaScript engine is called SpiderMonkey, which is written in C/C++ 

(“Firefox SpiderMonkey,” n.d.). The latest JavaScript just-in-time (JIT) compiler 

for SpiderMonkey is called IonMonkey, which is implemented in the latest Firefox 

browser and can be installed in most modern operating systems. Safari uses 
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another JavaScript engine Nitro, but this thesis did not use Safari for experiments 

because Safari does not support WebRTC yet.  

Different JavaScript engines cause variations in browser performance. 

There are many web applications for benchmarking JavaScript performance 

among different versions of browsers or different brands of browsers, including 

SunSpider, Kraken, and Octane. The benchmarking tests are varied, and it is 

hard to measure the performance precisely because there are too many 

variables (e.g., CPU, memory, browser version) to affect the benchmarking 

results. The common benchmarking tests include OS kernel simulation 

benchmark, 3D ray tracer, cryptography test, code decompression, PDF reader 

implementation, etc. There is an existing website showing benchmarking 

comparisons between modern browsers within different operating systems, and 

the website visually displays the differences among those modern browsers 

(“Arewefastyet,” n.d.). 

Currently, WebSocket is supported widely by almost every browser 

(Deveria, n.d.-c). WebRTC is supported by a few browsers, including Chrome, 

Firefox, and Opera. The global usage of Chrome, Firefox and Opera is 28.39%, 

4.69% and 0.36%, respectively (Deveria, n.d.-b). Therefore, the comparison of 

performance between browsers mainly focuses on Chrome and Firefox in this 

thesis. 
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IV. IMPLEMENTATION 

In order to implement experiments, four services were run on the server 

side: WebSocket gateway, web service, PeerServer and primary peer. The 

experimental environment can be divided into two parts: WebSocket and 

WebRTC. This thesis, however, used one computer to run these four services. 

Figure 5 shows the experimental environment for this thesis. The first part was 

client-server framework using WebSocket gateway server. The server, which 

was downloaded from the Open-DIS project website, provides web server and 

server-side implementation of WebSocket. 

Second part was peer-to-peer framework using PeerServer. PeerServer 

only has the capability to help broker connections between peers, so the 

experiments in this thesis used the web server from WebSocket gateway server 

for users to download web content, WebGL elements, 3D models and JavaScript 

code. One of the features of PeerJS is using unique IDs to make peer 

connections, so the newly-joined peer has to obtain the IDs of others to create 

peer connections beforehand. The primary peer was a webpage that collected 

the peer IDs and distributed a list of live peers to all connected peers. Although 

every client has a data channel with the primary peer, they would not send any 

DIS packets to the primary peer. A connected peer list was the only distributed 

data under this data channel.  
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Figure 5.  Experimental environment. 

A. SERVER PREPARATIONS  

The following section describes preparatory works for the above-

mentioned four services that were used to support the performance tests in this 

thesis.  

1. WebSocket Gateway Server and Web Server 

WebSocket gateway server ran on a computer with NetBeans installed. 

This server also had the capability of web server, so clients could get web 

content from a server IP address on port 8282. Port 8282 is a default setting for 

this server. This server also can receive native DIS messages that were 

broadcast from other simulation systems using UDP socket with port 3000, but 

this function was turned off manually in the experiments. The WebSocket was 

client-server architecture, so the expression in Figure 5 was that Client A sent 

DIS messages to WebSocket gateway server and then the server distributed the 

receiving DIS messages to Client B, and vice versa.  
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2. WebRTC: PeerServer and Primary Peer 

PeerServer is Node.js-based application, so the server computer must 

install Node.js before running PeerServer. Node.js is a V8 (JavaScript engine) 

based platform for developing fast and scalable network applications. Figure 6 

shows how to install and execute PeerServer after having Node.js installed. 

Node.js can be obtained from its official website: http://nodejs.org/. PeerServer 

used port 9000 to help broker connections between peers. The primary peer was 

one of PeerServer clients, so the primary peer could be executed after 

PeerServer was on. WebRTC is peer-to-peer connection with a rendezvous 

server; the framework is shown in Figure 3.  

 

Figure 6.  Install and execute PeerServer. 

B. BROWSER INITIATIVE PROCESSES AND BEHAVIORS 

Once the server and services were established, client browsers could 

connect to the server to receive web contents. The web contents helped the 

browsers initiate a virtual world inside the window and interact with users. The 

initiative processes included importing necessary libraries; checking browser 

brands, and creating a canvas, scene, virtual objects, etc. Once the browser was 

initiated, it began sending and receiving DIS PDUs via WebSocket or WebRTC 

data channels. At the same time, the browser was ready to interact with users via 

the computer keyboard. The following describes the processes of initiating web 

browsers and the behaviors of exchanging DIS packets and interacting with 

users. 
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1. Import Libraries 

The “dis.js” archive is an essential library for experiments in this thesis, 

and it can be downloaded from the Open-DIS project. It includes all DIS PDU 

classes and methods that convert from DIS PDU objects into binary format DIS 

and vice versa.  

a. WebSocket 

WebSocket is a native capability in web browsers that support WebSocket, 

so no specific library needs to be imported for WebSocket.   

b. WebRTC 

WebRTC is included in the web browser, and PeerJS wraps the browser’s 

WebRTC implementation. This thesis used PeerJS as an API to create 

WebRTC data channels, so the “peer.js” library obtained from the PeerJS 

official website must be imported at the beginning. 

c. WebGL 

WebGL is native in browser. This thesis applied “three.js,” which is layered 

on top of WebGL as a library for 3D graphics in web browsers (Parisi, 2012). It 

can be used to create scene graphs, camera, light, skybox, and basic 3D 

graphics, and it also can manipulate imported 3D models by applying different 

materials or shaders.  

d. Others 

Other libraries included OrbitControls.js as well as various loader and self-

defined js archives. OrbitControls.js was used to control the camera by mouse in 

browsers, and the different loaders were for loading different formats of 3D 

models such as obj, js, mtl, and max. Figure 7 shows the relationships of 

importing libraries and other JavaScript programs. 



 27

 

Figure 7.  Relationships of importing libraries and other JavaScript programs. 

2. Checking Web Browser Brand and Initiating WebSocket or 
WebRTC  

Different browsers have different engines to implement JavaScript, so 

when an end user downloads web content from a web server, JavaScript code 

must check what kind of browser is being used. WebSocket and PeerJS that 

implements WebRTC have different ways to check browser brands.  

a. WebSocket 

WebSocket is widely supported by many browsers. The main browsers 

this thesis had to differentiate were Chrome and Firefox. Figure 8 shows the 

JavaScript code for distinguishing browser brands and establishing a connection 

to the server. 

 

Figure 8.  Creating WebSocket code. 
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b. WebRTC 

The WebRTC is wrapped by the PeerJS API, and it automatically checks 

browsers for web application developers. To initiate a peer object, a user has to 

randomly produce a peer ID to signal to the PeerServer, and then wait for a 

connection from other peers. If the ID is not given, the PeerServer will generate 

one for this client. Figure 9 shows the code for creating a peer object and 

signaling to PeerServer. 

 

Figure 9.  Initiate a PeerJS client. 

There are two situations for creating peer connections: pre-known the ID 

of prospective peer and unknown the ID of prospective peer. Figure 10 shows 

the architecture and sequence of creating connections among peers for 

performance tests in this thesis. The following three steps describe the 

mechanism of creating peer connections in the situation of an unknown 

prospective peer ID. This thesis uses the primary peer to help distribute an ID list 

to all connected peers. If the peer ID, however, is pre-known, a peer can create a 

peer connection to another peer directly with the help of PeerServer. For 

example, in Figure 10 the game client A creates a peer connection to primary 

peer because client A has known the ID of primary peer beforehand. Only the 

following step 1 and step 2 are involved in this case. 

Step 1: The primary peer maintains a list of all the peers connected in the 

tank game. It must be running before any game clients start. When game clients 

begin execution, they contact the primary peer and provide their IDs. The 

Primary Peer in turn informs the game clients of the IDs of other peers. This 

allows the game clients to establish pair-wise connections for communication. 

Step 2: When the first game client starts, it first contacts the PeerServer to 

get the information necessary to establish a connection to the Primary Peer. It 

then connects the Primary Peer and provides its ID.  
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Step 3: When a second game client starts it also first contacts the Peer 

Server as the first step for contacting the Primary Peer. It contacts the Primary 

Peer and provides its ID, and is in turn informed of the IDs of all other game 

clients. Any other game clients are informed of the ID of the new game client. All 

game clients can then establish pairwise connections between each other. The 

tank game client A established a WebRTC connection to game client B, and 

game client B establishes a connection to game client A. 

In reality, each connection is a bidirectional channel. For example, if client 

A established a connection with client B, client B could use this connection to 

exchange data with client A. This thesis, however, constructed two data channels 

between each pair of clients for convenient configurations of sending and 

receiving behaviors. 

 

Figure 10.  Architecture and sequences of creating peer connections. 
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3. Create Canvas, Scene, Camera, and Own Entities  

HTML5 has a “canvas” element for drawing 2D and 3D graphics on web 

pages, and the three.js library provides methods to create and display animated 

3D computer graphics on browsers that support WebGL. Figure 11 shows the 

codes to create a canvas and Figure 12 shows the basic elements in the scene. 

Every computer graphical elements—such as 3D graphics, light and camera—

were added into the scene in the tank game.  

At the same time, a controllable tank model was loaded by the JSON 

loader after the scene was created, and two JavaScript objects were created. 

One was to contain this controllable tank and an ESPDU that represents the 

states of this tank. Another object comprised a tank’s ammunition mesh and a 

different ESPDU that restored information of this ammunition. Figure 13 shows 

codes of JavaScript objects that contained the tank object and its corresponding 

ESPDU. It also shows some numbers were assigned in the field of entity type. 

These numbers were used to identify military hardware, and they referred to a 

SISO document called the “Enumeration and Bit Encode Values” (EBV). The 

EBV document is a long listing of standardized enumeration for simulation 

interoperability (Simulation Interoperability Standards Organization (SISO) 

Reference for: Enumerations for Simulation Interoperability, 2013). 

 

Figure 11.  Creating canvas in a web page. 
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Figure 12.  Creating scenes and adding graphical elements. 

 
Figure 13.  Creating tank meshes and ESPDUs in ourEntity objects. 

4. Game Control and Graphics Rendering 

Human-in-the-loop simulations must contain input devices for users to 

give orders, and all the web applications are run on computers and mobile 

devices. The development of this thesis’s demonstration was based on using the 

keyboard and mouse as input devices. Players used the keyboard to control the 
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tank, fire missiles, and switch cameras; they used the mouse to change player 

perspective views. JavaScript provides corresponding key codes that are 

associated with keyboard characters for web application developers to develop 

different functions in different keys (Lautenschlager, n.d.). JavaScript also 

provides event handlers for keydown and keyup events in the window. The 

example tank game used keys “W” and ”S” to move the tank forward and 

backward, keys “A” and “D” to turn the tank left and right, keys “Q” and “E” to 

adjust the tank’s barrel, key “Space” to fire a missile, and keys “1” and “2” to 

switch cameras. Figures 14 and 15 show examples of using JavaScript key 

codes to program different actions.  

 

Figure 14.  Function of keydown events. 
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Figure 15.  Function of keyup events and window event handlers. 

The frequency of rendering 3D graphics affects the fluidity of the game. 

Most video games use 30 frames per second (fps) or 60 fps and some, such as 

Halo3, are locked at 30 fps maximum (“Frame rate,” n.d.). JavaScript provides a 

setInterval method that repeatedly calls a function in a specific interval. In the 

tank game, the rendering frequency was set to ten milliseconds, which equals to 

100 fps, and all the game events and animations were based on that timestamp. 

5. Convert Coordinate Systems 

The DIS uses the ECEF (Earth-centered, Earth-fixed) coordinate system, 

which defines point (0, 0, 0) as the center of the earth. The positive x-axis is 

defined as running from this point out to where the equator and the Prime 

Meridian intersect. The positive y-axis runs from the center point out to where the 

equator intersects the 90 degree east meridian, and the positive z-axis points 

from the center toward the North Pole. The “dis.js” library provides methods to 

convert coordinates between ECEF and ENU (east, north and up), which is a set 
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of local coordinates with a given geodetic point. Figure 16 presents the 

coordinate systems of ECEF and ENU. The “dis.js” also helps convert between 

ECEF and latitude, longitude and altitude. 

The tank game is a self-interactive game, which means players are always 

in the same local coordinate system. The game, however, still converts its local 

coordinates from ENU to ECEF in case other DIS simulations want to 

communicate with it in the future. Besides the conversion of location, the entity’s 

orientation must also be converted. Rotation in three.js is based on quaternion, 

which uses four numbers to represent an entity’s orientation in a 3D world. On 

the other hand, ESPDU only provides three fields that are Euler angles to 

express orientation. There are many examples of conversion between quaternion 

and Euler angles on the Internet. Figure 17 is an example of a conversion 

between coordinates.  

 

Figure 16.  Earth centered, earth fixed; and east, north, up coordinates  
(“Axes conventions,” n.d.) 
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Figure 17.  Conversion between ECEF and ENU. 

6. Send DIS Packets 

DIS simulation uses heartbeat strategy that periodically sends DIS 

packets to update entity information and maintain entity existence; the “dis.js” 

library provides methods to convert every DIS PDU from JavaScript object into 

binary format DIS messages. In the demonstration tank game, entity state PDUs 

were sent periodically to the server or other PeerJS clients. 

Collision PDU and fire PDU, on the other hand, are event-oriented. 

Collision PDUs were issued when there was a collision event between a tank 

missile and opposing tank. Fire PDUs were issued whenever someone was 
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shooting. The periodic sending of DIS PDUs also helped maintain entity 

existence in other clients, because each client browser would check the receiving 

time for every entity. If an entity’s last receiving time was 3 seconds ago, which 

was a game setting, this entity would be removed from client browsers. Figure 18 

shows example code of a heartbeat function in setInterval method, and a 

trimmed DIS message that was transferred via the WebSocket. 

 

 
Figure 18.  Heartbeat function. 

PeerJS uses a similar method to send DIS messages, but the sending 

mechanism is via PeerJS DataConnection object. Figure 19 shows how to create 

a DataConnection object from a peer object, and the sending method. The 

trimmedData is the same with WebSocket. 

 

Figure 19.  PeerJS sending method. 
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7. Receive and Decode DIS Messages 

The codes used to receive data are different between WebSocket and 

PeerJS. The decoding processes, however, are the same.  

a. Receive by WebSocket 

Before receiving data from WebSocket, the format to receive binary 

messages and attach functions for various events must be set. Figure 20 shows 

the code for setting the WebSocket. WebSocket.onmessage is the function used 

to handle receiving data from the server site. 

 

Figure 20.  Set format and attach functions. 

b. Receive by PeerJS 

After creating a peer object, developers have to set listeners for peer 

events. The main method this thesis used was “peer.on,” and the listening event 

was “connection,” with a function to handle the incoming messages. This event 

will receive a dataConnection object, which wraps WebRTC’s DataChannel, and 

pass this object to the handling function. Figure 21 shows the code to listen for 

events. 

 
Figure 21.  PeerJS event listener. 
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The DataConnection class contains three methods: “send,” “close” and 

“on.” The “send” method sends data to the remote peer, and “close” closes the 

data connection and cleans up underlying DataChannels and PeerConnections. 

The “on” method can be set for listening for data connection events: “data,” 

“open,” “close” and “error.” The thesis experiments used the “data” event that is 

emitted when data is received from remote peers to receive and handle DIS 

messages. Figure 22 shows the example code.  

 

Figure 22.  Example code of receiving events function.  

c. Decoding DIS Messages 

The mechanism of decoding DIS packets is the same in WebSocket and 

WebRTC because both rely on the “dis.js” library to interpret DIS messages. The 

function of the WebSocket and the WebRTC is to send and receive application 

data.  The first step in interpreting DIS messages is to allocate packets to 

different types of PDUs using a method called dis.PduFactory(). Different PDUs 

contain different information with different data lengths. Every PDU, however, 

has the same PDU header, which has 96 bits to restore basic information such 

as protocol version (8-bit enumeration), exercise ID (8-bit unsigned integer), and 
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PDU type (8-bit enumeration). The dis.PduFactory() method uses the PDU type, 

which is the third byte in the PDU header, to distinguish what kind of PDU should 

be assigned. The demonstration game in this thesis used three different types of 

PDUs: entity state PDU, collision PDU, and fire PDU. The respective lengths of 

these three DIS PDUs are 1152 bits, 480 bits and 768 bits, and the respective 

enumeration numbers of these three PDUs are 1, 4, and 2. Figure 23 shows how 

to use dis.PduFactory(). 

 

Figure 23.  Example code of dis.PduFactory().  

After differentiating the PDU type, it is time to deal with receiving the DIS 

messages: entity state PDU, collision PDU, and fire PDU. ESPDU is used to 

update entity states in client browsers. Every client would create a JavaScript 

object, which is used to record all remote entities from other game participants. If 

the receiving ESPDU’s entity ID did not previously exist, client browsers will 

recode the new ESPDU in an all-remote-entity object, and create a 

corresponding 3D model loaded by JSON loader to represent this entity ID. If 

there is a 3D model having the same entity ID corresponding with the receiving 

ESPDU, browsers will update this 3D model’s states such as location, velocity, 

and orientation. Collision PDUs will be issued when a collision occurs between 

entities. In the demonstration tank game, collision PDUs were issued whenever a 

tank got hit; both the firing missile and the hit tank issued collision PDUs. Fire 

PDU in this scenario was for showing all firing events on the screen.   
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8. Miscellaneous 

There are some miscellaneous things that have not been mentioned, but 

which are also very important for creating a browser-based DIS simulation. 

These include how to load meshes, how to detect collision in a virtual 

environment, how to ensure entity existence, and the application of dead 

reckoning.   

a. Loading 3D Objects 

Creating the 3D graphics took longer than creating a JavaScript object. 

When a client browser received an ESPDU whose entity ID was new to this client, 

the client would create a 3D model to represent this new entity. The 3D model, 

however, could not be located immediately in the virtual world before it was fully 

loaded. In the tank game example, a function continued updating entity states 

and the corresponding 3D model each time the clients received the same 

ESPDUs. Once the 3D model was fully loaded into the virtual world, an opposing 

tank would show in the browser. The following code describes a way to update 

entity and 3D model properties. Figure 24 shows the code of updating the entity’s 

model and states. 
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Figure 24.  Code of updating entity states and 3D model. 

b. Entity Collision Detection 

The “three.js” library provides methods for ray casting that can be used to 

detect collision in a virtual world. The way of using ray casting is to push all 

prospective collided objects into an array before doing ray casting. In the 

demonstration game, ray casting was used for checking collisions between: tank 

and terrain, tank and tank, and tank and skybox. Tanks cast a ray to minus the y-

axis (i.e., toward the ground), so that they could rise and fall on (i.e., “follow”) the 

terrain by having a collision between tank and terrain. Tanks also cast rays in 

another four directions—front, rear, right, and left—for detecting other tanks and 

any vertical terrain. Ray casting in this game was used not only for collision 
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detection, but also for pointing out missile directions: shooting a ray from a turret 

to find a collision point, and then using this point to determine projectile path by 

computing between colliding point and turret. 

c. Checking Existence 

The DIS is a heartbeat-based simulation, so every client should receive 

ESPDUs periodically from other clients. There is a field in the PDU header for 

timestamp. This field can be used to record the last time heard from other 

ESPDUs. If a simulation participant did not receive ESPDUs from remote peers 

in a period-of-time, the participant removed 3D models and properties that 

belonged to those remote peers. There were six elements removed when the 

client browser did not hear any ESPDU from a specific peer: tank mesh and 

ammunition mesh in the scene, tank, and ammunition properties in the all-

remote-entity object, and tank and ammunition objects in the collision array.  

d. Dead Reckoning  

Dead reckoning is used to predict an entity’s next position by using the 

entity’s current position with a dead-reckoning algorithm, linear acceleration, 

angular velocity, and other parameters when the entity does not receive the next 

prospective ESPDUs to update its position. Dead reckoning can be utilized to 

cover an entity’s stutters caused by the heartbeat period. The demonstration tank 

game used dead reckoning for a projectile’s movement to reduce visual jumping, 

in-browser, of other game participants. A projectile’s movement with dead 

reckoning that complements intervals between two consecutive ESPDUs also 

increases the accuracy of issuing collision PDUs, because the heartbeat strategy 

might cause the projectile to “jump” over an opponent’s tank without any collision 

or intersection. 
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V. PERFORMANCE TESTS 

This thesis investigated two networking frameworks, WebSocket and 

WebRTC, and used these two frameworks in performance experiments and the 

resulting data. The WebSocket was constructed as client-server architecture. In 

contrast, the WebRTC was based on peer-to-peer architecture after a data 

channel was constructed. This thesis also incorporated WebGL components as a 

comparable factor, which compared the presences of WebGL components in the 

browser. WebGL enabled the browser’s rendering of 2D and 3D graphics, but it 

also increased CPU and GPU loadings by computing graphics transformation, 

scaling, rotation, translation, etc. Furthermore, different browsers used different 

JavaScript engines, so the differences between the browsers (Chrome version 

36.0.1985.143m and Firefox version 24.7.0) were compared. Measuring tools for 

this thesis included self-created functions, Chrome developer tools, and Firefox 

developer tools. 

A. SENDING AND RECEIVING ABILITY 

To measure the sending performances in different networking framework 

and browsers, this thesis created a function to send ESPDU packets. The 

receiving numbers were increased when the onmessage function was called and 

packets were received by the WebSocket. The PeerJS received PDUs when the 

dataConnection object heard ‘data’ events. Figure 25 shows the measureDIS 

function for sending DIS packets in WebSocket. The measurement evaluated 

how much time was needed for sending 10,000 DIS packets, with millisecond as 

the time unit. The function had a ‘sendercounter’ variable to cumulate the total 

number of sending. At the same time, this function also converted the total 

number to a serial number for dropping test into the entityAppearance field in 

ESPDU. PeerJS used connectTo (a dataConnection object) to send the trimmed 

data (see Chapter IV, Section 6, Send DIS Packets).  
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Figure 25.  MeasureDIS function for sending DIS packets. 

Figure 26 shows the example of a WebSocket receiving DIS packets. The 

measurement was the same with the sending function that measured how much 

time was needed for receiving 10,000 PDUs. Figure 27 shows the method that 

the PeerJS used to receive data. 

 
Figure 26.  Measuring function of receiving DIS packets in WebSocket. 
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Figure 27.  Measuring function of receiving DIS packets in PeerJS. 

The following section shows the transformed outcomes of running the 

above functions 20 times based on a one-on-one situation, one sender, and one 

receiver. As a result, 20 runs of a specific time were spent on sending and 

receiving 10,000 PDUs. The thesis used MS Excel to convert the results into the 

number of Entity State PDUs that were sending and receiving per second, and 

used JMP for statistics.  

Figure 28 shows the outcome of pure sending and receiving rates in 

different combinations of browsers. The left eight experiments are receivers, and 

the remaining experiments are senders. The green lines are the means of each 

experiment, and the blue bars can be used to visually compare the statistical 

difference between any pair of experiments. If a pair of bars overlaps from each 

other, these two experiments are not significantly different, and vice versa. CC 

means that the Chrome browser sent to the Chrome browser; CF means the 

Chrome browser sent to the Firefox browser, and so on. Figure 28 shows that 

senders were overwhelmingly faster than recipients, because the sending rates 

were counted by executing the measureDIS function instead of actually sending 

out to the browsers. In addition, none of the experiments found message losses 

in the WebSocket framework, and rarely were the DIS packets lossed in the 

WebRTC framework. The sending data was not sent out by browsers; instead, it 

was queued in the senders’ memory. For example, if a sender’s browser invoked 

a function that used WebSocket to send 10,000 ESPDUs per second, but the 

receiver only got 7,000 PDUs per second; the remaining 3000 ESPDUs per 
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second would buffer in the sender’s memory. Hence, the performances of 

sending and receiving DIS messages in different frameworks in different 

browsers should refer to the receiving throughputs. 

Figure 29 focuses on the DIS receiving rates, and shows that the 

WebSocket had relatively stable receiving rates (around 7,000 to 8,000 per 

second in different browsers). According to the WebSocket framework—which 

was client-server architecture—the recipients received DIS packets from the 

WebSocket gateway server, which means the receiving performances are 

dependent on the server’s capability. In contrast, the receiving abilities of PeerJS, 

which implemented WebRTC and were based on peer-to-peer connections, were 

varied. The recipients received around 2,000 per second in Chrome sent to 

Chrome and Chrome sent to Firefox, but had better performance of around 

11,000 to 13,000 per second in Firefox sent to Chrome and Firefox sent to 

Firefox.  

 

Figure 28.  Purely sending and receiving capabilities. 
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Figure 29.  Purely receiving capabilities. 

According to the above conclusions, sending rates did not correspond to 

the receiving rates, so the performance with WebGL elements should focus on 

the receiving capabilities. Figure 30 shows comparisons between the presences 

of WebGL, and reveals that these were graphically different among the mean 

lines. It seems like that WebGL had some level of influence on receiving the DIS 

messages, because the receiving capabilities with WebGL elements are lower 

than without WebGL elements.  
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Figure 30.  Comparisons of receiving capabilities between the presences of 
WebGL. 

To understand the differences among receiving rates, this thesis used a 

student’s t-tests to find out if pairs of receiving rates were significantly different 

from one another. By looking up rates in the table of t-distribution, the p-value 

could be found to compare with the alpha level. This thesis used 0.01 as the 

alpha. If the p-value greater than the alpha, there was no significant difference 

between the comparing pair, and vice versa. The p-value only indicated the 

degree of difference; it did not indicate any better performance. Table 2 shows 

the performances of that the WebSocket framework versus the WebRTC 

framework was significantly different, because all the p-values are less than 

0.0001. The differences can be checked graphically in Figure 29.  
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Comparison between 
P-

valueexperimental 
combination 

average number of 
receiving PDUs 

experimental 
combination 

average number of 
receiving PDUs 

CC+WebSocket 7203.79 CC+WebRTC 2272.54 <.0001
CF+WebSocket 8212.41 CF+WebRTC 2300.51 <.0001
FC+WebRTC 12917.75 FC+WebSocket 7311.62 <.0001
FF+WebRTC 11239.30 FF+WebSocket 7695.37 <.0001

Table 2.   t-tests of receiving capability in WebSocket and WebRTC 
frameworks without WebGL components. The experiment at left 

had the higher performance. 

Table 3 presents paring comparisons between browsers using the 

WebSocket framework; all the p-values are greater than 0.01, which means there 

were no significant difference of receiving rates between browsers when using 

WebSocket framework. Greater p-value represents less difference between the 

comparing pair. The WebSocket framework had stable performances in both 

Chrome and Firefox browsers. 

 

Comparison between 
P-

valueexperimental 
combination 

average number of 
receiving PDUs 

experimental 
combination 

average number of 
receiving PDUs 

CF+WebSocket 8212.41 CC+WebSocket 7203.79 0.2151
CF+WebSocket 8212.41 FC+WebSocket 7311.62 0.2681
CF+WebSocket 8212.41 FF+WebSocket 7695.37 0.5247
FF+WebSocket 7695.37 CC+WebSocket 7203.79 0.5453
FF+WebSocket 7695.37 FC+WebSocket 7311.62 0.6368
FC+WebSocket 7311.62 CC+WebSocket 7203.79 0.8944

Table 3.   t-tests of receiving capability between browsers without WebGL 
components in WebSocket framework. 

On the other hand, Table 4 shows paring comparisons between browsers 

using WebRTC framework. In all cases, Firefox is shown to send via WebRTC 

significantly faster than Chrome does. The p-value 0.9725 indicates that using 
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the Chrome browser to send DIS packets to the Chrome browser had similar 

performance when using the Chrome browser to send DIS packets to the Firefox 

browser. The p-value 0.0395 indicates that using the Firefox browser to DIS 

packets to the Chrome browser had similar performance as using the Firefox 

browser to send DIS packets to the Chrome browser, because the alpha level 

was 0.01. These results show that the same sender had similar receiving rates in 

recipient browsers. 

 

Comparison between 

P-valueexperimental 
combination 

average number of 
receiving PDUs 

experimental 
combination 

average number of 
receiving PDUs 

FC+WebRTC 12917.75 CC+WebRTC 2272.54 <.0001
FC+WebRTC 12917.75 CF+WebRTC 2300.51 <.0001
FF+WebRTC 11239.30 CC+WebRTC 2272.54 <.0001
FF+WebRTC 11239.30 CF+WebRTC 2300.51 <.0001
FC+WebRTC 12917.75 FF+WebRTC 11239.30 0.0395
CF+WebRTC 2300.51 CC+WebRTC 2272.54 0.9725

Table 4.   t-tests of receiving capability between browsers without WebGL 
components in WebRTC framework. 

The last pairing comparisons were the differences between the presence 

of WebGL materials (see Table 5). It is hard to decide whether the presences of 

WebGL materials affected the PDU sending and receiving performance, because 

there were two p-values that were less than 0.01. Most comparisons, however, 

were not significantly different from each other. Besides focusing on Table 5, the 

comparisons with less than 0.01 p-values had very good performances on 

sending and receiving DIS messages. Figure 30 shows that both 

FF+WebRTC+WebGL and CF+WebSocket+WebGL had the capability of 

sending and receiving more than 5,000 DIS packets per second, which was 

much faster than using the Chrome sent to Chrome and the Chrome sent to 

Firefox in the WebRTC framework.  



 51

Comparison between 

P-
valueexperimental 

combination 

average 
number of 
receiving 

PDUs 

experimental 
combination 

average 
number of 
receiving 

PDUs 
FF+WebRTC 11239.30 FF+WebRTC+WebGL 8562.47 0.0011

CF+WebSocket 8212.41 CF+WebSocket+WebGL 6008.55 0.007
CC+WebSocket 7203.79 CC+WebSocket+WebGL 5568.12 0.0448
FF+WebSocket 7695.37 FF+WebSocket+WebGL 6096.03 0.0497
FC+WebSocket 7311.62 FC+WebSocket+WebGL 5727.37 0.0519
FC+WebRTC 12917.75 FC+WebRTC+WebGL 11403.85 0.0632
CC+WebRTC 2272.54 CC+WebRTC+WebGL 1877.29 0.6267
CF+WebRTC 2300.51 CF+WebRTC+WebGL 1931.61 0.6499

Table 5.   t-test between presences of WebGL components 

B. PROFILING JAVASCRIPT PERFORMANCES 

This thesis used Chrome developer tools and Firefox developer tools to 

profile experimental browsers. The profiling tools were used to record JavaScript 

performances in a period-of-time, and the recording data included percentages of 

time spent and explicit time spent for each function in this period-of-time. For 

example, if a user starts profiling then running the measureDIS function for two 

different lengths of time—one long and the other short—the measureDIS function 

would occupy a small percentage of the long period, but more in the short period. 

Figure 31 shows running the measureDIS function in a long period-of-time, and 

Figure 32 shows running the same function in a short period-of-time. The 

difference was through running the measureDIS function with a shorter time 

(39062.7 ms) in a short period; this function still captured more (19.06%) than the 

one that recorded for a long period-of-time (40247.1 ms with 10.15%). The ‘Self’ 

column indicates the time to complete the current function that excludes any 

functions it called. The ‘Total’ column shows the time to complete the current 

function and any functions it called (“Profiling JavaScript Performance,” n.d.).  
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Figure 31.  Running measureDIS function for a long period-of-time. 

 

Figure 32.  Running measureDIS function for a short period-of-time. 

Firefox developer tools also have profiling tools. Furthermore, the package 

includes a function to select a certain section to analyze JavaScript 

performances, so the behaviors of sending and receiving DIS PDUs can be 

examined. Looking at the above results of sending and receiving DIS packet 

capabilities, however, the data interchanging rates should refer to the receiving 

capabilities; this means that, although the browser consumes all resources to 

execute the measureDIS function, the efficient outputs would not reflect on the 

receivers. Therefore, it is not worthwhile to check the JavaScript performance of 

purely sending DIS packets. Appendix B-1 is a profiling example of sending DIS 

PDUs in the WebSocket framework. Appendix B-2 selects a section that focused 

on the sending function. Appendix B-3 is the corresponding receiver in this 

example, which evenly consumed approximately 5–7% of the browser resource.  
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After understanding the characteristic of profiling tools, it is difficult to 

analyze a browser’s behavior by profiling it with the measureDIS function, 

because the time to invoke the measureDIS function and the time to complete 

sending and receiving DIS messages varies in different networking environments 

and different combinations of browsers. Therefore, this thesis used the profiling 

tools to record the JavaScript performances in the demonstration tank game as a 

practical application, instead of executing the measureDIS function. Based on the 

above results, applying WebGL materials decreased PDU receiving capability in 

both the WebSocket and WebRTC frameworks, but the amount of receiving DIS 

PDUs remained at approximately 1,900 per second. 

Figures 33 and 34 display the recording of the tank game for a period-of-

time in different networking frameworks. The game setting was that each browser 

had a controllable tank and a projectile that could be fired every two seconds. 

The tank and projectile sent ESPDUs every ten milliseconds, which was different 

from the measureDIS function that sent 200,000 ESPDUs, successively. The fire 

PDU and collision PDU were sent when the corresponding events happened. 

The advantage of profiling the tank game is that it is easy to analyze the sending 

and receiving performances with WebGL elements in different networking 

frameworks, and in client-server versus peer-to-peer configurations. Because the 

profiling tools used the percentage of function executing time and most of the 

functions were invoked periodically (which included graphical rendering and DIS 

heartbeat functions), the different profiling times did not influence the results. 

This tank game sent approximately 200 ESPDUs per second, which is 

below the receiving capabilities in any situation. Figure 33 is a profile of the tank 

game using the WebSocket framework. The profile showed that the renderFunc 

function consumed 32.99% of the recording time to execute this function. The 

renderFunc function is a major function in this tank game, used to render 

graphics and check collisions between 3D objects in the virtual world. It 

contained the tank.update function and many ‘THREE’ functions, which indicated 

the browser spent most of its resources on the WebGL materials. In addition, the 
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websocket.onmessage, heartbeat and munitionHeartbeat functions could be 

found near the bottom of the Function column. The respective percentages for 

these three functions are 0.78%, 0.41%, and 0.33% in the ‘Total’ column. These 

results showed that the exchange of DIS messages did not give browsers a 

heavy workload. Figure 34 is a profile of the tank game using the WebRTC 

framework, and it shows a similar performance with using WebSocket framework. 

The function of _dc.onmessage near the bottom of the Function column is similar 

to the function of websocket.onmessage in WebSocket for listening to incoming 

events. Firefox developer tools profiled similar results, which are shown in 

Appendix C-1 and C-2. C-1, used the WebSocket framework, and C-2 used the 

WebRTC framework. 

 

Figure 33.  Tank game profile using WebSocket framework in Chrome. 
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Figure 34.  Tank game profile using WebRTC framework in Chrome. 

C. NETWORK LOADING TIME 

Besides the JavaScript performances, developer tools also provide 

function to record networking behaviors. The recording network information 

included file name, path, status, size, loading time, etc. When a browser visited a 

website initially, it downloaded cached web contents from the web server to the 

local disk. The purpose of caching web contents was to reduce network loading, 

because if the browser visited the same website in a specific period-of-time, the 

browser would verify the status of web contents to decide whether to download 

the web content via the network or access the content from the local disk. For 

example, if a file status showed 200, it meant the file was new to this browser 

and it was downloaded via the network. If a file status showed 304, it meant the 

file had not been modified since the last time it was cached, so the browser 
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would access the file from the local disk. These numbers are HTTP status codes 

that can be looked up on the Internet. In this thesis, the web server’s default time 

of caching web content was 604,800 seconds, or one week. All the performance 

tests and tank games were run in a closed networking environment, so the speed 

of loading web contents was very fast. The total loads of the tank game were 

around 6 MB for a single player (see Appendix D). Most of the data consisted of 

graphical models and textures. This thesis used a simple tank model and rough 

terrain model to create a virtual world in browsers. Figure 35 and Figure 36 are 

screenshots of the tank model and the terrain models. The file sizes of these two 

models (hovertank10.js and bterrain.js) were not large; however, the textures for 

these two models were relatively larger than other necessary archives. The 

tank’s texture was 1.1 MB, and the terrain’s texture was 2.5 MB. Other 

JavaScript files (including three.js, peer.js, dis.js, etc.) only made up a small 

percentage of the total web contents. 

 

Figure 35.  Screenshot of tank model. 
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Figure 36.  Screenshot of terrain model. 
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VI. RESULT DISCUSSIONS 

According to the sending and receiving ability tests, this thesis found that 

different combinations of browsers and different networking frameworks had 

various capabilities of sending and receiving DIS PDUs. The outcomes showed 

that estimates of the PDU exchange rate should be based on the rate of PDU 

receipt. By analyzing the senders’ memory change, it was discovered that 

sending pages buffered their sending data in their memory, instead of sending 

the data immediately. Although senders queued the sending data in their 

memories, Chrome and Firefox handled their sending events differently, which 

made for different efficiencies. Secondly, analyzing the profiling results showed 

that browsers spent their resources mostly on WebGL components that included 

rendering 3D models and computing intersections between 3D objects. The 

interchange of DIS messages did not account for a big usage of browser 

resources. Thirdly, the web contents that necessarily were downloaded from the 

web server to local browsers did not give any trouble in a local network in the 

experiments. Downloading web contents by remote users might cause latent 

problems such as slowing download or losing data if the necessary files were on 

the Internet or public network with poor connection, which might also affect the 

capability of exchanging DIS messages. Finally, according to the performance 

tests, the scale of web-based simulation using DIS protocol can be proposed. 

A. SENDING AND RECEIVING EFFICIENCY 

According to the performance tests, WebSocket framework had consistent 

receiving rates in both Chrome and Firefox, because the receiving rates were 

based on the outputting rate from the WebSocket gateway server. After taking a 

deeper look at WebSocket gateway server, the server’s receiving rate of DIS 

messages was close to the receiving rates in recipient browsers, which indicated 

the WebSocket gateway server was efficient in transferring DIS packets. 

Additionally, this server neither use multicast nor broadcast, which were the 
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customary ways to distribute DIS packets on the UDP socket. Instead, the server 

delivered DIS PDUs to clients one by one because WebSocket is constructed on 

top of the TCP socket. For example, if there are only two clients connecting to 

the server, client A and client B, when client A is sending DIS messages, the 

server only distributes the receiving data to client B. If there are three or more 

clients, the server has to distribute the receiving data to all connected clients 

one-by-one, except for the sender itself. Therefore, the server distributing data to 

multiple clients decreased the receiving efficiency on recipient clients. 

PeerJS had different performances in different browsers. Implementing 

the WebRTC, PeerJS used peer-to-peer architecture to transfer data, so that the 

sending rate would correspond to the receiving rate. The above results, however, 

indicated that actually the sending rates should refer to the receiving rates. The 

results also showed recipients had better receiving capabilities when using 

Firefox to send data. The method of distributing data in PeerJS was one-by-

one—which was the same with the WebSocket gateway server—but the 

WebSocket framework used a central server to distribute data. The WebRTC 

framework is set up so that every participant can distribute data to their 

connected peers, and if there are multiple connections to a peer, the receiving 

rates on connected peers will decrease in an inverse ratio (i.e., peer A can send 

2,000 PDUs per second to peer B in a one-on-one situation). If peer A has to 

send to two connected peers, peer B and peer C, the receiving rate in both peer 

B and peer C will be 1,000 PDUs per second.   

By analyzing the receiving rates between browsers, this thesis found 

Firefox had better performances for sending data authentically in both 

frameworks. Figure 37 presents comparisons of receiving rates between different 

networks with different combinations of browsers. The x-axis represents the time 

for receiving 10,000 DIS PDUs, and the y-axis represents the first ten 10,000 DIS 

packets. WebSocket and WebRTC were the networking architectures for data 

transferring. When senders started to send 10,000 DIS PDUs for twenty times, 

receivers should have begun to receive data immediately. The figure shows, 
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however, that when data was sent from the Chrome browsers, the recipients took 

longer to receive the first 10,000 PDUs. Another expression of these data in 

linear form is in Appendix E. 

 

Figure 37.  Comparisons of receiving first ten 10,000 DIS PDUs. 

This thesis attempted to send a huge amount of ESPDUs (50,000 

ESPDUs for 50 times), which crashed the Chrome sender after flushing and 

filling all the memory, and the receiver stopped receiving DIS packets. Firefox 

reacted in a different way. Although the Firefox browser indicated that it was not 

responding to the sender, the receiver continued to receive DIS PDUs 

persistently from a slow rate to a fast rate, allowing Firefox to successfully 

receive all 2,500,000 DIS packets after a long period-of-time. Furthermore, the 

transferring data was not lost in the WebSocket framework, and was only rarely 

lost in the WebRTC framework, which might be because the WebSocket is based 

on the TCP socket, while the WebRTC used the SCTP socket to configure data. 

If there was trouble with sending data in the WebSocket framework, then the 
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WebSocket would close, which meant that the webpage had to be reloaded or a 

WebSocket reconstructed in the browser. If the trouble happened in PeerJS, it 

would complain that the DataConnection object could not send data, but the data 

channel was still on; the browser could continue to send data after dropping all 

the unsent messages. 

B. JAVASCRIPT PERFORMANCE 

Profiling of the tank game showed that most of the browser resources 

were consumed on WebGL components. The sending and receiving functions 

only occupied small portions of the total percentage of browser resources. To 

see the detailed performances of each JavaScript function, Chrome and Firefox 

developer tools provide functions to see the explicit times of each function used. 

This capability could help application developers and designers know how much 

time is spent on each function.  

1. Chrome Developer Tools 

The profiling sample of Figure 33 showed the Chrome browser consumed 

32.99% of the total time to run the renderFunc function, which spent 6455.8 ms 

during the entire period-of-time. This function, however, only spent 28.4 ms on 

itself. The rest of the time was spent on other functions that were invoked by this 

function. Chrome Developer Tools also provides Flame Chart view, which is a 

visual representation of JavaScript performance over time that thus offers a 

different way to view the profiling data. It also provides the running time of each 

function with single invoking, which is different from the aggregated time of 

running a specific function repeatedly. Figure 38 is a sample of invoking one 

renderFunc function in Flame Chart view. The information of the Flame Chart 

view included the name of this function, self time, total time, URL, aggregated 

self time, and aggregated total time. The aggregated total time of the renderFunc 

function was 6.46 s that corresponded to the time 6455.8 ms in Figure 33. Figure 

39 was a portion of the recording profile that included the websocket.onmessage 

and the heartbeat functions. Looking at the details of this flame chart, found that 
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the running times of both functions, respectively, were less than 1 ms per 

invoking, and the aggregated total time of the heartbeat function was 81.103 ms, 

which was much shorter than 6.46 s. 

 

Figure 38.  A Chrome profiling sample of invoking one renderFunc function. 
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Figure 39.  A Chrome profiling sample of invoking one websocket.onmessage  
and one heartbeat function. 

2. Firefox Developer Tools 

Firefox developer tools also have the ability to to look up the explicit time 

of each function consumed. Figure 40 is a small sample of profiling the tank 

game with two players in the WebRTC environment. This sample range was from 

2,353 to 2,403 of the complete profile, and the total running time is 49ms. If the 

running time is greater than the self, then there is an arrow at the left of the 

function’s name to expand the function tree. In this example, the renderFunc() 

function spent 20 ms in running time, but the self time was zero, which means 

this function was expandable. This example also showed that five renderFunc() 

functions were executed in this 49 ms, which corresponded to the 10ms 

rendering rate. The executing time of each renderFunc() can be found by 

selecting one of these five functions and expending this selected function to see 

the details of self time. 
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Figure 40.  A Firefox profiling sample of invoking renderFunc functions. 

After analyzing the JavaScript performances of the tank game, both 

profiling tools showed that even though the heartbeat and the munitionHeartbeat 

functions were invoked at the same rate with the rendering function, the browser 

devoted a large part of its resources to executing WebGL components rather 

than exchanging DIS PDUs. Therefore, the native capabilities of both WebSocket 

and WebRTC in browsers are competent enough to support web-based DIS 

simulations.  

C. LOAD OF NECESSARY ARCHIVES 

Loading page content from the server was no problem in this 

demonstration tank game because of the following reasons. First, all the tests 

were executed in a local networking environment. Second, the distributed files 

were only around 6M B for each client, and there were not many clients. Third, 

the client computers had very powerful CPUs and graphic cards. If someone 

wants to improve the sophistication of the tank game, however, then the archival 

size of models and textures must be increased. The sophistication of the model 

also increases the burden of computational power in clients. There are many 
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existing 3D models in various formats on the Internet, and it is easy to find a 

sophisticated model over 10 MB. Although web browser has capability to cache 

files from web server, it still has to load every necessary archive at the first time. 

If there are several large-size 3D models that have to be downloaded as web 

contents, the data distribution via public network would become a fundamental 

issue for building up web-based simulations. There are some popular techniques 

for reducing the impact of loading large data into web page such as minify 

JavaScript, apply Content Delivery Network, remove duplicate scripts (Souders, 

2007). 

D. GAME SCALABILITY 

According to the results from performance tests, receiving rates were the 

major references for interchanging DIS PDUs in the network. Hence, the 

receiving rate can be used to scale the size of web-based multi-player games or 

simulations. For example, the lowest receiving rate in the experiments was 

around 1,900 PDUs per second, which was achieved when sending PDUs by 

Chrome browser in a peer-to-peer connection. Based on this result, a suggested 

number of players can be found by using equation (1). 

Three variables that had to be considered: number of entity that sent 

ESPDU repeatedly, heartbeat rate, and number of clients; multiplying these three 

variables should result in a number less than 1,900. This tank game had two 

entities: tank entity and tank’s ammunition entity; both entities sent ESPDU 

frequently. Each entity had its own heartbeat rate. Summing up the heartbeat 

rates multiplied by the corresponding entity would give the total amount of 

sending ESPDUs routinely, which excluded sending collision PDU and fire PDU. 

The game setting of the heartbeat frequencies for both tank and tank’s 

ammunition was 10ms, which was equal to sending 100 ESPDUs per second. 

Therefore, the total amount of sending ESPDUs was around 200 per second. 

The last variable was the number of clients, because the sending technique was 

one-by-one on peer-to-peer connections and WebSocket gateway server. The 
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multiplier of the client number should be the total number of clients, minus the 

one that was the sending client itself. Back to the question, the suggested 

maximum number of players to play the tank game was 10 (the calculating result 

was 10.5 with the equation (1*100+1*100)*(TC-1) = 1900). 

  
1

* 1 2000
n

i i
i

E HR TC


 
  

 
   (1) 

where,  

 = total number of entities. 

 = each entity 

 = heartbeat rate for the corresponding entity. 

 = total number of client 

Ten players were not the maximum number playing the tank game. 

Different networking frameworks with different browsers had different capabilities 

of exchanging DIS packets. In addition, there are other ways to adjust the game 

capacity, such as changing the number of entities that frequently sent ESPDUs, 

and adjusting the heartbeat rate. One example was modifying the JavaScript 

program so that the tank’s ammunition sent ESPDUs only when a tank fired, 

instead of the projectile sending ESPDUs periodically; the projectile would only 

send ESPDUs when its velocity was not zero. Another way was to adjust 

heartbeat rate on each entity. The rate of heartbeat affected game animation in 

participant’s browsers because browsers used receiving ESPDUs to update 

entity positions and states. At 100 ESPDUs per second, the effective rendering 

rate is 100 fps in the remote participants, and it is not necessary to set an 

identical rate on both heartbeat and canvas rendering. In modern video games,  

30 fps is qualified enough to be a commercial game, if this tank game lowered its 

heartbeat rates, the capacity of the number of players and/or the number of 

entities must be increased. Appendix F shows screenshots of multiplayers in the 

example tank game. 
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VII. CONCLUSION AND FUTURE WORKS 

A. CONCLUSION 

The objectives of this thesis were to discuss and prove the feasibility of 

developing DIS web-based simulations using JavaScript. This thesis 

incorporated many web technologies and DIS protocol to outline infrastructures 

that supported web-based simulation. The major web technologies included 

JavaScript, WebSocket, WebRTC, and WebGL; there were many existing APIs 

that wrapped WebRTC and WebGL to help developers create web applications. 

This thesis suggested two different networking architectures, client-server and 

peer-to-peer, for interchanging DIS messages; and tested the capability of 

sending and receiving DIS PDUs between browsers. Furthermore, this thesis 

also integrated the above technologies to develop a browser-based tank game 

as a test application, and analyzed the performance of the tank game in different 

networking frameworks. At the same time, taking the advantage of cross-platform 

in browsers, both performance tests and the tank game can be executed and 

analyzed in Chrome and Firefox browsers, Internet Explorer and Safari did not 

support WebRTC yet. Other benefits of using web-based simulation included 

model reusing, collaboration, deployment, accessibility, and versioning control.  

According to the performance tests and analysis of the demonstrating tank 

game, this thesis found that the modern web technologies are capable enough to 

construct web-based simulations. The performance tests included the capability 

of simply sending and receiving DIS PDUs in different networking frameworks; 

comparing the performance between the applying of WebGL materials; and 

cross-browser performances between Chrome and Firefox. The analysis of the 

tank game contained the resource consumption of rendering WebGL materials 

and interchanging DIS messages; and the page loads of necessary files from 

web server. The followings are the conclusions for the performance tests and the 

game analyses. 
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The performance tests showed that the speed of executing the sending 

ESPDUs function was faster than both WebSocket and WebRTC sent DIS 

messages. In fact, the measurements of sending rates were much higher than 

the receiving rates, meaning it was better to use receiving throughput as a 

reference to scale the size of web-based simulation. Both Chrome and Firefox 

have similar performances of sending and receiving DIS PDUs using the 

WebSocket framework. The performances of the WebRTC framework, however, 

favored Firefox. While using Firefox to send DIS packets via the WebRTC 

framework, both Chrome and Firefox had a better performance than any 

experiments with the WebSocket framework. While using Chrome to send the 

PDUs via the WebRTC, both Chrome and Firefox had worse performances than 

all the experiments with the WebSocket framework. Therefore, the Firefox and 

WebRTC combination is currently better than other combinations provided 

WebRTC is implemented using PeerJS. 

This thesis used the worst-case performance of receiving rate (around 

1,900 PDUs per second) as a guidance for scaling the tank game. The tank 

game had two entities that repeatedly sent 200 ESPDUs per second. The 

calculating result showed that this tank game was suitable for up to ten players. 

In addition, there were variables that could be adjusted to enlarge the capacity of 

the tank game, such as the heartbeat rate or the amount of entity that periodically 

sent ESPDU. The capacity of ten players was good enough to create an online 

game. For example, ten players can be divided into five-versus-five players. 

Famous examples of five-versus-five games include League of Legends and 

Defense of the Ancients (DotA) in Warcraft III; however, they are not web-based 

games. 

This thesis used Chrome and Firefox developer tools to profile the tank 

game and recode the time of loading web contents. Profiling tools contained 

percentages of time that each function used, and explicit times of each function 

spent. The profiling results showed most of the browser resources were spent on 

WebGL components, and the function for exchanging DIS packets only used a 
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small portion of the browser resources (see Figure 33, Figure 34, Appendix C-1, 

and Appendix C-2). The times of loading web contents showed browsers 

received all necessary web contents quickly in a closed network (see Appendix 

D). 

Based on the above results, the DIS protocol could be applied in web-

based applications. Both WebSocket and WebRTC frameworks were capable of 

supporting a ten-player first-person-shooter game in a browser, and the size of 

the game was expandable by adjusting the variables. WebGL created 3D 

graphics shows in web browsers without any plugins, and the performance of 

WebGL was dependent on the power of computers and the degree of model 

complexity, which was a trade-off among budget, performance, and the quality of 

3D models. Methods of using the DIS protocol and the game styles are varied. 

This thesis showed that web-based DIS simulation is workable, and simulation 

designers could refer to the basic capability of exchanging DIS messages to 

develop web-based simulation for different purposes. 

B. FUTURE WORKS 

This thesis sought quick ways of constructing networking environments to 

interchange DIS between different browsers, so simulation developers could 

focus on the functions and scenarios for different purposes. This thesis also 

focused on developing an example game as a practical application to verify the 

feasibility of web-based simulation. There were some experiments and 

improvements that were not performed in this thesis, such as: performance 

testing of mobile devices; improvement of the WebRTC sending capability in 

Chrome browsers; benchmark testing of the WebSocket and the WebRTC in 

different browsers; discussions of disadvantages of web-based simulations; and 

comparisons between web-based DIS simulations and traditional DIS simulations.   

1. Performance Tests and Web Applications on Mobile Devices 

The development of mobile devices has flourished in the past few years, 

and most of the mobile devices have installed web browsers such as iOS Safari, 
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Opera Mini, Android Browser, and Chrome for Android. One of the advantages of 

web applications is cross-platform, which indicates mobile devices can execute 

web applications in their compatible web browsers. Currently, almost every 

browser supports WebSocket, except Opera Mini; however, only Chrome for 

Android supports the WebRTC. This thesis did not measure the performance of 

interchanging DIS PDUs between browsers in mobile devices. This result would 

be a consideration for developing web applications, because the computational 

performance on mobile devices is typically slower than personal computers or 

laptop computers. Other considerations include WebGL components and input 

mechanisms. WebGL is one of the major elements that uses a lot of browser 

resources. So far only Chrome for Android supports WebGL, but the next version 

of iOS Safari will begin supporting WebGL(Deveria, n.d.-a). In addition, mobile 

devices usually do not attach to a keyboard or mouse, and the main input device 

for mobile device is a touch screen. Therefore, development of web applications 

for mobile devices has to take into consideration input mechanisms using 

graphical user interfaces (GUI) for users.  

2. Improvement of WebRTC Sending Capability in Chrome 
Browser and Benchmark Test 

According to the results in Chapter V, Performance Tests, the lowest 

receiving rates were from Chrome sent to Chrome and Chrome sent to Firefox. 

This thesis used PeerJS that wrapped WebRTC to create data channels between 

browsers. PeerJS is an easy and convenient API for developers to create web 

applications that apply WebRTC functions in a browser. However, because 

PeerJS is a wrapped API, it is difficult to modify or change the JavaScript code 

inside the API. Additionally, there is no benchmark application for testing 

WebRTC performance between Chrome and Firefox. Comparing with the 

receiving capability that sending from Firefox browser (Figure 29), it seems like 

Chrome should have space for improvement in the performance of the WebRTC 

framework. Therefore, further studies directed at WebRTC technology are 

required to improve the sending performance of the Chrome browser. 
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3. Disadvantages of Web-based Simulation 

This thesis discussed the advantages of web applications, along with the 

establishment of infrastructures that exchange DIS messages, and the 

development of the tank game. Some disadvantages of web-based simulations 

were not studied or discussed in this thesis, such as security vulnerability, GUI 

limitation, and latency. In addition, further study and discussion should contain 

comparisons between web-based DIS simulation and traditional DIS simulation.  

4. Feasibility of Other Web-based DIS Applications 

This thesis only developed a first-person-shooter tank game as an 

example of a DIS simulation in a browser. However, applications that use DIS 

protocols are varied. Further research is needed to discover which web-based 

domains can be applied to DIS simulations. For example, the WebSocket 

gateway server can receive native DIS from a UDP socket, so browsers can 

receive DIS packets from other simulation systems such as VBS2. Is it possible 

to create a battlefield viewer by receiving DIS messages in browsers, or to create 

a simplified interactive game interface in browsers? On the other hand, WebRTC 

emphasizes real-time communication between browsers, and is designed for 

audio and video communication. Is it possible to incorporate audio and video in 

web-based DIS simulations? What is the benefit of incorporating audio and video 

in web-based simulations, and does it affect the performance of sending and 

receiving DIS PDUs?  

5. Performance Tests in Public Networking Environments 

All the experiments and performance tests in this thesis were done in a 

closed-networking environment. Both WebSocket and WebRTC were competent 

enough to support web-based DIS simulations; however, a public networking 

environment is much more complex. Both WebSocket gateway servers and 

WebRTC peers used one-by-one mechanisms to distribute DIS packets, but the 

bottom layers were different. The WebSocket was based on a TCP socket, and 

the WebRTC used a UDP socket. This thesis did not examine performances on a 
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public network or Internet environments. Additional experiments should be done 

to compare the performance between the WebSocket and the WebRTC on a 

public network.    
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APPENDIX A. TABLE OF ENTITY STATE PDU FIELDS 

Appendix A shows the fields of entity state PDU, and DIS simulation uses 

ESPDU to communicate information about an entity’s state. 
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Table 6.   Fields of entity state PDU. 
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APPENDIX B. FIREFOX DEVELOPER TOOLS 
PERFORMANCE PROFILE RESULTS 

A. APPENDIX B-1. FIREFOX PROFILING OF SENDING ESPDUS 

Appendix B-1 shows a result of using Firefox developer tools to profile the 

sending behavior in the WebSocket framework for a short period-of-time. 

 
Figure 41.  Firefox profiling of sending ESPDU in the WebSocket framework. 
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B. APPENDIX B-2. SENDING SECTION IN APPENDIX B-1 

Appendix B-2 shows the sending section in Appendix B1. 

 
Figure 42.  Sending section in Appendix B1. 
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C. APPENDIX B-3. FIREFOX PROFILING OF RECEIVING ESPDUS 

Appendix B-3 shows a result of using Firefox developer tools to profile the 

receiving behavior in the WebSocket framework for a short period-of-time. 

 
Figure 43.  Firefox profiling of receiving ESPDU in the WebSocket framework. 
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APPENDIX C. TANK GAME RESULTS 

A. APPENDIX C-1. FIREFOX PROFILING IN THE WEBSOCKET 
FRAMEWORK 

Appendix C-1 shows a result of profiling the tank game using Firefox 

developer tools in the WebSocket framework. 

 
Figure 44.  Firefox profiling of the tank game in the WebSocket framework. 
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B. APPENDIX C-2. FIREFOX PROFILING IN THE WEBRTC FRAMEWORK 

Appendix C-2 shows a result of profiling the tank game using Firefox 

developer tools in the WebRTC framework. 

 
Figure 45.  Firefox profiling of the tank game in the WebRTC framework. 
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APPENDIX D. NETWORK LOADING TIME 

Appendix D is an example of recording the time of loading web contents. 

 
Figure 46.  Network loading time. 
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APPENDIX E. COMPARISONS OF RECEIVING FIRST TEN 10,000 
DIS PDUS IN THE LINEAR FORM 

Appendix E is the comparisons of receiving first ten 10,000 DIS PDUs in 

the linear form. It shows that the times of receiving first one 10,000 DIS PDUs 

were slower when the senders were Chrome. 

 

 
Figure 47.  The comparisons of receiving first ten 10,000 DIS PDUs  

in the linear form. 
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APPENDIX F. SCREENSHOTS OF MULTIPLAYERS  
IN THE TANK GAME 

Appendix F shows that it is possible to create a web-based DIS simulation 

for many users. 

 
Figure 48.  Screenshots of multiplayers in the tank game I. 

 
Figure 49.  Screenshots of multiplayers in the tank game II. 
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Figure 50.  Screenshots of multiplayers in the tank game III. 

 

 
Figure 51.  Screenshots of multiplayers in the tank game IV. 
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