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ABSTRACT

In Efroimsky & Makarov (Paper I), we derived from the first principles a formula for the tidal heating rate in a
homogeneous sphere, compared it with the previously used formulae, and noted the differences. Now we present
case studies: Mercury, Kepler-10 b, and a triaxial Io. A sharp frequency dependence of k2/Q near spin–orbit
resonances yields a sharp dependence of k2/Q (and, therefore, of tidal heating) upon the spin rate. Thereby physical
libration plays a major role in tidal heating of synchronously rotating planets. The magnitude of libration in the
spin rate being defined by the planet’s triaxiality, the latter becomes a factor determining the dissipation rate.
Other parameters equal, a strongly triaxial synchronized body generates more heat than a similar body of a more
symmetrical shape. After an initially triaxial object melts and loses its triaxiality, dissipation becomes less intensive;
the body can solidify, with the tidal bulge becoming a new figure with triaxiality lower than the original. We derive
approximate expressions for the dissipation rate in a Maxwell planet with the Maxwell time longer than the inverse
tidal frequency. The expressions derived pertain to the 1:1 and 3:2 resonances and a nonresonant case; so they
are applicable to most close-in super-Earths detected. In these planets, the heating outside synchronism is weakly
dependent on the eccentricity and obliquity, provided both these parameters’s values are moderate. According to our
calculation, Kepler-10 b could hardly survive the intensive tidal heating without being synchronized, circularized,
and reshaped through a complete or partial melt-down.
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1. MOTIVATION AND PLAN

In the work by Efroimsky & Makarov (2014, hereafter
Paper I), which precedes the current paper in this issue of
the Journal, we derived from first principles a formula for the
tidal dissipation rate in a homogeneous spherical body. When
restricted to the special case of an incompressible body spinning
synchronously, that result was compared to the commonly used
expression from Peale & Cassen (1978; Equation (31)), and
the differences were pointed out. Now, using the theoretical
exposition from Paper I, we demonstrate how tidal dissipation
can be estimated for synchronous and asynchronous rocky
planets.

Section 2 serves to remind the said expression for the tidal
dissipation rate. It is compared with the analogous formulae
from Kaula (1964) and Peale & Cassen (1978).

Section 3 gives an overview of the popular simplified formu-
lae derived from the theory by Peale & Cassen and explains the
highly restrictive conditions under which these formulae can be
used.

Section 4 presents the first example, Mercury. We show that
tidal heating is not likely to have played a major role in the
history of this planet, despite its considerable eccentricity and
the fact that Mercury is in the 3:2 spin–orbit resonance.

Section 5 addresses the second practical example, tidal
heating in Io. We provide arguments in favor of a hypothesis
that the energy damping rate in synchronous bodies may be
sensitive to triaxiality. This sensitivity stems from a very sharp,
kink-shaped frequency-dependence of k2/Q near resonances,
which is within the range of physical libration for significant
values of triaxiality. Our hypothesis bears a qualitative character

and should be propped up by numerical modeling, which will
be presented elsewhere.

Section 6 is devoted to the third example, Kepler-10 b, a
very dense super-Earth that may sooner be classified as a super-
Mercury (Selsis et al. 2013). Given the extreme proximity of
the planet to its host star (less than 0.017 AU), we presume
that the planet is experiencing a considerable tidal interaction
and may, therefore, be overheated. The mantle’s response in
this case is viscoelastic and may be approximated with the
Maxwell model. Assuming finite values of eccentricity and
equator obliquity, we estimate the rate of energy dissipation in
Kepler-10 b, for the case of synchronism and for other rotational
states. Tidal heating in this planet becomes so intense that the
temperature should be increasing by several degrees per year
if the eccentricity is pumped up by the companion planet.
We complete this section by sketching possible scenarios of
rotational and thermal evolution of such close-in planets subject
to extreme tides, including episodic melt-down and reshaping
of their surfaces.

In Section 7, we provide three simplified, approximate ex-
pressions for the dissipation rate: one for a synchronized planet,
another for a planet in a nonresonant rotation, and a third for a
planet trapped in the 3:2 spin–orbit resonance. These formulae
are derived for a specific case when the rheology is viscoelastic
(Maxwell, with no Andrade creep) and the Maxwell time is not
too small (larger than the inverse tidal frequency).

2. TIDAL DISSIPATION OF ENERGY

Consider a planet of mass M that is tidally disturbed by an
external body of mass M ∗. As seen from the planet, the perturber
describes an orbit parameterized by the Keplerian variables
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a, e, i, ω, Ω, M, which are the semimajor axis, eccentricity,
inclination, agrument of the pericenter, longitude of the node,
and mean anomaly.

In the frame of the planet, the external tide-raising potential
can be expanded in a Fourier series whose terms will contain
sines and cosines of ωlmpq t . Here t is time and ωlmpq are the
Fourier tidal modes. As explained, for example, in Efroimsky
& Makarov (2013), these are given by

ωlmpq = (l − 2p) ω̇ + (l − 2p + q) Ṁ + m (Ω̇ − θ̇ ), (1)

lmpq being integers, θ and θ̇ being the rotation angle
and spin rate of the disturbed body, respectively, and Ṁ =
dM/dt being the perturber’s “anomalistic” mean motion. While
the Fourier modes ωlmpq can assume either sign, the resulting
physical forcing frequencies are positive definite:

χlmpq = | ωlmpq | . (2)

In Paper I, we derive a general formula for the time-averaged
damping rate. When the apsidal precession of the perturber, as
seen from the perturbed body, is uniform, the rate is:

〈P 〉 = GM∗ 2

a

∞∑
l=2

(
R

a

)2l+1 l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)

l∑
p=0

F 2
lmp(i)

∞∑
q =−∞

G 2
lpq(e) ωlmpq kl(ωlmpq ) sin εl(ωlmpq ), (3)

where kl(ωlmpq ) and εl(ωlmpq ) are the dynamical Love numbers
and tidal phase lags.

Being even functions of the tidal modes, the dynamical Love
numbers may as well be understood as functions of the physical
frequencies (2):

kl(ωlmpq ) = kl(χlmpq ). (4)

The phase lags are odd functions of ωlmpq and have the same
sign as ωlmpq . So they may be written down as

εl(ωlmpq ) = | εl(ωlmpq ) |Sgn ωlmpq

= εl(χlmpq ) Sgn ωlmpq , (5)

where εl(χlmpq ) are non-negative, because so are χlmpq . All in
all, we have:

kl(ωlmpq ) sin εl(ωlmpq )=kl(χlmpq ) sin εl(χlmpq ) Sgn ωlmpq , (6)

where kl(χlmpq ) sin εl(χlmpq ) are positive definite and are often
denoted as kl/Ql .

The frequency dependence kl(χlmpq ) sin εl(χlmpq ) is derived
in the Appendix. It is a functional of the planet’s rheology and
also of its size and mass. At lower frequencies, self-gravitation
plays a key role in tidal damping, so the tidal quality factors
defined through 1/Ql = sin εl(χ ) differ considerably from
the seismic quality factor Q. However they approach Q at
higher frequencies where rheological properties become more
important than gravity (Efroimsky 2012a, 2012b).

3. LIMITATIONS ON A PREVIOUSLY USED FORMULA
FOR TIDAL DISSIPATION

Jackson et al. (2008) estimated tidal dissipation in 18 ex-
oplanets, relying on the following expression for the average
damping rate:

〈P 〉 = 36

19

π ρ2 n5 R7

μQ
e2, (7)

where ρ is the mean density, μ is the rigidity, and Q is the
tidal quality factor. The formula was adopted from the paper by
Peale et al. (1979) who referred to their preceding work (Peale
& Cassen 1978). We, however, failed to find an explicit presence
of this formula in Peale & Cassen.

In other publications (e.g., Mardling 2007, Murray & Dermott
1999, Segatz et al. 1988), a different expression is commonly
used:

〈P 〉 = 21

2

k2

Q

GM ∗ 2R5

a6
n e2, (8)

at times accompanied with a reference to the same paper by
Peale & Cassen (1978). Insertion of the approximate expression

k2 ≈ 3ρgR

19μ
, (9)

in the Equation (7) transforms the latter into the Equation (8),
although with a different numerical factor; namely, with 9
instead of 21/2.

The formula (8) can be obtained from the Equation (31)
of Peale & Cassen (1978). It also ensues from the more
general Equation (3) presented in our paper, when the following
restrictive assumptions are applied:

[1] The inclination i of the perturber’s orbit on the equator of
the perturbed body is set equal to zero;

[2] The terms of power 4 and higher in the eccentricity e are
neglected;

[3] Only quadrupole ( l = 2) inputs are included;1

[4] The consideration is limited to bodies rotating
synchronously;

Under the assumptions [1–3], only the terms with (lmpq) =
(201,−1), (2011), (220,−1), (2201) are to be taken into
account. From the formula (1), we see that for all these terms
the physical forcing frequency χlmpq ≡ |ωlmpq | approximately
assumes the same value n, provided the assumption [4] is also
imposed, i.e., provided that θ̇ = n. This way, in the case of
synchronous spin, k2/Q assumes the same values for all the
four terms taken into account within this approximation.

Now consider a situation where items [1] and [2] are relaxed,
items [3] and [4] are kept, and an extra, highly restrictive item
is added:

[5] the Constant Phase Lag (CPL) model of tides is adopted,
so the inverse tidal quality factor Q−1

lmpq ≡ sin | εl(ωlmpq) |
assumes the same value for all Fourier modes ωlmpq .

1 While l = 2 inputs are usually sufficient, sometimes terms with higher
values of l cannot be neglected. One such case is Phobos, whose orbital
evolution is influenced by the l = 3 and, perhaps, even the l = 4 terms (Bills
et al. 2005). Another class of exceptions is constituted by close binary
asteroids. The topic was addressed by Taylor & Margot (2010), who took into
consideration terms up to l = 6.
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Then the quadrupole part of the dissipated power (3) looks
as2

〈P 〉 = k2

Q

GM ∗ 2 R5

a6
n

[ (
3

2
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16
i4

)

+

(
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2
+

15

2
i2 − 85

64
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e2 +

(
2337

32
+

1311

64
i2

− 10499

256
i4

)
e4

]
+ O(i6) + O(e6). (10)

Importantly, for bodies with a significant i and small e the
term 3i2/2 can be by far greater than the 21e2/2 term (the
Earth–Moon system being an example). Comparing this with
Equation (8), we see that the neglect of a finite inclination (or
obliquity) is detrimental to the studies of tides in moons and
planets with significantly inclined equators (e.g., for the Moon).

It should be reiterated that the formula (10) was obtained
under the very restrictive assumptions [4] and [5] (i.e., for a
planet that is synchronized and whose k2/Q ≡ k2 sin ε2 is set
frequency independent).

4. CASE STUDY I: MERCURY

Of all the planets in the solar system, Mercury is the only
one captured into a 3:2 spin–orbit resonance. It is the closest
to the Sun and has the largest orbital eccentricity. This makes
one wonder if tidal heating could play any role in Mercury’s
evolution and segregation.

In the expansion (3) for the damping rate, a term numbered
with lmpq contains a multiplier ωlmpq . For this reason, when
the planet is in an lmpq spin–orbit resonance, the input from the
lmpq Fourier mode into tidal heating is zero. For example, the
dominating (at small eccentricities) semidiurnal Fourier tidal
mode 2200 contributes no heat when the rotator is in the exact
1:1 resonance. The physical meaning of this circumstance is
that a Fourier component of the tidal bulge, which moves with
the same angular velocity as the perturber, does not lag and,
therefore, generates no friction. The other components of the
bulge, however, do lag and, thereby, do contribute to heating.

One exception is the case of a synchronous rotation with
e = 0, a situation where tidal dissipation ceases completely,
the tidal bulge being at rest with respect to the perturbed body.
Ultimately, any planet that happens to be a sole companion to
its star should come to this state of complete circularization and
synchronization, which is the only long-term equilibrium state
(Hut 1980; Bambusi & Haus 2012).

However, Mercury (as well as several known close-in exo-
planets) is a part of a multiple-planet system. The pull from
its fellow planets prevents Mercury’s eccentricity from keeping
too low a value. Detailed numerical simulations demonstrate
that Mercury’s eccentricity has varied over aeons within a rather
wide interval, mostly between 0.1 and 0.3 (Correia & Laskar
2009), so its current value (0.20563) is not extraordinarily high
for this planet. However, this significant eccentricity is not a very
important factor in the thermal history of Mercury, because in

2 The expression (10) is valid for the CPL model (i.e., for a frequency
independent k2/Q). An analogous formula for the CTL model (with k2/Q
linear in frequency) was written down by Wisdom (2008). Naturally, the
higher coefficients in our formulae differ, although the leading terms coincide
and contain the same coefficient 21/2 as in the expression (8) in this section. In
Section 7, we shall derive similar formulae for a planet of Maxwell rheology
with τ

M
χ 	 1, in a 1:1 spin–orbit state, in a non-resonant rotation, and in a

3:2 state.
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Figure 1. Time-averaged tidal dissipation rate dE/dt = 〈P 〉 in a uniform
Mercury captured into the 3:2 spin–orbit resonance. Top: decimal logarithm
of the dissipation rate vs. the normalized rotation frequency θ̇/n, in a close
vicinity of the resonance, for e = 0.20563. Bottom: the rate of dissipation vs.
the normalized rotation rate, for three values of eccentricity in the ascending
order: e = 0.1, e = 0.20563, and e = 0.3. (The vertical scale in the right pane
is log-linear.)

(A color version of this figure is available in the online journal.)

the series (3) the leading term (the one with lmpq = 2200) is
of the order of O(e0).

Figure 1 illustrates the dependence of the damping rate on the
dimensionless spin rate θ̇/n. The top plot depicts a very narrow
vicinity of the resonant frequency, and shows in detail the cleft
caused by the vanishing second-largest tidal term lmpq = 2201.
The cleft is hardly of any practical significance, because the
rotation rate of the planet performs forced libration within a
much wider range than the one in the graph. The width of
this feature is defined mostly by the average viscosity, or by
the Maxwell time of the body. The right plot gives the same
dependence for a much wider interval of values of the spin rate,
and for three values of eccentricity, e = 0.1, 0.20563, and 0.3,
going from the lower to the upper curve, respectively. Although
increase in the eccentricity yields a stronger dissipation, the
dependence is not as strong as in the synchronous-rotation
case (cf. Section 5). In calculating these graphs, we assumed
an effective rigidity μ = 0.8 · 1011 Pa and Maxwell time
τ

M
= 500 yr, which are close to Earth’s values.

Peale & Cassen (1978) suggested that the presence of a
liquid core inside a planet should enhance tidal damping by
roughly 3–15 times, compared to a uniform body of the same
mean density and mass. They based this conclusion on the
observation that the thinner outer layer (rocky mantle), when
supported by a less rigid core, can move more freely under
the action of the internal stress. If this conclusion is right,
the boost to energy dissipation can be especially strong in

3



The Astrophysical Journal, 795:7 (10pp), 2014 November 1 Makarov & Efroimsky

Mercury, as its molten core may account for up to 85% of
the total mass. A further increase of the tidal response may
come from the possible presence of a solid Fe S layer at the
top of the core (Padovan et al. 2014). We would suppose that
the actual rate of dissipation can be an order of magnitude
higher than what is shown in Figure 1. Even with this upgrade,
however, the estimated rate of dissipation is much smaller than
the production of electric power by the mankind.3 It is also very
close to the present-day tidal heating rate of the Moon, which is
log (dE/dt) = log 〈P 〉 = 9.1, the power dE/dt = 〈P 〉 being
measured in Watts and the logarithm being decimal. So tidal
heating is unlikely to have made an impact on the formation of
Mercury’s molten core.4

5. CASE STUDY II: IO

The most famous manifestation of tidal dissipation is the
volcanism of Io. That Io is subject to intense tidal heating was
pointed out by Peale et al. (1979) in their cornerstone work,
which drew considerable attention to the problems of thermal
balance in moons. Although the authors brilliantly predicted the
semi-molten state of Io’s interior, their estimate of damping rate
may need re-examination.

To compute the dissipation intensity, we used our
Equation (3), with Io’s inclination set to zero. With the max-
imal moment of inertia written as C = ξMR2, the coefficient
ξ was assumed to be ξ = 0.37685. As an estimate for the
mean rigidity, we adopted a value close to that of the Moon:
μ = 0.65×1011 kg m−1 s−2 (Eckhardt 1993). The least-known
parameter, the Maxwell time, was set to be τM = 1 day, close
to the expected value for Titan (F. Nimmo, 2013, private com-
munication). The Andrade time, τA, was set to infinity. Thus, it
was assumed that the reaction of the material is purely Maxwell,
with no Andrade creep (see the Appendix for details and ref-
erences). The motivation for the latter decision comes from the
fact that Io’s mantle is partially molten, so the friction in it is
mainly viscoelastic, with no significant input from dislocation
unpinning.

Figure 2 illustrates how the heating depends on the angular
velocity θ̇ in the vicinity of the 1:1 spin–orbit resonance. The
figure shows the damping rate dE/dt = 〈P 〉 plotted against
the quantity θ̇/n−1, which is the deviation of the dimensionless
spin rate from the synchronous rotation. The synchronous spin
is stable because a slight tilt of the longest axis away from
the direction to the planet enables the triaxiality-caused torque
to compensate for the time-averaged tidal torque (Goldreich &
Peale 1966; Makarov & Efroimsky 2013; Williams & Efroimsky
2012). As expected on the general dynamical principles, the
stable equilibrium (synchronous spin) corresponds to a local

3 Back in 2012, the world annual electricity net generation was about 22500
TWh.
4 Qualitatively, our conclusion that tidal heating does not add much to the
energy budget agrees with the study by Schubert et al. (1988). In Schubert
et al., thermal convection lasts for 3 Gyr without tidal heating but can, under
favorable conditions, be maintained for additional 225 Myr if tides are taken
into account. Quantitative comparison of our results with those from Schubert
et al. is however impossible, because those authors employed an old model
assuming that Mercury formed hot, with early differentiation of the iron core.
This is no longer regarded probable—see, e.g., Noyelles et al. (2014), and
references therein. Our conclusions are in good agreement with the results
obtained by Bills (2002). Although Bills claims that tidal damping in
Mercury is important, his formulae evidence the opposite. Estimating
the tidal damping rate, the author forgot to multiply the overall factor of
n5 R5/(2 G) = 2.49 × 1011 W by the sum of the series itself—which, very
roughly, is of the order of k2/Q. With that omission corrected, Bills’s estimate
would become several orders of magnitude lower.
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Figure 2. Time-averaged rate of energy dissipation in Io, dE/dt = 〈P 〉, as a
function of the spin rate θ̇ , in the vicinity of the 1:1 spin–orbit resonance.

(A color version of this figure is available in the online journal.)

minimum of energy dissipation (i.e., to the most energy-
frugal position in the considered patch of the phase space).
In this minimum, the energy-loss rate is ≈5 × 1013 W. This is
significantly larger than the original estimate by Peale et al.
(1979), but is somewhat smaller than the estimate (9.33 ±
1.87) × 1013 W obtained from astrometric observations by
Lainey et al. (2009) who also used an extra assumption that the
CPL model is applicable to Io. Given the intrinsic uncertainty
of some of our parameters, we find the coincidence up to a
factor less than two to be a good match. The fact that the model
reproduces (within a factor of two) the result from Lainey et al.
(2009) may argue in favor of the Maxwell time being close
to one day. For purely Maxwell rheology, the quality factor is
inversely proportional to τ

M
if τ

M
n 
 1, which is the case here.

Therefore, setting τ
M

= 0.1 days would increase the dissipation
rate by a factor of 10. A perfect match with the estimate from
observations is achieved for τ

M
≈ 0.5 days.

A word of caution is in order here. Deriving the tidal
dissipation rate (3), we carried out averaging over one or several
periods of tidal flexure. Such a period is not very different
from the orbital period. So, by averaging over this timescale,
we ignored the contribution from free or forced librations.
This approach is legitimate for any long-term state where tidal
dissipation is driven mostly by the secular components of polar
torque (i.e., anywhere outside spin–orbit resonances). However
in resonances a more accurate treatment would be required,
which would bring libration terms into the picture.

For example, the curve in Figure 2 represents the damping
rate that would be achieved if the spin rate stayed at a given
near-resonant value. In reality, however, it is only the average
spin rate that stays resonant, while the instantaneous spin rate
undergoes variations over the period of averaging. The planet
approaches a spin–orbit resonance relatively slowly, but is
captured into resonant rotation very quickly, typically within
one period of free libration (e.g., Makarov 2013). In the process
of capture into a resonance (2 +q) : 2, the evolution of the angle
γ ≡ θ − (1 + q/2 ) M abruptly switches from circulation to
oscillation, and the orbit-average spin rate θ̇ assumes a near-
resonant value. Immediately after the capture, the magnitude of
free librations is close to the maximal possible value, but these
librations are quickly damped by tidal friction. However the
forced librations do not go away because they are caused by the
eccentricity. As a result, the instantaneous spin rate oscillates
around the resonant value, insofar as the neighboring planets’
gravity keeps the residual eccentricity nonvanishing.

4
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To understand the importance of the libration terms of θ̇ ,
note that, generally, these terms multiplied by the harmonics
of torque do not average out to zero. Thus libration contributes
to the power exerted by the tidal torque and, thereby, to the
dissipation. Therefore, in the presence of librations, the energy
dissipation rate is higher than it would have been without
libration. Unfortunately, the Fourier decomposition of the tidal
and triaxial torque is very complex, both for the Andrade
model and for its simplified version, the Maxwell model. It
is not obvious whether a satisfactory analytical treatment of the
problem can be obtained. For now, we resort to an approximate,
qualitative reasoning described below.

To estimate the role of physical librations in heating, we
simulated the spin of Io subject to both the triaxiality-caused
torque and the tidal torque, whose averages balance one another
and make the synchronous rotation state that of a stable
equilibrium. The formulae for these torques can be looked up in
our preceding paper (Makarov et al. 2012, Equations (4)–(6)).
The simulation demonstrates that the forced libration of Io
ranges, approximately, from −0.5 to 0.3 arcsec in the libration
angle θ −M, and within ± 2 × 10−6 in θ̇/n−1. Assuming that
there are no free or other long-period librations present, the tiny
amplitude of the forced librations samples a tiny segment around
the minimum of the dE/dt = 〈P 〉 curve in Figure 2. Within that
vicinity, the curve is quite flat, and the variation of dissipation
rate due to libration is negligible. However, the amplitude of
the forced librations is sensitive to the triaxiality parameter
(B − A)/C (and, of course, to the eccentricity e). In our
calculation we used the value (B−A)/C = 6.4×10−3 borrowed
from Anderson et al. (2001). If we increase (B − A)/C by a
factor of two, we find the half-amplitude of libration to increase
to ≈4 × 10−5. Due to the concavity of the dE/dt = 〈P 〉
curve, the rate of dissipation goes up by roughly a factor of two.
We see that the shape of a moon plays a significant role in its
tidal heating.

We conclude that, with the other parameters equal, less
axially symmetric (more triaxial) moons should be subject to
a significantly stronger heating than their more rotationally
symmetric peers. Io represents a borderline case, obviously
being close to complete meltdown. It appears entirely plausible
that Io had a more elongated shape in the past. Later, because
of the excessive tidal heating, it melted down (or, rather, up)
to the surface and underwent a drastic reshaping. Acquiring
a more symmetric shape helps a tidally perturbed body to
lower the heat production in the state of synchronous rotation.
The diminished heat flux allows the crust to emerge. The
upper mantle becomes colder and less prone to alter its shape
under varying tidal stresses. Thus the tidal bulge solidifies and
becomes the new triaxial figure. Speculatively, Io could have
gone through several such seesaw variations, having gradually
reshaped itself to more symmetrical forms, especially if the rise
of dissipation was assisted by episodical boosts in eccentricity
or inclination.

The above reasoning is qualitative, so it requires further
numerical confirmation. Results of numerical modeling of this
situation will be reported elsewhere.5

5 The influence of librations upon tidal heating of Enceladus was studied
analytically by Wisdom (2004). He considered a very special case where the
libration period was about three times longer than the orbital period, so the
direct employment of the formula for the time-averaged damping rate was
legitimate, at least for qualitative estimates. Also note that in Wisdom (2004)
the CTL (constant time lag) model was used.

6. CASE STUDY III: Kepler-10 b

Kepler-10 b was the first confirmed terrestrial planet discov-
ered outside the solar system (Batalha et al. 2011). It is lo-
cated remarkably close to its host star, the semimajor axis being
only 2.520 × 109 m, which is less than 0.017 AU. Among the
super-Earths discovered with the sensitive Kepler photometer,
Kepler-10 b stands out as one of the smallest and densest bod-
ies known outside the solar system. With an estimated mass of
4.44 Mearth and the radius 1.42 Rearth (Batalha et al. 2011), the
mean density of the planet comes up to 8640 kg m−3, which
is almost 60% greater than the mean density of the Earth, the
densest planet in the solar system. Though, long ago, Sir Isaac
Newton (1687) discovered the remarkable fact that the Earth is
four to five times denser than Jupiter, here we are dealing with
a planet considerably more massive than the Earth and several
times more dense than gas giants. This leaves little doubt that the
planet is terrestrial, unlike the distinct category of “hot Jupiters,”
which are more massive but have mean densities between 0.3
and 3 densities of Jupiter. The mean density of the Earth interior
is equal to the local density at approximately 3500 km radius,
where the core-mantle boundary is located. The greater density
of Kepler-10 b may very well indicate that the relative radius
of its molten core (the actual radius of the core, divided by the
overall radius of the planet) is larger than the relative radius of
the molten core of the Earth. If this is the case, then Kepler-
10 b may be classified, in terms of its internal composition, as a
super-massive Mercury.6 Following Peale & Cassen (1978), we
speculate that the core can boost tidal damping by a factor of a
few to several. However, we shall not attempt to take this extra
boost into account, because it is not large enough to change our
conclusions.

6.1. The Spin State, Orbit Motion, and
Rheology. An Educated Guess

Presently, we possess observational data neither on the
rotation of Kepler-10 b, nor on its obliquity. The eccentricity
of Kepler-10 b could not be determined in Batalha et al. (2011),
because the signal detected in the follow-up spectroscopic
observations of the host star was too weak for a confident
estimation. A recent analysis carried out by Fogtmann-Schulz
et al. (2014) indicates that the eccentricity is extremely small.
Although the value 0.050+0.012

−0.050 provided in Fogtmann-Schulz
et al. is consistent with the eccentricity being zero, it should be
interpreted as an upper limit. Setting e = 0 is not an option,
because the orbit is likely to be excited by a more massive
neighbor, the planet Kepler-10c.

Under regular circumstances, tidal dissipation of the orbital
kinetic energy in a two-body system is wont to damp both the
eccentricity and obliquity. Important exceptions are:

1. Multiple-planet systems, where mutual interactions be-
tween the planets can pump up both the eccentricity
and obliquity of the inner planet (Correia et al. 2012;
Greenberg et al. 2013).

2. Situations where either a close-in planet or the star rotates
faster than the orbital motion in the prograde sense. In
particular, if the star rotates faster than n, the tidal bulge on

6 It should be noted that our understanding of terrestrial exoplanets does not
stand only on comparisons with the density of the Earth, as the compressibility
of the mantle has to be taken into account for the large pressures reached
inside massive planets. Various works have addressed the possible internal
structure of these objects in general and of Kepler-10 b in particular (e.g.,
Grasset et al. 2009; Valencia et al. 2010; Zeng & Sasselov 2013).
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it leads the direction to the planet. An increase in both e and
a ensues (see, e.g., Murray & Dermott 1999). The lag on
the star may be small, but it’s enough to keep the planet’s
eccentricity nonvanishing. A slow tidal dissipation in the
star also means it can retain its fast rotation for a long time,
no matter how massive the close-in planets happen to be.
The described situation is analogous to the Earth–Moon
system whose eccentricity and semimajor axis are both
increasing.

Thus, finite residual eccentricities and obliquities should not
be unusual for close-in planets. The presence of the more
massive and distant planet Kepler-10c with an orbital period
of 43.3 days (Fressin et al. 2011; Dumusque et al. 2014), makes
it likely that the inner planet is neither completely circularized
nor aligned. So we consider small residual values of e and i.
Somewhat arbitrarily, we chose two cases: one of e = 0.001
and i = 0.001, another of e = 0.001 and i = 0.0001. However,
the possibility of larger values cannot be precluded.

For the close-in super-Earths GJ 581d and GJ 667Cc, which
are members of multiple systems, a 3:2 or higher spin–orbit
resonance was found to be a more likely end-state than the
synchronous rotation, provided the initial spin rate was high in
the prograde sense (Makarov et al. 2012; Makarov & Berghea
2013). For Kepler-10 b, however, tidal interactions are stronger;
so the chances of this overheated (and, possibly, semi-molten)
planet being in a higher than synchronous spin–orbit resonance
are far from obvious, as we shall see shortly.

The next most significant uncertainty in our analysis is
the rheology of Kepler-10 b. The frequency dependence of
k2/Q is defined by two major physical circumstances, the self-
gravitation of the planet and the rheology of its mantle. A rhe-
ological law (i.e., an equation interconnecting the strain and
the stress) contains contributions from elasticity, viscosity, and
inelastic processes (mainly, dislocation unjamming). Together,
these three factors render a so-called Andrade creep (Efroim-
sky 2012a, 2012b). It should be noted that a mantle behaves
as the Andrade body at higher frequencies only, and changes
its behavior toward the Maxwell model at lower frequencies.
This happens because, at frequencies below a certain thresh-
old, only elasticity and viscosity contribute to the rheological
response of the mantle. Above the threshold, dislocation un-
pinning (unjamming) plays a considerable role. The value of
the threshold frequency is highly sensitive to the temperature
of the mantle, as can be seen from formula (17) in Karato &
Spetzler (1990). The formula indicates that, for realistic binding
energies, a 10 to 20 % increase in temperature can increase the
threshold frequency by an order or two of magnitude. Given
that for the Earth the threshold is of the order of 1 yr−1, we
see that for overheated planets the threshold may be as high
as 1 day−1. It would be even higher for higher temperatures of
the mantle.

Speaking of the planet Kepler-10 b, we assume that, owing
to intensive tidal heating, its mantle should contain a lot of
partial melt and thus have a low average viscosity. The Maxwell
time, therefore, is likely to be much shorter than those of the
Earth or Mercury. It should be closer to the Maxwell times
for icy satellites, which is believed to be of the order of days.
With an orbital period of about one day, Kepler-10 b should
experience tides at frequencies of the order 1 day−1, with these
frequencies likely being below the Andrade-Maxwell threshold.
So the Andrade mechanism of tidal friction (unpinning of
dislocations) is likely to be less significant for this planet,
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Figure 3. Time-averaged rate of energy dissipation dE/dt = 〈P 〉 in Kepler-
10 b, as a function of the dimensionless rotation rate θ̇/n, in the vicinity of the
1:1 spin–orbit resonance. The two curves (one computed for τ

M
= 10 days,

e = 0.001, i = 0.001, another for τ
M

= 10 days, e = 0.001, i = 0.0001)
virtually coincide and can barely be distinguished from one another.

(A color version of this figure is available in the online journal.)

allowing us to use a purely Maxwell model.7 Armed with
these considerations, we now have to build the so-called quality
functions kl(ωlmpq ) sin εl(ωlmpq ) standing in the expression (3)
for the damping rate.

6.2. Tidal Dissipation Rate in the 1:1 Spin–Orbit Resonance

Each term of the series (3) contains a quality function.
These are calculated by the below formula (12), with the
expression (13) built in. The result is presented in Figure 3,
which depicts the dependence of tidal damping upon the spin
rate of Kepler-10 b (assuming it has a rocky mantle). For this
computation, however, we assumed a rather short Maxwell time
of 10 days, taking into account that the mantle may have a
lot of partial melt in it. A small residual eccentricity of 0.001
was also accepted, and two values of i were explored: 0.001
and 0.0001.

The curves corresponding to the two values of inclination are
so close on the graph that it is difficult to see a separation between
them. We also note that everywhere outside a narrow vicinity
of the 1:1 resonance the rate of damping is flat (i.e., almost
independent of the spin rate). The sharp cleft is easily explained
by the expression (12) from which we see that k2/Q vanishes in
the zero-frequency limit. More generally, an lmpq term of the
series (3) vanishes when the tidal mode ωlmpq goes through zero,
while outside the resonance the input from this term is relatively
flat. More subtle variations of the tidal dissipation rate around
the resonance are concealed in this figure by the logarithmic
scale.

Both the perceived flatness of the curve outside the main
resonances and the apparent weak dependence on i are explained
by the approximate Equation (14) derived in Section 7, for
the special case of τ

M
n 	 1, which is valid for the chosen

parameters of Kepler-10 b, as well as for a large class of
short-period super-Earths that are not completely molten. If
we fix the obliquity at i = 10−5, we obtain the following
estimates for the rate of dissipation at the exact 1:1 resonance:
log(dE/dt) = 17.30, 15.36, and 13.30 for e = 10−3, 10−4, and
10−5, respectively. The rate of dissipation increases by almost

7 In the past, several other rheological models were employed in the literature
(e.g., Henning et al. 2009; Heller et al. 2011; Henning & Hurford 2014).
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exactly two orders of magnitude for each order of magnitude
increase in e, as expected from the Equation (14) when the
O(i2) terms in it are small. In the tidal regime in question, when
τ

M
n 	 1, the quality function is proportional to τ

M
, as can

be seen from the Equation (A9). Therefore, the dissipation rate
is less strongly dependent on τ

M
than on e, and the inevitable

uncertainty in the former parameter is relatively less restrictive.
The absolute values in Figure 3 can be used only for very
general guidance and comparison with the previous estimates
for Mercury and Io, but the character of the curves is valid for a
significant range of these critical parameters.

Thus, in synchronous spin–orbit resonance, Kepler-10 b will
dissipate less energy, by roughly five orders of magnitude, than
in any other rotation state, including the 1:2 and 3:2 resonances.
The ensuing implications for the destiny of such close-in planets
are dramatic. If a planet does not succeed in falling into the
state 1:1, and gets captured into a higher spin–orbit resonance,
the rate of tidal dissipation in the planet becomes so high
that its temperature should be growing by several degrees per
year.8 This should be enough to quickly melt the planet to the
surface and make it a ball of magma. In a very close vicinity
of the host star, planets rotating synchronously may remain
solid for a longer time than asynchronous planets. Still, even
synchronized planets may not be able to survive for longer than
∼1 Myr in a solid form. The existence of close-in, high-density
planets requires scenarios of their survival at a higher level of
complexity, which remain somewhat speculative because of the
lack of accurate data.

6.3. Possible Scenarios for Extremely
Close-in Terrestrial Planets

One possible scenario for a close-in terrestrial planet is
the following. If the orbital eccentricity and obliquity are not
excited by a third body, and the star does not pump up these
parameters by the transfer of angular momentum from its own
rotation, the orbit should relatively quickly circularize, and the
obliquity should decrease. This would drive the tidal dissipation
down to small values. As we explained above, in the space of
parameters there exists a dip wherein the tidal dissipation rate is
minimal. This is the synchronous rotation with a zero or near-
zero obliquity. In this regime, the damping rate is by orders
of magnitude lower than in a non-resonant state or in a higher
resonance. In the presence of a non-zero residual eccentricity,
the planet should also be almost perfectly spherical in order to
get a respite from the excessive tidal heating through libration
(see Section 5).

In multiple systems, the eccentricity and obliquity of close-
in planets can be excited by external interactions. In this
situation, a young planet gets completely molten even if it is
synchronized—so it loses its permanent figure before the orbit
circularization and obliquity decrease take place. Residing at
the bottom of the energy dissipation dip ( e ≈ 0, i ≈ 0, spin =
1:1), the planet then begins to cool down and may eventually
solidify on the surface. The stationary tidal bulge becomes the
permanent figure of the newly formed mantle. But the planet is
safe now, sitting in the dip and dissipating almost no energy due
to its more axially symmetric shape. The tidal evolution of the
orbit and obliquity ceases too, unless the tidal dissipation in the
star can drive the eccentricity to higher values again.

8 For the planet’s heat capacity we adopted a value of 1200 Jkg−1K−1 from
Běhounková et al. (2011).

7. ANALYTIC APPROXIMATIONS FOR A WARM
MAXWELL PLANET

Introduced as a function of the Fourier tidal mode ωlmpq ,
the product kl(ωlmpq ) sin εl(ωlmpq ) can be also written down as
a function of the positive definite forcing frequency χlmpq ≡
| ωlmpq | :

kl(ωlmpq ) sin εl(ωlmpq ) = kl(χlmpq ) sin εl(χlmpq ) Sgn ωlmpq

= kl(χlmpq )

Ql(χlmpq )
Sgn ωlmpq , (11)

see Section 2.
For a homogeneous planet obeying the Maxwell rheological

law, the frequency dependence of kl /Ql = kl (χ ) sin εl (χ ) is
furnished by the expression

(Maxwell)
kl (χ ) sin εl (χ ) = 3

2

Al (χ τ
M

)−1

(
1 + Al

)2
+ (χ τ

M
)−2

, (12)

derived in the Appendix. Here τ
M

is the Maxwell time, χ =
χlmpq ≡ |ωlmpq | is the forcing frequency corresponding to an
lmpq tidal mode, and Al are dimensionless factors reflecting
the interplay of self-gravitation and rheology in tidal response.
Being interested in the principal, quadrupole part of the expan-
sion (3), we need the expression for A2 :

A2 ≡ 19μ

2 g ρ R
= 19

2

μR

Gρ M

= 57μ

8 π Gρ2 R2 = 57

8 π Gρ2 R2 J
, (13)

ρ, g, R, M being the planet’s mean density, surface gravity,
radius and mass, respectively; G being the Newton gravitational
constant; and μ and J = 1/μ being the unrelaxed rigidity and
compliance, respectively. For an Earth-sized planet, A2 ≈ 2
(Efroimsky 2012b, Table 1).

By inserting the expression (13) into (12), plugging the result
into the series (3), retaining only the l = 2 part, and expanding
it over e and i, we arrive at an expression for the dissipation rate,
written as a series over powers of e and i. In the special case of
a warm but not completely molten super-earth or icy satellite,
we can simplify the series further by assuming that τ

M
χ 	 1.

With this simplification taken into account, and after truncating
powers six and higher, we obtain an approximation for the time-
averaged energy-damping rate dE/dt = 〈P 〉 in a synchronised
planet:

〈P 〉 = 3

2

GM ∗2 R5

a6

A2

τ
M

(1 + A2)2

[(
3

2
i2 − 37

32
i4

)

+

(
21

2
− 27

8
i2 +

27

16
i4

)
e2 +

(
1125

64
+

213

32
i2

−3499

256
i4

)
e4

]
+ O(e6) + O(i6), (14)

and in a non-resonant planet:
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〈P 〉 = 3

2

GM ∗2 R5

a6

A2

τ
M

(1 + A2)2

[(
3

4
+

3

4
i2 − 13

16
i4

)

+

(
27

4
+

9

4
i2 − 39

16
i4

)
e2 +

(
1503

64
+

9

2
i2

− 3849

256
i4

)
e4

]
+ O(e6) + O(i6), (15)

and in a planet trapped in the 3:2 resonance:

〈P 〉 = 3

2

GM ∗2 R5

a6

A2

τ
M

(1 + A2)2

[(
3

4
+

3

4
i2 − 13

16
i4

)

+

(
−39

16
+

183

16
i2 − 851

128
i4

)
e2 +

(
2043

32
− 2295

64
i2

+
1773

512
i4

)
e4

]
+ O(e6) + O(i6) , (16)

where M ∗ is the mass of the star. As ever, P is the power exerted
by the tidal stresses, and 〈 . . . 〉 denotes time averaging over one
or several cycles of tidal flexure. Insofar as the truncation of
O(e6) + O(i6) is legitimate (conservatively, for e � 0.2), three
conclusions stem from the above formulae.

1. In synchronized planets, the leading-order inputs into the
energy dissipation rate dE/dt = 〈P 〉 must scale as 3/2 i2

and 21/2 e2. Accordingly, 〈P 〉 in such planets scales as
either 3/2 i2 or 21/2 e2, whichever is greater.

2. Tidal dissipation in non-resonant planets is virtually inde-
pendent of e or i.

3. Likewise, the dissipation rate at the 3:2 resonance is
virtually independent of e or i.

The latter conclusion may look somewhat counterintuitive,
but it is easily propped up by the following observation. In the
series (3) for the damping rate, the semidiurnal (lmpq = 2200)
term is the largest and it scales with both e and i as O(1).
The second-largest term (the one with lmpq = 2201) turns out
to be proportional to 3n − 2θ̇ , whereby it vanishes in the 3:2
spin–orbit resonance. Hence, in this resonance, we are left with
the obliquity- and eccentricity-independent semidiurnal term, as
well as many terms that are much smaller. In Figure 3, the two
curves (corresponding to the case of e = 0.001, i = 0.001 and
the case of e = 0.001, i = 0.0001) virtually coincide, because
in the Equation (14) the dominating term scales as 21/2 e2, with
the obliquity-dependent terms being less important.

8. CONCLUSIONS

We have demonstrated that tidal dissipation is a considerably
more involved topic than was assumed in many studies con-
ducted after the seminal work by Peale & Cassen (1978). The
commonly accepted in the literature approximate formula (8)
for the damping rate follows from the Equation (31) in Peale
& Cassen (1978), provided that the inclination (or obliquity)
is set at zero and higher-order terms in the eccentricity are ne-
glected. It can also be derived from a more general expression,
our formula (3), under an extra assumption that the rotator is
synchronized.

On the examples of Mercury, Io, and Kepler-10 b, we
addressed a broad range of issues emerging from the so-revised
theory of tidal dissipation. The main practical highlights are as
follows.

1. Like Mercury, close-in exoplanets of terrestrial composi-
tion may be captured into stable, long-term asynchronous
resonances, such as 3:2 or 2:1. In such states, the planets
have a net rotation with respect to the mean direction to
the star. The tidal bulge runs across their surface, which
results in a dissipation rate that is higher, by orders of mag-
nitude, than the dissipation rate in a synchronized planet.
This conclusion is fortified by our expressions (14)–(16)
for the damping rate in a planet, in the case when it is syn-
chronized, or nonresonant, or in a 3:2 spin–orbit resonance,
respectively. These formulae were derived for a planet that
is described with the Maxwell rheology and is sufficiently
close-in (so that τ

M
χ 	 1, where τ

M
is the Maxwell time

and χ is the principal tidal frequency).

2. Planet–planet orbital interactions play a crucial role in
defining the ultimate fate of those rocky planets that
managed to get close to their stars. If a considerable
eccentricity is secularly excited by the outer companions,
both the orbital evolution rate and the tidal heating become
boosted by a few to several orders of magnitude. Our
preliminary calculations show that such planets should be
liquefied, even when they are settled in the absolute energy
minimum (the 1:1 resonance, with a zero or near-zero
inclination).
A planet can, however, survive in the rocky state, provided
there is no significant planet–planet orbital interaction
pumping up its eccentricity or the obliquity. For such
survivors, the tidal dissipation in the host star may become
an important factor. Specifically, if the rotation of the star is
prograde and is faster than the orbital motion, it will pump
up the eccentricity and may also lead to a finite obliquity
that, in turn, will perturb the orbit inclination (Teyssandier
et al. 2013). All these circumstances will channel the kinetic
energy into the heating of the close-in planet, resulting in
its liquefaction. It appears that most of the host stars with
transiting close-in giant exoplanets rotate slower than these
planets’ n (Matsumura et al. 2010, Table 1).

3. We have hypothesized that the tidal damping rate can be
considerably boosted by physical librations. The hypoth-
esis stems from the following considerations. An lmpq
term of the expression (3) for the damping rate contains
a multiplier kl(χlmpq ) sin εl(χlmpq ) that depends on the
physical frequency χlmpq . This dependence is extremely
sharp near resonances (i.e., in closest vicinities of the
zeroes of the frequency). As obvious from the expres-
sion (2) for the frequency, we can interpret the multipliers
kl(χlmpq ) sin εl(χlmpq ) as functions of the rotation rate θ̇ .

Their dependence on θ̇ will also be very sharp when a reso-
nance is near (i.e., when θ̇ is very close to (l−2p+q)n/m).
Due to the sharp form of this dependence, even a tiny de-
viation of θ̇ from a resonant value will change the effective
value of k2/Q considerably. This situation is best illustrated
by Figure 3, where the dependence of the average dissipa-
tion rate upon θ̇ is depicted in a close vicinity of the 1:1
spin–orbit resonance.
The sensitivity of the energy damping rate to the values of
θ̇ indicates the key role played by the physical libration in
the tidal heating process. Although physical libration does
not change the mean value of the spin rate (which stays res-
onant), the libration yields variations of the instantaneous
value of θ̇ . We have provided qualitative argumentation
showing that these variations should increase the overall
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rate of heat production. However, our physical arguments
are not yet rigorous proof. The latter needs to be obtained
through accurate numerical simulations.

4. The magnitude of libration in the spin rate being defined
by the planet’s triaxiality, the latter should be a significant
factor determining the dissipation rate at spin–orbit reso-
nances. Other parameters being equal, a body with a more
pronounced triaxiality should generate more heat than a
similar body of a more symmetrical shape. On the other
hand, we surmise that a feedback may also exist, in that
the rate of tidal heating may change the shape of close-in
planets through repeated episodes of complete melt-down.

The authors deeply thank both referees (Patrick Taylor and an
anonymous referee) for their detailed and very thoughtful report
on earlier versions of this work. The authors are also indebted
to James G. Williams for reading the manuscript and offering
very important comments. All these colleagues have helped the
authors greatly to improve the quality of the paper.

APPENDIX

HOW RHEOLOGY AND SELF-GRAVITATION
DETERMINE THE FREQUENCY DEPENDENCIES OF

LOVE NUMBERS AND PHASE LAGS

The time-averaged dissipation rate in a homogeneous planet
is given by the expression (3), provided the apsidal precession of
the star, as seen from the planet, is uniform. An lmpq term of that
expression contains a quality function kl(ωlmpq ) sin εl(ωlmpq ).
Interplay of self-gravitation and rheological properties of the
planet makes the forms of these functions nontrivial, although
some qualitative features of these dependencies are generic and
invariant of rheology and size.

As demonstrated, for example, in Paper I, a quality
function of a Fourier mode ωlmpq can always be written down
as a function of the appropriate physical frequency
χlmpq = |ωlmpq |:

kl(ωlmpq ) sin εl(ωlmpq ) = kl(χlmpq ) sin εl(χlmpq ) Sgn ωlmpq .

(A1)

The following was derived in Efroimsky (2012a, 2012b) for a
homogeneous spherical body:

kl (χ ) sin εl (χ ) = 3

2 (l − 1)

× −Al J Im[J̄ (χ )]

(Re[J̄ (χ )] + Al J )2 + (Im[J̄ (χ )])2
.

(A2)

Here χ is a shortened notation for the frequency χlmpq , while
the factors Al are given by

Al ≡ (2 l 2 + 4 l + 3)

l g ρ R
μ = 3 (2 l 2 + 4 l + 3)

4 l π Gρ2 R2 μ

= 3 (2 l 2 + 4 l + 3)

4 l π Gρ2 R2 J
, (A3)

ρ, g, and R being the density, surface gravity, and radius of
the body, respectively; and G being the Newton gravitational
constant. The unrelaxed elastic modulus and its inverse, the

unrelaxed compliance, are denoted with μ and J , respectively.
The complex compliance J̄ (χ ) of the mantle is a Fourier image
of the kernel J̇ (t − t ′) of the integral equation

2 uγν(t) = Ĵ (t)σγν =
∫ t

−∞
J̇ (t − t ′)σγν(t ′) dt ′ (A4)

interconnecting the present-time deviatoric strain tensor uγν(t)
with the values assumed by the deviatoric stress σγν(t ′) over the
time t ′ � t . The Fourier transform of (A4) reads as:

2 ūγ ν(χ ) = J̄ (χ ) σ̄γ ν(χ ), (A5)

ūγ ν(χ ) and σ̄γ ν(χ ) being the strain and stress in the frequency
domain. The complex compliance J̄ (χ ) contains contributions
from elasticity, viscosity, and inelastic processes (mainly, dis-
location unjamming). Together, these three factors render the
Andrade creep:

J̄ (χ ) = J + β (iχ )−α Γ (1 + α) − i

ηχ
(A6a)

= J + β (iχ )−α Γ (1 + α) − i J (χ τ
M

)−1, (A6b)

Γ denoting the Gamma function; η being the mantle viscosity;
τ

M
≡ η/μ = ηJ being the Maxwell time; α and β being a di-

mensionless and dimensional Andrade parameters. The param-
eter β has fractional dimensions, which makes it impractical;
so it was suggested in Efroimsky (2012a, 2012b) to rewrite the
compliance as

J̄ (χ ) = J [1 + (i χ τ
A
)−α Γ (1 + α) − i(χ τ

M
)−1], (A6c)

with the parameter τ
A

defined through

β = Jτ−α

A
. (A7)

In Efroimsky (2012a, 2012b), τ
A

was christened the Andrade
time.

Below some threshold frequency (Karato & Spetzler 1990;
Equation (17)), dislocation unjamming becomes less efficient
and the rheology of the mantle becomes purely viscoelastic. This
is why at low frequencies it is legitimate to treat the mantle as
the Maxwell body. Mathematically, this is expressed through the
Andrade time rapidly growing as the frequency goes beneath the
said threshold; so at lower frequencies the complex compliance
becomes simply

(Maxwell)
J̄ (χ ) = J − i

ηχ
= J [1 − i(χ τ

M
)−1]. (A8)

Insertion of this formula into the expression (A2) yields:

(Maxwell)
kl (χ ) sin εl (χ ) = 3

2 (l − 1)

× Al (χ τ
M

)−1

(1 + Al )
2 + (χ τ

M
)−2

. (A9)

In Section 6, we use this formula to model dissipation in the
planet Kepler-10 b.

9
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