
•

Special or General-Purpose Hardware
for Prolog: A Comparison

Gaetano B orriello
Andrew Cherenson

Peter Danzig
Michael Nelson

Report No. UCB/CSD 87/314

October 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Special- or General-Purpose Hardware for Prolog: A Comparison

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This study compares the performance of executing Prolog code on the Berkeley PLM processor (a
special-purpose CISC architecture) and the Berkeley SPUR processor (a general-purpose RISC
architecture with tagged data). Fourteen standard benchmark programs were run on both the PLM and
SPUR simulators. The two implementations were compared with regard to static and dynamic program
size, execution speed, and cache performance. The simulated memory system included a direct-mapped
mixed instruction and data cache. We found that, on average, the macro-coded SPUR implementation has
a static code size 14 times larger than the PLM, executes 16 times more instructions, yet requires only 2.31
times the number of machine cycles. To have the same miss ratio with a much larger code size the SPUR
implementation requires a cache that is 4 to 8 times that of the PLM. We also suggest minor changes to the
SPUR instruction set to improve its Prolog execution and outline the design of a special-purpose SPUR
coprocessor that would greatly reduce the code size and double SPUR’s Prolog performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

120

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Special- or General-Purpose Hardware for Prolog:

A Comparison

Gaetano Borriello
Andrew Cherenson

Peter Danzig
Michael Nelson

Report No. UCB/CSD 87/314
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

ABSTRACT

This study compares the performance of executing Prolog code on the Berke

ley PLM processor (a special-purpose CISC architecture) and the Berkeley

SPUR processor (a general-purpose RISC architecture with tagged data).

Fourteen standard benchmark programs were run on both the PLM and

SPUR simulators. The two implementations were compared with regard to

static and dynamic program size, execution speed, and cache performance.

The simulated memory system included a direct-mapped mixed instruction

and data cache. We found that, on average, the macro-coded SPUR imple

mentation has a static code size 14 times larger than the PLM, executes 16

times more instructions, yet requires only 2.31 times the number of machine

cycles. To have the same miss ratio with a much larger code size the SPUR

implementation requires a cache that is 4 to 8 times that of the PLM. We

also suggest minor changes to the SPUR instruction set to improve its Prolog

execution and outline the design of a special-purpose SPUR coprocessor that

would greatly reduce the code size and double SPUR's Prolog performance.

Special- or General-Purpose Hardware for Prolog October 1986

1. Introduction

Logic programming has been the subject of much attention since the 1981

announcement that the Japanese Fifth Generation Project [Moto-oka83J would

use Prolog as its principal programming language. Many computer researchers in

the artificial intelligence community believe that logic programming provides a

more direct and natural mapping of problem specifications into machine language

than traditional high-level languages. In the past few years, much work has been

done to develop high-performance machines for logic programming.

Prolog is the most popular of the logic programming languages. It was

designed at the University of Marseille around 1970 by Alain Colmerauer and his

associates. In 1977, David \Varren at the University of Edinburgh developed the

first compiled implementation of Prolog [W arren77]. The compiler ran on a

DECsystem-10 and was dramatically faster than previous, interpreted implemen

tations. Since then, many approaches, ranging from advanced compiler tech

niques to microcoded hardware enhancements, have been used to improve the per

formance of compiled Prolog code.

Most compiled implementations of Prolog are based on refinements to

Warren's original abstract machine (W AM) specification [Warren83]. Warren's

instruction set corresponds very closely to the tokens of the Prolog language.

Compiling from Prolog to W AM is therefore a simple and straight-forward process

that can reasonably be implemented in Prolog itself.

The Berkeley Prolog Machine (PLM) is a special-purpose microcoded proces

sor that uses a slightly modified version of the W AM instruction set [Dobry84c].

Efficient Prolog execution is achieved through the much higher code density of the

PLM as compared to conventional, general-purpose architectures. The PLM is

expected to run Prolog ten times faster than the compiled implementation for the

DEC-2060. The PLM is part of the larger Berkeley Aquarius project whose aim

is to build a 16 processor Prolog multiprocessor with a shared synchronization

memory [Dobry85J.

The Berkeley SPUR (Symbolic Processing Using RISCs) project aims to pro

duce a multiprocessor personal workstation for high-performance general-purpose

processing with some support for Lisp and floating-point computation [Hill86].

The SPUR microprocessor is a reduced instruction set computer (RISC) with

extensions for tagged data types and a large mi.xed instruction and data cache. It

includes a tightly-coupled coprocessor interface. The first coprocessor to be

implemented will be used for high-performance IEEE standard floating-point

operations.

Our objective is to show how well Prolog programs can be executed on

SPUR, a processor not designed with logic programming applications in mind. We

did not compile Prolog directly into SPUR machine code but instead used the out

put of the PLM compiler and performed a macro-expansion of the PLM/W AM

instructions into SPUR instructions. Improvements in performance could

-1-

Special- or General-Purpose Hardware for Prolog October 1986

certainly be gained by building a Pro log compiler for the SPUR architecture. We

chose to use a macro-expansion technique so as to save time (there was no Prolog

implementation for SPUR) and also to better compare the two architectures

rather than the difference between two compilers. We feel we have achieved our

objective of finding a lower bound for Prolog execution using macro-expansion

with a few straight-forward optimizations.

If Prolog runs efficiently on SPUR, then Prolog programs can be easily

integrated with an operating system, floating point hardware, and other applica

tions programs to create a test-bed for experiments in mixed-paradigm program

ming systems. Although both SPUR and PLM are the basic elements of larger

multiprocessor machines, we did not consider the issues of parallelism inherent in

Prolog on either of these two architectures.

The next two sections provide background information on the PLM and

SPUR architectures. We then discuss how PLM instructions were translated into

SPUR instructions using macro-expansion. Section 4 considers tradeoffs with

respect to register allocation, stack usage, and the prolog unification operations in

mapping PLM to SPUR. Section 5 presents our performance comparisons results

including static and dynamic program size, execution speed, and memory cache

effects. We conclude with suggestions to improve Prolog performance with slight

modifications to the SPUR architecture or with the use of a special coprocessor.

The appendices contain the programs that perform the macro-expansions, the

macro-expansions, and the details of a possible implementation of a Prolog copro

cessor for SPUR.

-2-

Special- or General-,urpose Hardware for Prolog October 1986

2. The PLM Architecture

The Berkeley PLM is a TTL implementation based on the Warren Abstract

Machine, the target machine of the first Prolog compiler [Warren77]. Warren

implemented a compiler that translates Prolog into abstract machine instructions

that were then macro-expanded into DEC-10 machine code. Previous Prolog

implementations were interpreters that were usually written in Lisp, and therefore

suffered from the inefficiency of being translated twice, once from Prolog to Lisp

and again from Lisp to machine code.

Warren's abstract machine is the basis of most of the work being done on

special-purpose Prolog hardware. This section describes W AM as modified by

Tick and Warren [Tick83, W arren83J and by the Berkeley PLM group [Dobry84b,

Fagin85]. Dobry gives detailed descriptions of the PLM in [Dobry84a, Dobry84c,

Dobry85]. Clocksin and Mellish [Clocksin81] provide a good foundation for the

basics of Prolog and logic programming.

2.1. PLM Data Types and Representation

The PLM supports four (tagged) data types: constants, variables, lists, and

structures. Constants have a minor type of nil, integer, atom, or floating point.

Variables, actually pointers to other data structures, are bound (point to a data

cell) or unbound (point to themselves). Lists and structures are cdr-coded to elim

inate pointers to successive locations (car and cdr cells are distinguished by using

a tag bit). This technique can eliminate up to half the amount of memory neces

sary to represent lists and structures and many pointer dereferences when a the

elements of a list can be kept in a contiguous group of memory locations. Figure

1 summarizes the PLM data types and illustrates their layouts. It is important to

note that the PLM tags consist of three orthogonal fields: type, sub-type, and cdr

(or bound) bit. All tags also have a bit used by a garbage collection algorithm.

2.2. PLM Registers and Data Structures

The PLM organizes memory into

• a code segment;

• five stacks, consisting of the environment stack, choice point stack, "heap",

trail stack, and the "push down list";

• sixteen data registers;

• a few mode bits.

These features are described below.

2.2.1. Environment Stack

The environment stack contains activation records of active Prolog clauses.

An activation record consists of a pointer to the previous record, a code space

address to jump to should the clause succeed, the clause argument count, room to

store the clause's local va~iables, and a pointer to the last choice point entry

-3-

Special- or General-Purpose Hardware for Proiog October 1986

Bound Variable var

I
0

I
g.c. ~
~ var

I

I
g.c. Unbound Variable

Structure I ~mtl 0

I
g.c. ~

List Head list

I
0

I
g.c. ~

List Continuation list

I I
g.c. ~

const

I I
g.c. I Ill NIL

Constant const

I

0

:

g.c. I mbtyp•l

Figure 1. PLM data types. Tags consist of a two-bit field for the type of data:

variable, structure, list, or constant. Variables contain a one-bit field indicating

whether they are bound (and point to another data cell) or unbound (and point to

themselves). This bit is always zero in structure pointers. In list pointers this

field distinguishes car from cdr cells in the cdr-coded data structure supported by

the PLM. This bit is also set to indicate a constant is nil. Constants also have

another two-bit subtype field. All tags have a bit used by a garbage collection al

gorithm.

should the clause use the cut operator. (The cut operator increases backtracking

efficiency by pruning branches from the depth-first search tree.)

2.2.2. Choice Point Stack

This stack contains procedure choice points. A choice point is a set of 15

PLM registers containing the necessary state to backtrack to a previous node in

the search tree. It consists of the original procedure arguments, a pointer to the

-4-

Special- or General-Purpose Hardware for Prolog October 1Q86

environment of the calling procedure, a pointer to the top of the heap at the time

the procedure was invoked, a pointer to the top of the trail stack at procedure

invocation time, a code space address should the procedure succeed, a code space

address should backtracking be necessary, and a pointer to the previous choice

point (this is needed since the PLM interleaves the choice point stack and the

environment stack in the same stack segment).

2.2.3. Heap

Space for dynamically constructed lists and structures is sequentially allo

cated from the heap, which behaves very much like a stack. Heap space is

reclaimed when a procedure fails, but must be garbage-collected periodically since

data structures created by successful clauses would not otherwise be reclaimed.

2.2.4. Trail Stack

As Prolog programs perform their pattern matching functions, variables in

one data structure are "bound" (i.e. made to point) to the corresponding element

of the second data structure. In order to restore the computation's state when a

clause fails (pattern matching fails) and backtracking occurs, all variable bindings

must be reversible. The trail contains pointers to variables on the heap that have

become bound during procedure execution. On goal failure, all trail entries above

the saved heap pointer stored in the choice point are read and the variables they

point to are unbound.

2.2.5. Push Down List

The push down list is a high-speed stack inside the PLM and is used to store

pointers into two data structures that are being unified (i.e. pattern matched).

Since lists or structures can contain embedded lists or structures as elements,

unification is a recursive process. List or structures are unified in a depth-first,

post-order tree traversal. The push down list is an optimization to reduce the

complexity of managing another stack in memory and to increase unification per

formance.

2.2.6. Registers

Finally, the PLM has the following special-purpose registers: a program

counter register (P); a goal success program counter (CP); pointers to the top of

the environment, choice point, trail, and heap stacks (E, 8, Tr, and H respec

tively); a structure pointer register (S); the procedure argument count register (N);

eight argument registers (A.."Xl-AX8); and two bits of control state called the cut

bit and the read/write mode bit.

2.3. PLM Instructions

PLM instructions fall into eight classes:

-5-

Special- or General-Purpose Hardware for Prolog October 1986

• procedure control instructions that manipulate choice points;

• indexing instructions that perform multi-way branches depending on the type

and value of an argument register;

• clause control instructions that manipulate activation records on the environ

ment stack;

• get and put instructions that verify and prepare goal arguments respectively;

and

• unify instructions that construct and compare structures and lists one element

at a time by pattern matching the corresponding elements.

Instruction lengths range from 1 to 6 bytes. Tailoring the instruction set to

the language produces high code density for the PLM. Smaller program sizes

result in much improved instruction buffer and cache performance. This will be

shown to be the primary reason for the PLM's excellent performance. However,

instruction fetching and decoding is greatly complicated due to the variable-length

unaligned instruction format.

The PLM's instruction buffer performs the bulk of the instruction prefetching

and decoding functions. Instructions are broken up into an 8-bit opcode field, a

32-bit first argument field, and for instructions of more than one argument there

is an additional 32-bit field containing the two single-byte second and third argu

ments. These are presented to the central processor for final decoding and execu

tion. There is only a small set of conditional branch instructions in the PLM.

The instruction buffer stops prefetching when one of these instructions is encoun

tered and simply waits for the branch to be resolved. The PLM instruction buffer

typically contains from five to sixteen instructions.

2.4. Stack Allocation Optimizations for Prolog

Warren included two more memory saving optimizations in his original

implementation: environment trimming and tail recursion elimination. Environ

ment trimming frees space from the activation record of a clause as soon as a

variable is no longer referenced. This requires an additional field to the call

instruction so the size of the activation record can be updated as each subclause

of a clause is invoked. Larger memory sizes have probably made this optimization

unnecessary.

Tail recursion elimination discards the activation record of a clause before

the invocation of the last subclause. This optimization is quite valuable in recur

sive procedures that would otherwise quickly fill up stack space with unused

activation records. The only restriction imposed by this method is that recursive

clauses should be purely tail recursive. This condition is usually true in practice

and can be enforced in almost every case. However, this important optimization

does require a special PLM instruction to move needed variables from the activa

tion record to the heap. The activation record's registers can replace those of the

parent clause since failure of the last recursive clause implies a failure of the

-6-

Special- or General-Purpose Hardware for Prolog October 1986

parent clause, popping both records off the stack.

2.5. System Support Functions

PLM instructions are complex since they execute in an indeterminate amount

of time (e.g. recursive unification) and they can generate an indeterminate number

of memory references per instruction. The first point makes instructions difficult

to restart. A large amount of micro-engine state must be preserved between

instructions. The second point implies that page faults may occur during the exe

cution of a long instruction. In the current architecture, the PLM is a coprocessor

to an NCR-32 main processor that handles memory management and process

scheduling functions for the PLM. It is important to note that the PLM cannot

be easily context-switched to another Prolog process while a page request is being

serviced.

The NCR host processor not only provides virtual memory support but also

performs 1/0 system calls and floating point operations for PLM escape instruc

tions. However, these operations are expensive since they must be performed by a

loosely-coupled coprocessor reached through the system bus rather than a tightly

coupled coprocessor reached through a direct interface.

-7-

Special- or General-Purpose Hardware for Prolog October 1g86

3. The SPUR Arehiteeture

The SPlJR (Symbolic Processing Using RISCs) architecture is a RISC archi

tecture augmented with special support for LISP processing and floating-point

computation. The added capabilities include tagged data types and a tightly

coupled coprocessor interface. SPUR has been designed as a multiprocessor

workstation. It has a 128KB cache that maintains data coherency by using

hardware support for bus snooping. SPUR extends the work of the earlier Berke

ley RISC and SOAR architectures [Katevenis83, Ungar84J. A summary of SPUR

and PLM features is listed in Table 1.

3.1. SPUR Registers and Tags

The basic instruction and data word is 32 bits, however, registers are 40 bits

wide so as to support an 8-bit data tag. Data is always word-aligned. Tagged

data is stored in 2 words containing a total of 64 bits: the first word is the data

and the second is the tag. Although the SPUR system bus supports only 32-bit

transfers to the processor cache, all other busses are 40 bits wide. Therefore, a

penalty for tagged data transfers is only incurred when data is brought into the

cache or written back out to memory.

Comparison of PLlvf and SPlJR

Features PLM SPUR

architecture tagged CISC tagged RISC

target languages Prolog only LISP, C & others

instruction size 1 to 6 bytes 4 bytes

cycles per instr. 1 to 26+ 1 (2 for stores)

(no misses) t 4+ for floating-point ops

avg. cycles/instr. 7 1

cycle time 100-150 ns 100-140 ns

registers g special 138 GPRs in 8 overlapped windows

8 argument (10 global, 6 input, 10 local, and
6 output per window)

cache separate I&D, 16KB each mixed I&D, 128KB

instr. buffer size 5 to 16 instructions 128 instructions

microcode size 1K x 134 bits not applicable

Table 1. Summary of features of the PLM and SPUR architectures.

t This assumes a perfect memory (i.e. no cache or instruction buffer misses) for

both PLM and SPUR. For SPUR, load instructions are assumed to be followed

by a non-dependent instructions (as is the case in our implementation). SPUR

store intructions stall the pipeline and hence require two cycles.

-8-

Special- or General-Purpose Hardware for Prolog October 1986

There are 138 general-purpose registers in SPUR organized into 8 overlapped

windows of 32 registers. Of these 32, there are 10 global registers accessible in all

windows, 6 input registers that overlap with the previous window, 10 local regis

ters that are accessible in only one window, and 6 outputs that overlap with the

next window. When a function call is executed, the CPU shifts its current win

dow. Input parameters and output results are passed between functions by using

the overlapped registers. All registers are general-purpose except one of the glo

bal registers that is hard-wired to a zero value.

Special trap conditions are signaled when the windows overflow (i.e. a func

tion call depth of more than 8 is reached) or underflow and a trap handler is used

to move registers to and from memory. When a window is available, function

calls proceed very quickly, only when windows overflow or underflow are memory

accesses to preserve register state necessary. Halbert and Kessler have shown that

window overflows occur less 1% of the time for a window size of 8 [Halbert80].

3.2. SPUR Instructions

Instructions fall into three basic types. Most instructions are register-to

register operations involving the entire 40-bit quantity. Special exceptions are sig

naled depending on the value of the tags (e.g. adding two pointers). There are

also instructions that cause operations to be performed on coprocessor registers

(e.g. floating-point add).

The load-to-register and store-from-register instructions are the only instruc

tions that access memory. There are instructions for making either 32-bit

untagged data and instruction access as well as full 40-bit tagged access. Special

ized instructions are provided for moving data between the cache and the copro

cessor registers in sizes corresponding to the IEEE floating-point standard and for

transfers between processor and coprocessor registers. Lastly, there are com

parison and branch instructions that alter control flow depending on the value of

a CPU register, coprocessor register, or data tag.

SPUR is equipped with an on-chip instruction buffer of 128 words. Instruc

tions are prefetched but compete with load and store instructions for access to the

mixed instruction and data cache. All instructions are aligned and have uniform

argument format, consequently, no alignment or predecoding is necessary. As a

result the instruction buffer is a straight-forward on-chip instruction cache.

3.3. Pipeline Execution

SPUR has a four-stage pipeline: instruction fetch, register read and an ALU

operation either to combine operands or compute and effective address, memory

access (for load and store instructions) or nothing (for register-to-register instruc

tions), and register write. The pipeline includes circuitry for forwarding data that

may be required by the next instruction and not yet stored back into a register.

The effective throughput is therefore one instruction per cycle.

-D-

Special- or General-Purpose Hardware for Prolog October 1g86

Due to the structure of the pipeline, the effects of load and branch instruc

tions are delayed one cycle beyond their execution. The contents of a register

that is loaded from the cache cannot be accessed by the next instruction. It is

necessary to include some operations that do not use that register or a NOP in

the slot immediately following the load instruction. A similar situation holds for

branch instructions. The instruction immediately following a branch will be exe

cuted whether or not the branch is taken. SPUR provides special branch instruc

tions that cancel the effects of the subsequent instruction when the branch is

taken. However, carefully placement of instructions in the slot following a branch

can greatly improve throughput.

3.4. SPUR Address Spaces

SPUR has a 38-bit global virtual address space and 32-bit process virtual

address space. The high-order two bits of the address select one of four segments

and the remaining 30 bits are an offset into the segment. Typically, the first seg

ment contains the operating system and the other three contain the process's

code, data, and stack segments, respectively. During address translation, the 2 bit

segment number is used to index a set of four segment registers each of which

contains an 8-bit global segment number that selects one of 256 segments. The

8-bit segment number is concatenated with the 30-bit offset to form the 38-bit glo

bal virtual address.

3.5. Coprocessor Interface

SPUR supports a tightly-coupled coprocessor model. The CPU initiates all

data transfers between the coprocessor registers and the cache using a 64-bit wide

data bus. All instruction dispatching is performed by the CPU. When the CPU

fetches an instruction that is not for the main processor it forwards it to the

coprocessor.

The coprocessor interface consists of a set of lines for communicating the

coprocessor instruction opcode and register arguments. One control signal indi

cates to the coprocessor that a new instruction is being presented by the CPU and

another indicates the coprocessor has completed execution. When the coprocessor

requires more than one cycle for instruction execution it suspends the CPU pipe

line by asserting a coprocessor busy signal.

Coprocessors can also operate in parallel with the CPU. All responsibility for

waiting the appropriate amount of time for results to be available rests with the

CPU. An extra bit in the interface is used to select one of two coprocessors that

could both be used in parallel.

3.6. System Support Functions

SPUR handles all its own traps and page faults. For this reason, unlike the

PLM, all instructions are restartable and atomic in their operation. The SPUR

processor has all the general-purpose instructions and trap handling capability to

- 10-

Special- or General-Purpose Hardware for Prolog October 1986

directly support an operating system" The PLM would require additional micro

code support these functions.

- 11-

Special- or General-Purpose Hardware for Prolog October 1Q86

4. Implementing Prolog on SPUR

This section describes the mechanics of macro-expanding Prolog into SPUR

assembly language and how the state of the PLM is mapped onto the SPUR regis

ters.

4.1. Macro-expanding PLM on SPUR

We chose macro-expanding PLM instructions rather than writing a full Pro

lag compiler for SPUR because its simplicity enabled us to find a lower bound on

SPUR Prolog performance in just a few weeks. Undoubtedly, a compiler would

achieve much better performance. In this section, we review the design alterna

tives we considered to represent the PLM's state and describe the design we chose

to implement. · We also describe the tools we developed to automatically macro

expand PLM instructions to SPUR code.

4.1.1. Choice Points, Environments, and Registers

Many of the PLM registers point into its multiple data and activation record

stacks. We chose a register allocation scheme that follows the tenet that the

optimal register layout is the one that reduces the processor-memory bandwidth.

Since choice points are much larger than environment activation records, we

decided to exploit SPUR's register windows for choice point buffering. Register

windows cannot be used to represent the environment and heap structures since it

must be possible to bind to these structures and it would be extremely complex to

bind to registers (registers don't have a memory address). Using them as a trail

buffer is difficult since trail entries are single words and really require a hardware

stack rather than SPUR's overlapping register windows. Also, since access to the

trail is strictly LIFO, any buffering scheme would only eliminate a single store and

a single load per entry. The Berkeley PLM research group estimated that trail

buffering in hardware could at best yield a 1% performance gain [Dobry84c].

Our register usage is shown in Table 2. From this table one can see that

there is a close match between the size of a choice point and the size of SPUR

register window. Each window keep the argument registers local and overlaps

state registers with the preceding and following windows (choice points). This is

precisely the type of behavior required, access to the previous choice point is also

required in the PLM. Choice point buffering with register windows reduces the

instruction data fetch collisions on the try, try_ me_ else, retry, and retry_ me_ else

instructions. Rather than interfering with data fetches, the contents of choice

point registers can be obtained from internal processor registers rather than a

stack frame in memory. Backtracking is accomplished with register move opera

tions and the shifting of register windows. Choice point buffering appears to be

the only natural use for SPUR's register windows.

The equivalent of the PLM B register in the SPUR implementation no longer

contains a pointer into memory but now points to a register window. This

number is incremented when a choice point is pushed and decremented when a

- 12-

Special- or General-Purpose Hardware for Prolog October 1986

SPUR Register Allocation for PLM
Type Register Use

Globals 0 hardwired 0
1-8 PLM A.X1-A.X8
9 Pointer to constant table

Inputs Previous Choice Point
10 PLM E register
11 PLM TR register
12 PLM H register
13 PLM B register
14 PLM BP register
15 PLM CP register

Locals Linkage and Temporaries

16 PLM S mode flag
17 PLM Cut mode flag
18-25 PLM A.Xl-A.X8 and CP when

window becomes choice point

Outputs Current Choice Point
26 PLM E register
27 PLM TR register
28 PLM H register
29 PLM B register
30 PLM BP register
31 PLM CP register

Table 2. Register allocation for PLM registers in SPUR register windows. Glo

bals are used for the argument registers of the current choice point and for

pointers to constant tables. When a choice point needs to pushed onto the stack,

the argument register are moved into the local registers and the register window

shifted. Otherwise the locals are used for temporaries and the S register, which is

not shared across choice points. The overlap of the input and output registers

makes the values of the registers of the previous choice point available to the

current one.

choice point is popped. The PLM's S register is a local temporary register since

its value is not needed across choice points. The ten SPUR local registers are used

as temporaries by the macro expansion code. The eight argument registers are

kept in global registers. This leaves only a single register (R9) for indexing into a

constant table. This originally caused us to suggest that more global SPUR regis

ters would be useful, however, a level of indirection solves this problem at

minimal cost.

Since the PLM design includes only a single choice point buffer, we anticipate

better performance than the PLM for programs that push and pop choice p<_:>ints

- 13-

Special- or General-Purpose Hardware for Prolog October 1986

often but not too deeply (more than 8). Operations that push choice points

account for 10% of the execution time of PLM and, as expected, operations that

pop choice points account for only 3% of its operation time. This asymmetry is

due to popping multiple choice points during a single cut instruction. Efficient

programs perform less backtracking and would be expected to pop more than one

choice point in a single operation; a 3:1 push to pop ratio is typical. For pro

grams that do push choice points deeply, our design will suffer the same perfor

mance degradation as the PLM. However, this type of behavior is unlikely to be

a part of most programs.

An alternative to the register layout that we chose is to eliminate the argu

ment registers (AX) and store the arguments in the procedure activation record as

done in other programming languages. However, this requires more load and

store instructions that would add to the instruction-data fetch bandwidth

bottleneck. The advantage of this method is that it frees the SPUR global regis

ters for other uses. Neither approach requires modification to the PLM compiler

and their true merits will best be determined by simulation.

4.1.2. Register Windows and the Recursive Unify Operations

Unfortunately, the large size of SPUR's register windows reduces their

effectiveness for recursive unification. Recursive unification must save only three

registers per invocation. Since 16 new register become available on a window

shift, this leaves 13 registers unused. Unrolling the unify code five times would

permit the use of 15 of the 16 registers. This seems promising, however, the

increased code size could be detrimental to instruction buffer and cache perfor

mance. In addition to unrolling the unify code, there are at least two other possi

ble approaches to implementing recursive unify: implementing the recursion stack

in memory and using the register windows directly by replacing the

overflow /underflow trap handler to save and restore only three registers. Yet

another possibility is to have the SPUR hardware provide two window sizes, one

as currently implemented and another small one for procedures that may be

highly recursive but only require a small number of arguments. We chose the

simplest path and implemented our own recursion stack in memory.

4.1.3. Macro-expanding PLM Instructions

Although there are papers that describe the PLM instruction set, the PLM

simulator [Dobry84aj is the only place that accurately describes the semantics of

all PLM instructions. Our approach to macro-expanding PLM to SPUR was to

use the model of PLM functionality provided by the PLM level 1 simulator. The

simulator is written in C and contains a separate procedure for each PLM instruc

tion. Some of the procedures share common subroutines. Essentially, we hand

compiled the procedures in the PLM simulator into SPUR assembly language; the

functions that simulated an instruction were made into macros and the common

functions were put into a subroutine library loaded with every SPUR program.

Since we tried not to deviate from the PLM simulator, we employed minimal

- 14-

Special- or General-Purpose Hardware for Prolog October 1986

optimizations. The only optimizations were to use the SPUR tags to simulate the

PLM tags and register windows for choice points.

In addition to the special stack needed for recursive unify, we also had to

implement our own procedure call mechanism for calling the common functions.

When calling a common function, the arguments are put into temporary registers,

the return address is put into a temporary register, and then the SPUR jump

instruction is used to execute the procedure. No registers have to be saved.

We implemented two of the commonly used large macros as function calls in

order to reduce the code size at the expense of four extra instructions, two to call

and two to return. Since these macros were complex, the extra overhead is small

compared to the number of instructions executed in the function. Table 3 shows

the improvements in code size because of this optimization on the Prolog

Static Code Size of Macro-expanded Benchmarks

Benchmark No functions Functions Cl I C2 Functions C2 I C3

(Cl) for two for 3 more
largest large
macros (C2) macros (C3)

conl 594 414 1.44 385 1.08

con6 610 430 1.42 401 1.07

divide10 4922 3988 1.23 1688 2.36

hanoi 585 385 1.52 385 1.00

log10 4606 4040 1.14 1676 2.41

mutest 2945 1703 1.73 1152 1.48

nrev1 2153 761 2.83 669 1.14

ops8 4692 3804 1.23 1632 2.33

palin25 3982 2556 1.56 1632 1.57

pri2 2061 1933 1.07 1704 1.13

qs4 3608 1230 2.93 1038 1.19

queens 3826 3636 1.05 2998 1.21

query 4136 3942 1.05 3768 1.05

times10 4398 3988 1.25 1728 2.31

Geom. mean 1.45 1.44

Table 3. This table shows the reduction in static code size when large commonly

used macros are implemented as subroutine calls to a library routine. The first

column shows the code size if none of the macros are turned into functions. The

second column shows the code size if unify_ constant and unify_ value are turned

into functions as was done in our macro-expansion. The third column shows the

ratio of column 1 to column 2. Column 4 shows the code size if get_ list,

get_ structure and unify_ variable were turned into functions. Columns 5 and 6

show the ratio of column 2 to column 4 and column 1 to column 4 respectively.

The bottom row is the geometric mean over all of the benchmarks. A short

description of the benchmarks is given in Table 4.

- 15-

Cl I C3

1.54
1.52
2.92
1.52
2.75
2.56
3.22
2.88
2.44
1.21
3.48
1.28
1.10
2.55

2.06

Special- or General-Purpose Hardware for Prolog October 1986

benchmarks. It also shows what would happen if we implemented some of the

smaller commonly used macros as function calls. We see that the benchmarks

with two macros implemented as function calls have a code size 44 percent

greater than that attainable if five macros were function calls. Overall, bench

marks that do not use function calls for the macros are over twice as large as

benchmarks that use all five.

4.1.4. Software to Apply Macro-expansions to Benchmark Programs

Once we had generated the macro-expansions of PLM instructions to SPUR

instructions we developed a software system to automatically apply the macro

expansions to the compiled PLM benchmark programs. We developed preproc

and postproc, and used /lih/cpp (a standard Unix utility) as well as sas and

sld (written by the SPUR Lisp group) to generate the macro-expansions. The

sequence that transforms a PLM program in to SPUR assembly code is:

prep roc
It takes the PLM instructions and puts them in a format that can be used by

/lib/cpp to perform the macro-expansion. It also extracts all constants from

the PLM code and puts them into a constant table.

/lib/cpp
This program is the standard Unix C preprocessor. Its purpose is to macro

expand the properly formatted PLM instructions into SPUR assembly

language.

postproc
By the time this program sees the PLM program it has already been macro

expanded to SPUR code. However, most of the macros have labels within

them. Since a macro can be used in many different places in the code and

labels must be global, there would be many label conflicts if the code was

passed to the SPUR assembler. It is the purpose of postproc to change all

of the labels to global labels.

sas and sld
These are the SPUR assembler and loader. They take SPUR assembly code

and turn it into object code that runs on the SPUR simulator.

A script to run this sequence of commands to produce a file that runs on the

SPUR simulator is shown in Appendix 1.

- 16-

Special- or General-Purpose Hardware for Prolog October 1986

5. Comparison or Prolog Performance on PLM and SPUR

Our goal of running the benchmark programs on the SPUR and PLM simula

tors and comparing their performance was accomplished in three steps. First we

wrote macro-expansion and software development tools and applied these to the

benchmarks listed in Table 4. We automatically generated SPUR instructions

from their PLM instructions for all but one (ckt2) of these benchmarks programs.

Next we ran the macro-expanded programs on the SPUR simulator to determine

if the expansions were correct and to generate memory references traces. To ver

ify the correctness of the macro-expansions, we modified the SPUR simulator to

print out the data structures generated by the Prolog program. Lastly, we

modified the PLM simulator to generate memory traces.

5.1. Modifications to the PLM and SPUR Simulators

5.1.1. The PLM Simulator

Two PLM simulators were graciously provided by Tep Dobry of the

Aquarius-PLM project. The level 1 simulator simulates the macro-architecture of

PLM whereas the level 2 simulator simulates the micro-architecture. We chose to

Prolog Benchmarks

Name Description Lines
ofPLM

con1 Deterministic concatenation of two lists. 29

con6 Non-deterministic concatenation of two lists. 33

ckt2 Design of a 2 by 1 MUX using NAND gates. 601

divide10 Symbolic differentiation using division. 222

hanoi Solution to Tower of Hanoi problem with 8 disks. 55

log10 Symbolic differentiation using logarithms. 216

mutest Proof of theorem in Hofstadter's mu math system. 142

nrev1 Naive reversal of a list of 30 numbers. 73

ops8 Symbolic differentiation using a polynomial. 214

palin25 Program to generate a palindrome. 187

pri2 Program to find prime numbers less than 100. 141

qs4 A quicksort program of 50 numbers. 125

queens Solution to the queens problem on a 4 by 4 chess board. 267

query A data base query problem. 340

times10 Symbolic differentiation using multiplication. ')')')
Table 4. The 15 benchmarks used in the PLM performance study [Dobry85].

All have been implemented on SPUR except for ckt2.

- 17-

Special- or General-Purpose Hardware for Prolog October 1986

instrument the level 1 simulator because it is much easier to understand and

modify than the level 2 version. It is important to note that the level 1 simulator

was designed to run the benchmarks and is not capable of executing all Prolog

programs. Many system support and escape instructions are not implemented.

This is the reason that larger benchmark programs were not run.

The simulator, as provided, kept frequency counts of instructions and statis

tics on the number of reads and writes, dereferences, unifications and bindings.

We enhanced the simulator by adding code to output memory reference traces

and to compute the number of cycles executed. To generate data for our cache

studies, we modified the simulator to log memory reference traces. Very few

changes were required to record data references because data references go

through the two routines stick (data write) and stuck (data read). However, more

detective work was needed to make sure that all references to the code space

("Cspace") were recorded since constants as well as instructions are stored in

Cspace. In addition, we modified the simulator to record the real size of instruc

tions so instruction references also record the size of the instruction being fetched.

The level 1 simulator, unlike the level 2 simulator, does not keep track of the

number of cycles executed. We added a table containing the average number of

cycles executed for each instruction. The values in the table were derived using

the same calculation style as the Berkeley PLM group. Where decisions had to be

made, we attempted to calculate the worst case path with the exception of general

unify, decdr, and dereference operations since the PLM chose average times for

these operations in their calculations. Hence, data structures with multiple

dereferences take longer than the table suggests. We compute the total number of

cycles executed by a program from the instruction frequency and the cycle tables.

The total cycles executed is not a precise value but a lower bound of the real

value.

A 'hook' routine was added to barb (the SPUR simulator) to handle escape

calls. Escapes are functions that cannot be handled by the PLM and must be han

dled by the host. In our implementation arithmetic comparison escapes are han

dled in-line, but escapes for 1/0 and arithmetic are handled in barb. Many

escapes are analogous to system calls so it is fair not to expect either the SPl.JR or

PLM implementations to handle them in-line.

5.2. Results

We compared the static and dynamic code sizes, number of instructions exe

cuted, of the SPUR and PLM versions of the benchmarks in tables 5 and 6. The

SPUR versions of the benchmarks are, as expected, uniformly larger than their

PLM counterparts. Table 5 shows static sizes of the benchmarks in instructions

and bytes. The instruction ratios range from 7.40 (hanoi) to 19.52 (loglO). The

low ratio for hanoi is because one-half of its PLM instructions map to sequences of

1 or 2 SPUR instructions, fully one-third of the PLM instructions executed map to

sequences of just 1 SPUR instruction. The high ratio for loglO is because 40% of

- 18-

Special- or General-Purpose Hardware for Prolog October 1986

Static Code Size
PLM SPUR S/P

Benchmark #lnstr. #Bytes #lnstr. #Bytes Instr. Bytes
ratio ratio

con1 28 87 414 1656 14.79 19.03

con6 32 106 430 1720 13.44 16.23

divide10 213 661 3988 15952 18.72 24.13

hanoi 52 183 385 1540 7.40 8.42

log10 207 625 4040 16160 19.52 25.86

mutest 141 468 1703 6812 12.08 14.56

nrev1 71 260 761 3044 10.72 11.71

ops8 205 633 3804 15216 18.56 24.04

palin25 178 565 2556 10224 14.36 18.10

pri2 132 383 1933 7732 14.64 20.19

qs4 121 456 1230 4920 10.17 10.79

queens 242 723 3636 14544 15.03 20.12

query 273 1138 3942 15768 14.44 13.86

times10 213 661 3988 15952 18.72 24.13

Geom. mean 14.00 17.06

Table 5. Static Code Size for the PLM and SPUR Benchmarks. The average

number of bytes per PLM instruction is 3.30. There is an additional 697 instruc

tions (1788 bytes) of functions loaded with each SPUR program.

With
func
bytes

51.08
42.53
28.36
23.65
30.32
20.51
22.43
28.44
23.03
27.47
16.90
23.97
16.31
28.35

26.11

the PLM instructions are either get_ structure (approximately 43 SPUR instruc

tions) or unify_ variable (approximately 29 SPUR instructions). The mean

SPUR/PLM ratio for instructions and bytes are 14.00 and 17.06 respectively. The

byte ratio is larger because the average PLM instruction is 3.30 bytes. Note that

these byte ratios do not include the code for a fixed-size subroutine library loaded

with each SPUR benchmark. It is interesting compare the size of this subroutine

library (1.8KB) with the size of the PLM microcode (about 17KB).

Comparison of the dynamic code size shows that SPUR executes on average

about 16 instructions for each PLM instruction (see Table 6). The hanoi bench

mark had the lowest ratio (11.81). The query benchmark has the highest ratio

(20.77) for which we do not see a ready explanation. These ratios do not reflect

the real amount of work done by the PLM since PLM instructions take from one

to over 26 cycles to execute while SPUR instructions only take one cycle to exe

cute. Comparing the number of SPUR instructions executed to the number of

PLM cycles executed shows that on average, SPUR, requires 2.31 cycles for each

PLM cycle. The SPlJRjPLM cycle ratio ranges from 1.96 for hanoi and pri2 to

4.09 for query. Excluding query, the highest ratio is 2.67 for con6.

- 19-

Special- or General-Purpose Hardware for Prolog October 1986

Instructions and Cycles Executed

Benchmark PLM SPUR SPUR/PLM SPUR NOPs Barb
Hooks

Instr. Cycles Instr. Cyles Instr. Cycles # % #

con1 43 296 627 672 14.58 2.27 78 12.44 2

con6 133 1006 2474 2685 18.60 2.67 294 11.88 30

divide10 447 3512 6724 7374 15.04 2.10 785 11.67 2

hanoi 11996 79097 141644 154911 11.81 1.96 17095 12.07 765

log10 145 1182 2859 3139 19.72 2.57 330 11.54 2

mutest 12983 116967 249960 263243 19.25 2.25 36021 14.41 7

nrev1 4092 31825 62216 65846 15.20 2.07 7993 12.85 2

ops8 260 1935 3583 3918 13.78 2.02 438 12.22 4

palin25 3540 27092 64620 68838 18.25 2.54 9326 14.43 11

pri2 14567 109384 195985 213929 13.45 1.96 22589 11.53 579

qs4 6596 49308 96456 103648 14.62 2.10 11792 12.23 'l ...

queens 5177 36350 76575 83135 14.79 2.29 9509 12.42 236

query 21973 116845 456396 478223 20.77 4.09 55877 12.24 1910

times10 375 2891 5410 5916 14.43 2.05 650 12.01

Geom. mean 15.81 2.31 12.39

Table 8. Dynamic Code Size for PLM and SPUR. For SPUR, the number of cy

cles executed is calculated by adding the number of instructions executed to the

number of data writes from Table 7, effectively double counting store instruc

tions. This is necessary because the store instruction take two cycles to execute.

Using the data from this table and from Table 7, the average number of cycles

per SPUR instruction is 1.07.

2

The percentage of no-op instructions in the SPUR code averages 12.39%

(Table 6). Most of the no-op slots in the branch, call and return instructions were

not used, but many were used after jumps. The barb hook column in Table 6

measures the number of calls to barb to handle 1/0 and arithmetic operations.

Table 7 shows the number of data reads and writes for the benchmarks. Gen

erally, SPUR does 3% more reads and 18% more writes than PLM. The ratio of

SPUR/PLM reads ranges from 0.72 (log10) to 1.43 (con1) and the ratio for writes

ranges from 0.88 (qs4) to 2.37 (con1). The con1 benchmark has anomalous

behavior because it performs almost twice as many reads and writes for SPUR

than for PLM.

5.3. Analysis or Memory Traces

Up to now, we have compared performance for the two machines assuming

that all memory references are completed in one cycle. This is the type of perfor

mance measurement used in [Dobry85]. A more realistic model of performance

would consider the memory system used by the architecture. The memory refer

ence traces enable us to do detailed simulations of cache performance and com

pare the effect of SPUR's increased code size on the miss ratio. The memory

trace data was analyzed using the dineroill cache simulator [Hill83, Hill85].

-20-

Special- or General-Purpose Hardware for Prolog October 1986

Number of Data References

Benchmark Reads Writes

PLM SPUR S/P PLM SPUR S/P

con1 21 30 1.43 19 45 2.37

con6 . 225 268 1.19 161 211 1.31

divide10 729 578 0.79 598 650 1.09

hanoi 14792 14798 1.00 17100 13267 0.78

log10 334 240 0.72 122 180 1.48

mutest 16131 16590 1.03 14502 13283 0.92

nrev1 1637 2728 1.67 1697 3630 2.14

ops8 349 335 0.96 314 335 1.07

palin25 3955 5120 1.29 3351 4218 1.26

pri2 19734 19383 0.98 23881 17944 0.75

qs4 8196 6890 0.84 8196 7192 0.88

queens 7475 7507 1.00 7076 6560 0.93

query 41813 48264 1.15 14522 21827 1.50

times10 603 488 0.81 499 506 1.01

Geom. mean 1.03 1.18

Table 7. Number of memory data references for PLM and SPUR. All memory

references are assumed to complete within one cycle.

Instruction buffers were not simulated in these studies. We felt that since

they perform very different functions for the two architectures it would be

difficult to compare the miss ratio results. It is also not clear which architecture

would benefit more if its instruction buffer were included. In the case of the PLM

the instruction buffer does not reduce memory bandwidth since its function is pri

marily as a decoder. Four instructions is clearly not enough to capture loops that

may exist in the PLM code. In the case of SPUR the instructions buffer is a sim

ple instruction cache that helps to reduce instruction and data fetch contention

for the mixed cache. At 128 words it is large enough to hold many loops and

recursive procedures in the SPUR macro-expansion.

Simulations were done for two types of caches: a mixed instruction and data

cache (as in SPUR) and a separate instruction and data cache (as in PLM). The

caches were direct-mapped and varied in size from 2KB to 128KB and infinity. A

block size of 32 bytes was used in all the simulations.

Tables 8 and 9 show the result of the simulations done with dineroill for the

PLM. Generally, separate I&D caches gave better miss ratios when the cache size

was less than 8K.B. The mixed and separate miss ratios are the same after 8K.B

except for nrevl. This is probably a reflection of the small size of the benchmark

programs. Data and instruction addresses for the PLM were offset by 2048 to

minimize collisions between cache blocks containing data and instructions. In

- 21-

Special- or General-Purpose Hardware for Prolog October 1986

Separate I&D Cache Miss Ratios for PLM

Benchmark 2KB 4KB 8KB 16KB 32KB 64KB 128KB

con1 7.23% 7.23% 7.23% 7.23% 7.23% 7.23% 7.23%

con6 11.56 11.56 11.56 2.12 2.12 2.12 2.12

divide10 5.07 3.33 3.33 3.16 3.16 3.16 3.16

hanoi 0.04 0.04 0.04 0.04 0.04 0.04 0.04

log10 3.83 3.83 3.83 3.66 3.66 3.66 3.66

mutest 0.70 0.70 0.70 0.36 0.36 0.36 0.11

nrev1 1.94 1.76 1.63 1.63 1.63 1.63 1.41

ops8 4.66 4.66 4.66 3.90 3.90 3.90 3.90

palin25 3.61 1.53 1.53 0.96 0.96 0.96 0.92

pri~ 3.42 0.78 0.78 0.46 0.46 0.46 0.44

qs4 3.08 1.41 1.01 0.64 0.64 0.64 0.64

queens 2.01 2.01 2.01 1.95 1.95 1.95 0.29

query 5.42 3.15 3.15 0.08 0.08 0.08 0.08

times10 3.59 3.25 3.25 3.05 3.05 3.05 3.05

Table 8. Cache miss ratios for PLM using separate instruction and data caches

of varying sizes. The sizes listed are the total size for instruction and data caches

or equal size. Cache parameters: direct-mapped, separate I+D, 32-byte blocks.

Mixed I&D Cache Miss Ratios for PLM

Benchmark 2KB 4KB 8KB 16KB 32KB 64KB 128KB

con1 7.23% 7.23% 7.23% 7.23% 7.23% 7.23% 7.23%

con6 18.69 11.56 2.12 2.12 2.12 2.12 2.12

divideiO 5.75 3.33 3.16 3.16 3.16 3.16 3.16

hanoi 8.92 0.04 0.04 0.04 0.04 0.04 0.04

log10 8.15 3.83 3.66 3.66 3.66 3.66 3.66

mutest 6.90 0.70 0.36 0.36 0.36 0.11 0.11

nrev1 3.41 2.83 1.63 1.63 1.63 1.41 1.41

ops8 9.21 4.66 3.90 3.90 3.90 3.90 3.90

palin25 2.30 1.53 0.96 0.96 0.96 0.92 0.92

pri2 6.61 1.27 0.56 0.46 0.46 0.44 0.44

qs4 1.98 1.26 0.64 0.64 0.64 0.64 0.64

queens 9.60 2.01 1.95 1.95 1.95 0.29 0.29

query 13.70 3.15 0.08 0.08 0.08 0.08 0.08

times10 5.89 3.25 3.05 3.05 3.05 3.05 3.05

Table 9. Cache Miss Ratios for PLM using a mixed instruction and data cache.

Various cache sizes were simulated with dineroiii. Cache parameters: direct

mapped, mixed I+D, 32-byte blocks.

fact, even the numbers for a cache size or 4KB (the minimum to avoid the extra

collisions) were close enough that a comparison of PLM and SPUR with a mixed

cache is justified. We do not want to include the differences in memory system in

-22-

Special- or General-Purpose Hardware for Prolog October 1986

the comparison of the two architectures.

The SPUR trace data was only simulated with a mixed I&D cache since the

SPUR hardware will be equipped with a mixed I&D cache. Unlike PLM, SPUR

has a single address space per process with separate segments for code and data,

hence no offset was used between SPUR instruction and data addresses.

Small benchmarks such as con!, loglO, and ops8 had comparatively high miss

ratios even with an infinite cache size (see Table 10). The miss ratio of an infinite

cache is defined as the number of unique blocks referenced divided by the total

number of references. Table 11 compares the data in Tables 9 and 10 of the 8

largest benchmarks and it shows that SPUR requires a cache 4 to 8 times larger

than PLM to get approximately equivalent miss ratios. It is interesting to note

that this ratio is very close to the actual ratio of cache sizes in the two implemen

tations. The cache sizes were chosen such that miss ratios were under 1% and the

SPUR and PLM ratios also were approximately the same. The nrevl benchmark

is interesting because SPUR had a better miss ratio than PLM because under

PLM, nrevl references are 55% code and 45% data while under SPUR references

are 91% code and 9% data. The benchmark is small and the code miss ratio is

about 0.2% for PLM and SPUR for a cache size of 16KB and greater. The data

miss ratio is 3.4% for PLM and 7.8% for SPUR. Since the PLM version is half

data, the data miss ratio dominates the overall ratio< Under SPUR, the data miss

.Nfixed I&D Cache Miss Ratios for SPUR

Benchmark 2KB 4KB 8KB 16KB 32KB 64KB 128KB

con1 14.65% 12.23% 10.67% 10.53% 9.53% 9.53% 9.53%

con6 9.04 5.52 4.43 3.79 2.91 2.91 2.91

divide10 15.76 10.45 6.87 3.87 3.56 3.56 3.56

hanoi 6.46 2.47 0.35 0.12 0.09 0.09 0.09

log10 14.42 10.24 6.37 6.31 5.58 5.58 5.58

mutest 11.1 4.38 1.18 0.43 0.12 0.12 0.11

nrev1 7.38 2.38 1.08 0.96 0.92 0.92 0.76

ops8 16.69 13.96 11.92 7.97 7.03 6.72 6.72

palin25 13.11 7.08 4.09 2.94 1.31 0.88 0.69

pri2 13.40 7.39 2.12 0.99 0.70 0.68 0.35+

qs4 12.70 5.11 2.55 1.77 1.11 1.11 0.45

queens 15.34 9.99 6.62 2.70 1.17 0.54 0.53+

query 12.22 8.57 2.88 0.87 0.47 0.11 0.11

times10 14.30 11.79 7.99 4.17 3.76 3.76 3.76

Table 10. Cache miss ratios for SPUR using a mixed instruction and data

caches of various sizes. Except for pri2 and queens, the 128KB cache was equal to

an infinite cache. The infinite cache miss ratios for pri2 and queens are 0.34% and

0.48% respectively. Cache parameters: direct-mapped, mixed I+D, 32-byte

blocks.

-23-

Special- or General-Purpose Hardware for Prolog October Hl86

Comparison of Mixed I&D Cache N1iss Ratios

PLM SPUR S/P

Benchmark Size (KB) Miss Size (KB) Miss
Ratio Ratio
(%) (%)

hanoi 4 0.04 32 0.09 8

mutest 4 0.70 16 0.43 4

nrev1 64 1.41 16 0.96 .25

palin25 8 0.96 64 0.88 8

pri2 8 0.56 64 0.68 8

qs4 8 0.64 64 1.11 8

queens 64 0.29 64 0.54 1

query 8 0.08 64 0.11 8

Table 11. Comparison of SPUR and PLM cache miss ratios using a mixed I&D

cache. The first PLM miss ratio under 1% was chosen for each benchmark. The

corresponding SPUR cache size for an equivalent miss ratio was then used to

determine the SPUR/PLM ratio.

ratio contributes only 9% to the overall miss ratio. Examining the trace files

shows that the high data miss ratio is probably due to the large number of

environment allocations on the stack.

We also simulated fully-associative caches for PLM and SPUR trace data to

see the effects of conflicts (see tables 12 and 13). In every benchmark except for

queens, the miss ratio for direct-mapped and fully-associative caches were equal

after an 8KB cache size for PLM and 32KB for SPUR . .Another interesting obser

vation is that the miss ratio for fully-associative caches of sizes 2KB for PLM and

8-16KB for SPUR equaled the miss ratio of infinitely-large caches.

-24-

Special- or General-Purpose Hardware for Prolog October 1986

Fully-Associative Mixed I&D Cache Miss Ratios for PLM

Benchmark 2KB 4KB 8K.B 16KB 32KB 64KB

con1 7.23% 7.23% 7.23% 7.23% 7.23% 7.23%

con6 2.12 2.12 2.12 2.12 2.12 2.12

divide10 3.16 3.16 3.16 3.16 3.16 3.16

hanoi 0.04 0.04 0.04 0.04 0.04 0.04

log10 3.66 3.66 3.66 3.66 3.66 3.66

mutest 0.11 0.11 0.11 0.11 0.11 0.11

nrev1 1.52 1.41 1.41 1.41 1.41 1.41

ops8 3.90 3.90 3.90 3.90 3.90 3.90

palin25 1.06 0.92 0.92 0.92 0.92 0.92

pri2 0.47 0.45 0.44 0.44 0.44 0.44

qs4 0.72 0.64 0.64 0.64 0.64 0.64

queens 0.29 0.29 0.29 0.29 0.29 0.29

query 0.08 0.08 0.08 0.08 0.08 0.08

times10 3.05 3.05 3.05 3.05 3.05 3.05

Table 12. Cache miss ratios for PLM using a fully-associative mixed instruction

and data cache. Various cache sizes were simulated with dineroiii. Cache block

size: 32 bytes.

Fully-Associative Mixed I&D Cache Miss Ratios for SPUR

Benchmark 2KB 4KB 8KB 16KB 32KB 64KB

con1 9.53% 9.53% 9.53% 9.53% 9.53% 9.53%

con6 11.31 2.91 2.91 2.91 2.91 2.91

divide10 12.62 3.99 3.57 3.56 3.56 3.56

hanoi 4.44 0.09 0.09 0.09 0.09 0.09

log10 5.91 5.61 5.58 5.58 5.58 5.58

mutest 11.55 2.08 0.11 0.11 0.11 0.11

nrev1 1.19 0.81 0.79 0.76 0.76 0.76

ops8 14.34 12.15 6.72 6.72 6.72 6.72

palin25 12.35 3.19 0.84 0.69 0.69 0.69

pri2 13.18 0.84 0.35 0.34 0.34 0.34

qs4 9.94 1.41 0.46 0.45 0.45 0.45

queens 12.21 9.31 3.81 0.48 0.48 0.48

query 11.52 2.66 1.89 0.10 0.10 0.10

times10 12.47 4.12 3.76 3.76 3.76 3.76

Table 13. Cache miss ratios for SPUR using a fully-associative mixed instruc

tion and data caches of various sizes. Cache block size: 32 bytes.

-25-

Special- or General-Purpose Hardware for Prolog October 1986

6. Future Work

6.1. Optimizations

Three directions for future work are possible, optimizing our macro

expansions, building a compiler and augmenting SPUR's hardware to support Pro

lag more directly.

6.1.1. Macro-expansion Optimizations and Compiling

As stated in Section 4.1.3, we made no attempt to optimize the macro

expansions beyond using SPUR's tags and register windows. Many simple optimi

zations are possible that will greatly improve performance. For example, the

effect of using one no-op slot in the variable dereferencing macro decreased the

number of cycles executed by the query benchmark by 2.5%. Applying peephole

optimizations and macro-expansion optimizations should yield a large improve

ment.

A much more ambitious project is to compile Prolog into native SPUR code

rather than using macro-expansion. In some systems, compilation can improve

performance by factors of two or three. It would be interesting to see what a

compiler for SPUR could gain in performance and code density over our macro

expansion technique.

6.1.2. Improvements to SPUR

One shortcoming of SPUR is that tags can only be compared with immedi

ates (tag_ cmp_ br_ delayed). The PLM, on the other hand, can test a subset of the

tag bits for a pattern. In the macro-expansion, tags must be read into a register,

anded with a mask, and then a compare-branch instruction used on the result.

The sequence of instructions required to perform this operation are rd_ lag, and,

and cmp_ br_ delayed (denoted R-A-C). With the SPUR simulator we measured a

15% average improvement in performance if SPUR had a single instruction to

replace the R-A-C sequence (Table 14). We calculated this by counting the

number of and instructions executed since and is only used for the masking opera

tion. This is an upper bound because some of the and instructions can be done in

no-op slots instead of in the R-A-C sequence. The first three columns of Table 14

show that 87% of and instructions appear in the R-A-C sequence. Assuming that

the static distribution of and instructions approximates the dynamic distribution,

these results indicate that an improvement of more than 10% would be attainable

with the additional instruction. This instruction can be added to the SPUR archi

tecture without affecting the cycle time and at only a modest impact in extra cir

cuitry. A possible format for the instruction is shown in Figure 2.

6.2. A Prolog Coprocessor for SPUR

The other type of performance improvement we considered is a specialized

hardware accelerator for SPUR. SPUR supports a tightly-coupled coprocessor

-26-

Special- or General-Purpose Hardware for Prolog October Hl86

Potential Performance Improvements

Benchmark R-A-C Static Ratio A.nds Cycles

Sequences A.nds Executed Saved(%)

coni 57 63 0.90 54 17.23

con6 56 62 0.90 182 14.71

divide10 202 242 0.80 476 14.16

hanoi 48 53 0.91 6378 9.00

lqg10 206 247 0.83 208 14.55

mutest 112 129 0.87 21320 17.06

nrev1 68 76 0.89 6440 20.70

ops8 194 232 0.84 254 14.18

palin25 154 181 0.85 5426 16.79

pri2 131 150 0.87 11426 11.66

qs4 92 104 0.88 8293 17.20

queens 213 249 0.86 5551 14.50

query 299 319 0.94 43757 19.18

times10 202 242 0.83 386 14.27

Geom. mean 0.87 15.08

Table 14. This table illustrates the possible performance improvement if an in

struction that applies a mask to a tag and branches on the result were added to

SPUR. The new instruction would replace a sequence of three current instruc

tions. We computed the improvement by dividing twice the number of and in

structions executed by the total number of cycles currently executed for each

benchmark (Table 6), assuming all and instructions appear in the R-A-C se

quence.

eq

opcode src reg mask value offset

neq

7 bits 1 bit 5 bits 5 bits 5 bits g bits

Figure 2. This figure shows a possible format for a combined read-and-compare

tag instruction for SPUR. The operands are a flag indicating test for equal/not

equal, the source register for the tag, a constant to be masked with the tag, a con

stant value to be tested with the tag and an offset to add to the program counter

if the test is successful.

model where the coprocessor and CPU are on the same side of the system bus and

make use of the same caches [Hansen86J. Instruction fetching is under strict con

trol of the CPU. However, execution of some instructions is deferred to the

coprocessor. The CPU initiates loads and stores into and out of the coprocessor

-27-

Special- or General-Purpose Hardware for Prolog October 1986

but the coprocessor latches the data or supplies it directly to the cache. This is

ideal for floating point units that otherwise would have too high an overhead if

bus accesses were required for each operation. In contrast to SPUR, the PLM

employs the loosely-coupled model. The coprocessor is not on the same board as

the CPU and the set up of the computation and reading of the results must be

done over the system bus.

We considered designing a tightly-coupled coprocessor for SPUR implement

ing a subset of the PLM instructions. We identified the basic operations per

formed by the PLM and then determined which could be performed efficiently

with standard SPUR instructions and which would benefit from the use of special

coprocessor hardware. We suggest extensions to SPUR's coprocessor interface

and a coprocessor architecture that allows SPUR to execute Prolog at the same

speed as the PLM.

6.2.1. Issues in Coprocessor Design

The current SPUR coprocessor interface is quite limited. All memory opera

tions to or from coprocessor registers are initiated by the CPU; the coprocessor

can only manipulate the contents of its registers. The only coprocessor actively

planned by the SPUR group is a floating point unit, which has heavily influenced

the interface. For our purposes, the current coprocessor interface is unworkable

since Prolog does not perform sophisticated bit manipulations of registers as do

floating point coprocessors, but instead reads, compares, and updates the contents

of memory locations. We will describe the extensions we feel are necessary to add

an arbitrary (possibly microcoded) coprocessor to SPUR.

Our Prolog coprocessor design greatly reduces the size of PLM programs on

SPUR because it executes much higher level instructions than does SPUR. This

reduces SPUR's static and dynamic code sizes, increasing cache and instruction

buffer performancet.

For this coprocessing model to be compatible with the RISC nature of SPUR,

two simple rules must be enforced. First, all instructions must be restartable. If a

coprocessor instruction causes a page fault, it must allow the CPU to perform the

necessary operations to bring that page into memory. The CPU then reissues the

instruction that caused the trap just as it does for all CPU instructions. There

fore, coprocessor instructions cannot change the internal state of the coprocessor

until all memory references have been completed. The second rule is that a sys

tem interrupt must not be serviced until all coprocessor instructions in progress

have been allowed to complete (unless prevented from doing so by a page fault).

This will ensure consistent changes to the internal state of the coprocessor.

t In general, if a. collection of instructions can be found that contribute greatly to the

execution time of certain applications, they can be built into a. (microcoded) coprocessor.

In fact, a. standard, ta.ilorable, micro-engine coprocessor could be designed and tailored to

different applications.

-28-

Special- or General-Purpose Hardware for Prolog October 1 gg6

Interrupts are currently handled this way for SPUR's floating-point coprocessor.

These two rules at first seem incompatible with the indeterminate and recur

sive PLM instructions. The most important case of this is the PLM's implementa

tion of the unify instruction. It performs a pattern matching of two arbitrarily

large data structures and cannot be suspended and restarted. Hence the PLM

must wait for page traps to be resolved by the NCR coprocessor that acts as its

host. In contrast, SPUR must service its own page faults. In she next section we

show that the unify operation can be unwound so that only one pattern matching

step is performed per coproc~ssor instruction, making the instruction restartable.

The unwound instructions have a much lower bound on their execution time and

this allows the second rule to be enforced without delaying interrupt servicing

appreciably.

6.2.2. Extensions to SPUR's Coprocessor Interface

Besides the addition of the cache address bus and cache operation lines to the

coprocessor, the only other additions are a page fault line and the coprocessor

memory access line. When a coprocessor instruction needs to generate a data

load or store it asserts the memory access line one cycle in advance to prevent

SPUR's instruction fetch unit from attempting a cache operation. In effect, this is

a cache bus arbitration line that always resolves in favor of the coprocessor. The

needed functionality is already present in SPUR's prefetch unit in the circuitry

used to resolve instruction and data access collisions. Support for this facility

consists of a pin dedicated to the memory access line and an internal OR gate to

make this line appear as a CPU instruction generating a data load or store.

Traps and exceptions are handled the same way as before. The important rules

to follow are (again): instructions must be restartable and interrupts wait for

instructions to complete.

6.2.3. Prolog Coprocessor Architecture

The coprocessor design was strongly influenced by the PLM. We looked at

the detailed operations each instruction performed and determined which ones

would be easily and efficiently handled by SPUR CPU instructions, which ones

require complex tag and pointer manipulations and have to be unwound so that

they can be restartable, and which ones could be implemented directly.

We placed all Prolog execution state (i.e. the registers of the PLM) in the

coprocessor. These are required by most instructions and placing them in the

coprocessor enables optimizations for choice point buffering. Currently we do not

make use of the register windows although these could easily be implemented

directly in the coprocessor. Register file reading and writing is identical to the

SPUR CPU including the pipeline forwarding logic. Provisions are made for extra

global registers and a special NIL register.

All system support functions are performed as they would be for any other

program running on SPUR. Special system or library calls for supporting Prolog

-29-

Special- or General-Purpose Hardware for Prolog October 1986

can be incorporated in the SPUR operating system. These would be a subset of

the escape codes used by the PLM, most would already be available. Code and

data segments are managed in the same way as the SPUR-only implementation

described above.

6.2.3.1. Coprocessor Instruction Set

Coprocessor instructions can be divided into six groups. A complete list of

these and an outline of their microcode is provided in Appendices 3 and 4. The

first group includes three types of data transfer instructions. These move data

between the coprocessor and memory, between the coprocessor and the CPU, and

between registers in the coprocessor. The second group is the state modifying and

saving instructions. These are used to push and pop choice points and environ

ments from their respective stacks as well as setting the mode bits. Compare and

branch instructions make up the third group. These include a read, mask, and

compare tag instruction such as the one suggested for SPUR previously in this

section and a condition code test instruction. The next group is the unwound

unify instructions that are discussed in more detail below. The fifth group is heap

and trail manipulation instructions. These are used to allocate variables on the

top of the heap and undo the bindings on the trail stack at goal failure. The last

group consists of the special hash instruction used by the PLM to implement a

multi-way branch based on the value of an argument. This is currently imple

mented as a linear search of a table as it is in the PLM.

6.2.3.2. Unwinding the Unify Instruction

To unwind the unify instruction we need to add two special registers to the

PLM architecture holding the addresses of the next two items to unify. When a

unify instruction cannot complete after having unified the original arguments,

rather than continuing as in the PLM, it places the intermediate arguments in

these registers (Ul and U2). Unify instructions that have the possibility of becom

ing recursive (unification with constants and variables cannot possibly be recur

sive) are followed by a compare and branch instruction that tests whether there is

more to unify or not. If there is, the branch back to the unify instruction is

taken, if not execution proceeds sequentially. When the unify instruction begins

execution it first checks the "more to unify" mode bit and, if it is set, continues

execution using the contents of the Ul and U2 registers. If pointers need to be

pushed onto the push down list (PDL) this is done at the beginning of the unify

instructions; if they need to be popped, this is done at the end. If there is nothing

on the PDL then the "more to unify" bit is reset. Therefore the unify arguments

are always available at the beginning of instruction execution.

There is a performance penalty for a two instruction loop in SPUR, however.

SPUR does not support delayed slot cancellation when a branch is taken. In the

case of the unify loop, adding cancellation would eliminate many of the no-ops

required in the code. Without it, we are forced to use a three instruction

(dynamic} loop where one of the instructions IS a no-op. However, when one

-30-

Special- or General-Purpose Hardware for Prolog October 1'986

considers the time spent by the coprocessor in the unify operation m each loop,

this extra cost is not large.

6.2.3.3. Interfacing to the SPUR CPU Pipeline

The SPUR pipeline consists of four stages: instruction fetch, register read and

address generation, memory access, and register write. The registers allow a sin

gle write and two reads in a single cycle. Results of compare instructions must be

generated by the end of the second stage so that only one instruction is in the

pipeline after the one that causes the branch. This is what is meant by delayed

branch. The CPU pipeline can be suspended by the coprocessor by asserting the

busy line. This facility allows the coprocessor to arbitrarily extend any cycle for

its own purposes. Our coprocessor will not be used in parallel mode, to avoid

cache access conflicts. Also, unlike floating point instructions, our instructions are

indeterminate in duration and it would be difficult for a compiler to schedule

parallel execution.

The Prolog coprocessor must interface to the pipeline oC the SPUR CPU. To

give the coprocessor the extra time that certain instructions may require, we

expand the pipeline between the second and third pipeline stages. The coproces

sor is pipelined in the same way as the CPU. Figure 3 explains the coprocessor

pipeline graphically.

I R I
E

I M I
Hold

I w I

Coproce5sor

Instructions Hold

I R I
E

I M I w I

ln5truction I I
Hold

CPU

Figure 3. Coprocessor pipeline. The coprocessor finds the extra cycles it may

need to execute an instruction between the second and third stages of the SPUR

pipeline. By using thi5 extended area and the coproces5or memory acce5s control

line (an extension to the current coprocessor interface of SPUR) we ensure that no

cache access conflicts occur. The overlap of macro-instructions in the SPUR pipe

line is one of the major sources of improved execution time for SPUR over the

PLM. (Cycle names: I - in5truction fetch, R - register read, E - intsruction exe

cution, M - memory access, W - register write.)

-31-

Special- or General-Purpose Hardware for Prolog October 1986

An important consideration mentioned previously is that coprocessor state

can only be changed after all memory accesses have been successfully completed.

To meet this requirement, a set of memory address and data registers are added

to the coprocessor to act as staging areas for all memory transactions. Once the

memory accesses are all completed, the contents of the staging registers can be

moved to internal registers. This is the primary mechanism for insuring instruc

tion restartability and why it is critical that instructions not be interrupted while

updating internal state.

6.2.4. Expected Performance of SPUR with a Prolog Coprocessor

We expect the performance of SPUR with a Pro log coprocessor to be at least

as high as the PLM but with smaller and less complex microcode. In Table 15 we

see that execution time is approximately 10% better than the PLM. However, the

code size required for the coprocessor, although much less than for SPUR alone, is

still a factor of 3.4 larger than the PLM (Table 16).

In summary, many instructions have been eliminated and instruction decode

is greatly simplified. All instructions are 4 bytes with standard argument formats.

The SPUR pipeline does not impart high overhead, as most instructions require a

register read or write. All extra micro-cycles required by the coprocessor are

available by suspending the CPU pipeline and thus ensuring the absence of cache

access conflicts.

Our claim of 10% better performance is not as startling as it may seem. The

SPUR macro-instruction cycle time is the same as the PLM micro-instruction

cycle time. The PLM micro-engine, although pipelined does not exploit macro

instruction overlap. SPUR's macro-instructions provide many of the primitive

operations implemented as more than one cycle in the PLM. SPUR with a copro

cessor is faster for the simple instructions and is only slightly slower than the

PLM for the recursive unify operations. We feel that this claim is justified since

the micro-engine and microcode that must be implemented in the coprocessor are

a subset of the PLM's and most operations are performed directly in SPUR

instructions. A conservative estimate of the coprocessor's microcode size is 3.3KB,

compared to PLM's 17KB. This assumes a 96-bit wide microinstruction and 27 4

microwords.

-32-

Special- or General-Purpose Hardware for Prolog October l!J86

Comparison of Execution Times
PLM SPUR-CoP

Instruction Freq Cycles Weight Cycles Weight

put_ value 10.70 3 32.1 1.5 16.1

unify_ variable 8.80 7 61.6 8 70.4

get_ list 7.27 10 72.7 7 50.9

unify_cdr 6.88 5 34.4 4.5 31.0

unify_ value 4.96 14.5 71.9 14.5 71.9

escapes 4.90

switch_ on_ term 4.87 11 53.6 5 24.4

unify_ nil 4.86 4 19.5 4.5 21.9

get~ st.ruct ure 4.11 12 49.3 13.5 55.5

execute 4.01 1 4.0 2 8.0

allocate 3.47 11 38.2 5 17.4

get_ variable 3.44 2.5 8.6 1.5 5.2

unify_ constant 3.33 8 26.6 10 33.3

deallocate 2.87 6 17.2 4 11.5

put_ constant 2.71 2 5.4 2 5.4

proceed 2.65 1 2.7 4 10.6

try_ me_ else 2.45 20 49.0 20 49.0

call 2.00 1 2.0 4 8.0

cut 1.85 10 18.5 5.5 10.2

get_ constant 1.83 11 20.1 10 18.3

put~ variable 1.79 3.5 6.3 2.5 4.5

get_ value 1.44 13 18.7 20 28.8

trust_ me_ else 1.32 5 6.6 3 4.0

get~ nil 1.29 11 14.2 7 9.0

put_ unsafe_ value 1.24 10 12.4 6 7.4

retry_ me_ else 0.88 2 1.8 6 5.3

switch_ on_ structure 0.87 13 11.3 13 11.3

put_list 0.77 3 2.3 2 1.5

try 0.71 20 14.2 22 15.6

fail 0.56 23 12.9 21 11.8

trust 0.35 5 1.8 5 1.8

unify_ void 0.33 6 2.0 16 5.3

switch_ on_ constant 0.20 10 2.0 13 2.6

retry 0.06 2 0.1 4 0.2

put_ structure 0.05 4 0.2 6 0.3

put_ nil 0.01 2 0.0 1 0.0

Total Weights 694.1 628.6

Relative Performance 1.00 0.91

Table 15. This table compares performance of Prolog on the the PLM and SPUR using a

specialized Prolog coprocessor. The figures for instructions frequency and PLM cycle time

are summarized from [Dobry85] using more up-to-date values. The SPUR implementation

is simple macro-expansions and does not consider what could be achievable by shufll.ing in-

-33-

Special- or General-Purpose Hardware for Prolog October 1Q86

struction to take better advantage of delayed load and store slots or other optimizations.

Comparison of Code Size
PLM SPUR-CoP

Instruction Freq. Bytes Weight Bytes Weight

put_ value 10.70 3 32.1 4 42.8

unify_ variable 8.80 2 17.6 8 70.4

get_ list 7.27 2 14.5 8 58.2

unify _cdr 6.88 2 9.9 12 55.0

unify_ value 4.96 2 9.9 12 59.5

escapes 4.90
switch_ on_ term 4.87 4 19.5 16 77.9

unify _nil 4.86 1 4.9 8 38.9

get_ structure 4.11 6 24.7 24 98.6

execute 4.01 5 20.1 8 32.1

allocate 3.47 1 3.5 4 13.9

get_ variable 3.44 3 10.3 4 13.8

unify _constant 3.33 5 16.7 20 66.7

deallocate 2.87 1 2.9 4 11.5

put_ constant 2.71 6 16.3 8 21.7

proceed 2.65 1 2.7 16 42.4

try_ me_ else 2.45 5 12.3 16 39.2

call 2.00 6 12.0 16 32.0

cut 1.85 3 5.6 10 18.5

get_ constant 1.83 6 11.0 20 36.6

put_ variable 1.79 3 5.4 6 10.7

get_ value 1.44 3 4.3 14 20.2

trust_ me_ else 1.32 1 1.3 4 5.3

get_ oil 1.29 2 2.6 8 10.3

put_ unsafe_ value 1.24 3 3.7 4 5.0

retry _me_ else 0.88 5 4.4 24 21.1

switch_ on_ structure 0.87 6 5.2 36 31.3

put _list 0.77 2 1.5 8 6.2

try 0.71 5 3.6 24 17.0

fail 0.56 1 0.6 24 13.4

trust 0.35 5 1.8 12 4.2

unify_ void 0.33 2 0.7 16 5.3

switch_ on_ constant 0.20 6 1.2 36 7.2

retry 0.06 5 0.3 24 1.4

put_structure 0.05 6 0.3 20 1.0

put_ nil 0.01 2 0.0 4 0.0

Total Weights 287.3 989.3

Relative Code Size 1.00 3.44

Table 16. This table compares the code size of Prolog programs on the Berkeley PLM

and on SPUR with a Prolog co-processor. The SPUR code size is calculated from simple

macro-expansion of the instructions. Constants form part of some PLM instructions. For

SPUR, we counted the fetching of these constants as part of the code size cost.

-34-

Special- or General-Purpose Hardware for Prolog October 1986

7. Conclusions

In summary, we expect that a macro-expansion of the PLM instruction set

will run Prolog programs on SPUR at 43% of the speed of the PLM when

memory accesses are assumed to be one cycle. SPUR with a Prolog coprocessor

can be made to be 10% faster than the PLM due to simplification of the micro

engine and the advantages of pipelining across instructions.

When cache and instruction fetch behavior is taken into account we suspect

that the pure SPUR implementation will suffer greatly. Due to the expanded code

size of the SPUR implementation, the SPUR cache will have to be 4 to 8 times

larger than one used for the PLM in order to obtain the same miss ratio. Also

SPUR will require a somewhat larger processor-to-memory bandwidth because of

the expanded code size and tag storage. The coprocessor implementation will

remain very close to PLM performance due to the much more similar code den

sity. There is much more work to be done on the coprocessor design before a

definitive statement can be made.

However, we feel that the system support advantages of SPUR make it com

petitive with the PLM for large applications, with or without the coprocessor.

This is especially true when one considers large real applications that involve a

large amount of interactions with the operating system for I/0 or are floating

point arithmetic intensive. The utility of a SPUR Prolog implementation is espe

cially important in mixed paradigm programming systems where only a part of

the computations would be in the logic programming paradigm. SPUR is reason

ably high-performance for Prolog and very competitive in running other

languages. The PLM's special hardware and loosely-coupled coprocessor model

makes running mixed-language applications less efficient.

A Prolog coprocessor for SPUR can be added when applications demand an

improved logic programming performance. The coprocessor interface changes

required to support microcoded accelerators are minimal. The architecture of the

coprocessor is a hybrid of the PLM and SPUR architectures. We feel that a

tightly-coupled VLSI Prolog coprocessor for SPUR is a viable alternative to a spe

cialized loosely-coupled Prolog accelerator such as the PLM.

The bottom line of this study is that SPUR can support a language other

than Lisp or C with excellent performance. In fact, SPUR would place third

among the Prolog implementations listed in Table 17, and with a coprocessor, it

would be the fastest.

-35-

Special- or General-Purpose Hardware for Prolog October Hl86

Performance Estimates for Logic Programming Systems

Deterministic Concatenate Benchmark (conl)

Machine System Performance Reference
(in LIPS)

Berkeley SPUR coprocessor 465,000 estimate

Berkeley PLM (TTL)/Compiled 425,000 simulation
(no wait states)

Tick & Warren VLSI 415,000 Estimate, Tick & Warren

Aquarius I (TTL)/Compiler 305,000 simulation (NCR bus)

Berkeley SPUR Macro-expansion 184,000 simulation

Symbolics 3600 Microcoded 110,000 estimate, Tick & Warren

DEC 2060 Warren Compiled 43,000 Warren

Japan 5th Gen PSI Microcoded 30,000 estimate, PSI paper

IBM 3033 Waterloo 27,000 Warren

DEC V AX-11/780 Macrocoded 15,000 estimate, Tick & Warren

Sun-2 Quintus Compiler 14,000 Warren

LMI/Lambda Uppsala 8,000 Warren

DEC V AX-11/780 POPLOG 2,000 Warren

DEC V AX-11/780 M-PROLOG 2,000 Warren

DEC V AX-11/780 C-PROLOG 1,500 Warren

Symbolics 3600 Interpreter 1,500 Warren

DEC PDP-11/70 Interpreter 1,000 Warren

Z-80 MicroProlog 120 Warren

Apple-II Interpreter 8 Warren

Performance on General Benchmark Programs

Machine System Performance Reference
(in LIPS)

Berkeley SPUR Coprocessor 225,000 estimate

Berkeley PLM (TTL)/Compiled 205,000 simulation

Berkeley SPUR Macro-expansion 89,000 simulation

LMI/Lambda Micro/Compiled 12,400 LMI Corp.

Japan 5th Gen PPC Microcoded 10,000 estimate, NTIS (#N83-31379)

LM-2 Microcoded 9,500 Prolog Digest v2.20

LMI/Lambda Macro/Compiled 6,200 LMI Corp.

Symbolics 3600 Microcoded 5,000 Prolog Digest v2.20

LMI/Lambda Micro/Interpreter 3,400 LMI Corp.

LMI/Lambda Macro/Interpreter 1,700 LMI Corp.

Apple- II Pascal Interpreter 10 Colmerauer

Performance on the Warren Benchmarks
(times10 dividelO loglO ops8 palin25 query list30 list50)

Machine System Performance Reference
(in LIPS)

Berkeley SPUR Coprocessor 163,000 estimate

Berkeley PLM (TTL)/Compiled 149,216 simulation

Berkeley SPUR Macro-expansion 60,000 simulation (excl. list30,50)

LMI/Lambda Micro/Compiled 12,400 LMI Corp.

DEC 2060 Warren Compiled 12,175 Warren thesis

Table 17. Performance of vanous Prolog implementations. This table was

adapted from [Dobry85].

-36-

Special- or General-Purpose Hardware for Prolog October 1986

8. Acknowledgements

We relied on the help of many people while working on this project. David

Patterson provided the guidance and the topic for us to attack. We had to

become familiar with two complex computers and a new programming language

and we relied heavily upon our fellow graduate students. The Berkeley PLM and

SPUR groups were extremely helpful and encouraging. Wayne Citrin, Tep

Dobry, and Barry Fagin answered our unending stream of questions about the

PLM and helped us understand logic programming. Tep and Wayne graciously

provided us with the PLM simulator and compiler. Mark Hill, David Wood, Paul

Hansen, and George Taylor provided invaluable discussions on the SPUR archi

tecture, coprocessor interface, and the tradeotfs involved. Mark's dineroill cache

simulator made it possible for us to do our studies. Also, Ben Zorn and George

Taylor were very helpful with modifying barb to suit our needs. The interesting

combination of computer research issues with which this project was concerned

made it an invaluable learning experience for us. Alvin Despain, Mark Hill, David

Patterson, Herve Touati and Peter Van Roy provided useful comments on a draft

of this report.

This report was published by the Berkeley SPUR project. Principal funding

for the SPUR project is provided by the Defense Advanced Research Projects

Agency under contract N00039-85-C-0269. Additional support for SPUR was pro

vided by the State of California MICRO program, by a Digital Equipment Cor

poration CAD/CAM grant, by the National Science Foundation under grant

DCR-8202591, by equipment donations from Texas Instruments, Inc., and by com

puter resources provided under DARPA contract N00039-84-C-0089.

-37-

Special- or General-Purpose Hardware for Prolog October 1986

g. References

[Clocksin81] Clocksin, W.F. and Mellish, C.S. Programming in Prolog,

Springer-Verlag, New York, 1981.

[Dobry84a]

[Dobry84b]

[Dobry84c]

[Dobry85]

[Fagin85]

[Halbert80J

[Hansen86]

[Hill83]

[Hill85]

[Hill86]

Dobry, T.P. "PLM Simulator Reference Manual, working paper

3.3", University of California, Berkeley, September 1984.

Dobry, T.P. "A Prolog Machine Architecture Working Paper 4.0",

University of California, Berkeley, December 1984.

Dobry, T.P. "Design Decisions Influencing the Microarchitecture

for a Prolog Machine." IEEE MICRO 17, Proceedings, October

1984.

Dobry, T.P., Despain, A.M., Patt, Y.N. "Performance Studies of

a Prolog Machine Architecture." Proceedings of the 12th Annual

International Symposium on Computer Architecture, Boston, MA,

June 1985.

Fagin, B. and Dobry, T.P. "The Berkeley PLM Instruction Set:

An Instruction Set for Prolog." UCB/CSD 86/257, University of

California, Berkeley, September 1985.

Halbert, D. and Kessler, P. "Windows of Overlapping Registers",

Final Report for U.C. Berkeley CS-292r, June 1980.

Hansen, P. and Kong, S. "SPUR Coprocessor Interface Descrip

tion", UCB/CSD 87/308, University of California, Berkeley,

October 1986.

Hill, M.D. "Evaluation of On-Chip Cache Memories." Master's

Report, U.C. Berkeley Computer Science Division, December 1983.

Hill, M.D. "Dineroill Documentation." Unpublished Unix-style

Man Page, October 1985.

Hill, M.D., et al. "Design Decisions in SPUR: a VLSI Multiproces

sor." IEEE Computer 19, November 1986.

[Katevenis83] Katevenis, M.G.H. "Reduced Instruction Set Computer Architec

tures for VLSI." Ph.D. Dissertation, Computer Sciences (EECS),

U.C. Berkeley, 1983. Also as Technical Report UCB/CSD 83/141.

[Moto-oka83] Moto-oka, T. "Overview of the Fifth Generation Project."

Proceedings of the lOth Annual International Symposium on Com

puter Architecture, Stockholm, Sweden, June 1983.

[Tick83] Tick, E. and Warren, D.H.D. "Towards a Pipelined Prolog Proces

sor." Artificial Intelligence Center, SRI International, August 1983.

[Ungar84] Ungar, D., Blau, R., Foley, P., Samples, D., Patterson, D. "Archi

tecture of SOAR: Smalltalk on a RISC." Proceedings of the 11th

Annual International Symposium on Computer Architecture, Ann

Arbor, MI, June 1984.

-38-

Special- or General-Purpose Hardware for Prolog October 1986

[Warren77]

[Warren83]

Warren, D.H.D. "Applied Logic: its use and implementation as

programming tool." Ph.D. Thesis, U. of Edinburgh, Scotland, 1977.

Available as Technical Note 290, Artificial Intelligence Center, SRI

International.

Warren, D.H.D. "An Abstract Prolog Instruction Set." Artificial

Intelligence Center, SRI International, August 1983.

-30-

Special- or General-Purpose Hardware for Prolog October 1986

Appendices

There are four appendices. Appendix 1 contains listings of the software tools

developed to macro-expand PLM instructions to SPUR instructions and Appendix

2 lists the actual code used used to implement each PLM instruction. Appendix 3

describes the code for macro-expansion onto SPUR with a Prolog coprocessor.

The numbers in Tables 15 and 16 were derived from these macro-expansions.

The final appendix is an outline of the microcode that will be required for SPUR's

Prolog coprocessor.

-40-

Special- or General-Purpose Hardware for Prolog October 1986

Appendix 1: Listings of Software Tools

This appendix contains listings of the two software tools that we wrote to

allow us to automatically macro-expand Prolog programs from PLM code to

SPUR. The first program is preproc.c. Its purpose is to put the PLM instruc

tions into a format that can be fed to the C preprocessor and to set up the con

stant table. The second program is postproc.c. Its purpose is to turn local

labels generated by the macros into global labels. It produces output suitable as

input to the SPUR assembler. The final listing shows a csh command file to con

vert PLM code into a binary file that can be run on the SPUR simulator.

The macro-expansion process uses /lib/cpp. The input to cpp is:

headers.h
defs.h
instructions.h (macro definitions)
PLM code preprocessed with preproc

funcs.a
trailers.h
constants table (created by prep roc)

(The files headers.h, defs.h, instructions.h, trailers.h and funcs.a are listed in

Appendix 2.) The output from cpp is post-processed with postproc before it is

assembled and linked with sas and sld.

-41-

preproc.c

8 preproc.c --

A filter that takes PLM assembly code and converts tt
into a form that 1lib icpp can handle.

-~ I

typedef int Boolean;
#define TRUE 1
#define FALSE 0
#include "list.h"
#undef NULL
#include < stdio.h >
#include <ctype.h>
#include < strings.h >

#define CONST TABLE START 44
int constT~bleOtfset = CONST TABLE START;
#define MAX_ CONST _OFFSET OxlOOO -

#define NIL STR 1 char '1 NULL

#define LINE_ SIZE 80

typedef enum l
LABEL,
STRING,
NUMBER,

ConstType;

typedef struct
List Links
char
ConstType
int

Cons tRee;

links;
name[LINE SIZE + 11;
type;
offset;

FILE 'constFilePtr = 1FILE 'I NULL;
FILE 'oldFilePtr = stdin;
FILE "curFilePtr = stdin;

typedef struct
List Links
char
char
int

EscapeRec;

typedef struct
List Links
char
int

InstrRec;

#define HASH
List Links
List- Links
List- Links

links;
name[LINE SIZE+ 11;
command[LiNE SIZE+ 11;
offset; -

links;
name[LINE "SIZE+ ll;
r 'funcHI; -

SIZE 137
instrHashTable[HASH SIZE];
constHashTable[HASH- SIZE];
escapeHashTablefHASH _ SIZEl;

#define HASH_ FUNC(name. lenJ I 1 len+ 1 namefO l ' name[! en - 1]) l % HASH SIZE l

char 'SkipWhiteSpacel l;
char 'FindWhiteSpacel I;

InstrRec 'InstrHashFindl I;
void InstrHashlnsert(J;

preproc.c

preproc.c

ConstRec 'ConstHashFind();
Cons tRee 'ConstHashlnsert(J;

EscapeRec 'EscapeHashFindl J;
void EscapeHashlnsertl);

':l: ,.
' Main

Opens the input file and calls Preprocess to interpret
the file.

mainlargc, argvl
int argc;

'·'argv;

1.~
I

char

lnitHash();

if large > lJ {

}

constFilePtr = fopen(argv[ll, "w"l;
if lconstFilePtr = = !FILE 'J NULLJ {

fprintf(stderr, "Can't open ctns\n", argv[lli;
exit(l);

}
else {

fprintf(stderr, "Missing argument for constants file.\n"l;
exit(li;

Preprocess(stdini;

·' Preprocess

Reads each line in the file and parses it mto
the label. mstructio and argument components.
If the instructwn iS ualid. a instructwn- dependent
routine iS called to process Lt.

Preprocess I filePtr)
FILE 'filePtr;

char
char
char
char
char
int
int
int
InstrRec

line[LINE SIZE+ l L
'colon;
'end;
'linePtr;
'args;
status;
retStat;
len;
'instrRecPtr;

status = GetLinelfilePtr, line!;
while (status) {

if lstrlen(iinei = = OJ {
status = GetLine1tilePtr. line);
continue;

linePtr line;

preproc.c

Preprocess

preproc.c

I*

·• Look for an optwnal label followed by before white space

label: instr argl.arg2
- . .,..--start of-white space

:"!: !-colon
This scheme faLls if a : is an argument with white space before .

:~ '

.: ·-

colon = indextlinePtr, ·: ');
end = FindWhiteSpacet linePtrl;
if (colon '= NIL STR && (colon < end II end

r•

' Found label - - pnnt it on a separate line.

printf(""1J. 'sin". colon - line + l. line I;

linePtr = SkipWhiteSpacetcolon+ U;
if : lip.ePtr = = NIL_ STRl {

!·' nothing else on line ' 1

~tatus = GetLinetfilePtr, line);
continue;

• Look for end of instruction name
:~-: /

end = FindWhiteSpacetlinePtrl;
if (end = = NIL STRJ {

;-' no white -space ' .
len = strlen([inePtrl;

else {
len = end - linePtr;

instrRecPtr InstrHashFindt linePtr, len!;

if (instrRecPtr = = IInstrRec 'I NULL! {

NIL STRII

fprintf(stderr, "Unknown instruction: ·qs "n", linePtrl:
else {

if rend = = NIL STRJ

}

args
else {

args

flU,

SkipWhiteSpace(end+ U;

retStat = (·'instrRecPtr- >func)(linePtr. len. argsl;
if ! 1retStat) {

fprintf(stderr, "Bad input: %sin", line);

status = GetLinetfilePtr. line);

-~ Instruction Processtng Routtnes

" Conuerts each tnstructwn into a CPP macro.
-~

..

..

NoArgsFunc
De{aultFunc

CallFunc
VanableFunc

- instructwns w o arguments.
- instructwns wtth arguments but no specwl

processtng LS needed.
changes the name o(the call instructwns

- tf the instructwn argument LS a regtster

preproc.c

.. . Preprocess

Pngf! .3 li{ preproc.c

preproc.c

then convert name to use the _reg form
else convert the name to use the var form.

ConstantFunc - the instruction uses a constant. whtch must
be recorded in the constants table.

JumpFunc records the label tn a JUmp-type instruction.
SwitchOnConstantFunc - handles switch on constant.
SwitchOnStructFunc - handles switch on structure.
EscapeFunc • - processes escapes.

N oArgsFuncOine.
char
int
char

len. argsJ
'line;
len;
'args;

printf(" '1"stJin", len, linel;
return!TRUEl;

DefaultFunc(line,
char
int
char

len. argsl
"'line;
len;
"'args;

·* Add () to args.
8 I

printf(" % 8 st%s)\n", len, line, argsl;
returmTRUEl;

preproc.c

NoArgsFunc

DefaultFunc

CallFuncOine. len, argsJ CallFunc
char 'line;
int len;
char *args;

char •stash index! args, · I· J;
if lslash '= NIL_ STRJ {

$slash

!*
·* Convert call to call_proc, fail to call_fail. leave procedure
·~ and execute alone.
* I

if (line£ 01 = = · c · l I
printff"

else if ([ine[01
printf("

else if (line[01 - -
printf("

else if (iine[01 - -
printf("

else I

call_proct'!cslln". argsl;
Tl I

call_ faiU%slln". args1;
'p ') {

proceduret%s)ln". argsl;
'e ') {

fprintf(stderr. "Unknown instruction for CallFunc: 17os\n". linel;
l
returntTRUEl;

VariableFuncdine, len. args l
char *line;
int len:
char 'args;

VariableFunc

Page 4 of' prepmc.c

preproc.c

if targs = = NIL_ STRl
return(FALSE l;

if (index(args,
printf("

} els .. I , .. ~~("
·y·1 = = NIL STRl {

ao.'s-::_regt%siln", len, line. argsJ;

} '/1. "' ~ . .. %.-~s var(%si\n", len, line. argsJ;

returntTRUEl;

ConstantFunc(iine.
char

len. argsi
*line;
len:
'args:

int
char

char ~ptr:

int offset;
ConstType type;

if (args = = NIL STRl
returntFALS-El;

r•
* See if tnstructwn ts untfy _constant
."f.:/

if (line[OJ = = ·u · l {
if (args[O] = = '&'l {

offset = AddConsttNUMBER. args + 1, strlentargsi -lJ:
printf(" unify_ constant_ number! %d)\n". offset!;

else {

}
else {

offset = AddConst(STRING, args, strlentargsi I;
printf('' unify_ constant_ string(%dl\n", offset!;

·• See tf instructwn ts (get.put} _constant
:~ /

ptr = 1+ indexiline,· _ 'i;
if ('ptr = = · c · 1 {

ptr = indextargs, ·.·1;
if tptr = = NIL STRi

returntFALSEl; 1' mtsstng comma ' 1

' See tf comma ts ttself an argument.
* If not the first argument ts mtsstng
·' I

if ('ptr = = argsfOIJ {
ptr = indext args. ·, · l;
if tptr = = NIL STRl

return! FALSE i:
}
offset = AddConstt STRING, . ll:
type = STRING:

else {
if targsfOI = = '& ., {

offset = AddConstt NUMBER. args + 1, ptr - args - 11:
type = NUMBER;

else {
offset = AddConsttSTRING. args, ptr - argsl;
type = STRING;

preproc.c

... VariableFunc

ConstantFunc

Png.: 5 u(pr.:prnc .c

preproc.c preproc.c

... ConstantFunc
}

STRINGl { if I type = =
printf("

else {
printf("

%. "s _ string(%d%siln", len, line. offset, ptrl:

%.'s_numberl%d%sl\n". len, line. offset. ptrJ;

.....

}

else
!* .
·~ Instruction is {get.put} _structure
·~ I

ptr = index(args, ',');
if lptr = = NIL_ STRl

return\F ALSEl;
}
offset = AddConstl STRING, args, ptr - argsl:
printff" '1."st%d%siln", len, line. offset. ptrl;

return1TRUEl:

JumpFunc(line.
char

len, argsJ
''line:
len;

args;
int
char

int offset;
if (args = = NIL_ STR1

return(FALSE l;
}
offset = AddConst(LABEL, args. strlenl args 1 I;
printf(" %. 'sl %dlln", len. line, offset);
return(TRUEl;

SwitchOnConstantFunclline, len. argsl
char 'line;
int len;
char 'args;

char
int
int
int
int
int

temp[LINE SIZE+ 11;
mask; -
maskOffset;
t;
tableLen;
status;

#define MAX ENTRIES 128
struct {

int const;
char labelfLINE SIZE+ 11;
ConstType type;

entry[MAX _ENTRIES];

if (sscanf(args."%d,", &mask1 '= l)

fprintf(stderr."Switch: missing mask: r;s.n". args1;
return! FALSEl;

l
if (mask > MAX_ ENTRIESl {

fprinWstderr. ''Switch: table too btg: uos\n", args I;
returniFALSEl;

sprintf(temp, "f7od"' mask + l);
maskOffset = AddConstl NUMBER. temp. strlenltempll;

JumpFunc

SwitchOnConstantFunc

Pnge 6 of' preproc.c

preproc.c preproc.c

... SwitchOnConstantFunc
."f:

s Table label is on next line following tnstructwn.
·~ Read it and forget it .
. , I

status = GetLine(curFilePtr, tempi;

r~

* Mask ts rtable size -1! *2. An entry is on 2 lines.
·~ I

tableLen = (mask + l) /2;
for (i = 0; i < table Len; i + + 1 {

status = GetLinelcurFilePtr. tempi;
if (temp(Ol = = · & ·1 {

l

entry[il.const = atoit&(temp[1ll1:
entryfil.type = NUMBER;

else {
entryfil.const = AddConsttSTRING. temp. strlenttempll:
entryfil.type = STRING;

status = GetLinetcurFilePtr. entryfil.labell;

printf(" switch_ on_ constant(%d, \i:d)\n". mask Offset. constTableOtfset 1;
fprintf(constFilePtr,

" # switch on constant(%d. '0dlln", maskOffset, constTableOtfset 1:

for (i = 0; i < tableLen; i + + 1 {
fprintf(constFilePtr. ".long %din", entry(il.constl;
if (entry(il.type = = NUMBERl

fprintf(constFilePtr, ".long const _ num _ typeln"l;
l else {

fprintf(constFilePtr, ".long const _ type\n"l;
l
fprintf(constFilePtr. ".long %s\n", entry(il.labell;

l
constTableOffset + = 12 · tableLen;
fprintf(constFilePtr. "' n"l;

if tconstTableOffset > MAX CONST OFFSET! {
fprintf(stderr, "Warning: constant table overflow\n"l:
fprintfrconstFilePtr. " # Warning: constant table overt1owln'');

return! TRUE I;

SwitchOnStructFuncWne, len, argsl S witchO nStructFunc
char 'line;
int len;
char ·'args;

char
int
int
int
int
int

tempfLINE SIZE+ ll;
mask; -
mask Offset;
i;
tableLen:
status;

#define MAX ENTRIES 128
struct {

int const;
char label(LINE SIZE+ ll;

l entry(MAX_ENTRIESl;

if tsscanf(args,"%d.", &mask1 ' li {
fprintf(stderr, "Switch: m1ssing mask: r,~s\n". args I;

P!l~e 7 of'prepmc.c

=

preproc.c preproc.c

... S witchO nS tructFunc
returntF ALSEl:

}
if 1 mask > MAX ENTRIES> {

fprintffstderr:Switch: table too big: %sin", argsl;
returntF ALSE);

}
sprintf(temp, "%d", mask + U;
maskOffset = AddConsttNUMBER, temp, strlen(temp));

/*

·" Table label is on next line following instruction.
* Read it and forget d.
_.~ /

status = GetLinetcurFilePtr. tempi;

/*
·" Mask is rtable stze -11 '·2. An entry ts on 2 lines .
. ~ '

tableLen = (inask + ll 12;
for 1 i = O· i < table Len: i + + 1 {

status = GetLine(curFilePtr, tempi;
entry[i l.const = AddConstt STRING, temp, strlenttempl 1;
status = GetLine(curFilePtr, entry[i].labe[);

printfr" switch on structure! %d,
fprintf(constFilePtr,

" # switch on structuret%d,
for li = 0; i < tableLen; i++l {

fprintf(constFile Ptr, ".long
fpri ntf(constFilePtr, ".long

}
constTableOffset + = 8 ·" tableLen;
fprintffconstFilePtr, "\n"l;

%dlln", maskOffset, constTableOffsetl;

%d)ln", maskOffset. constTableOtfsetl;

%din", entry[i].constl:
%sin", entry[i].labell;

if tconstTableOffset > MAX CONST OFFSET! {
fprintf(stderr, "Warning: constant table overflowln"l;
fprintf(constFilePtr, " # Warning: constant table overflowln"l;

returntTRUEl;

E scapeFunct line,
char
int
char

EscapeRec
char
char

len, argsl
"line;
len:
"args;

"ptr;
new Argf LINE _ SIZE + ll;
"comma;

comma = index(args, ·,-);
if tcomma = = NIL STRl

~trcpytnewArg, -argsi;
else {

strncpyl newArg, args, comma- args1;
new Argf comma- args I = '\0 ·,

ptr = EscapeHashFind(newArgJ;
if I ptr = = 1 EscapeRec "l NULL I {

printfr" # ESCAPEt r?,s.Tllln". argsl;
fprintflstderr,"Unknown escape: '1-s\n", args1;

} else {

EscapeFunc

Pnge 8 of'pre[Jroc.c

preproc.c

printf(" CCsm". ptr- >command!;

l
returntTRUEl;

·-~ ;·

' AddConst --

:~t: (

Adds a constant to the. constant table if it was not
already in Lt.

AddConst(type, name, len)
ConstType type;
char ·•name;
int len;

ConstRec ~ptr;

while r name[len - 11
len--;

II nameflen - 11

ptr = ConstHashFindttype, name. lenl;
if 1 ptr = = r ConstRec · I NULL I {

ptr = ConstHashlnsertt type, name, len I;

l
return(ptr- >offset I;

InitHash()
{

int t;
for ti = 0; i < HASH SIZE; i+ + 1

List Init(&(instrHa~hTable[illl;
List Init(&(constHashTable(i]));
List:::: Initl&tescapeHashTable[i lll;

}
InstrHashlnsert("end",
InstrHashlnsertt "allocate".
InstrHashlnsertl "cut",
InstrHashlnsertr "deallocate".
InstrHashlnsertl "proceed".
InstrHashlnsertl "quit",
InstrHashlnsert("unify_ nil",

NoArgsFuncl;
NoArgsFuncl;
NoArgsFuncl;
NoArgsFunc);
NoArgsFuncl;
NoArgsFunc);
NoArgsFunc);

DefaultFunc I;
DefaultFunc);
Defaul tFunc I;
DefaultFuncJ;
DefaultFuncl;
DefaultFunc I;
DefaultFuncl;
DefaultFunc I;
DefaultFuncl;

InstrHashlnsertl "get list",
InstrHashlnsertt"get- nil".
InstrHashlnsertl "mark".
InstrHashlnsertl "pause",
InstrHashlnsertl "put list".
InstrHashlnsertl "put- nil",
InstrHashlnsert("switch on term",
InstrHashlnsert("trust me else".
InstrHashlnsert("unify- void",
InstrHashlnsertl "put_ ;:;-nsafe _value". DefaultFuncl;

lnstrHashlnsertl"switch on constant",SwitchOnCunstantFunc 1;

lnstrHashlnsert("switch- on- structure",SwitchOnStructFuncJ;
lnstrHashlnsertl "proced;re",- CallFunc r;
lnstrHashlnsertl "call", CallFuncl;
lnstrHashlnsert("fail", CallFuncl;
lnstrHashlnsertl "execute". CallFunc I;
InstrHashlnsertt "escape". EscapeFunc I;

lnstrHashlnsertl "get_ variable", VariableFuncl;

preproc.c

.. . EscapeFunc

AddConst

lnitHash

Page 9 of' preprnc.c

preproc.c

InstrHashlnsert("get _value",
InstrHashlnsert("put _variable",
InstrHashlnsert("put _value",
InstrHashlnsert("unify cdr",
InstrHashlnsert("unifv- value",
InstrHashlnsertt"unify- unsafe value",
InstrHashlnsertt"unify :=variable",

InstrHashlnsert("get constant",
InstrHashlnsert("get= structure",
InstrHashlnsert("put _constant",
InstrHashlnsertl"put _structure",
InstrHashlnsert("unify _constant",

InstrHashlnsert("cutd",
InstrHashlnsertl"retry _me_ else",
InstrHashlnsert("retry",
InstrHashlnsertt"try me else",
InstrHashlnsert("try'': -
lnstrHashlnsert("trust",

EscapeHashlnsertt" < ",
EscapeHashlnsertl" < 2".
EscapeHashlnsertt" < = ".
EscapeHashlnsertt" = ".
EscapeHashlnsertt" =: = 12".
EscapeHashlnsertl" = < /2".
EscapeHashlnsertl" > ".
EscapeHashlnsertl" > /2",
EscapeHashlnsert(" > = ",
EscapeHashlnsertl "> = 12",
EscapeHashlnsert("access",
EscapeHashlnsertt "access i2",
EscapeHashinsertl "integer",
EscapeHashlnsertt "integer i 1".
EscapeHashlnsertl "is",
EscapeHashlnsertt"is 14",
EscapeHashlnsertt "is 12",
EscapeHashlnsertt "nl",
EscapeHashlnsertl "nl /0".
EscapeHashlnsertt "set",
EscapeHashlnsertl "set 12",
EscapeHashlnsertt "var",
EscapeHashlnsertt "var /1".
EscapeHashlnsertl "write",
EscapeHashlnsertl "write /1 ",

I"
" TMSt! escapes aren · t handled yet.

VariableFunc 1:
VariableFuncl;
VariableFunc);
VariableFuncJ:
VariableFuncJ;

VariableFuncJ:
VariableFunc);

ConstantFunc);
ConstantFuncJ;
ConstantFuncJ;
ConstantFunc);
ConstantFuncJ;

JumpFuncJ;
JumpFuncJ;
,JumpFuncJ;
JumpFuncJ;
,JumpFuncJ;
,JumpFuncJ;

"less than()");
"less than()");
"less= than_ or_ equalt 1 "l:
"equal()");
"equal()");
"less_ than_ or_ equalt ·"I.
"greater_ than(l");
"greater than()");
"greater- than or equal(I");
"greater- than- or- equal! i"l:
"access< l~; - -
"access()");
"integer()");
"integer()");
"is escape()"):
"is- escapeO''l;
"is- 2 escape! i"l;
"escapetNL,T1 l"l;
"escape(NL, T1 l"):
"setter(l"l;
"setter(l"l;
"var _ escapeO"l;
"var escapetl"l;
"escapet WRITE.Tll"l:
"escape! WRITE.Tll"l:

Escapellashlnsertr" =\= !2".
Escapellashl nsertf "asserta",
Escapdlashl nsertf "assertz".
Escapdlashl nse rtf" call".
EscapJlashl nsertf "retracta",
Escapellashlnsertr "rf!tractp".
.~I

''- -- -");
''--- -"):
"--- -"J;
"Do by hand for now."!;

"--- -");
"----");

·~ Hash Routznes::

• [IISert and Find routtnes for tnstructwns. constants and escapes.
;~ /

preproc.c

... lnitHash

Pnge 10 of'preprnc.c

preproc.c

InstrRec '
InstrHashFind(name,

char
len!
'name;
len;

void

int

int
register InstrRec

has hid;
'instr RecPtr;

hashld = HASH FUNCiname, len!;

LIST FORALLi&instrHashTable[hashldl. 1 List Links ~) instrRecPtrl
-if (strncmp(instrRecPtr- >name. name, len) = = OJ {

return(instr RecPtrl;
break;

retum((lnstrRec 'l NULLJ;

InstrHashinserttname, funcl
char ~name;
int (·'funcll l;

int
InstrRec

hashld;
'instr RecPtr;

hashld = HASH FUNC(name, strlentname!l;
instrRecPtr = tln~trRec 8 l calloctl, sizeof(lnstrRecll;
if (instrRecPtr = = tinstrRec 'l NULL! I

fprintf(stderr, "Calloc failed in InstrHashlnsertln"l;
exit(l l;

strcpy(instrRecPtr- >name , name!;
instrRecPtr- >func = func;
List Insert! 1 List Links ~l instrRecPtr,

- UST ATFRONTI&instrHashTable[hashidlll:

ConstRec •
ConstHashFind(type,

ConstType
char
int

register
int

name, len)
type;
-~name;

len;

ConstRec 'constRecPtr;
has hid;

hashld = HASH FUNCI name. lenl;

LIST FORALLt&constHashTable[hashldl. 1 List Links 'l constRecPtrl

l

-if I(strncmplconstRecPtr- >name, name, len I = = OJ &&
lconstRecPtr- >type = = typell I
return\ constRecPtr J;
break;

return((ConstRec 'J NULLJ;

ConstRec '
ConstHashlnsertttype. name, len!

ConstType type;
char 'name;

preproc.c

lnstrHashFind

lnstrHashlnsert

ConstHashFind

ConstHashlnsert

Page 11 of'preproc.c

preproc.c

int len;

int
Cons tRee
int

hashld;
'constRecPtr;
j·

hashld = HASH FUNC(name, lenl;
constRecPtr = 1 ConstRec ') call oct!, sizeof(ConstRecJl;
if rconstRecPtr = = 1 Cons tRee ·') NULL) {

}

fprintf(stderr, "Calloc failed in ConstHashlnsert'.n"l;
exit(!);

strncpy(constRecPtr- >name, name, lenl;
constRecPtr- > nameflen 1 = '\0 ·;
constRecPtr- >type = type;
constRecPtr- >offset = constTableOffset;
List Insert((List Links ') constRecPtr,

- UST _ATFRONT!&constHashTahle[hashldlli;

if !type = = LABELl {
fprintf(constFilePtr. ".long r't, 's # label, offset %d\nln".

len, name. constTahleOffsetl;
constTahleOffset + = 4;

else if 1type = = STRING!
fprintf(constFilePtr. " # string ·rr,,.'s ·. offset = %d\n".

len, name. constTableOffsetJ;
for li = 0; i <len; i++J {

preproc.c

... ConstHashlnsert

fprintf(constFilePtr, ".long "o3d # ''1>c 'In", namefil. namefi]);

}

}
fprintfrconstFilePtr. ".long 0\nln"l;
constTableOffset + = 4 ·' 1 len + ll;

else {
fprintf(constFilePtr, ".long '1J."s # number. offset = %d\n\n".

len, name, constTableOffsetJ;
constTableOffset + = 4;

if lconstTableOffset > MAX CONST OFFSETl {
fprintf(stderr. "Warning: constant table overt1owln"l;
fprintf(constFilePtr, " # Warning: constant table overf1owln"l;

returnlconstRecPtrl;

EscapeRec ·"
EscapeHashFind(namel

void

char ·"name;

int
register EscapeRec

has hid;
"ptr;

hashld = HASH FUNCrname, strlen(name));

LIST_ FORALL!&escapeHashTablefhashldl, 'List_ Links 'l ptrl {
if (strcmplptr->name, name) == OJ {

return! ptrl;
break;

return((EscapeRec ") NULL!;

EscapeHashlnsertl name. command)
char 'name;
char 8 command;

EscapeHashFind

E scapeH as hi nse rt

Pn.g<' 12 of'preproc.c

"'~. •

preproc.c

int
EscapeRec

hashld:
·"ptr;

hashld = HASH FUNC(name, strlentnameJI;
ptr = (EscapeRec- 8 1 calloc(l, sizeof(EscapeRecJI;
if (ptr = = tEscapeRec "l NULLJ {

fprintf(stderr, "Calloc failed in EscapeHashlnsertln"l:
exit(l);

strcpy(ptr- >name , name);
strcpy(ptr- >command . command):

preproc.c

... EscapeR ash] nsert

List Insert((List_ Links "l ptr, LIST_ ATFRONTr &escapeHashTablefhashld l i J;

Page 13 of'preproc.c

preproc.c

,r-~

*
GetLme --

Gets a line from the file that does not start wzth a comment
character (#). The line zs null-terminated and the first
newline '\n' is set to '\0 '.

·~ Result:

*
-~

0
1

There was an error or EOF condition reading the line.
The line was read succesfully.

preproc.c

*--
:<: /

int
GetLine(filePtr, buffer!

FILE *filePtr;
char ~buffer;

char ·*status:
char line[LINE SIZE+ ll;
int i;
int j;

I*
* Skip the line if it begins with a comment character.
*I

do
status = fgets(line, LINE SIZE, filePtrl;
if (status = = NIL_ STRl -~

returniOl; !* error or EOF '
}

while Oine[Ol == '#');

Tnm leading white space while copying to the outpur arg.
Convert the 'n r if there is one) to a null character.

I = 0;
whileli <

i++.

j = 0;

LINE SIZE && Oine[i]

buffer(j] = '\0 ';
while(([ine[il '= ''n') && r[inefil ,_ ''0'1) {

huffer[j] = linefil:
i+ +;
j++;

}
bufferfjl = '\0 ';

if lbuffer[Ol -- .,,1 {

FILE *filePtr:
filePtr = fopenl &1 hutfer[lll. "r"l;
if lfilePtr = = r FILE *I NULL! {

II linefil

fprintff stderr. "Can· t open rb for reading'n". &1 buffer[l]li;
else {

oldFilePtr = curFilePtr;
curFilePtr = tilePtr:
Preprocess! tilePtr1;
curFilePtr = oldFilePtr:

GetLine

Pnge 14 uf [Jrepruc.c

preproc.c

}
buffer[Ol = · 0 ·;

return(l);

1.~

8 SkipWhiteSpace
-~ FindWhiteSpace

8 I

Routines to skip over whtte space or
skip over non- white space in a line.

preproc.c

... GetLine

char *
SkipWhiteSpace(string; Skip WhiteS pace

char ~string;

register char 's = string;

while ill {
if (*s = = . IJ 's = = ''t'l {

s+ +;
} else if t·"s = = · o·J

return(NIL_ STRl;

return (sl;

char ·•
FindWhiteSpace(stringJ FindWhiteSpace

char 8 string;

register char 's = string;

while (1) {
if c~s == · · II 's == ·\t.l l

return 1 sl;
} else if r·• s = = ·' 0 · l

return(NIL_ STRl;

s++;

Pnge 15 o(preproc.c

postproc.c

Postproc.c - -

A filter to convert the output of the CPP into a form
that the SPUR assembler can handle. Local labels are
resolved into unique names

."!;

."f: i

#include < stdio.h >
#include < ctype.h >

#define TRUE 1
#define FALSE 0
typedef int Boolean;
#include "list.h"

int lineNum = 1;
int labelNum = 1;

typedef struct
Li.st Links
char
int
Boolean

LabelRec;

links;
name[80l;
number;
forwardRef;

#define HASH SIZE 101
List_ Links - hashTable[HASH SIZE 1:

HASH FUNCinamel ' #defiae
1\namefOl ·~ name[strlenlnamel - lll '7o HASH SIZEl

r~

• HahFind --

* Find and retneve the record for a gwen label tn the hash table.

;~ I

Labeffiec "
HashFind(namel

dlar

iat
~ster
Boolean

'name;

LabelRec

lashld = HASH FUNC(nameJ;

hashld;
'labelRecPtr;
found = FALSE;

UST FORALL(&hashTable[hashldl. 1 List Links 'l labelRecPtr1
-if lstrcmpdabelRecPtr- >name. name1 = = Ol {

found = TRUE;
break;

if I 'found J {
returnliLabelRec 'l NULL!;

l else {
returnllabelRecPtrl:

postproc.c

HashFind

Pnge 1 o(postpror. .c

postproc.c

!*

.~ Hashlnsert --

·~ Insert a label record in the hash table.

:f: /

void
Hashlnsert(!abe lRecPtr)

LabelRec 'labelRecPtr:

int hashld;

hashld = HASH_ FUNC(labelRecPtr- >name);

List Insert!tList Links ~) labelRecPtr,
Ci:ST ATFRONTr&hashTable[hashld]ll;

/*

~ HashDelete - -

:~.; Delete a label record from the hash table.

8 /

void
HashDelete!labelRecPtrl

LabelRec 'labelRecPtr;

List Removell List Links *I labelRecPtrl;

·~ LabelProcess --
.~

Resolves forward and backward label references.
Labels are stored in a hash table.

LabelProcess()
{

char
char

name[80];
c;

int
Labe!Rec

i = 0;
~labelRecPtr;

c = getchar();
while (c '= T && c 1= 'b' && c 1= ':') {

if (lisalpha(c) && 'isdigit(d && c 1 = · ')
fprintf(stderr, "Malformed label at line '1-d\n", lineNumJ;
exit(! l;

}
name[i] = c;
i++;
c = getchar\l;

namefil '\0 ·:

fpnntfl'stderr. "Label r:!os\n", name1:

labelRecPtr = HashFind! name I;
if rlabelRecPtr '= NULL1 {

switch 1c1 {

case

postproc.c

Has(jjnsert

HashDelete

LabelProcess

Pnge 2 of' po.~tproc .c

postproc.c

}
else {

if (labelRecPtr- > forwardRefl {
labelRecPtr- > forwardRef FALSE:

else {

}

labelRecPtr- >number = labelNum:
labelNum+ +;

printf("Z%d:", labe!RecPtr- >numberl;
break;

case ·r·:
if (!labe!RecPtr- > forwardRef) {

labe!RecPtr- >forwardRef = TRUE;
lab,l!RecPtr- >number = labe!Num;
labe!Num+ +;

}
printf("Z%d", labe!RecPtr- >number);
break;

case 'b ·:
printf("Z%d", labelRecPtr- >number);
break:

if IC == 'b') {

l

fprintf(stderr, "Undefined label at line '1Jd\n", lineNuml;
exitt 1 l;

labeiRecPtr = (Labe!Rec -~) mall oct sizeof(LabeiRecl l;
labe!RecPtr- > forwardRef = FALSE;
strcpyi labe!RecPtr- > name.name 1;

Hashlnsertl labeiRecPtrl;
switch tel {

case
labe!RecPtr- >forwardRef = FALSE;
labe!RecPtr- >number = labelNum;
labe!N urn+ +;
printf("Z%d:", labelRecPtr- > numberl;
break;

case 'f':
labe!RecPtr- >forwardRef = TRUE;
labe!RecPtr- >number = labe!Num;
labe!Num+ +;
printf("Z%d". labelRecPtr- > numberl;
break;

·~ Main

*
-~

."!:

Scans through the file. and applies the (ollowtng mapptngs:
·:· - > ''-n'
'#' - > '# .
. ,. - > '#'
·@label' - > Calls LabelProc with label

maint)
{

char
int i;
Boolean

c;

justHadNL = TRUE:

for I i = 0: i < HASH SIZE: i + + '
List_ lmtl&lhashTahlefi ll l;

postproc.c

... LabelProcess

maLn

Page :J of' postproc.c

postproc.c

c = getchar();

while (c ! = EOFl {
if (c = = '\n ') {

lineNum+ +.
if (!justHadNLl

putchar\c);
}
justHadNL = TRUE:
c = getchart l;
continue;

justHadNL = FALSE:

if \C = = . ,'I {

putchar1 ''n ·I;
else if r c = = · # · 1

putcharl · ·I;

putcharlcl;
else if rc = = .,.1 {

putcharl ·#'I;
else if ' c = = ·@ · 1 {

LabelProcess\ I;
else {

putchartc);

c = getchar(I;

postproc.c

... maLn

Pnge 4 of' postproc.c

list.c

~~ list.c

-' Thts file contatns procedures for manipulattng lists.
-~ Structures may be inserted into or deleted from lists. and
-~ they may be moved from one place tn a list to another.

-~ The header file contains macros to help in determining the destination
-~ locatwns for List_ Insert and List_ Moue. See list.h for details.

-~ Copyright 1 C) 1985 Regents of the Unwersity of California
* All rights reserved.
:f: /

#ifndef lint

list.c

static char rcsid[l
#endif not lint

"$Header: list.c,v 1.3 86 102 /22 14:26:31 nelson Exp $ SPRITE 1Berkeley1";

#include "list.h"

Page 1 of' 1 ist. c

I

list.c

-~ List Insert

* Insert the list element potnted to by ttemPtr tnto a List after
destPtr.

·"' Results:
No value ts returned.

·* Side effects:
·* The list rontatntng destPtr is modified to contatn itemPtr.

·* I
void
List_ Insert! i temPtr,

register
register

destPtrl
List Links · i te mPtr;
List- Links 'destPtr;

itemPtr- > nextPtr = destPtr- > nextPtr;
itemPtr->prevPtr = destPtr;
destPtr- >nextPtr- >prevPtr = itemPtr;
destPtr- >nextPtr = itemPtr;

' structure to tnsert '
' structure after whtch to tnsert tt

list.c

List.J nsert

Pn.ge 2 of' list.c

list.c list.c

i*

* ---

·" List Remove --

* Remove a list element from the list Ln which it LS contamed.

* Results:
* No value is returned.

·" Side effects:
·" The given structure ts removed from its contatnwg list.

* --

void
List Remove\ itemPtr)

-register List Links *itemPtr; '·* list element to remove ··

if (itemPtr itemPtr- > nextPtri {
return;

}
itemPtr- > prev Ptr- > nextPtr = itemPtr- > nextPtr;
itemPtr- >nextPtr- >prevPtr = itemPtr- >prevPtr;

List_Remove

Przge 3 of' list.c

list.c list.c

* --
·*

* List Moue --
·*
·* Moue the list element referenced by itemPtr to follow destPtr.

*
* Results:

No value ts returned.

* Side effects:
·* List ordering is modified.

* ---~--------------
-~ I

void
List Move(itemPtr, destPtrl

-register List Links 'itemPtr;
register List- Links 'destPtr;

;-*

/' list element to be moved ' '
' element after whtch it ts to be placed '.!

' It is conceivable that someone will try to move a list element to
·* be after itself.
."f.:/

if (itemPtr destPtrl
return;

}
List Remove(itemPtr);
List lnsert(itemPtr, destPtrJ;

List_Move

Page 4 o(list.c

list.c list.c

* --

·* List !nit --

·* Results:

Initialize a header pointer to potnt to an empty list. The List Links
structure must already be allocated.

" No value ts returned.

' Side effects:
·* The header· s pointers are modt{ied to potnt to itself.

* --

void
List Init(headerPtr)

-register List_ Links 'headerPtr;

header Ptr- > nextPtr = header Ptr;
headerPtr- >prevPtr = headerPtr;

;·* Potnter to a List Links structure
to be header ·*

List.J nit

Pnge 5 of" !ist.c

compile compile

1 !bin 1csh -(

A script to "compile" PLM code into a binary that runs on
the SPUR simulator I barb!.

onintr end
set nonomatch
set DIR = ·andrew :spur
set POST = $DIR ,Proc :postproc
set PRE = $DIR iProc ipreproc
set HEADERS = $DIR !Headers
set INCLUDE = "-!$HEADERS -P"
set BARB = -zorn /sim ibarh
set CODE2 = ·zorn /sim :barb :th 'code2.s
set SAS = $BARB /sas
set SLD = $BARB lsas

@ numargs = $#argu
set Preproc = 0
set Postproc = 0
set Assemble = 0
set Load = 0

top:
switch r$l:qJ

case "-help":

.'sas
sld

echo "Options:
echo "

-pre = = preproc"
-post = = postproc"

echo " -load = = load"
echo " - asm = = asssemble"

case

case

case

goto end
breaksw
" -pre":
shift
set Prep roc
go to top
breaksw
" -post":
shift
set Postproc
go to top
breaksw
" -asm":
shift
set Assemble
go to top
breaksw

=

=

=

case "-load":
shift
set Load = 1
goto top
breaksw

default:

endsw

set longname = $1
set name="' base name $l:t
if 1 $numargs = = 1J then

set Preproc = 1
set Postproc = 1
set Assemble = 1
set Load = 1

end if
breaksw

if 1 $Preproc = = 1J then
echo "Pre- process:"

. w ...

Pnge l u(com ptl e

compile compile

rm -f $name.a $name.spur
cp $HEADERS /header.h $name.spur
$PRE $name.const < $longname > > $name.spur
cat $HEADERS /trailer.h $name.const > > $name.spur
rm - f $name.const

end if

if ($Postproc = = l) then
echo ''Post- process:"
cat $name.spur I 1lib /cpp $INCLUDE I $POST > $name.a

endif

if ($Assemble = = 1 l then
echo "Assemble:"
rm - f temp $name.s $name. th
$SAS < $name.a > $name.s
cat $CODE2 $name.s > temp
as -o temp2 temp

end if

if ($Load = = 1 I then
echo "Load:"
$SLD -o $name.th temp2

endif

end:

Przgt> 2 of' cornpt!t>

Special- or General-Purpose Hardware for Prolog October 1986

Appendix 2: Listings of Macro-Expansions

This appendix contains listings of the macro-expansions used to convert each

of the PLM instructions into SPUR code and the library functions used by the

programs. The file instructions.h contains the definitions of the macros for each

PLM instruction. The file funcs.a contains the library functions.

-42-

header.h

#include "instructions.h"
#include "defs.h"

I*
* Initialize code:

*
*I

.org Ox3000

I*
* Turn off tag traps.
*I

wr _special upsw, rO, $0x880

I*
* Initialize all of the registers.

*I
add CONST_?TR, rO, $0x780
sll CONST_?TR, CONST_?TR, $3
sll CONST_?TR, CONST_?TR, $3
wr_tag CONST_?TR, $cut_O

I*
* Put 64K into Tl.
*I

add Tl, rO, $0x800
sll Tl, Tl, $3
sll Tl, Tl, $2

I*
* Put OxSOOOOO in T2.
*I

add T2, rO, $0x500
sll T2, T2, $3
sll T2, T2, $3
sll T2, T2, $3
sll T2, T2, $3

I*
* Put 8K in T3
*I

add T3, rO, $1024
sll T3, T3, $3

Page l

header.h Page 2

!* * All data starts at OxSOOOOO. Each stack and such is put at locations

* similar to those used in the PLM except that each is multiplied by 8

* since the PLM is word addressed and SPUR is byte addressed with 8 bytes

* per word.
*I

add
add
add
st_32
add
add
add
add
st_32
st_32
add
st_32

H, T2, $1024
E, T2, T1
B, E, 0
B, CONST~TR, $stack_pottom
TR, E, T3
CP, rO, 0
S, H, 0
T4, TR, T3
T4, CONST~TR, $PDL_offset
T4, CONST~TR, $stack_offset
T4, T2, $128
T4, CONST~TR, $H2_offset

!*--
----~-*/

instructions.h

#define get_stack_pase(reg) \
ld_32 reg, CONST~TR, $stack-Pottom

/**************** basics *********************/

#define

@101:

@102:
@103:

deref(reg, temp) \
rd_tag temp, reg; \
and temp, temp, $type_mask; \
cmp-Pr_delayed neq, temp, $var_type, @103f; \
rd_tag temp, reg; \
ld_40 reg, reg, 0; \
rd_tag temp, reg; \
and temp, temp, $type_mask; \
cmp-Pr_delayed neq, temp, $var_type, @103f; \
rd_tag temp, reg; \
ld_40 temp, reg, 0; \
cmp_br_delayed eq, temp, reg, @102f; \
Nop; \
jump
add
rd_tag

@101b$w; \
reg, temp, 0; \
temp, reg; \

#define trail(reg) \
st_40 reg, TR, 0; \

TR, TR, $8 add

#define decdr(reg) \

Page .,

tag_cmp_pr_delayed ne_tag, reg, $list_cdr_type, @101f; \
add_nt S, S, $8; \
add_nt S, reg, 0; \
ld_40 reg, S, 0; \
jump @102f$w; \
add nt S, S, $8; \

@101: tag_cmp_pr_delayed ne_tag, reg, $nil_const_type, @102f; \
Nop; \
ld_40 reg, CONST~TR, $nil_offset; \

@102:

#define Pop_ChoicePoint(temp) \
add OLD~, H, 0; \
add OLD_E, E, 0; \
add OLD_TR, TR, 0; \
add OLD_CP, CP, 0; \
add OLD_BP, BP, 0; \
rd_special temp, cpu_pc; \
return temp, $12; \
Nop

instructions.h

#define write_Nreg(reg) \
st_32 reg, CONST~TR, $N_reg_offset

#define read_Nreg(reg) \
ld_32 reg, CONST~TR, $N_reg_offset

#define make_const(reg, const) \
add reg, CONST~TR, $const; \
wr_tag reg, $const_type

#define make_nil(reg) \
ld_40 reg, CONST~TR, $nil_offset

#define bind(binding,
rd_tag

bound, temp) \
temp, bound; \

and
cmp_j:)r_delayed
rd_tag
or
wr _tag

@101: st_40
add
wr _tag

Trail in Bind; \
trail(temp)

#define call_unify() \
jump
rd_special

temp, temp, $cdr_type; \
neq, temp, $cdr_type, @101f; \
temp, binding; \
temp, temp, $cdr_type; \
binding, temp; \
binding, bound, 0; \
temp, bound, 0; \
temp, 0; \

uni fy$w; \
T3, cpu_pc

/******************* allocate **********************/

#define allocate() \
Allocate; \

add T2, E, 0; \
cmp_j:)r_delayed ge, T2, B, @1f; \
Nop; \
jump @2f$w; \
add E, B, 0; \

@1: read_Nreg(T1); \
add E, E, $env_size; \
add E, E, T1; \

@2: st_40 CP, E, $saved_CP_offset; \
st_40 T2, E, $saved_E_offset; \
st_40 T1, E, $saved_N_offset; \
rd_tag T1, CONST~TR; \
wr_tag B, T1; \
st_40 B, E, $saved_B_offset

Page 2

instructions.h Page 3

/********************** deallocate ************************/

#define deallocate() \
! Deallocate; \

ld_40 CP, E, $saved_CP_offset; \
ld_40 Tl, E, $saved_N_offset; \
write_Nreg(Tl); \
ld_40 E, E, $saved_E_offset

/******************* call **********************/

#define call_proc(label, N_value) \
! Call_proc; \

wr _tag
add
sll
write_Nreg(Tl);
jump
rd_special

CONST_?TR, $cut_O; \
Tl, rO, $N_value; \
Tl, Tl, $3; \
\
label/**/$w :\
CP, cpu_pc

!******************* cut **********************/

#define cut() \
! Cut; \

get_stack-Pase(T2); \
@1: cmp_pr_delayed eq, B, T2, @3f; \

ld_40 Tl, E, $saved_B_offset; \
cmp-Pr_delayed eq, B, Tl, @2f; \
Nap; \
Pop_ChoicePoint(Tl); \
jump @lb$w; \
Nap; \

@2: tag_cmp_pr_delayed ne_tag, Tl, $cut_l, @3f; \

Nap; \
Pop_ChoicePoint(Tl); \

@3: wr_tag CONST_?TR, $cut_O; \
st_40 B, E, $saved_B_offset

!******************* cutd **********************/

#define cutd(label) \
! Cutd; \
@1: ld_32 Tl, CONST_?TR, $label; \

cmp_br_delayed eq, Tl, OLD_BP, @2f; \
Nap; \

@2:

Pop_ChoicePoint(Tl); \
jump @lb$w; \
Nap; \
Pop_ChoicePoint(Tl)

instructions.h Page 4

!******************* call_fail **********************/

#define call_fail() \
Call_fail; \

jump
Nop; \

fail$w; \

/********************** ESCAPES *************************/

/********************** escape ********************/

#define escape(fcn, reg) \
Escape; \

st_32
st_32
st_32
add
call
Nop; \
add
ld_32
ld_32
ld_32

r28, CONST~TR, $save_r28_offset; \
r26, CONST~TR, $save_r10_offset; \
r9, CONST~TR, $save_r9_offset; \
r28, rO, $fen; \
(-71 & Oxfffffff); \

reg, r28, 0; \
r28, CONST~TR, $save_r28_offset; \
r26, CONST~TR, $save_r10_offset; \
r9, CONST~TR, $save_r9_offset

!********************** comparison ********************/

#define equal() \
!Equal; \

@1:

add Tl, Al, 0; \
add T2, A2, 0; \
deref(T1, T3); \
deref(T2, T4); \
call_unify (); \
cmp_pr_delayed eq, T4, $1, @1f; \
Nop; \
call_fail () ; \

#define compare(op) \
Compare; \

deref (Al, Tl) ;
deref(A2, T2);
cmp_pr_delayed
Nop; \
cmp_pr _delayed
Nop; \

\
\

neq, Tl, $const_num_type,

neq, T2, $const_num_type,

cmp_pr_delayed op, A1, A2, @2f; \
Nop; \

@lf; \

@1f; \

instructions.h

@1: call_fail(); \
@2:

#define less_than() \
! Less_than; \

compare (1 t)

#define less_than_or_equal() \
! Less_than_or_equal; \

compare (le)

#define greater_than() \
! Greater_than; \

compare(gt)

#define greater_than_or_equal() \
! Greater_than_or_equal; \

compare (ge)

/*************~******* is ****************************/

#define is_escape() \
! Is; \

deref(A1, T1); \
deref(A2, T2); \
deref(A4, T3); \
and T1, T1, $type_mask; \
cmp_pr_delayed eq, T1, $var_type, @1f; \
Nop; \
cmp_pr_delayed neq, T1, $const_type, @2f; \
Nop; \

Page 5

@1: tag_cmp-Pr_delayed ne_tag, A2, $const_num_type, @2f; \
rd_tag T4, A3; \
tag_cmp_pr_delayed ne_tag, A4, $const_num_type, @2f; \
and T4, T4, $const_type; \
cmp_pr_delayed neq, T4, $const_type, @2f; \
Nop; \
escape(ARITH, T4); \
tag_cmp_pr_delayed ne_tag, A1, $const_num_type, @3f; \

Nop; \
cmp_pr_delayed eq, A1, T4, @3f; \
Nop; \

@2: call_fail(); \
@3: cmp_pr_delayed neq, T1, $var_type, @4f; \

Nop; \
wr_tag T4, $const_num_type; \
bind(T4, A1, T1); \

@4:

instructions.h

#define is_2_escape() \
! Is_2; \

jump
rd_special

is_2$w; \
T9, cpu_pc

Page 6

I************************ esc_call *************************I

I*
* Instead of providing the escape call routine I provide two primitives

* instead. The first shifts up all of the argument registers.

* The second does the jump. All escape calls have to be translated by

* hand to use these primitives.

*I

#define esc_shift_regs() \
!Esc_shift_regs; \

add Al, A2, 0; \
add A2, A3, 0; \
add A3, A4, 0; \
add A4, AS, 0; \
add AS, A6, 0; \
add A6, A7, 0; \
add A7, A8, 0

#define esc_jump(label) \
!Esc_esc_jump; \

jump
rd_special

labell**l$w; \
CP, cpu_pc

I************************ var *************************I

#define var_escape() \
! Var_escape; \

add
deref (T2,

T2, Al, 0; \
Tl); \

@1:

and
cmp_br_delayed
Nop; \
call_fail (); \

Tl, Tl, $type_mask; \
eq, Tl, $var_type, @lf; \

I************************* setter **********************I

#define setter() \
! Setter; \

add
add
deref(Ti, T3);
deref (Tl, T3) ;

\
\

T2,
Tl,

Al, 0; \
A2, 0; \

instructions.h Page 7

tag_cmp-Pr_delayed eq_tag, T1, $const_num_type, @1f; \

Nop; \
call_fail () ; \

@1: cmp_pr_delayed le, T1, $15, @2f; \

Nop; \
add T1, rO, 0; \
wr_tag T1, 0; \

@2 : wr _tag T1, $var _type; \
st_40 Tl, T1, 0; \
add T8, H, 0; \
ld_32 H, r9, $H2_offset; \
jump esc_unify$w; \
rd_special T3, cpu_pc; \
st_32 H, r9, $H2_offset; \
add H, T8, 0; \

@3:

/************************* access **********************/

#define access() \
Access; \

@1:

@2:

@3:

add T2, A1, 0; \
add T1, A2, 0; \
deref(T2, T3); \
deref(T1, T3); \
tag_cmp_pr_delayed
Nop; \

eq_tag, T1, $const_num_type, @1f; \

call_fail () ; \
cmp_J:,r_delayed
Nop; \
add
wr _tag
ld_40
call_uni fy () ; \
cmp_pr_delayed
Nop; \
call_fail () ; \

le, T1, $15, @2f; \

T1, rO, 0; \
T1, 0; \
T1, T1, 0; \

neq, T4, 0, @3f; \

/****************** integer **********************/

#define integer() \
Integer; \

add T1, A1, 0; \

deref(T1, T2}; \
tag_cmp_pr_delayed eq_tag, T1, $const_num_type, @lf; \

Nop; \
call_fail (); \

@1:

instructians.h Page 8

/******************* execute *************************/

idefine execute(label) \
! Execute; \

jump label/**/$w;\
Nap

/****************** get_variable_var ********************/

idefine get_variable_reg(An, Ai) \
add An, Ai, 0

idefine get_variable_var(env_affset, Ai) \
st_40 Ai, E, $env_affset

/****************** get_canstant **********************/

idefine get_canstant_string(canst, Ai) \
Get_canstant_string; \

@1:

add_nt T2, Ai, 0; \
deref(T2, T3); \
make_canst(T1, canst); \
call_unify (); \
cmp_pr_delayed eq, T4, $1, @1f; \
Nap; \
jump fail$w; \
Nap; \

idefine get_canstant_number(canst, Ai) \
Get_canstant_number; \

@1:

add_nt T2, Ai, 0; \
deref(T2, T3); \
ld_32 Tl, CONST~TR, $canst; \
wr_tag Tl, $canst_num_type; \
call_uni fy () : \
cmp_pr_delayed eq, T4, $1, @lf; \
Nap; \
jump fail$w; \
Nap; \

/******************* get_list ***********************/

idefine get_list(Ai) \
! Get_list; \

add T2, Ai, 0;\
deref(T2, T3) :\

instructians.h

st_32 rO, CONST~TR, $smode_affset; \
and T3, T3, $type_mask;\
cmp_pr_delayed neq, T3, $list_type, @lf;\
Nap;\
add S, T2, 0;\
jump @4f$w;\

Page 9

wr_tag S, $read_made;\
@1: tag_cmp_pr_delayed ne_tag, T2, $unbaund_var_type, @2f;\

sub T4, H, $8;\
cmp_pr_delayed neq, T2, T4, @2f;\
wr_tag T4, $cdr_type;\
sub H, H, $8;\

Trail in Get_list; \
trail(T4) ;\
jump @4f$w;\
wr_tag S, $write_made;\

@2: cmp_pr_delayed neq, T3, $var_type, @3f;\
add Tl, H, 0;\
wr_tag Tl, $list_type;\
call_unify () ;\
jump @4f$w;\
wr_tag S, $write_made;\

@3: jump fail$w; \
Nap;\

@4:

/****************** get_nil **********************/

#define get_nil(Ai) \
! Get_nil; \

@1:

add
deref(Tl, T2);
ld_40
wr _tag
call_unify (); \
cmp_pr_delayed
Nap; \
jump
Nap; \

Tl, Ai, 0; \
\

T2, CONST~TR, $nil_affset; \
T2, $canst_type; \

eq, T4, $1, @lf; \

fail$w; \

/****************** get_structure **********************/

#define get_structure(struct, Ai) \
! Get_structure; \

add Tl, Ai, 0; \
deref(Tl, T3); \
make_canst{T2, struct); \

instructions.h

add T4, rO, $1; \
st_32 T4, CONST~TR, $smode_offset; \
and T3, T3, $type~ask; \
cmp_pr_delayed neq, T3, $var_type, @1f; \
Nop; \
st_40 T2, H, 0; \
add T2, H, 0; \
wr_tag T2, $struct_type; \
add H, H, $8; \
st_40 T2, T1, 0; \
wr_tag T1, 0; \

Trail in Get_structure; \
trail(T1); \
jump @3f$w; \
wr_tag S, $write_mode; \

@1: cmp_pr_delayed neq, T3, $struct_type, @2f; \
ld_40 T3, T1, 0; \
cmp_pr_delayed neq, T3, T2, @2f; \
Nop; \
add S, Tl, $8; \
jump @3f$w; \
wr_tag S, $read_mode; \

@2: call_fail(); \
@3:

!******************* get_value *********************/

#define get_value_reg(An, Ai} \
Get_value_reg; \

add_nt T2, An, 0; \
deref (T2, T3); \
add_nt Tl, Ai, 0; \
deref (T1, T3); \
add T9, Tl, 0; \
call_uni fy () ; \
cmp_pr_delayed eq, T4, $1, @lf; \
Nop; \
jump fail$w; \
Nop; \

@1: add_nt An, T9, 0; \

#define get_value_var(env_offset, Ai) \
Get_value_var; \

ld_40 T2, E, $env_offset; \
deref(T2, T3); \
add_nt Tl, Ai, 0; \
deref(Tl, T3); \
call_unify (); \
cmp_pr_delayed eq, T4, $1, @lf; \

Page 10

instructions.h

@1:

Nop; \
jump
Nop; \

fail$w; \

I******************* mark **********************I

I*
* An instruction that isn't used anymore?

*I

#define mark() \
! Mark; \

Nop

I******************* pause **********************I

I*
* An instruction that isn't used anymore?

*I

#define pause() \
Pause; \

Nop

I**************** procedure *********************I

#define procedure(name) \
! Procedure; \
name:

I**************** proceed *********************I

#define proceed() \
! Proceed; \

cmp_):)r_delayed
jump_reg
wr _tag

@1: jump
Nop

eq, CP, 0, @lf; \
CP, $4; \
CONST..YTR, $cut_O; \
success$w; \

Page 11

I******************* put_constant **********************I

#define put_constant_string(const, Ai) \
! Put_constant_string; \

make_const(Ai, const)

#define put_constant_number(const, Ai) \
Put_constant_number; \

ld_32 Ai, CONST..YTR, $const; \
wr_tag Ai, $const_num_type

instructions.h Page 12

/***************** put_list *******************/

#define put_list(Ai) \
Put_list; \

wr _tag
st_32
add_nt
wr _tag

S, $write_mode; \
rO, CONST~TR, $smode_offset; \
Ai, H, 0; \
Ai, $list_type

!****************** put_nil *******************************/

#define put_nil(Ai) \
Put_nil; \

make_nil (Ai) ; \
wr_tag Ai, $const_type

/******************* put_structure **********************/

#define put_structure(struct, Ai) \
! Put_structure; \

add
st_32
make_const(T1,
add
wr _tag
st_40
add
wr _tag

T4, rO, $1; \
T4, CONST~TR, $smode_offset; \

struct) ; \
Ai, H, 0; \
Ai, $struct_type; \
Tl, H, 0; \
H, H, $8; \
S, $write_mode

/******************* put_unsafe_value **********************/

#define put_unsafe_value(env_offset, Ai) \
Put_unsafe_value; \

ld_40
deref(T1, T2);
and
cmp__br_delayed
Nop; \

T1, E, $env_offset; \
\

T2, T2, $var_type; \
neq, T2, $var_type, @1f; \

cmp__br_delayed le, T1, E, @1f; \
Nop; \
add
wr_tag
st_40
add

@1: add_nt

T1, H, 0; \
T1, $var_type; \
Tl, H, 0; \
H, H, $8; \
Ai, T1, 0

/*************** put_value *******************/

instructions.h

#define put_value_var(env_offset, Ai) \
Put_value_var; \

ld_40 Ai, E, $env_offset

#define put_value_reg(An, Ai) \
Put_value_reg; \

add_nt Ai, An, 0

!**************** put_variable ************************/

#define put_variable_var(env_offset, Ai) \
! Put_variable_var; \

add_nt
wr _tag
st_40

Ai, E, $env_offset; \
Ai, $var_type; \
Ai, E, $env_offset

#define put_variable_reg(An, Ai) \
Put_variable_reg; \

add_nt
wr _tag
add_nt
st_40
add_nt

Ai, H, 0; \
Ai, $var_type; \
An, Ai, 0; \
Ai, H, 0; \
H, H, $8

!********************** quit ********************/

#define quit() \
! Quit; \

add r28, rO, 0; \
jump start$w

#define end() quit()

!******************* retry **********************/

#define retry(label) \
! Retry; \

wr _tag
ld_32
rd_special
jump_reg
add

CONST~TR, $cut_l; \
Tl, CONST~TR, $label; \
T2, cpu_pc; \
Tl, 0; \
OLD_BP, T2, $12

Page 1.3

/******************* retry_me_else **********************/

#define retry_me_else(label) \
! Retry_me_else; \

ld_32
wr _tag

OLD_BP, CONST~TR, $label; \
CONST~TR, $cut_l

instructians.h Page 14

/******************* switch_an_canstant *********************/

#define switch_an_canstant(mask, label) \
Switch_an_canstant; \

deref(A1, T3); \

@1:

@2:

@3:

@4:

and T1, T3, $type_mask; \
cmp_pr_delayed neq, T1, $canst_type, @4f; \
ld_32 T1, CONST_?TR, $mask; \
add T2, CONST_?TR, $label; \
and T3, T3, $canst_num_type; \
cmp-Pr_delayed le, T1, 0, @4f; \
ld_32 T4~ T2, 0; \
add T4, T4, CONST_?TR; \
cmp_pr_delayed eq, Al, T4, @3f; \
Nap; \
sub
jump
add
ld_32
cmp_pr_delayed
ld_32
jump_reg
Nap; \
call_fail ()

T1, Tl. $2; \
@1b$w; \
T2, T2, $12; \
T4, T2, $4; \
neq, T3, T4, @2b; \
T4, T2, $8; \
T4, 0; \

/******************* switch_an_structure *********************/

#define switch_an_structure(mask, label) \
Switch_an_structure;

deref (A1, T1) ;
and
cmp_pr_delayed
ld_32
add
ld_40

@1: cmp_pr_delayed
ld_32
add
cmp-Pr_delayed
sub
jump
add

@2: ld_32
jump_reg
Nap; \

@3: call_fail()

\
\

T1, T1, $type_mask; \
neq, T1, $struct_type, @3f; \
T1, CONST_?TR, $mask; \
T2, CONST_?TR, $label; \
T4, A1, 0; \
le, T1, 0, @3f; \
T3, T2, 0; \
T3, T3, CONST_?TR; \
eq, T4, T3, @2f; \
T1, T1, $2; \
@1b$w; \
T2, T2, $8; \
T4, T2, $4; \
T4, 0; \

instructions.h Page 15

/******************* switch_on_term *********************/

#define switch_on_term(const_label,list_label,struct_label) \
! Switch_on_term; \

add_nt Tl, Al, 0; \
deref(Tl, T2); \
and T2, T2, $type_mask; \
cmp_pr_delayed neq, T2, $const_type, @lf; \
Nop; \
jump const_label/**/$w; \
Nop; \

@1: cmp_pr_delayed neq, T2, $list_type, @2f; \
Nop; \
jump list_label/**/$w; \
Nop; \

@2: cmp_pr_delayed neq, T2, $struct_type, @3f; \
Nop; \
jump struct_label/**/$w; \
Nop; \

. @3:

/******************* trust **********************/

#define trust(label) \
Trust; \

Pop_ChoicePoint(Tl); \
wr_tag CONST~TR, $cut_O; \
ld_32 Tl, CONST_?TR, $label; \
jump_reg Tl, $0; \
Nop

/******************** trust_me_else **********************/

#define trust~e_else(label) \
! Trust_me_else; \

Pop_ChoicePoint(Tl); \
wr_tag CONST_?TR, $cut_O

/******************* try **********************/

#define try(label) \
! Try; \

add_nt SAVE_AXL Al, 0; \
add_nt SAVE_AX2, A2, 0; \
add_nt SAVE_AX3, A3, 0; \
add_nt SAVE_AX4, A4, 0; \
add_nt SAVE_AXS, AS, 0; \
add_nt SAVE_AX6, A6, 0; \

instructions.h Page 16

@1:

@1:

add_nt SAVE_fl7, A7, 0; \
add_nt SAVE_fl8, A8, 0; \
read_Nreg (SAVE_N) ; \
st_32
st_32
call
Nop; \
ld_32
ld_32
add_nt
add_nt
add_nt
add_nt
add_nt
add
cmp_br_delayed
Nop; \
read_Nreg(Tl);
add
add
add
wr_tag
ld_32
rd_special
jump_reg
add

\

r26, CONST~TR, $save_r10_offset; \
r9, CONST~TR, $save_r9_offset; \
@1f$w; \

r10, CONST~TR, $save_r10_offset; \
r9, CONST~TR, $save_r9_offset; \
E~ OLD_E, 0; \
TR~ OLD_TR, 0; \
H~ OLDJI~ 0; \
CP I OLD_CP I 0; \
BPI OLD_BP I 0; \
B, OLD_B, 0; \
lt~ E~ B, @lf; \

B, Tl, E; \
B, B~ $env_size; \
B~ B, $4; \
CONST~TR~ $cut_1; \
Tl~ CONST~TR, $label; \
T2, cpu~c; \
Tl, 0; \
OLD_BP, T2, $12

/*********************** try_me_else *************************/

#define try_me_else (label) \
! Try_me_else; \

@1:

add_nt SAVE_fll, Al, 0; \
add_nt SAVE_fl2, A2 I 0; \
add_nt SAVE_fl3 I A3 I 0; \
add_nt SAVE_fl4, A4, 0; \
add_nt SAVE.flS~ AS, 0; \
add_nt SAVE_fl6, A6, 0; \
add_nt SAVE_fl7, A7, 0; \
add_nt SAVE.J>.X8, A8 I 0; \
read_Nreg(SAVE_N); \
st_32 r26~ CONST~TR~ $save_r10_offset; \
st_32 r9, CONST~TR~ $save_r9_offset; \
call @1f$w; \
Nop; \
ld_32
ld_32
add_nt
add_nt
add_nt

r10~ CONST~TR~ $save_r10_offset; \
r9, CONST~TR~ $save_r9_offset; \
E, OLD_E, 0; \
TR~ OLD_TR, 0; \
H~ OLDJI~ 0; \

instructions.h

add_nt CP, OLD_CP, 0; \
add_nt BP, OLD_BP, 0; \
add B, OLD_B, 0; \
cmp_pr_delayed lt, E, B, @lf; \
Nop; \
read_Nreg(Tl); \
add B, Tl, E; \
add B, B, $env_size; \

@1: add B, B, $4; \
ld_32 OLD_BP, CONST~TR, $label; \
wr_tag CONST~TR, $cut_l

Page 17

!********************* unify_cdr *************************/

#define unify_cdr_reg(An) \
Unify_cdr_reg; \

@1:

@2:

@3:

tag_cmp_pr_delayed eq_tag, S, $read~ode, @1f; \
add T1, H, 0; \
wr _tag T1, $unbound_var _type; \
st_40 T1, H, 0; \
add_nt An, H, 0; \
wr _tag An, $var _type; \
jump @3f$w; \
add_nt H, H, $8; \
ld_40 An, S, 0; \
rd_tag T2, An; \
and T2, T2, $cdr_type; \
cmp-Pr_delayed eq, T2, $cdr_type, @2f; \
Nop; \
add_nt
jump
wr _tag
rd_tag
and
wr_tag

An, S, 0; \
@3f$w; \
An, $list_type; \
T2, An; \
T2, T2, $not_cdr_type; \
An, T2; \

#define unify_cdr_var(env_offset) \
Unify_cdr_var; \

tag_cmp_pr_delayed eq_tag, S, $read_mode, @1f; \
add T1, H, 0; \
wr_tag T1, $unbound_var_type; \
st_40 T1, H, 0; \
wr_tag T1, $var_type; \
st_40 T1, E, $env_offset; \
jump @3f$w; \
add_nt H, H, $8; \

@1: ld_40 T1, S, 0; \
rd_tag T2, T1; \

instructians.h

@2:

@3:

and
cmp,J:lr _delayed
Nap; \
add_nt
wr _tag
jump
st_40
rd_tag
and
wr _tag
st_40

T2, T2, $cdr_type; \
e~, T2, $cdr_type, @2f; \

Tl, S, 0; \
Tl, $list_type; \
@3f$w; \
Tl, E, $env_affset; \
T2, Tl; \
T2, T2, $nat_cdr_type; \
Tl, T2; \
Tl, E, $env_affset; \

Page 18

!********************** unify_canstant ********************/

#define unify_canstant_string(canst) \

! Unify_canstant_string; \
make_canst(T8, canst); \
jump unify_canst_func$w; \

rd_special T9, cpu_pc

#define unify_canstant_number(canst) \

Unify_canstant_number; \
ld_32 T8, CONST_?TR, $canst; \

wr_tag T8, $canst_num_type; \

jump unify_canst_func$w; \

rd_special T9, cpu_pc

/************************** unify_nil ****************************/

#define unify_nil() \
! Unify_nil; \

tag_cmp,J:lr_delayed
Nap; \

eq_tag, S, $write_made, @2f; \

@1:

@2:

@3:

ld_40
rd_tag
and
cmp,J:lr_delayed
make_nil(T2); \

Tl, S, 0; \
T2, Tl; \
T2, T2, $cdr_type; \
neq, T2, $cdr_type, @lf; \

call_uni fy () ; \
cmp,J:lr_delayed neq, T4, 0, @3f; \
Nap; \
jump
Nap; \
make_nil(Tl); \
st_40
add

fail$w; \

Tl, H, 0; \
H, H, $8; \

instructians.h Page 19

!**************** unify_value *************************/

#define unify_unsafe_value_reg(An) unify_value_reg(An)

#define unify_unsafe_value_var(env_affset) unify_value_var(env_affset)

#define unify_value_reg(An) \
Unify_value_reg; \

add
jump
rd_special

T8, An, 0; \
unify_value$w; \
T9, cpu~c

#define unify_value_var(env_affset) \
Unify_value_var; \

ld_40
jump
rd_special

T8, E, $env_affset; \
unify_value$w; \
T9, cpu~c

/******************** unify_variable *********************/

I

#define unify_variable() \
tag_cmp-Pr_delayed eq_tag, S, $write_made, @2f; \

Nap; \
ld_40 Tl, S, 0 ; \

decdr(Tl); \
rd_tag T3, Tl; \
and T4, T3, $cdr_type; \
cmp_pr_delayed neq, T4, $cdr_type, @3f; \

Nop; \
tag_cmp_pr_delayed eq_tag, Tl, $unbaund_var_type, @lf; \

Nap; \
jump fail$w; \
Nap; \

@1: add T2, H, 0; \
wr_tag T2, $list_cdr_type; \
call_uni fy () ; \
wr_tag S, $write_made; \

@2: add Tl, H, 0; \
wr_tag Tl, $var_type; \
st_40 Tl, H, 0; \
add H, H, $8

#define unify_variable_reg(An) \
! Unify_variable_reg; \

unify_variable(); \
@3: add An, Tl. 0

#define unify_variable_var(env_affset) \
Unify_variable_var; \

unify_variable(); \

instructions.h

@3: st_40 T1, E, $env_offset

/******************* unify_void **********************/

#define unify_void(num) \
! Unify_void; \

add TS, rO, $num; \

Page 20

tag_cmp_pr_delayed eq_tag, S, $write_mode, @Sf; \
ld_32 T1, E, $smode_offset; \
cmp_pr_delayed eq, T1, $0, @1f; \
add T1, rO, $num; \
sll T1, T1, $3; \
jump @7f$w; \
add S, S, T1; \

@1: add T1, rO, 0; \
@2: cmp_pr_delayed ge, T1, TS, @7f; \

Nop; \
ld_40 T2, S, 0; \
decdr(T2); \
rd_tag T3, T2; \
and T3, T3, $cdr_type; \
cmp_pr_delayed neq, T3, $cdr_type, @4f; \
rd_tag T4, T2; \
and T4, T4, $var_type; \
cmp_pr_delayed eq, T4, $var_type, @3f; \
Nop; \
call_fail(); \

@3: wr_tag S, $write_mode; \
sub TS, TS, T1; \
add T1, H, 0; \
wr_tag T1, $list_cdr_type; \
jump @Sf$w; \
st_40 T1, T2, 0; \

@4: jump @2b$w; \
add T1, T1, $1; \

@5: add T1, rO, 0; \
@6: cmp_pr_delayed ge, T1, TS, @7f; \

add T2, H, 0; \
wr_tag T2, $var_type; \
st_40 T2, H, 0; \
add H, H, $8; \
jump @6b$w; \
add T1, T1, $1; \

@7:

defs.h Page 1

#define CONSTJTR r2
#define Al r3
#define Xl r3
#define A2 r4
#define X2 r4
#define A3 rS
#define X3 rS
#define A4 r6
#define X4 r6
#define AS r7
#define xs r7
#define A6 r8
#define X6 r8
#define A7 r9
#define X7 r9
#define AS rl
#define X8 rl

#define OLD_BP rlO
#define OLD_E rll
#define OLD_TR rl2
#define OLD.Jl rl3
#define OLD_B rl4
#define OLD_CP rlS

#define s rl6
#define SAVE_}.Xl rl6
#define Tl rl7
#define SAVE_}.X2 rl7
#define T2 rl8
#define SAVE_}.X3 rl8
#define T3 rl9
#define SAVE_}.X4 rl9
#define T4 r20
#define SAVE_}.XS r20
#define TS r21
#define SAVE_}.X6 r21
#define T6 r22
#define SAVE _}.X? r22
#define T7 r23
#define SAVE_}.X8 r23
#define T8

-
r24 ::

#define SAVE_.N r24
#define T9 r25

#define BP r26
#define E r27
#define TR r28
#define H r29

defs.h Page 2

#define B r30
#define CP r31

#define type_mask 0x03
#define list_ type OxOO
#define struct_type OxOl
#define var _type 0x02
#define const_type Ox03
#define unbound OxlO
#define bound_var_type OxOO
#define unbound_var_type Ox12
#define cdr _type OxlO
#define not_cdr_type OxOf
#define list_cdr _type OxlO
#define nil_ type OxlO
#define nil _const_type Ox13
#define num_type Ox08
#define const_num_type OxOb
#define cut_O OxOO
#define cut_l OxOl
#define read_mode OxOO
#define write_mode OxOl

#define saved_E_offset 0
#define saved_CP _offset 8
#define saved_B_offset 16
#define saved.J{_offset 24
#define env_size 32
#define Yl 32
#define Y2 40
#define Y3 48
#define Y4 56
#define YS 64
#define Y6 72
#define Y7 80
#define Y8 88
#define Y9 96
#define YlO 104

#define nil_offset 0
#define stack_offset 8
#define save_r 28_o f fset 12
#define save_rlO_offset 16
#define save_r9_o ffset 20
#define N_reg_offset 24
#define smode_offset 28
#define H2_offset 32
#define PDL_offset 36
#define stack_):)ottom 40

defs.h

#define first_const_offset

#define WRITE
#define NL
#define ARITH

0
1
2

Page 3

44

trailer.h Page :i

/*--*!

#include "funcs.a"

/* * Initialize the constant table:

*
* 1) Nil pointer
* 2) Pointer to stack for recursive unify (32 bits long)

*I
.org
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long

OxleOOO
Oxffffffff
nil_const_type
0
0
0
0
0
0
0
0
0

·-

funcs. a

#include "defs.h"

/********************** fail *************************/

fail:
get_stack-Pase(Tl)
cmp-Pr_delayed le, B, Tl, daabart

unbind_laap:
cmp_pr_delayed
Nap

unbindl:

sub
ld_40
rd_tag
and
cmp_pr_delayed
add
jump
add

ld_40
rd_tag
and
cmp_br _delayed
Nap
add

unbind2:
add
wr _tag
st_40
jump
Nap

trail_empty:
add
add
add
rd_special
return
Nap
add
add
add
add
add
add
add

le, TR, OLD_TR, trail_empty

TR, TR, $8
Tl, TR, 0
T2, Tl
T2, T2, $cdr_type
neq, T2, $cdr_type, unbindl
T3, rO, $var_type
unbind2$w
T3, rO, $unbaund_var_type

T2, Tl, 0
T2, T2
T2, T2, $cdr_type
neq, T2, $cdr_type, unbind2

T3, rO, $unbound_var_type

T4, Tl, 0
T4, T3
T4, Tl, 0
unbind_laap$w

E, OLD_E, 0
CP, OLD_CP, 0
H, OLD.J{, 0
Tl, cpu_pc
Tl, $12

Al , SA VE_}.Xl , 0
A2 , SA VE_}.X2 , 0
A3, SAVE_}.X3, 0
A4, SAVE_}.X4, 0
A5, SA VE_}.XS, 0
A6 , SA VE_}.X6 , 0
A7, SAVE_}.X7, 0

Page l

funcs.a Page 2

add AS, SAVE_AX8, 0
write_Nreg (SAVE_N)
st_32 r26, CONST~TR, $save_rl0_offset
st_32 r9, CONST~TR, $save_r9_offset
call @lf$w
Nop

@1: ld_32 rlO, CONST~TR, $save_rl0_offset
ld_32 r9, CONST~TR, $save_r9_offset
add Tl, OLD_BP, 0
jump_reg Tl, $0
Nop

doabort:
jump
Nop

abort$w

#define return_val(value) \
jump_reg T3, $4; \
add T4, rO, $value

#define push (reg) \
st_40 reg, TS, 0; \
add TS, TS, $8

#define pop (reg) \
sub TS, TS, $8; \
ld_40 reg, TS, 0

I***************************** unify *********************I

I*
* Tl
* T2
* T3
* T4
* TS
* T6, T7
* T8, T9
*
*I

unify:
ld_32

unify _rest:
rd_tag
and
rd_tag
and

First argument
Second argument
Return address
Return value of unify and temporary until return
Stack pointer for recursive unifys
Temporaries
Cannot use here (needed by callers for temporaries that
exist across calls.)

TS, CONST~TR, $stack_offset

T6, Tl
T6, T6, $type~ask

T7, T2
T7, T7, $type~ask

funcs. a

cmp__br_delayed
Nap
cmp__br_delaye.d
Nap
cmp__br_delayed
Nap
rd_tag
or
rd_tag
or
cmp__br_delayed
Nap
cmp__br_delayed
Nap
return_val (1)

failed: return_val(O)

not_const:
cmp__br_delayed
Nap

contl:

cont2:

push (Tl)
push (T2)
push (T3)
ld_40
ld_40
jump
rd_special
pop (T3)
pop (T2)
pop (Tl)
cmp__br_delayed
Nap
return_val (0)

add
ld_40
rd_tag
and
cmp__br_delayed
Nap
add
wr _tag

add
ld_40
rd_tag
and
cmp__br_delayed

eq, T6, $var_type, dobind

eq, T7, $var_type, dobind

neq, T6, $const_type, not_const

T6, Tl
T6, T6, $cdr_type
T7, T2
T7, T7, $cdr_type
neq, T6, T7, failed

neq, Tl, T2, failed

neq, T6, T7, failed

Tl, Tl, 0
T2, T2, 0
unify_rest$w
T3, cpu_pc

eq, T4, $1, contl

T4, Tl, $8
Tl, T4, 0
T6, Tl
T6, T6, $cdr _type
eq, T6, $cdr _type,

Tl, T4, 0
Tl, $list_type

T4, T2, $8
T2, T4, 0
T6, T2
T6, T6, $cdr _type
eq, T6, $cdr _type,

cont2

cont3

Page 3

funcs.a

cont3:

cont4:

Nop
add
wr_tag
push (T3)
jump
rd_special
pop (T3)
cmp......Pr_delayed
return_val (0)
return_val (1)

T2, T4, 0
T2, $list_type

unify _rest$w
T3, cpu_pc

eq, T4, $1, cont4

dobind: cmp....,.Pr_delayed neq, T6, $var_type, one_var
Nop
cmp......Pr_delayed neq, T7, $var_type, one_var
Nap
cmp......Pr_delayed ge, T1, T2, bind1
bind{Tl, T2, T4)
return_val {1)

bind1: bind{T2, T1, T4)
return_val (1)

one_var:cmp......Pr_delayed neq, T6, $var_type, bind2
bind{T2, T1, T4)
return_val {1)

bind2: bind{T1, T2, T4)
return_val {1)

Page 4

I***************************** esc_unify *********************I

I*
* T1
* T2
* T3
* T4
* TS
* T6, T7
* T8, T9
*
* CP
*I

First argument
Second argument
Return address
Return value of unify and temporary until return
Stack pointer for recursive unifys (PDL)
Temporaries
Cannot use here (needed by callers for temporaries that
exist across calls.)
Used as the PDL here. It is saved first however.

#define PDL CP
#define first_call OxO
#define not_first_call Oxl

#define esc_return_val(value) \
tag_cmp......Pr_delayed eq_tag, PDL, $not_first_call, @lOOf; \

Nap; \
pop (CP) ; \

funcs. a

@100: jump_reg
add

esc_unify:
ld_32
push(CP)
ld_32
wr _tag

T3, $4; \
T4, rO, $value

TS, CONST_?TR, $stack_offset

PDL, CONST_?TR, $PDL_offset
PDL, $first_call

esc_uni fy _rest:
rd_tag
and
rd_tag
and

T6,
T6,
T7,
T7,

cmp_pr_delayed eq,
Nop

T1
T6,
T2
T7,
T6,

$type_mask

$type_mask
$var_type, esc_dobind

cmp_pr_delayed eq, T7, $var_type, esc_dobind

Page 5

Nop
cmp_pr_delayed
Nop

neq, T6, $const_type, esc_not_const

cmp_pr_delayed ne_40, T1, T2, esc_failed
Nop
esc_return_val(1}

esc_failed:
esc_return_val(O)

esc_not_const:
cmp_pr_delayed neq, T6, T7, esc_failed
Nop
push (T1)
push (T2)
push (T3)
push (PDL)
wr _tag
ld_40
ld_40
jump
rd_special
pop(PDL)
pop (T3)
pop (T2)
pop (T1)

PDL, $not_first_call
T1, T1, 0
T2, T2, 0
esc_unify_rest$w
T3, cpu_pc

cmp_pr_delayed eq, T4, $1, esc_contl
Nop
esc_return_val(O)

esc_cont1:
add T4, T1, $1

funcs.a

ld_40
rd_tag
and
cmp_pr_delayed
Nap
add
wr _tag

esc_cont2:
add
ld_40
rd_tag
and
cmp_pr _delayed
Nap
add
wr _tag

esc_cont3:
push (T3)
push (PDL)
wr _tag
jump
rd_special
pop (PDL)

T1, T4, 0
T6, T1
T6, T6, $cdr _type
eq, T6, $cdr _type, esc_cont2

T1, T4, 0
T1, $list_type

T4, T2, $1
T2, T4, 0
T6, T2
T6, T6, $cdr _type
eq, T6, $cdr _type, esc_cont3

T2, T4, 0
T2; $list_type

PDL, $not_first_call
esc_unify_rest$w
T3, cpu_pc

pop (T3)
cmp_pr_delayed eq,
esc_return_val(O)

T4, $1, esc_cont4

esc_cont4:
esc_return_val(l)

esc_dobind:
cmp-Pr _delayed
Nap
cmp_pr_delayed
Nap
cmp_pr_delayed
Nap
jump
Nap

esc-Pind1:
add
add
jump
add

esc one_var:
cmp_pr_delayed
add
add
add

neq, T6, $var_type, esc_one_var

neq, T7, $var_type, esc_one_var

ge, T1, T2, esc-Pind1

do_esc-Pind$w

T4, T1, 0
T1, T2, 0
do_esc-Pind$w
T2, T4, 0

neq, T6, $var_type, do_esc-Pind
T4, T1, 0
T1, T2, 0
T2, T4, 0

Page 6

funcs. a

#define binding Tl
#define bound T2

do_esc.....Pind:

@1:

elsel:

else2:
if3:

else3:

endif3:
forl:

for2:

rd_tag
and
cmp..J:>r_delayed
Nap
cmp..J:>r_delayed
Nap

rd_tag
and
cmp..J:>r_delayed
rd_tag
or
wr _tag

jump
st_40

rd_tag
and
cmp..J:>r_delayed
add
wr _tag
jump
st_40

rd~tag
and
wr _tag
st_40

add
wr _tag

T4, binding
T4, T4, $type_mask
eq, T4, $var_type, @lf

neq, T4, $const_type, else2

T4, bound
T4, T4, $cdr_type
neq, T4, $cdr_type, elsel
T4, binding
T4, T4, $cdr_type
binding, T4

endifl$w
binding, bound, 0

T4, bound
T4, T4, $cdr_type
neq, T4, $cdr_type, else3
T4, H, 0
T4, $cdr _type
endif3$w
T4, bound, 0

T6, binding
T6, T6, $type_mask
T4, T6
T4, bound, 0

S, binding, 0
S, 0

ld_40 T4, CONST~TR, $nil_offset

if4:
cmp.....Pr_delayed eq_40, S, T4, endfor2

ld_40
rd_tag
and
cmp.....Pr _delayed
Nap
add

T4, S, 0
T6, T4
T6, T6, $type_mask
neq, T6, $var_type, else4

T6, H, 0

Page 7

funcs.a

else4:
ifS:

elseS:

endifS:
endif4:

if6:

if7:

@1:

if8:

else8:

endif8:

wr _tag
st_40
st_40
jump
add

cmp_.br_delayed
Nap
st_40
jump
add

st_40
st_40
sub
add
wr _tag
st_40
add

add
ld_40

rd_tag
and
cmp_.br_delayed

ld_40
cmp_.br_delayed
Nap
cmp_.br_delayed
Nap

add

cmp_.br_delayed
Nap
st_40
jump
add

add
wr _tag
st_40
add

jump

T6, $var _type
T6, H, 0
T6, T4, 0
endif4$w
H, H, $8

neq, T6, $const_type, elseS

T4, H, 0
endif5$w
H, H, $8

S, PDL, $-8
H, PDL, $-16
PDL, PDL, $16
T7, rO, $-1
T7, T6
T7, H, 0
H, H, $8

S, S, $8
T4, S, 0

T6, T4
T4, T4, $cdr_type
neq, T4, $cdr_type, endif6

T6, CONST~TR, $nil_affset
eq, T4, T6, @1f

neq, T4, S, else7

S, T6, 0

neq, T4, T6, else8

T4, H, 0
endif8$w
H, H, $8

T7, H, 0
T7, $cdr_type
T7, H, 0
H, H, $8

endif7$w

Page 8

funcs. a

e1se7:

endif7:
endif6:

endfor2:

endfor1:
endif1:

#undef
#undef

Nap

add
wr _tag

jump
Nap

ld_32
cmp_J,r_delayed
ld_40
ld_40
add
ld_40
ld_40
rd_tag
and
add
wr _tag
jump
st_40

S, T4, 0
S, 0

for2$w

T6, CONST_?TR, $PDL_offset
ge, T6, PDL, endforl
T4, PDL, 0
binding, PDL, $8
PDL, PDL, $16
binding, binding, 0
T6, T4, 0
T6, T6
T6, T6, $type_mask
T7, H, 0
T7, T6
for1$w
T7, T4, 0

esc_return_val(1)

bound
binding

/******************* abort ***********************/

abort: add
jump
Nap

r28, rO, 0
0

/******************* success ************************/

success:add
jump
Nap

r28, rO, $1
0

Page 9

/********************** unify_const_func **********************/

I*
* T8
* T9
*I

constant to unify
return address

unify_const_func:

funcs.a Page lO

tag_cmp_pr_delayed eq_tag, S, $write_mode, @4f

Nap
ld_40 T1, S, 0
decdr (T1)
rd_tag T3, T1
and T4, T3, $cdr_type
cmp_pr_delayed neq, T4, $cdr_type, @2f
Nap
tag_cmp_pr_delayed ne_tag, T1, $unbound_var_type, @3f

@1: add T2, H, 0
wr_tag T2, $list_cdr_type
call_unify ()
jump @4f$w
wr_tag S, $write_mode

@2: deref(T1, T3)
add T2, TS, 0
call_unify ()
cmp_pr_delayed eq, T4, $1, @Sf
Nap

@3: jump fail$w
Nap

@4: add T1, TS, 0
st_40 T1, H, 0
add H, H, $8

@5: jump_reg T9, $4
Nap

/****************************** unify_value *************************/

/*
* TS
* T9
*I

value to unify
return address

unify_value:

@1:

deref(TS, T1)
tag_cmp_pr_delayed eq_tag, S, $write_mode, @4f

Nap
ld_40
decdr (T2)
rd_tag

T2, S, 0

T3, T2
T4, T3, $cdr_type and

cmp_pr_delayed
Nap

neq, T4, $cdr_type, @2f

tag_cmp_pr_delayed
add T1,
add T2,
wr _tag T2,
call_uni fy ()

ne_tag, T1,
T2, 0
H, 0
$list_cdr_type

$unbound_var_type, @3f

funcs.a

@2:

@3:

@4:

@5:

jump
'lrlr _tag
deref (T2 I T3)
add
call_uni fy ()
cmp..J:>r_delayed
Nop
jump
Nop
add
add
wr _tag
st_40
add
call_unify ()
jump_reg
Nop

@4f$w
S, $write_mode

Tll T81 0

eql T4 1 $11 @Sf

fail$w

Tll T81 0
T2, H, 0
T2, $var _type
T2, HI 0
H, H, $8

T9, $4

Page 11

I***************************** is_2 *********************I

I*
* T9
*I

#define
#define
#define
#define
#define
:jfdefine
#define
#define
#define

is_2:

Temp
var
var_tag
val
val_tag
op
nl
n2
ch

ld_32

Return address

T3
T2
Temp
Tl
T4
T6
T7
T8
T6

TSI CONST~TR~ $stack_offset

is_2_rest:
push (Al)
push (A2)
add
deref (var I

add

var, All 0
var _tag)

deref (val I

val, A2, 0
val_tag)

and
cmp..J:>r_delayed
Nop
cmp..J:>r _delayed
Nop

var_tag, var_tagl $type_mask
eql var_tagl $var_typel @lf

eql var_tagl $const_typel @lf

funcs.a Page 12

@1:

@2:

@4:

call_fail ()
and
cmp...):lr_delayed
Nap
cmp...):lr_delayed
Nap
call_fail ()

add
ld_40
add
ld_40
ld_40
add

val_tag, val_tag, $type_mask
eq, val_tag, $const_type, @9f

eq, val_tag, $struct_type, @2f

S, val, 0
ch, S, 0
S, S, $8
n1, S, 0
n2, S, $8
S, S, $16

tag_cmp...):lr_delayed ne_tag, n1, $struct_type, @4f
Nap
add
wr _tag
st_40
add
push (ch)
push (n2)
push(var)
push (T9)
jump
rd_special
pop (T9)
pop(var)
pop (n2)
pop (ch)
add
deref (n1, Temp)

A1,
A1,
A1,
A2,

H, 0
$var _type
H, 0
n1, 0

is_2_rest$w
T9, cpu_pc

n1, Al, 0

tag_cmp...):lr_delayed ne_tag, n2, $struct_type, @4f
Nap
add
wr _tag
st_40
add
push(ch)
push (n1)
push(var)
push (T9)
jump
rd_special
pop (T9)
pop(var)
pop (n1)

A1,
Al,
A1,
A2,

H, 0
$var _type
H, 0
n2, 0

is_2_rest$w
T9, cpu_pc

funcs.a Page 13

@4:

@S:

@9:

pop (ch)
add n2, Al, 0
deref (n2, Temp)

and
cmp_):)r_delayed

rd_tag
and
cmp...Pr_delayed
Nop
call_fail ()

push (A2)
push (A3)
push (A4)
add
add
add
escape(ARITH,
pop (A4)
pop (A3)
pop (A2)
wr _tag
jump
rd_special
pop (A2}
pop (Al)

jump_reg
Nop

Temp, Temp, $const_type
eq, Temp, $const_type, @Sf

Temp, nl
Temp, Temp, $const_type
eq, Temp, $const_type, @Sf

I* arg 1 *I
I* operator *I
I* arg 2 *I

A2, nl , 0
A3, ch , 0
A4, n2 , 0

Tl)

Tl, $const_num_type
unify _rest$w
T3, cpu_pc

T9, $4

Special- or General-Purpose Hardware for Prolog October 1986

Appendix 3: Macro-Expansion of PLM Instructions

SPUR/Coprocessor

The Prolog coprocessor instructions are broken up into six groups:

• Data Transfer: LD, ST, TO, FROM, MOVE

• State Saving and Modifying:

to

PUSH_CHOICEPT, POP_CHOICEPT, PUSH_ENV, POP_ENV, SET~MODE

• Compare and Branch:
TAG_CMP_BR_DELAYED,CMP_BR_DELAYED

• Unify: UNIFY_X_BR_DELAYED, UNIFY_ Y_BR_DELAYED

• Heap and Trail: MAKE_ V AR, PUSH_ ONTO_ HEAP, UNDO_ TRAIL

• Special: HASH

The macro-expansion of PLM instructions into a combination of SPUR and Prolog

coprocessor instructions is given below. Note that not all PLM instructions use

the coprocessor, many instructions can be implemented directly in SPUR code.

The PLM instructions are in boldface and their corresponding SPUR code is

immediately below. Although this code is by no means debugged or complete, we

feel that it provides enough data to give a reasonable estimate of expected perfor

mance and code size. These instruction sequences were used to generate the data

in Tables 15 and 16.

switch_ on_ term Lc,Ll,Ls
TAG_ CMP _ BR_ DELAYED const,Xi,-,Lc

TAG_ CMP _ BR_ DELAYED list,Xi,-,Ll

TAG_ CMP _BR_DELAYED struct,Xi,-,Ls

NOP

switch_on_constant N,T
LD GRj,address(T)

NOP
HASH Xi,GRj,GRk,N
CMP _ BR~ DELAYED failedHash,-,-,fail
FROM Ri,GRk
NOP
JUMP_REG Ri
NOP

switch_ on_ structure
LD
NOP

N,T
GRj,address(T)

HASH Xi,GRj,GRk,N
CMP _ BR_ DELAYED failedHash,-,-,fail
FROM Ri,GRk
NOP
JUMP_REG
NOP

Ri

-43-

Special- or General-Purpose Hardware for Prolog October 1986

try L
RD_SPECIAL Ri,PC
TO P,Ri

NOP
PUSH_ CHOICEPT
JUMP L
NOP

retry L
RD_SPECIAL Ri,PC,O
FROM Rj,B
NOP
ST Ri,Rj-Poffset

JUMP L
SET_MODE cut, 1

trust L
POP_ CHOICEPT trust

JUMP L
NOP

try_ me_ else L
LD P,address(L)

NOP
PUSH_ CHOICEPT

retry_ me_ else L
LD Ri,address(L)

FROM Rj,B
NOP
ST Ri,Rj-Poffset

SET_MODE cut,l

trust_ me_ else fail
POP_ CHOICEPT trust

fail
UNDO_ TRAIL
POP_ CHOICEPT fail
FROM Ri,P
NOP
JUMP_REG Ri
NOP

cut
POP_ CHOICEPT cut

cutd L

-44-

...

Special- or General-Purpose Hardware for Prolog

LD
NOP
POP_ CHOICEPT

proceed
FROM
MOVE
JUMP_REG
SET_MODE

execute

call

JUMP
SET_MODE

RD_SPECIAL
TO
JUMP
SET_ MODE

allocate
PUSH_ENV

deallocate
POP_ENV

get_ nil

CP, Ri
CP,P

Proc

G Ri,address(L)

cutd,GRi

Ri
cut,O

Proc
cut,O

n, Proc
Ri,PC,O

CP,Ri
Proc
cut,O

N

N

Ai
UNIFY_ X_ BR_ DELAYED
SET_MODE

const I get,Xi,NIL,fail
unify,read

get_constant c~

LD
NOP
UNIFY_ X_ BR_ D ELA YEO
SET_MODE

G Ri ,address(c)

const I get,Xi,GRi,fail
unify,read

get_ variable
MOVE

[AXIY]n~
XX,Xi,Xn

or
MOVE XY,Xi,Yn

get_list Ai
UNIFY_ X_ BR_ DELAYED list I get,Xi,S,fail
NOP

get_ structure
UNIFY_ X_ BR_ DELAYED
LD

F,Ai
struct I get,Xi,S,fail
GRi,address(F)

-45-

October 1Q86

Special- or General-Purpose Hardware for Prolog

NOP
UNIFY_ X_ BR_ DELAYED const I unify,GRi,S,fail

NOP

get_ value [AXIY]n,Ai

UNIFY_ X_ BR_ DELAYED vall get,Xn,Xi,fail

CMP _ BR_ DELAYED moreToUnify,-,-,-1

SET_MODE unify,read

MOVE X:{,Xi,Xn

or
UNIFY_ Y _ BR_ DELAYED vall get,Xi,Yn,fail

CMP _ BR_ DELAYED moreToUnify,-,-,-1

SET_MODE unify,read

put_ nil
MOVE

put_ constant
LD

put_ variable
MAKE_ VAR
MOVE
or
MAKE_VAR

put_ list
MAKE_ VAR
SET_MODE

put_ structure
LD
MAKE_ VAR
SET_MODE

Ai
XX,NIL,Xi

c,Ai
Xi,address(c)

[AXIY]n,Ai
var I heap,-,Xi

XX,Xi,Xn

Ai

varl env,Yn,Xi

list I heap,-,Xi
unify,write

F,Ai
GRi,address(F)
struct I heap,-,Xi
unify,write

PUSH_ 0 NTO _HEAP G Ri

put_ value
MOVE
or
MOVE

put_ unsafe_ value
MAKE_ VAR

[AXIY]n,Ai
XX,Xn,Xi

YX,Yn,Xi

Yn,Ai
safe,Yn,Xi

unify_ void n
use unify_ variable n times

unify_ value [AXIY]n

-46-

October 1986

Special- or General-Purpose Hardware for Prolog October 1986

UNIFY_ X_ BR_ DELAYED vall unify I incrS,Xn,S,fail
CMP _ BR_ DELAYED moreToUnify,-,-,-1
NOP
or
UNIFY_ Y_ BR_ DELAYED vall unify I incrS,Yn,S,fail
CMP _ BR_ DELAYED moreToUnify,-,-,-1
NOP

unify_ variable [AX I Y]n
UNIFY_ X_ BR_ DELAYED var I unify I incrS,NIL,S,fail
MOVE XX,U1,Xn
or
UNIFY_ X_ BR_ DELAYED var I unify I incrS,NIL,S,fail
MOVE XY,U1,Yn

unify_ constant c
LD GRi,address(c)
NOP
UNIFY _X_BR_DELAYED canst I unify I incrS,GRi,S,fail

NOP

unify_ cdr [AX I Y] n
UNIFY_X_BR_DELAYED cdr I unify,NIL,S,fail
MOVE XX,U1,Xn
or
UNIFY_X_BR_DELAYED cdr I unify,NIL,S,fail
MOVE XY,Ul,Yn

unify_ nil
UNIFY _X_BR_DELAYED canst I unify,NIL,S,fail
NOP

-47-

Special- or General-Purpose Hardware for Prolog

Appendix 4: Microcode for a SPUR Prolog Coprocessor

This appendix provides an outline for the microcode requirements of each

coprocessor instruction. The instruction name is in boldface along with a descrip

tion of the fields in the instruction and their size. Immediately below each

instruction is a description of what operations must be performed in each of the

SPUR pipeline stages. The instruction fetch cycle is not represented as it is ident

ical for all the instructions. There is a fifth pipeline stage added, the extended

processing stage, for providing the coprocessor with the extra execution time it

may require. The number next to the heading for the extended processing stage

signifies the number of extra cycles required. This special stage occurs between

the second and third stages of the SPUR pipeline.

TAG_ CMP _BR_DELAYED mask(5),reg(5),tag(5),offset(9)

R: read reg, mask tag and cmp if no· need to deref

E:2 deref (mem access; test for more deref and update reg),

mask tag and cmp

M:
W: write dereferenced value back into reg

CMP _BR_DELAYED mask(5),reg(5),tag(5),offset(9)

LD

R: read reg or mask tag and cmp

M:
W:

R:
reg(5),reg(5),reg(5),offset(9)

read regs and calculate source address

M: mem access
W: write reg

HASH reg(5),reg(5),reg(5),immediate(9)

TO

R: read regs
E:3+2i deref; read starting addr; linear search through immediate

number of entries
M: read address to jump to
W: write address into reg

reg(S),reg(S)
R: read reg
M:
W: write reg

FROM
R: read reg

reg(S),reg(S)

M:
W: write reg

ST reg(5),reg(5),immediate(14)

-48-

..

Special- or General-Purpose Hardware for Prolog

R: read regs and calculate destination address

M: mem access
W:

PUSH_ CHOICEPT
R: read B reg
E:l6 store choice point (15 regs); update HB
M:
W: write new B

POP_ CHOICEPT type(2)

trust
R: read B reg, calculate address of H

E:2 read new HB reg, calculate address of B; write HB,
read new B reg

M:
W: write B
cut/cutd
R: read B reg, read E ref, calculate address of H

E:3 read new HB, calculate address of B; write HB,

read new B; calculate address of H if loop

M:
W:
fail
R:
E:l2
M:
W:

SET_MODE
R:
M:
W:

PUSH_ENV
R:
E:3
M:
W:

POP_ENV
R:
E:3
M:
W:

MOVE
XX

write last B

read B
read new regs (12 regs) and update 11

write new B

bit(l),immediate(l)
execute set or reset for mode or cut bit

immediate(9)
read E
store environment (3 regs)

store 4th reg of environment
write new E

immediate(9)
read E reg
read environment regs (3 regs)

write new E

X/Y(l),X/Y(l),reg(5),reg(5)

-49-

October 1986

Special- or General-Purpose Hardware for Prolog

R: read reg
M:
W: write reg
XY
R: read reg, read E
M: write toY
W:
YX
R: read E
M: readY
W: write reg

PUSH_ ONTO_ HEAP
R: read reg and H
M: write to heap
W: update H

MAKEVAR
var I heap
R: read H
M: write var
W: update H
var I env
R: read E
M: write var
W: write into reg
1st I heap,str I heap
R: read H
M:
W: write into reg
safe
R: read E

reg(5)

type(3),reg(5),reg(5)

E:5 readY, read H; deref; write; update H

M:
W: write reg

UNDO_ TRAIL
R: read B and TR
E:31 read last TR; read first trail entry, decrement TR;

write to unbind, loop to read next trail entry if more

M:
W: write new TR

October 1986

~Y_X_BR_DELAYED type(3),get/ unify (1),incrS (1),reg(5),reg(5),offset(9)

Write:
canst/ get
R: read regs
E:4 deref; unify (cmp; write binding; write to trail; update TR)

-50-

Special- or General-Purpose Hardware for Prolog

M: last write of unify
W: update TR
1st/ get,str /get
R: read regs
E:4 deref, read H; unify
M: last write of unify
W: update TR
val/get;-moreToUnify
R: read regs
E:l6 deref; deref; push onto PDL if 1st or str, follow pointer;

follow other pointer; unify;

M:

update Ul and U2 (incr pointer and decdr or from

PDL if end of 1st or str)

W:
val/get/moretounify
R: read Ul and U2
E:l6 push onto PDL if 1st or str, follow pointer; follow other

pointer; deref; deref; unify;

M:
W:

update Ul and U2 (incr pointer and decdr or from

PDL if end of 1st or str)

Read Mode:
const/unify
R: readS
E:3 get item pointed to by S; unify
M: last write of unify
W: update TR
const/unify /incrS
R: readS
E:9 next pointed to by S; decdr, read H; unify {;write to heap;

update H}
M:
W: updateS
cdr/unify
R: readS
M: get item pointed to by S
W: write to dest reg
var /unify /incrS
R: readS
E:9 next pointed to by S; decdr, read H; unify {; write to heap;

update H}
M:
W: updateS
val/unify /incrs;- moreToUnify
R: read S and reg

October 1986

E: 17 next pointed to by S; deref; deref; push onto PD L if 1st or str,

-51-

Special- or General-Purpose Hardware for Prolog October 1986

follow pointer; follow other pointer, read H; unify; {write to
heap; update H;} update Ul and U2 (incr pointer and decdr or
from PD L if end of 1st or str)

M:
W: updateS
val/ unify /incrS /more To Unify
R: read Ul and U2
E:16 push onto PDL if 1st or str, follow pointer; follow other pointer;

deref; deref; unify;
update Ul and U2 (incr pointer and decdr or from
PD L if end of 1st or str)

M:
W:

Write Mode:
const /unify ,const /unify /incrS
R: read reg
M: write to heap
W: update H
cdr/ unify, var /unify /incrS
R: read H
E:l write to reg
M: write to heap
W: update H
val/unify /incrS
R: read H and reg
E:5 write to heap, unify
M:
W: update H

UNIFY_ Y_BR_DELAYED type(3),get/unify(l),incrS(l),reg(5),reg(5),offset(9)

same as UNIFY_X_BR_DELAYED with one extra cycle for access
to memory and read E reg (an extra cycle if it can't be done in parallel).

-52-

