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Abstract

Various machine learning tasks such as learning under non-stationarity, change detection,
and dimensionality reduction can be solved by estimating some distances between proba-
bility distributions. In this project, we developed accurate and computationally efficient
methods for estimating the distances from data, and demonstrated their usefulness in
experiments.

1 Introduction

The goal of machine learning is to find useful knowledge behind data. Many machine
learning tasks contain multiple datasets (such as data taken from different categories,
different time periods, etc.) and comparing the probability distributions behind these
datasets is a fundamental challenge in statistics and machine learning communities. More
specifically, an estimator of a distance between probability distributions can be used for
solving various machine learning tasks such as change detection in time-series and semi-
supervised learning under class-balance change. In this project, we develop a unified
framework of machine learning based on distances between probability distributions.

The Kullback-Leibler (KL) distance is the de-facto standard distance measure in statis-
tics and machine learning, because of its high compatibility with maximum likelihood
estimation. However, the KL distance has several weaknesses such as high sensitivity to
outliers, high computational requirements, and non-metricity. In this project, we propose
to use other distances than the KL distance, such as the relative ratio based distances and
the difference based distances. These novel distance measures can potentially overcome
the above weaknesses of the KL distance.

1



2 Divergence Estimation

2.1 Background

Let us consider the problem of approximating a divergence D between two probability
distributions P and P ′ on Rd from two sets of independent and identically distributed
samples X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 following P and P ′.
A divergence approximator can be used for various purposes such as two-sample testing

[167, 86], change detection in time-series [92], class-prior estimation under class-balance
change [45], salient object detection in images [214], and event detection from movies
[213] and Twitter [112]. Furthermore, an approximator of the divergence between the
joint distribution and the product of marginal distributions can be used for solving a
wide range of machine learning problems [157], including independence testing [166],
feature selection [179, 77], feature extraction [178, 204], canonical dependency analysis
[89], object matching [208], independent component analysis [177], clustering [175, 97],
and causal direction learning [207]. For this reason, accurately approximating a divergence
between two probability distributions from their samples has been one of the challenging
research topics in the statistics, information theory, and machine learning communities.

A naive way to approximate the divergence from P to P ′, denoted by D(P∥P ′), is to

first obtain estimators P̂X and P̂ ′
X ′ of the distributions P and P ′ separately from their

samples X and X ′, and then compute a plug-in approximator D(P̂X∥P̂ ′
X ′). However, this

naive two-step approach violates Vapnik’s principle [194]:

If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more general intermediate
problem.

More specifically, if we know the distributions P and P ′, we can immediately know their
divergence D(P∥P ′). However, knowing the divergence D(P∥P ′) does not necessarily
imply knowing the distributions P and P ′, because different pairs of distributions can
yield the same divergence value. Thus, estimating the distributions P and P ′ is more
general than estimating the divergence D(P∥P ′). Following Vapnik’s principle, direct

divergence approximators D̂(X ,X ′) that do not involve the estimation of distributions P
and P ′ have been developed recently [173, 124, 82, 212, 172].

The purpose of this article is to give an overview of the development of such direct di-
vergence approximators. In Section 2.2, we review the definitions of the Kullback-Leibler
divergence, the Pearson divergence, the relative Pearson divergence, and the L2-distance,
and discuss their pros and cons. Then, in Section 2.3, we review direct approxima-
tors of these divergences that do not involve the estimation of probability distributions.
In Section 2.4, we show practical usage of divergence approximators in unsupervised
change-detection in time-series, semi-supervised class-prior estimation under class-balance
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change, salient object detection in an image, and evaluation of statistical independence
between random variables. Finally, we conclude in Section 2.5.

2.2 Divergence Measures

A function d(·, ·) is called a distance if and only if the following four conditions are
satisfied:

• Non-negativity: ∀x, y, d(x, y) ≥ 0

• Non-degeneracy: d(x, y) = 0 ⇐⇒ x = y

• Symmetry: ∀x, y, d(x, y) = d(y, x)

• Triangle inequality: ∀x, y, z d(x, z) ≤ d(x, y) + d(y, z)

A divergence is a pseudo-distance that still acts like a distance, but it may violate some
of the above conditions. In this section, we introduce useful divergence and distance
measures between probability distributions.

2.2.1 Kullback-Leibler (KL) Divergence

The most popular divergence measure in statistics and machine learning is the KL diver-
gence [103] defined as

KL(p∥p′) :=
∫
p(x) log

p(x)

p′(x)
dx,

where p(x) and p′(x) are probability density functions of P and P ′, respectively.
Advantages of the KL divergence are that it is compatible with maximum likelihood

estimation, it is invariant under input metric change, its Riemannian geometric struc-
ture is well studied [8], and it can be approximated accurately via direct density-ratio
estimation [173, 124, 168]. However, it is not symmetric, it does not satisfy the triangle
inequality, its approximation is computationally expensive due to the log function, and
it is sensitive to outliers and numerically unstable because of the strong non-linearity of
the log function and possible unboundedness of the density-ratio function p/p′ [36, 212].

2.2.2 Pearson (PE) Divergence

The PE divergence [128] is a squared-loss variant of the KL divergence defined as

PE(p∥p′) :=
∫
p′(x)

(
p(x)

p′(x)
− 1

)2

dx. (1)

Because both the PE and KL divergences belong to the class of Ali-Silvey-Csiszár di-
vergences (which is also known as f -divergences) [5, 39], they share similar theoretical
properties such as the invariance under input metric change.
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The PE divergence can also be accurately approximated via direct density-ratio esti-
mation in the same way as the KL divergence [82, 168]. However, its approximator can
be obtained analytically in a computationally much more efficient manner than the KL
divergence, because the quadratic function the PE divergence adopts is compatible with
least-squares estimation. Furthermore, the PE divergence tends to be more robust against
outliers than the KL divergence [170]. However, other weaknesses of the KL divergence
such as asymmetry, violation of the triangle inequality, and possible unboundedness of
the density-ratio function p/p′ remain unsolved in the PE divergence.

2.2.3 Relative Pearson (rPE) Divergence

To overcome the possible unboundedness of the density-ratio function p/p′, the rPE di-
vergence was recently introduced [212]. The rPE divergence is defined as

rPE(p∥p′) := PE(p∥qα)

=

∫
qα(x)

(
p(x)

qα(x)
− 1

)2

dx, (2)

where, for 0 ≤ α < 1, qα is defined as the α-mixture of p and p′:

qα = αp+ (1− α)p′.

When α = 0, the rPE divergence is reduced to the plain PE divergence. The quantity
p/qα is called the relative density ratio, which is always upper-bounded by 1/α for α > 0
because

p(x)

qα(x)
=

1

α + (1− α)p′(x)
p(x)

<
1

α
.

Thus, it can overcome the unboundedness problem of the PE divergence, while the in-
variance under input metric change is still maintained.

The rPE divergence is still compatible with least-squares estimation, and it can be
approximated in almost the same way as the PE divergence via direct relative density-
ratio estimation [212]. Indeed, an rPE-divergence approximator can still be obtained
analytically in an accurate and computationally efficient manner. However, it still violates
symmetry and the triangle inequality in the same way as the KL and PE divergence.
Furthermore, the choice of α may not be straightforward in some applications.

2.2.4 L2-Distance

The L2-distance is another standard distance measure between probability distributions
defined as

L2(p, p′) :=

∫ (
p(x)− p′(x)

)2
dx.
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The L2-distance is a proper distance measure, and thus it is symmetric and satisfies the
triangle inequality. Furthermore, the density difference p(x)− p′(x) is always bounded as
long as each density is bounded. Therefore, the L2-distance is stable, without the need
of tuning any control parameter such as α in the rPE divergence.

The L2-distance is also compatible with least-squares estimation, and it can be accu-
rately and analytically approximated in a computationally efficient and numerically stable
manner via direct density-difference estimation [172]. However, the L2-distance is not in-
variant under input metric change, which is a unique property inherent to ratio-based
divergences.

2.3 Direct Divergence Approximation

In this section, we review recent advances in direct divergence approximation.
Suppose that we are given two sets of independent and identically distributed samples

X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 from probability distributions on Rd with densities p(x)
and p′(x), respectively:

X := {xi}ni=1
i.i.d.∼ p(x),

X ′ := {x′
i′}n

′

i′=1
i.i.d.∼ p′(x).

Our goal is to approximate a divergence between from p to p′ from samples X and X ′.

2.3.1 KL Divergence Approximation

The key idea of direct KL divergence approximation is to estimate the density ratio p/p′

without estimating the densities p and p′ [173]. More specifically, a density-ratio estimator
is obtained by minimizing the KL divergence from p to r ·p′ with respect to a density-ratio
model r, under the constraints that the density-ratio function is non-negative and r · p′ is
integrated to one:

min
r

KL(p∥r · p′)

subject to r ≥ 0 and

∫
r(x)p′(x)dx = 1.

Its empirical optimization problem, where an irrelevant constant is ignored and the ex-
pectations are approximated by the sample averages, is given by

max
r

1

n

n∑
i=1

log r(xi)

subject to r ≥ 0 and
1

n′

n′∑
i′=1

r(x′
i′) = 1.
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Let us consider the following Gaussian density-ratio model:

r(x) =
n∑

ℓ=1

θℓ exp

(
−∥x− xℓ∥2

2σ2

)
, (3)

where ∥ · ∥ denotes the ℓ2-norm. We define the vector of parameters {θℓ}nℓ=1 as

θ = (θ1, . . . , θn)
⊤,

where ⊤ denotes the transpose. In this model, the Gaussian kernels are located on nu-
merator samples {xi}ni=1 because the density ratio p/p′ tends to take large values in the
regions where the numerator samples {xi}ni=1 exist. Alternatively, Gaussian kernels may
be located on both numerator and denominator samples, but this seems not to further im-
prove the accuracy [173]. When n is very large, a (random) subset of numerator samples
{xi}ni=1 may be chosen as Gaussian centers, which can reduce the computational cost.

For the Gaussian density-ratio model (3), the above optimization problem is expressed
as

max
θ

1

n

n∑
i=1

log

(
n∑

ℓ=1

θℓ exp

(
−∥xi − xℓ∥2

2σ2

))
subject to θ1, . . . , θn ≥ 0

and
1

n′

n′∑
i′=1

n∑
ℓ=1

θℓ exp

(
−∥x

′
i′ − xℓ∥2

2σ2

)
= 1.

This is a convex optimization problem and thus the global optimal solution can be ob-
tained easily, e.g., by gradient-projection iterations. Furthermore, the global optimal
solution tends to be sparse (i.e., many parameter values become exactly zero), which can
be utilized for reducing the computational cost.

The Gaussian width σ is a tuning parameter in this algorithm, and it can be system-
atically optimized by cross-validation with respect to the objective function. More specif-
ically, the numerator samples X := {xi}ni=1 are divided into T disjoint subsets {Xt}Tt=1

of (approximately) the same size. Then a density-ratio estimator r̂t(x) is obtained using
X\Xt and X ′ := {x′

i′}n
′

i′=1 (i.e., all numerator samples without Xt and all denominator
samples), and its objective value for the hold-out numerator samples Xt is computed:

1

|Xt|
∑
x∈Xt

log r̂t(x),

where |Xt| denotes the number of elements in the set Xt. This procedure is repeated for
t = 1, . . . , T , and the σ value that maximizes the average of the above hold-out objective
values is chosen as the best one.

Given a density-ratio estimator r̂, a KL-divergence approximator K̂L(X∥X ′) can be
constructed as

K̂L(X∥X ′) :=
1

n

n∑
i=1

log r̂(xi).
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Variations of this procedure for other density-ratio models have been developed, in-
cluding the log-linear model [187], the Gaussian mixture model [206], and the mixture of
probabilistic principal component analyzers [211]. Also, an unconstrained variant, which
corresponds to approximately maximizing the Legendre-Fenchel lower bound of the KL
divergence [95], was proposed [124]:

K̃L(X∥X ′) := max
r

[
1

n

n∑
i=1

log r(xi)−
1

n′

n′∑
i′=1

r(x′
i′) + 1

]
.

2.3.2 PE Divergence Approximation

The PE divergence can also be directly approximated without estimating the densities p
and p′ via direct estimation of the density ratio p/p′ [82]. More specifically, a density-
ratio estimator is obtained by minimizing the p′-weighted squared difference between a
density-ratio model r and the true density-ratio function p/p′:

min
r

∫
p′(x)

(
r(x)− p(x)

p′(x)

)2

dx.

Its empirical criterion where an irrelevant constant is ignored and the expectations are
approximated by the sample averages is given by

min
r

[
1

n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

For the Gaussian density-ratio model (3) together with the ℓ2-regularizer, the above
optimization problem is expressed as

min
θ

[
θ⊤Ĝ′θ − 2θ⊤ĥ+ λ∥θ∥2

]
, (4)

where λ ≥ 0 denotes the regularization parameter, Ĝ′ is the n×nmatrix with the (ℓ, ℓ′)-th
element defined by

Ĝ′
ℓ,ℓ′:=

1

n′

n′∑
i′=1

exp

(
−∥x

′
i′ − xℓ∥2

2σ2

)
exp

(
−∥x

′
i′ − xℓ′∥2

2σ2

)
,

and ĥ is the n-dimensional vector with the ℓ-th element defined by

ĥℓ :=
1

n

n∑
i=1

exp

(
−∥xi − xℓ∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(Ĝ′ + λI)−1ĥ,
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where I denotes the identity matrix.
The Gaussian width σ and the regularization parameter λ are the tuning parameters

in this algorithm, and they can be systematically optimized by cross-validation with
respect to the objective function as follows: First, the numerator and denominator samples
X = {xi}ni=1 and X ′ = {x′

i′}n
′

i′=1 are divided into T disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1,

respectively. Then a density-ratio estimator r̂t(x) is obtained using X\Xt and X ′\X ′
t (i.e.,

all samples without Xt and X ′
t ), and its objective value for the hold-out samples Xt and

X ′
t is computed:

1

|X ′
t |
∑
x′∈X ′

t

r̂t(x
′)2 − 2

|Xt|
∑
x∈Xt

r̂t(x). (5)

This procedure is repeated for t = 1, . . . , T , and the σ and λ values that maximize the
average of the above hold-out objective values are chosen as the best ones.

By expanding the squared term
(

p(x)
p′(x)
− 1
)2

in Eq.(1), the PE divergence can be

expressed as

PE =

∫
p(x)

p(x)

p′(x)
dx− 1 (6)

=−
∫
p′(x)

(
p(x)

p′(x)

)2

dx+2

∫
p(x)

p(x)

p′(x)
dx− 1. (7)

Note that Eq.(7) can also be obtained via Legendre-Fenchel convex duality of the di-
vergence functional [140]. Based on these expressions, PE divergence approximators are
obtained using a density-ratio estimator r̂ as

P̂E(X∥X ′) :=
1

n

n∑
i=1

r̂(xi)− 1, (8)

P̃E(X∥X ′) :=− 1

n′

n′∑
i′=1

r̂(x′
i′)

2+
2

n

n∑
i=1

r̂(xi)−1. (9)

Eq.(8) is suitable for algorithmic development because this would be the simplest ex-
pression, while Eq.(9) is suitable for theoretical analysis because this corresponds to the
negative of the objective function in Eq.(4).

If the ℓ2-regularizer

∥θ∥2 :=
n∑

ℓ=1

θ2ℓ

in Eq.(4) is replaced with the ℓ1-regularizer

∥θ∥1 :=
n∑

ℓ=1

|θℓ|,
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the solution tends to be sparse [182]. Then the solution can be obtained in a computation-
ally more efficient way [185], and furthermore a regularization path tracking algorithm
[48] is available for efficiently computing solutions with different regularization parameter
values.

2.3.3 rPE Divergence Approximation

The rPE divergence can be directly estimated in the same way as the PE divergence [212]:

min
r

∫
qα(x

′)

(
r(x)− p(x)

qα(x)

)2

dx.

Its empirical criterion where an irrelevant constant is ignored and the expectations are
approximated by sample averages is given by

min
r

[
α

n

n∑
i=1

r2(xi)+
1− α
n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

For the Gaussian density-ratio model (3) together with the ℓ2-regularizer, the above
optimization problem is expressed as

min
θ

[
θ⊤(αĜ+ (1− α)Ĝ′)θ − 2θ⊤ĥ+ λ∥θ∥2

]
,

where Ĝ is the n× n matrix with the (ℓ, ℓ′)-th element defined by

Ĝℓ,ℓ′ :=
1

n

n∑
i=1

exp

(
−∥xi − xℓ∥2

2σ2

)
exp

(
−∥xi − xℓ′∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(αĜ+ (1− α)Ĝ′ + λI)−1ĥ.

Cross-validation for tuning the Gaussian width σ and the regularization parameter λ can
be carried out in the same way as the PE-divergence case, with Eq.(5) replaced by

α

|Xt|
∑
x∈Xt

r̂t(x)
2+

1− α
|X ′

t |
∑
x′∈X ′

t

r̂t(x
′)2− 2

|Xt|
∑
x∈Xt

r̂t(x).

By expanding the squared term
(

p(x)
qα(x)

− 1
)2

in Eq.(2), the rPE divergence can be

expressed as

rPE =

∫
p(x)

p(x)

qα(x)
dx− 1 (10)

=−
∫
qα(x)

(
p(x)

qα(x)

)2

dx+2

∫
p(x)

p(x)

qα(x)
dx− 1. (11)
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Based on these expressions, rPE divergence approximators are given using the relative
density-ratio estimator r̂α as

r̂PEα(X∥X ′) :=
1

n

n∑
i=1

r̂α(xi)− 1, (12)

r̃PEα(X∥X ′) := −α
n

n∑
i=1

r̂α(xi)
2− (1− α)

n′

n′∑
i′=1

r̂α(x
′
i′)

2 +
2

n

n∑
i=1

r̂α(xi)− 1. (13)

2.3.4 L2-Distance Approximation

The key idea is to directly estimate the density difference p− p′ without estimating each
density [172]. More specifically, a density-difference estimator is obtained by minimizing
the squared difference between a density-difference model f and the true density-difference
function p− p′:

min
f

∫ (
f(x)−

(
p(x)− p′(x)

))2
dx.

Its empirical criterion where an irrelevant constant is ignored and the expectation is
approximated by the sample average is given by

min
f

[∫
f(x)2dx−

(
2

n

n∑
i=1

f(xi)−
2

n′

n′∑
i′=1

f(x′
i′)

)]
.

Let us consider the following Gaussian density-difference model:

f(x) =
n+n′∑
ℓ=1

ξℓ exp

(
−∥x− cℓ∥

2

2σ2

)
, (14)

where

(c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′)

are Gaussian centers. Then the above optimization problem is expressed as

min
ξ=(ξ1,...,ξn+n′ )⊤

[
ξ⊤Uξ − 2ξ⊤v̂ + λ∥ξ∥2

]
,

where the ℓ2-regularizer λ∥ξ∥2 is included, U is the (n + n′) × (n + n′) matrix with the
(ℓ, ℓ′)-th element defined by

Uℓ,ℓ′ :=

∫
exp

(
−∥x− cℓ∥

2

2σ2

)
exp

(
−∥x− cℓ

′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cℓ − cℓ

′∥2

4σ2

)
,

10



d denotes the dimensionality of x, and v̂ is the (n+ n′)-dimensional vector with the ℓ-th
element defined by

v̂ℓ :=
1

n

n∑
i=1

exp

(
−∥xi − cℓ∥2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−∥x

′
i′ − cℓ∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(U + λI)−1v̂.

The above optimization problem is essentially the same form as least-squares density-
ratio approximation for the PE divergence, and therefore least-squares density-difference
approximation can enjoy all the computational properties of least-squares density-ratio
approximation.

Cross-validation for tuning the Gaussian width σ and the regularization parameter λ
can be carried as follows: First, the numerator and denominator samples X = {xi}ni=1

and X ′ = {x′
i′}n

′

i′=1 are divided into T disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1, respectively.

Then a density-difference estimator f̂t(x) is obtained using X\Xt and X ′\X ′
t (i.e., all

samples without Xt and X ′
t ), and its objective value for the hold-out samples Xt and X ′

t

is computed: ∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |
∑
x′∈X ′

t

f̂t(x
′).

Note that the first term can be computed analytically for the Gaussian density-difference
model (14): ∫

f̂t(x)
2dx = ξ̂⊤t Uξ̂t,

where ξ̂t is the parameter vector learned from X\Xt and X ′\X ′
t .

For an equivalent expression of the L2-distance,

L2(p, p′) =

∫
f(x)p(x)dx−

∫
f(x′)p′(x′)dx′,

if f is replaced with a density-difference estimator f̂ and approximate the expectations
by empirical averages, the following L2-distance approximator can be obtained:

v̂⊤ξ̂. (15)

Similarly, for another expression

L2(p, p′) =

∫
f(x)2dx,

11



replacing f with a density-difference estimator f̂ gives another L2-distance approximator:

ξ̂⊤Uξ̂. (16)

Eq.(15) and Eq.(16) themselves give valid approximations to L2(p, p′), but their linear
combination

L̂2(X ,X ′) := 2v̂⊤ξ̂ − ξ̂⊤Uξ̂,

was shown to have a smaller bias than than Eq.(15) and Eq.(16).

2.4 Usage of Divergence Approximators in Machine Learning

In this section, we show applications of divergence approximators in machine learning.

2.4.1 Change-Detection in Time-Series

The goal is to discover abrupt property changes behind time-series data. Let y(t) ∈ Rm

be an m-dimensional time-series sample at time t, and let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ Rkm

be a subsequence of time series at time t with length k. Instead of a single point y(t), the
subsequence Y (t) is treated as a sample here, because time-dependent information can
be naturally incorporated by this trick [92]. Let

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ r − 1)}

be a set of r retrospective subsequence samples starting at time t. Then a divergence
between the probability distributions of Y(t) and Y(t+ r) may be used as the plausibility
of change points (see Figure 1).

In Figure 2, we illustrate results of unsupervised change detection for the IPSJ SIG-
SLP Corpora and Environments for Noisy Speech Recognition (CENSREC) dataset1 that
records human voice in noisy environments such as a restaurant, and the Human Activ-
ity Sensing Consortium (HASC) challenge 2011 dataset2 that provides human activity
information collected by portable three-axis accelerometers. These graphs show that the
KL-based method is excessively sensitive to noise and thus change points are not clearly
detected. On the other hand, the L2-based method more clearly indicates the existence
of change points.

It was also demonstrated that divergence-based change-detection methods are useful
in event detection from movies [213] and Twitter [112].

1http://research.nii.ac.jp/src/en/CENSREC-1-C.html
2http://hasc.jp/hc2011/
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Figure 1: Schematic of change-point detection in time-series.

2.4.2 Salient Object Detection in an Image

The goal is to find salient objects in an image. This can be achieved by computing a
divergence between the probability distributions of image features (such as brightness,
edges, and colors) in the center window and its surroundings [214]. This divergence
computation is swept over the entire image with changing scales (Figure 3).

The object detection results on the MSRA salient object database [114] by the rPE
divergence with α = 0.1 are described in Figure 4, where pixels in gray-scale saliency
maps take brighter color if the estimated divergence value is large. The results show that
visually salient objects can be successfully detected by the divergence-based approach.

2.4.3 Measuring Statistical Independence

The goal is to measure how strongly two random variables U and V are statistically
dependent, from paired samples {(ui,vi)}ni=1 drawn independently from the joint distri-
bution with density pU,V(u,v). Let us consider a divergence between the joint density
pU,V and the product of marginal densities pU · pV. This actually serves as a measure of
statistical independence, because U and V are independent if and only if the divergence
is zero (i.e., pU,V = pU · pV), and the dependence between U and V is stronger if the
divergence is larger.

Such a dependence measure can be approximated in the same way as ordinary diver-
gences by using the two datasets formed as X = {(ui,vi)}ni=1 and X ′ = {(ui,vj)}ni,j=1.
The dependence measure based on the KL divergence is called mutual information (MI)
[147]:

MI :=

∫∫
pU,V(u,v) log

pU,V(u,v)

pU(u)pV(v)
dudv.

MI plays a central role in information theory [38].
On the other hand, its PE-divergence variant is called the squared-loss mutual infor-
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Figure 2: Results of change-point detection. Original time-series data is plotted in the top
graphs, and change scores obtained by KLIEP (Section 2.3.1) and LSDD (Section 2.3.4)
are plotted in the bottom graphs.
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Figure 3: Schematic of salient object detection in an image.

mation (SMI):

SMI :=

∫∫
pU(u)pV(v)

(
pU,V(u,v)

pU(u)pV(v)
− 1

)2

dudv.

SMI is useful for solving various machine learning tasks [157], including independence test-
ing [166], feature selection [179, 77], feature extraction [178, 204], canonical dependency
analysis [89], object matching [208], independent component analysis [177], clustering
[175, 97], and causal direction estimation [207].

An L2-distance variant of the dependence measure is called quadratic mutual infor-
mation (QMI) [186]:

QMI :=

∫∫ (
pU,V(u,v)− pU(u)pV(v)

)2
dudv.

QMI is also a useful dependence measure in practice [143].

2.5 Conclusions

In this article, we reviewed recent advances in direct divergence approximation. Direct
divergence approximators theoretically achieve optimal convergence rates both in para-
metric and non-parametric cases and experimentally compare favorably with the naive
density-estimation counterparts [124, 173, 82, 212, 172].

However, direct divergence approximators still suffer from the curse of dimensionality.
A possible cure for this problem is to combine them with dimensionality reduction, based
on the hope that two probability distributions share some commonality [159, 176, 209].
Further investigating this line would be a promising future direction.
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Figure 4: Results of salient object detection in an image. Upper: Original images. Lower:
Obtained saliency maps (brighter color means more salient).
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3 Change Detection

3.1 Background

Changes in interactions between random variables are interesting in many real-world phe-
nomena. For example, genes may interact with each other in different ways when external
stimuli change, co-occurrence between words may appear/disappear when the domains of
text corpora shift, and correlation among pixels may change when a surveillance camera
captures anomalous activities. Discovering such changes in interactions is a task of great
interest in machine learning and data mining, because it provides useful insights into
underlying mechanisms in many real-world applications.

In this paper, we consider the problem of detecting changes in conditional indepen-
dence among random variables between two sets of data. Such conditional independence
structure can be expressed via an undirected graphical model called a Markov network
(MN) [23, 198, 98], where nodes and edges represent variables and their conditional de-
pendencies, respectively. As a simple and widely applicable case, the pairwise MN model
has been thoroughly studied recently [136, 105]. Following this line, we also focus on the
pairwise MN model as a representative example.

A naive approach to change detection in MNs is the two-step procedure of first es-
timating two MNs separately from two sets of data by maximum likelihood estimation
(MLE), and then comparing the structure of the learned MNs. However, MLE is often
computationally intractable due to the normalization factor included in the density model.
Therefore, Gaussianity is often assumed in practice for computing the normalization fac-
tor analytically [70], though this Gaussian assumption is highly restrictive in practice. We
may utilize importance sampling [139] to numerically compute the normalization factor,
but an inappropriate choice of the instrumental distribution may lead to an estimate with
high variance [201]; for more discussions on sampling techniques, see references [56] and
[72]. References [75] and [63] have explored an alternative approach to avoid computing
the normalization factor which are not based on MLE.

However, the two-step procedure has a conceptual weakness that structure change is
not directly learned. This indirect nature causes a crucial problem: Suppose that we
want to learn a sparse structure change. For learning sparse changes, we may utilize ℓ1-
regularized MLE [16, 52, 105], which produces sparse MNs and thus the change between
MNs also becomes sparse. However, this approach does not work if each MN is dense but
only change is sparse.

To mitigate this indirect nature, the fused-lasso [183] is useful, where two MNs are
simultaneously learned with a sparsity-inducing penalty on the difference between two MN
parameters [218]. Although this fused-lasso approach allows us to learn sparse structure
change naturally, the restrictive Gaussian assumption is still necessary to obtain the
solution in a computationally tractable way.

The nonparanormal assumption [111, 110] is a useful generalization of the Gaussian
assumption. A nonparanormal distribution is a semi-parametric Gaussian copula where
each Gaussian variable is transformed by a monotone non-linear function. Nonparanormal
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Figure 5: The rationale of direct structural change learning: finding the difference between
two MNs is a more specific task than finding the entire structures of those two networks,
and hence should be possible to learn with less data.

distributions are much more flexible than Gaussian distributions thanks to the feature-
wise non-linear transformation, while the normalization factors can still be computed
analytically. Thus, the fused-lasso method combined with nonparanormal models would
be one of the state-of-the-art approaches to change detection in MNs. However, the fused-
lasso method is still based on separate modeling of two MNs, and its computation for more
general non-Gaussian distributions is challenging.

In this paper, we propose a more direct approach to structural change learning in
MNs based on density ratio estimation (DRE) [169]. Our method does not separately
model two MNs, but directly models the change in two MNs. This idea follows Vapnik’s
principle [195]:

If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more general intermediate
problem.

This principle was used in the development of support vector machines (SVMs): rather
than modeling two classes of samples, SVM directly learns a decision boundary that is
sufficient for performing pattern recognition. In the current context, estimating two MNs
is more general than detecting changes in MNs (Figure 5). By directly detecting changes
in MNs, we can also halve the number of parameters, from two MNs to one MN-difference.

Another important advantage of our DRE-based method is that the normalization
factor can be approximated efficiently, because the normalization term in a density ratio
function takes the form of the expectation over a data distribution and thus it can be
simply approximated by the sample average without additional sampling. Through ex-
periments on gene expression and Twitter data analysis, we demonstrate the usefulness
of our proposed approach.

The remainder of this paper is structured as follows. In Section 3.2, we formulate the
problem of detecting structural changes and review currently available approaches. We

18



then propose our DRE-based structural change detection method in Section 3.3. Results
of illustrative and real-world experiments are reported in Section 3.4 and Section 3.5,
respectively. Finally, we conclude our work and show the future direction in Section 3.6.

3.2 Problem Formulation and Related Methods

In this section, we formulate the problem of change detection in Markov network structure
and review existing approaches.

3.2.1 Problem Formulation

Consider two sets of independent samples drawn separately from two probability distri-
butions P and Q on Rd:

{xP
i }

nP
i=1

i.i.d.∼ P and {xQ
i }

nQ

i=1
i.i.d.∼ Q.

We assume that P and Q belong to the family of Markov networks (MNs) consisting of
univariate and bivariate factors3, i.e., their respective probability densities p and q are
expressed as

p(x;θ) =
1

Z(θ)
exp

(
d∑

u,v=1,u≥v

θ⊤u,vf(x
(u), x(v))

)
, (17)

where x = (x(1), . . . , x(d))⊤ is the d-dimensional random variable, ⊤ denotes the transpose,
θu,v is the parameter vector for the elements x(u) and x(v), and

θ = (θ⊤1,1, . . . ,θ
⊤
d,1,θ

⊤
2,2, . . . ,θ

⊤
d,2, . . . ,θ

⊤
d,d)

⊤

is the entire parameter vector. f(x(u), x(v)) is a bivariate vector-valued basis function.
Z(θ) is the normalization factor defined as

Z(θ) =

∫
exp

(
d∑

u,v=1,u≥v

θ⊤u,vf(x
(u), x(v))

)
dx.

q(x;θ) is defined in the same way.
Given two densities which can be parameterized using p(x;θP ) and q(x;θQ), our goal

is to discover the changes in parameters from P to Q, i.e., θP − θQ.

3Note that the proposed algorithm itself can be applied to any MNs containing more than two elements
in each factor.
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3.2.2 Sparse Maximum Likelihood Estimation and Graphical Lasso

Maximum likelihood estimation (MLE) with group ℓ1-regularization has been widely used
for estimating the sparse structure of MNs [144, 136, 105]:

max
θ

[
1

nP

nP∑
i=1

log p(xP
i ;θ)− λ

d∑
u,v=1,u≥v

∥θu,v∥

]
, (18)

where ∥ · ∥ denotes the ℓ2-norm. As λ increases, ∥θu,v∥ may drop to 0. Thus, this method
favors an MN that encodes more conditional independencies among variables.

Computation of the normalization term Z(θ) in Eq.(17) is often computationally in-
tractable when the dimensionality of x is high. To avoid this computational problem, the
Gaussian assumption is often imposed [52, 119]. More specifically, the following zero-mean
Gaussian model is used:

p(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

(
−1

2
x⊤Θx

)
,

where Θ is the inverse covariance matrix (a.k.a. the precision matrix) and det(·) denotes
the determinant. Then Θ is learned as

max
Θ

[
log det(Θ)− tr(ΘSP )− λ∥Θ∥1

]
,

where SP is the sample covariance matrix of {xP
i }ni=1. ∥Θ∥1 is the ℓ1-norm of Θ, i.e., the

absolute sum of all elements. This formulation has been studied intensively in [16], and a
computationally efficient algorithm called the graphical lasso (Glasso) has been proposed
[52].

Sparse changes in conditional independence structure between P and Q can be de-
tected by comparing two MNs estimated separately using sparse MLE. However, this
approach implicitly assumes that two MNs are sparse, which is not necessarily true even
if the change is sparse.

3.2.3 Fused-Lasso (Flasso) Method

To more naturally handle sparse changes in conditional independence structure between
P and Q, a method based on fused-lasso [183] has been developed [218]. This method
directly sparsifies the difference between parameters.

The original method conducts feature-wise neighborhood regression [119] jointly for
P and Q, which can be conceptually understood as maximizing the local conditional
Gaussian likelihood jointly on each feature [136]. A slightly more general form of the
learning criterion may be summarized as

max
θP
s ,θQ

s

[
ℓPs (θ

P
s ) + ℓQs (θ

Q
s )− λ1(∥θPs ∥1 + ∥θQs ∥1)− λ2∥θPs − θQs ∥1

]
,
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where ℓPs (θ) is the log conditional likelihood for the s-th element x(s) ∈ R given the rest
x(−s) ∈ Rd−1:

ℓPs (θ) =
1

nP

nP∑
i=1

log p(x
(s)
i

P |x(−s)
i

P ;θ).

ℓQs (θ) is defined in the same way as ℓPs (θ).
Since the Flasso-based method directly sparsifies the change in MN structure, it can

work well even when each MN is not sparse. However, using other models than Gaussian
is difficult because of the normalization issue described in Section 3.2.2.

3.2.4 Nonparanormal Extensions

In the above methods, Gaussianity is required in practice to compute the normalization
factor efficiently, which is a highly restrictive assumption. To overcome this restriction,
it has become popular to perform structure learning under the nonparanormal settings
[111, 110], where the Gaussian distribution is replaced by a semi-parametric Gaussian
copula.

A random vector x = (x(1), . . . , x(d))⊤ is said to follow a nonparanormal distribu-
tion, if there exists a set of monotone and differentiable functions, {hi(x)}di=1, such that
h(x) = (h1(x

(1)), . . . , hd(x
(d)))⊤ follows the Gaussian distribution. Nonparanormal dis-

tributions are much more flexible than Gaussian distributions thanks to the non-linear
transformation {hi(x)}di=1, while the normalization factors can still be computed in an
analytical way.

However, the nonparanormal transformation is restricted to be element-wise, which is
still restrictive to express complex distributions.

3.2.5 Maximum Likelihood Estimation for Non-Gaussian Models by
Importance-Sampling

A numerical way to obtain the MLE solution under general non-Gaussian distributions is
importance sampling.

Suppose that we try to maximize the log-likelihood4:

ℓMLE(θ) =
1

nP

nP∑
i=1

log p(xP
i ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ⊤u,vf(x
(u)P
i , x

(v)P
i )− log

∫
exp

(∑
u≥v

θ⊤u,vf(x
(u), x(v))

)
dx. (19)

The key idea of importance sampling is to compute the integral by the expectation
over an easy-to-sample instrumental density p′(x) (e.g., Gaussian) weighted according to

4From here on, we simplify
∑d

u,v=1,u≥v as
∑

u≥v.
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the importance 1/p′(x). More specifically, using i.i.d. samples {x′
i}n

′
i=1

i.i.d.∼ p′(x), the last
term of Eq.(19) can be approximately computed as follows:

log

∫
exp

(∑
u≥v

θ⊤u,vf(x
(u), x(v))

)
dx = log

∫
p′(x)

exp
(∑

u≥v θ
⊤
u,vf(x

(u), x(v))
)

p′(x)
dx

≈ log
1

n′

n′∑
i=1

exp
(∑

u≥v θ
⊤
u,vf(x

′(u)
i , x

′(v)
i )
)

p′(x′
i)

.

We refer to this implementation of Glasso as IS-Glasso below.
However, importance sampling tends to produce an estimate with large variance if the

instrumental distribution is not carefully chosen. Although it is often suggested to use a
density whose shape is similar to the function to be integrated but with thicker tails as
p′, it is not straightforward in practice to decide which p′ to choose, especially when the
dimensionality of x is high [201].

We can also consider an importance-sampling version of the Flasso method (which we
refer to as IS-Flasso)5

max
θP ,θQ

[
ℓPMLE(θ

P ) + ℓQMLE(θ
Q)− λ1(∥θP∥2 + ∥θQ∥2)− λ2

∑
u≥v

∥θPu,v − θQu,v∥

]
,

where both ℓPMLE(θ
P ) and ℓQMLE(θ

Q) are approximated by importance sampling for non-
Gaussian distributions. However, in the same way as IS-Glasso, the choice of instrumental
distributions is not straightforward.

3.3 Direct Learning of Structural Changes via Density Ratio
Estimation

The Flasso method can more naturally handle sparse changes in MNs than separate sparse
MLE. However, the Flasso method is still based on separate modeling of two MNs, and
its computation for general high-dimensional non-Gaussian distributions is challenging.
In this section, we propose to directly learn structural changes based on density ratio
estimation [169]. Our approach does not involve separate modeling of each MN and
allows us to approximate the normalization term efficiently for any distributions.

3.3.1 Density Ratio Formulation for Structural Change Detection

Our key idea is to consider the ratio of p and q:

p(x;θP )

q(x;θQ)
∝ exp

(∑
u≥v

(θPu,v − θQu,v)⊤f(x(u), x(v))

)
.

5For implementation simplicity, we maximize the joint likelihood of p and q, instead of its feature-wise
conditional likelihood. We also switch the first penalty term from ℓ1 to ℓ2.
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Here θPu,v − θQu,v encodes the difference between P and Q for factor f(x(u), x(v)), i.e.,

θPu,v − θQu,v is zero if there is no change in the factor f(x(u), x(v)).
Once we consider the ratio of p and q, we actually do not have to estimate θPu,v and

θQu,v; instead estimating their difference θu,v = θ
P
u,v−θQu,v is sufficient for change detection:

r(x;θ) =
1

N(θ)
exp

(∑
u≥v

θ⊤u,vf(x
(u), x(v))

)
, (20)

where

N(θ) =

∫
q(x) exp

(∑
u≥v

θ⊤u,vf(x
(u), x(v))

)
dx.

The normalization term N(θ) guarantees6∫
q(x)r(x;θ)dx = 1.

Thus, in this density ratio formulation, we are no longer modeling p and q separately,
but we model the change from p to q directly. This direct nature would be more suitable
for change detection purposes according to Vapnik’s principle that encourages avoidance
of solving more general problems as an intermediate step [195]. This direct formulation
also allows us to halve the number of parameters from both θP and θQ to only θ.

Furthermore, the normalization factor N(θ) in the density ratio formulation can be

easily approximated by the sample average over {xQ
i }

nQ

i=1
i.i.d.∼ q(x), because N(θ) is the

6If the model q(x;θQ) is correctly specified, i.e., there exists θQ
∗
such that q(x;θQ

∗
) = q(x), then

N(θ) can be interpreted as importance sampling of Z(θP ) via instrumental distribution q(x). Indeed,
since

Z(θP ) =

∫
q(x)

exp
(∑

u≥v θ
P
u,v

⊤
f(x(u), x(v))

)
q(x;θQ

∗
)

dx,

where q(x;θQ
∗
) = q(x), we have

N(θP − θQ∗
) =

Z(θP )

Z(θQ
∗
)
=

∫
q(x) exp

∑
u≥v

(θPu,v − θQu,v
∗
)
⊤
f(x(u), x(v))

 dx.

This is exactly the normalization term N(θ) of the ratio p(x;θP )/q(x;θQ
∗
). However, we note that the

density ratio estimation method we use in this paper is consistent to the optimal solution in the model
even without the correct model assumption [85]. An alternative normalization term,

N ′(θ,θQ) =

∫
q(x;θQ)r(x;θ)dx,

may also be considered, as in the case of MLE. However, this alternative form requires an extra parameter
θQ which is not our main interest.
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expectation over q(x):

N(θ) ≈ 1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ⊤u,vf(x
(u)Q
i , x

(v)Q
i )

)
.

3.3.2 Direct Density-Ratio Estimation

Density ratio estimation has been recently introduced to the machine learning community
and is proven to be useful in a wide range of applications [169]. Here, we concentrate on
the density ratio estimator called the Kullback-Leibler importance estimation procedure
(KLIEP) for log-linear models [174, 188].

For a density ratio model r(x;θ), the KLIEP method minimizes the Kullback-Leibler
divergence from p(x) to p̂(x) = q(x)r(x;θ):

KL[p∥p̂] =
∫
p(x) log

p(x)

q(x)r(x;θ)
dx

= Const.−
∫
p(x) log r(x;θ)dx. (21)

Note that our density-ratio model (20) automatically satisfies the non-negativity and
normalization constraints:

r(x;θ) ≥ 0 and

∫
q(x)r(x;θ)dx = 1.

In practice, we maximize the empirical approximation of the second term in Eq.(21):

ℓKLIEP(θ) =
1

nP

nP∑
i=1

log r(xP
i ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ⊤u,vf(x
(u)P
i , x

(v)P
i )

− log

(
1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ⊤u,vf(x
(u)Q
i , x

(v)Q
i )

))
.

Because ℓKLIEP(θ) is concave with respect to θ, its global maximizer can be numeri-
cally found by standard optimization techniques such as gradient ascent or quasi-Newton
methods. The gradient of ℓKLIEP with respect to θu,v is given by

∇θu,vℓKLIEP(θ) =
1

nP

nP∑
i=1

f(x
(u)P
i ,x

(v)P
i )

−
1
nQ

∑nQ

i=1 exp
(∑

u′≥v′ θ
⊤
u′,v′f(x

(u′)Q
i , x

(v′)Q
i )

)
f(x

(u)Q
i , x

(v)Q
i )

1
nQ

∑nQ

j=1 exp
(∑

u′′≥v′′ θ
⊤
u′′,v′′f(x

(u′′)Q
j , x

(v′′)Q
j )

) ,

which can be computed in a straightforward manner for any feature vector f(x(u), x(v)).
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Figure 6: Schematics of primal and dual optimization. b denotes the number of basis
functions and T denotes the number of factors. Because we are considering pairwise
factors, T = O(d2) for input dimensionality d.

3.3.3 Sparsity-Inducing Norm

To find a sparse change between P and Q, we propose to regularize the KLIEP solution
with a sparsity-inducing norm

∑
u≥v ∥θu,v∥. Note that the MLE approach sparsifies both

θP and θQ so that the difference θP − θQ is also sparsified, while we directly sparsify the
difference θP − θQ; thus our method can still work well even if θP and θQ are dense.

In practice, we may use the following elastic-net penalty [222] to better control over-
fitting to noisy data:

max
θ

[
ℓKLIEP(θ)− λ1∥θ∥2 − λ2

∑
u≥v

∥θu,v∥

]
, (22)

where ∥θ∥2 penalizes the magnitude of the entire parameter vector.

3.3.4 Dual Formulation for High-Dimensional Data

The solution of the optimization problem (22) can be easily obtained by standard sparse
optimization methods. However, in the case where the input dimensionality d is high
(which is often the case in our setup), the dimensionality of parameter vector θ is large,
and thus obtaining the solution can be computationally expensive. Here, we derive a dual
optimization problem [27], which can be solved more efficiently for high-dimensional θ
(Figure 6).
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As detailed in Appendix, the dual optimization problem is given as

min
α=(α1,...,αnQ

)⊤

nQ∑
i=1

αi logαi +
1

λ1

∑
u≥v

max(0, ∥ξu,v∥ − λ2)2

subject to α1, . . . , αnQ
≥ 0 and

nQ∑
i=1

αi = 1, (23)

where

ξu,v = gu,v −Hu,vα,

Hu,v = [f(x
(u)Q
1 , x

(v)Q
1 ), . . . ,f(x(u)QnQ

, x(v)QnQ
)],

gu,v =
1

nP

nP∑
i=1

f(x
(u)P
i , x

(v)P
i ).

The primal solution can be obtained from the dual solution as

θu,v =


1

λ1

(
1− λ2
∥ξu,v∥

)
ξu,v if ∥ξu,v∥ > λ2,

0 if ∥ξu,v∥ ≤ λ2.

(24)

Note that the dimensionality of the dual variable α is equal to nQ, while that of
θ is quadratic with respect to the input dimensionality d, because we are considering
pairwise factors. Thus, if d is not small and nQ is not very large (which is often the
case in our experiments shown later), solving the dual optimization problem would be
computationally more efficient. Furthermore, the dual objective (and its gradient) can be
computed efficiently in parallel for each (u, v), which is a useful property when handling
large-scale MNs. Note that the dual objective is differentiable everywhere, while the
primal objective is not.

3.4 Numerical Experiments

In this section, we compare the performance of the proposed KLIEP-based method, the
Flasso method, and the Glasso method for Gaussian models, nonparanormal models, and
non-Gaussian models. Results are reported on datasets with three different underlying
distributions: multivariate Gaussian, nonparanormal, and non-Gaussian “diamond” dis-
tributions. We also investigate the computation time of the primal and dual formulations
as a function of the input dimensionality.

3.4.1 Gaussian Distribution

First, we investigate the performance of each method under Gaussianity.
Consider a 40-node sparse Gaussian MN, where its graphical structure is characterized

by precision matrix ΘP with diagonal elements equal to 2. The off-diagonal elements are
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randomly chosen7 and set to 0.2, so that the overall sparsity of ΘP is 25%. We then
introduce changes by randomly picking 15 edges and reducing the corresponding elements
in the precision matrix by 0.1. The resulting precision matrices ΘP and ΘQ are used for
drawing samples as

{xP
i }

nP
i=1

i.i.d.∼ N (0, (ΘP )−1) and {xQ
i }

nQ

i=1
i.i.d.∼ N (0, (ΘQ)−1),

where N (µ,Σ) denotes the multivariate normal distribution with mean µ and covariance
matrix Σ. Datasets of size n = nP = nQ = 50, 100 are tested.

We compare the performance of the KLIEP, Flasso, and Glasso methods. Because all
methods use the same Gaussian model, the difference in performance is caused only by
the difference in estimation methods. We repeat the experiments 20 times with randomly
generated datasets and report the results in Figure 7.

The top 6 graphs are examples of regularization paths8. The dashed lines represent
changed edges in the ground truth, while the solid lines represent unchanged edges. The
top row is for n = 100 while the middle row is for n = 50. The bottom 3 graphs are
the data generating distribution and averaged precision-recall (P-R) curves with standard
error over 20 runs. The P-R curves are plotted by varying the group-sparsity control
parameter λ2 with λ1 = 0 in KLIEP and Flasso, and by varying the sparsity control
parameters as λ = λP = λQ in Glasso.

In the regularization path plots, solid vertical lines show the regularization parameter

values picked based on hold-out data {x̃P
i }3000i=1

i.i.d.∼ P and {x̃Q
i }3000i=1

i.i.d.∼ Q as follows:

• KLIEP: The hold-out log-likelihood (HOLL) is maximized:

1

ñP

ñP∑
i=1

log
exp

(∑
u≥v θ̂

⊤
u,vf(x̃

(u)P
i , x̃

(v)P
i )

)
1
ñQ

∑ñQ

j=1 exp
(∑

u′≥v′ θ̂
⊤
u′,v′f(x̃

(u′)Q
j , x̃

(v′)Q
j )

) .
• Flasso: The sum of feature-wise conditional HOLLs for p(x(s)|x(−s);θs) and
q(x(s)|x(−s);θs) over all nodes is maximized:

1

ñP

ñP∑
i=1

d∑
s=1

log p(x̃
(s)
i

P |x̃(−s)
i

P ; θ̂Ps ) +
1

ñQ

ñQ∑
i=1

d∑
s=1

log q(x̃
(s)
i

Q|x̃(−s)
i

Q; θ̂Qs ).

• Glasso: The sum of HOLLs for p(x;θ) and q(x;θ) is maximized:

1

ñP

ñP∑
i=1

log p(x̃P
i ; θ̂

P ) +
1

ñQ

ñQ∑
i=1

log q(x̃Q
i ; θ̂

Q).

7We set Θu,v = Θv,u for not breaking the symmetry of the precision matrix.
8Paths of univariate factors are omitted for clear visibility.
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When n = 100, KLIEP and Flasso clearly distinguish changed (dashed lines) and
unchanged (solid lines) edges in terms of parameter magnitude. However, when the
sample size is halved to n = 50, the separation is visually rather unclear in the case of
Flasso. In contrast, the paths of changed and unchanged edges are still almost disjoint in
the case of KLIEP. The Glasso method performs rather poorly in both cases. A similar
tendency can be observed also in the P-R curve plot: When the sample size is n = 100,
KLIEP and Flasso work equally well, but KLIEP gains its lead when the sample size is
reduced to n = 50. Glasso does not perform well in both cases.

3.4.2 Nonparanormal Distribution

We post-process the Gaussian dataset used in Section 3.4.1 to construct nonparanormal
samples. More specifically, we apply the power function,

h−1
i (x) = sign(x)|x|

1
2 ,

to each dimension of xP and xQ, so that h(xP ) ∼ N (0, (ΘP )−1) and h(xQ) ∼
N (0, (ΘQ)−1).

To cope with the non-linearity in the KLIEP method, we use the power nonparanormal
basis functions with power k = 2, 3, and 4:

f(xi, xj) = (sign(xi)|xi|k, sign(xj)|xj|k, 1)⊤.

Model selection of k is performed together with the regularization parameter by HOLL
maximization. For Flasso and Glasso, we apply the nonparanormal transform as described
in [111] before the structural change is learned.

The experiments are conducted on 20 randomly generated datasets with n = 50 and
100, respectively. The regularization paths, data generating distribution, and averaged
P-R curves are plotted in Figure 8. The results show that Flasso clearly suffers from the
performance degradation compared with the Gaussian case, perhaps because the number
of samples is too small for the complicated nonparanormal distribution. Due to the two-
step estimation scheme, the performance of Glasso is poor. In contrast, KLIEP separates
changed and unchanged edges still clearly for both n = 50 and n = 100. The P-R curves
also show the same tendency.

3.4.3 “Diamond” Distribution with No Pearson Correlation

In the experiments in Section 3.4.2, though samples are non-Gaussian, the Pearson cor-
relation is not zero. Therefore, methods assuming Gaussianity can still capture some
linear correlation between random variables. Here, we consider a more challenging case
with a diamond-shaped distribution within the exponential family that has zero Pearson
correlation between variables. Thus, the methods assuming Gaussianity cannot extract
any information in principle from this dataset.
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Figure 7: Experimental results on the Gaussian dataset.
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(f) Glasso, n = 50
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Figure 8: Experimental results on the nonparanormal dataset.
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The probability density function of the diamond distribution is defined as follows
(Figure 9(a)):

p(x) ∝ exp

− d∑
i=1

2x2i −
∑

(i,j):Ai,j ̸=0

20x2ix
2
j

 , (25)

where the adjacency matrix A describes the MN structure. Note that this distribution
cannot be transformed into a Gaussian distribution by any nonparanormal transforma-
tions.

We set d = 9 and nP = nQ = 5000. AP is randomly generated with 35% sparsity, while
AQ is created by randomly removing edges in AP so that the sparsity level is dropped to
15%. Samples from the above distribution are drawn by using a slice sampling method
[122]. Since generating samples from high-dimensional distributions is non-trivial and
time-consuming, we focus on a relatively low-dimensional case. To avoid sampling error
which may mislead the experimental evaluation, we also increase the sample size, so that
the erratic points generated by accident will not affect the overall population.

In this experiment, we compare the performance of KLIEP, Flasso, and Glasso with
the Gaussian model, the power nonparanormal model, and the polynomial model:

f(xi, xj) = (xki , x
k
j , xix

k−1
j , . . . , xk−1

i xj, x
k−1
i , xk−1

j , . . . , xi, xj, 1)
⊤ for i ̸= j.

The univariate polynomial transform is defined as f(xi, xi) = f(xi, 0). We test k = 2, 3, 4
and choose the best one in terms of HOLL. The Flasso and Glasso methods for the
polynomial model are computed by importance sampling, i.e., we use the IS-Flasso and
IS-Glasso methods (see Section 3.2.5). Since these methods are computationally very
expensive, we only test k = 4 which we found to be a reasonable choice. We set the
instrumental distribution p′ as the standard normalN (0, I), and use sample {x′

i}70000i=1 ∼ p′

for approximating integrals. p′ is purposely chosen so that it has a similar “bell” shape
to the target densities but with larger variance on each dimension.

The averaged P-R curves over 20 datasets are shown in Figure 9(e). KLIEP with the
polynomial model significantly outperforms all the other methods, while the IS-Glasso and
especially IS-Flasso give better result than the KLIEP, Flasso, and Glasso methods with
the Gaussian and nonparanormal models. This means that the polynomial basis function
is indeed helpful in handling completely non-Gaussian data. However, as discussed in
Section 3.2.2, it is difficult to use such a basis function in Glasso and Flasso because
of the computational intractability of the normalization term. Although IS-Glasso can
approximate integrals, the result shows that such approximation of integrals does not lead
to a very good performance. In comparison, the result of the IS-Flasso method is much
improved thanks to the coupled sparsity regularization, but it is still not comparable to
KLIEP.

The regularization paths of KLIEP with the polynomial model illustrated in Fig-
ure 9(b) show the usefulness of the proposed method in change detection under non-
Gaussianity. We also give regularization paths obtained by the IS-Flasso and IS-Glasso
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Figure 9: Experimental results on the diamond dataset. “NPN” and “POLY” denote
the nonparanormal and polynomial models, respectively. Note that the precision rate of
100% recall for a random guess is approximately 20%.
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Figure 10: Comparison of computation time for solving primal and dual optimization
problems.

methods on the same dataset in Figures 9(c) and 9(d), respectively. The graphs show that
both methods do not separate changed and unchanged edges well, though the IS-Flasso
method works slightly better.

3.4.4 Computation Time: Dual versus Primal Optimization Problems

Finally, we compare the computation time of the proposed KLIEP method when solving
the dual optimization problem (23) and the primal optimization problem (22). Both the
optimization problems are solved by using the same convex optimizer minFunc9. The
datasets are generated from two Gaussian distributions constructed in the same way as
Section 3.4.1. 150 samples are separately drawn from two distributions with dimension
d = 40, 50, 60, 70, 80. We then perform change detection by computing the regularization
paths using 20 choices of λ2 ranging from 10−4 to 100 and fix λ1 = 0.1. The results are
plotted in Figure 10.

It can be seen from the graph that as the dimensionality increases, the computation
time for solving the primal optimization problem is sharply increased, while that for solv-
ing the dual optimization problem grows only moderately: when d = 80, the computation
time for obtaining the primal solution is almost 10 times more than that required for
obtaining the dual solution. Thus, the dual formulation is computationally much more
efficient than the primal formulation.

3.5 Applications

In this section, we report the experimental results on a synthetic gene expression dataset
and a Twitter dataset.

9http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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3.5.1 Synthetic Gene Expression Dataset

A gene regulatory network encodes interactions between DNA segments. However, the
way genes interact may change due to environmental or biological stimuli. In this experi-
ment, we focus on detecting such changes. We use SynTReN, which is a generator of gene
regulatory networks used for benchmark validation of bioinformatics algorithms [192].

We first choose a sub-network containing 13 nodes from an existing signaling network
in Saccharomyces cerevisiae (shown in Figure 11(a)). Three types of interactions are
modeled: activation (ac), deactivation (re), and dual (du). 50 samples are generated in
the first stage, after which we change the types of interactions in 6 edges, and generate
50 samples again. Four types of changes are considered: ac → re, re → ac, du → ac, and
du → re.

We use KLIEP and IS-Flasso with the polynomial transform function for k ∈ {2, 3, 4}.
The regularization parameter λ1 in KLIEP and Flasso is tested with choices λ1 ∈
{0.1, 1, 10}. We set the instrumental distribution p′ as the standard normal N (0, I),
and use sample {x′

i}70000i=1 ∼ p′ for approximating integrals in IS-Flasso.
The regularization paths on one example dataset for KLIEP, IS-Flasso, and the plain

Flasso with the Gaussian model are plotted in Figures 11(b), 11(c), and 11(d), respec-
tively. Averaged P-R curves over 20 simulation runs are shown in Figure 11(e). We can see
clearly from the KLIEP regularization paths shown in Figure 11(b) that the magnitude
of estimated parameters on the changed pairwise interactions is much higher than that
of the unchanged edges. IS-Flasso also achieves rather clear separation between changed
and unchanged interactions, though there are a few unchanged interactions drop to zero
at the final stage. Flasso gives many false alarms by assigning non-zero values to the
unchanged edges, even after some changed edges hit zeros.

Reflecting a similar pattern, the P-R curves plotted in Figure 11(e) show that the
proposed KLIEP method has the best performance among all three methods. We can
also see that the IS-Flasso method achieves significant improvement over the plain Flasso
method with the Gaussian model. The improvement from Flasso to IS-Flasso shows
that the use of the polynomial basis is useful on this dataset, and the improvement from
IS-Flasso to KLIEP shows that the direct estimation can further boost the performance.

3.5.2 Twitter Story Telling

Finally, we use KLIEP and Flasso as event detectors from Twitter. More specifically,
we choose the Deepwater Horizon oil spill10 as the target event, and we hope that our
method can recover some story lines from Twitter as the news events develop. Counting
the frequencies of 10 keywords (BP, oil, spill, Mexico, gulf, coast, Hayward, Halliburton,
Transocean, and Obama), we obtain a dataset by sampling 4 times per day from February
1st, 2010 to October 15th, 2010, resulting in 1061 data samples.

We segment the data into two parts: the first 300 samples collected before the day of oil
spill (April 20th, 2010) are regarded as conforming to a 10-dimensional joint distribution

10http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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Figure 11: Experiments on synthetic gene expression datasets.
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Q, while the second set of samples that are in an arbitrary 50-day window after the
oil spill accident happened is regarded as following distribution P . Thus, the MN of Q
encodes the original conditional independence of frequencies between 10 keywords, while
the underlying MN of P has changed since an event occurred. We expect that unveiling
changes in MNs between P and Q can recover the drift of popular topic trends on Twitter
in terms of the dependency among keywords.

The detected change graphs (i.e., the graphs with only detected changing edges) on
10 keywords are illustrated in Figure 12. The edges are selected at a certain value of
λ2 indicated by the maximal cross-validated log-likelihood (CVLL). Since the edge set
that is picked by CVLL may not be sparse in general, we sparsify the graph based on
the permutation test as follows: we randomly shuffle the samples between P and Q and
repeatedly run change detection algorithms for 100 times; then we observe detected edges
by CVLL. Finally, we select the edges that are detected using the original non-shuffled
dataset and remove those that were detected in the shuffled datasets for more than 5
times (i.e., the significance level 5%). In Figure 12, we plot detected change graphs which
are generated using samples of P starting from April 17th, July 6th, and July 26th,
respectively.

The initial explosion happened on April 20th, 2010. Both methods discover depen-
dency changes between keywords. Generally speaking, KLIEP captures more conditional
independence changes between keywords than the Flasso method, especially when com-
paring Figure 12(c) and Figure 12(f). At the first two stages (Figures 12(a), 12(b), 12(d)
and 12(e)), the keyword “Obama” is very well connected with other keywords in the re-
sults given by both methods. Indeed, at the early development of this event, he lies in the
center of the news stories, and his media exposure peaks after his visit to the Louisiana
coast (May 2nd, May 28nd, and June 5th) and his meeting with BP CEO Tony Hay-
ward on June 16th. Notably, both methods highlight the “gulf-obama-coast” triangle in
Figures 12(a) and 12(d) and the “bp-obama-hayward” chain in Figures 12(b) and 12(e).

However, there are some important differences worth mentioning. First, the Flasso
method misses the “transocean-hayward-obama” triangle in Figures 12(d) and 12(e).
Transocean is the contracted operator in the Deepwater Horizon platform, where the
initial explosion happened. On Figure 12(c), the chain “bp-spill-oil” may indicate that
the phrase “bp spill” or “oil spill” has been publicly recognized by the Twitter community
since then, while the “hayward-bp-mexico” triangle, although relatively weak, may link
to the event that Hayward stepped down from the CEO position on July 27th.

It is also noted that Flasso cannot find any changed edges in Figure 12(f), perhaps
due to the Gaussian restriction.

3.6 Discussion, Conclusion, and Future Works

In this paper, we proposed a direct approach to learning sparse changes in MNs by den-
sity ratio estimation. Rather than fitting two MNs separately to data and comparing
them to detect a change, we estimated the ratio of the probability densities of two MNs
where changes can be naturally encoded as sparsity patterns in estimated parameters.
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Figure 12: Change graphs captured by the proposed KLIEP method (top) and the Flasso
method (bottom). The date range beneath each figure indicates when P was sampled,
while Q is fixed to dates from February 1st to April 20th. Notable structures shared by
the graph of both methods are surrounded by the dash-dotted lines. Unique structures
that only appear in the graph of the proposed KLIEP method are surrounded by the
dashed lines.

This direct modeling allows us to halve the number of parameters and approximate the
normalization term in the density ratio model by a sample average without sampling. We
also showed that the number of parameters to be optimized can be further reduced with
the dual formulation, which is highly useful when the dimensionality is high. Through
experiments on artificial and real-world datasets, we demonstrated the usefulness of the
proposed method over state-of-the-art methods including nonparanormal-based methods
and sampling-based methods.

Our important future work is to theoretically elucidate the advantage of the proposed
method, beyond the Vapnik’s principle of solving the target problem directly. The rela-
tion to score matching [75], which avoids computing the normalization term in density
estimation, is also an interesting issue to be further investigated. Considering higher-
order MN models such as the hierarchical log-linear model [144] is a promising direction
for extension.

In the context of change detection, we are mainly interested in the situation where
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p and q are close to each other (if p and q are completely different, it is straightforward
to detect changes). When p and q are similar, density ratio estimation for p(x)/q(x)
or q(x)/p(x) perform similarly. However, given the asymmetry of density ratios, the
solutions for p(x)/q(x) or q(x)/p(x) are generally different. The choice of the numerator
and denominator in the ratio is left for future investigation.

Detecting changes in MNs is the main target of this paper. On the other hand,
estimating the difference/divergence between two probability distributions has been stud-
ied under a more general context in the statistics and machine learning communities
[8, 49, 200, 171, 161]. In fact, the estimation of the Kullback-Leibler divergence [103]
is related to the KLIEP-type density ratio estimation method [125], and the estimation
of the Pearson divergence [129] is related to the squared-loss density ratio estimation
method [83]. However, the density ratio based divergences tend to be sensitive to out-
liers. To overcome this problem, a divergence measure based on relative density ratios
was introduced, and its direct estimation method was developed [212]. L2-distance is
another popular difference measure between probability density functions. L2-distance is
symmetric, unlike the Kullback-Leibler divergence and the Pearson divergence, and its
direct estimation method has been investigated recently [172, 96].

Change detection in time-series a related topic. A straightforward approach is to
evaluate the difference (dissimilarity) between two consecutive segments of time-series
signals. Various methods have been developed to identify the difference by fitting two
models to two segments of time-series separately, e.g., the singular spectrum transform
[120, 76], subspace identification [94], and the method based on the one-class support
vector machine [42]. In the same way as the current paper, directly modeling of the
change has also been explored for change detection in time-series [93, 113, 172].

4 Learning under Non-Stationarity

4.1 Background

The goal of supervised learning such as regression and classification is to learn an input-
output dependency from input-output paired training samples so that test output y′ for
unseen test input x′ can be accurately estimated. Various supervised learning algorithms
were developed thus far, and they have been demonstrated to be useful in a wide range of
applications. Most of the popular machine learning algorithms assume that training and
test data follow the same probability distribution, based on which learning machines can
generalize to unseen test data from training data [194, 71, 24]. However, this fundamental
assumption is often violated in practice, and this causes standard supervised learning
algorithms suffer significant estimation bias.

In this article, we consider two scenarios. The first setup is the covariate shift [150,
158], where training and test input data follow different distributions but the input-output
relation does not change between training and test phases. The other setup is called class-
balance change in classification [142, 45], where the class-prior probabilities are different
in training and test phases but the input distribution of each class does not change. For
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these two scenarios, we review semi-supervised adaptation techniques, where importance
weighting plays an essential role.

More specifically, we consider the semi-supervised learning problem where input-
output training samples {(xi, yi)}ni=1 and input-only test samples {x′

i′}n
′

i′=1 are available.
In the standard semi-supervised learning setup, training and test samples are regarded
as being drawn from the same probability distribution [31]. In contrast, in this article,
we suppose that they are drawn from different distributions: {(xi, yi)}ni=1 are drawn in-
dependently from a joint probability distribution with density p(x, y) and {x′

i′}n
′

i′=1 are
drawn independently from a marginal probability distribution with density

∫
p′(x, y)dy,

where p(x, y) and p′(x, y) are different:

p(x, y) ̸= p′(x, y).

Our goal is to learn the input-output relation for test samples. The situation where train-
ing and test samples follow different distributions is also referred to as non-stationarity
adaptation, dataset-shift adaptation, transfer learning, and domain adaptation. The semi-
supervised learning setup with differing training and testing distributions is sometimes
called unsupervised transfer or unsupervised adaptation in literature because no supervi-
sion is available from the test domain.

4.2 Adaptation Techniques for Covariate Shift

The covariate shift [150, 158] is the situation where input distributions change but the
conditional distribution of outputs given inputs remains unchanged:

p(x) ̸= p′(x) and p(y|x) = p′(y|x).

Figure 13 illustrates an example of covariate shift regression: Training input samples
{xi}ni=1 are drawn from the left-hand side of the domain, whereas test input samples
{x′

i′}n
′

i′=1 are drawn from the right-hand side. This problem is similar to extrapolation
since the prediction is made in a low density region of the training set.

4.2.1 Importance-Weighted Learning

For this covariate-shift regression problem, let us use a simple linear model,

M(x) = θ1 + θ2x,

and train this model by ordinary least-squares :

min
θ

n∑
i=1

(
M(xi)− yi

)2
.

The learned result illustrated in Figure 14(a) shows that the obtained function fits the
training samples {(xi, yi)}ni=1 very well, but it does not give good prediction of outputs
for the test input samples {x′

i′}n
′

i′=1 (i.e., samples denoted by “×”).
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Figure 14: Regression under covariate shift. Dashed lines denote learned functions.

Under the covariate shift, it is expected that only training samples whose input points
are close to test input samples {x′

i′}n
′

i′=1 are useful. This intuitive idea can be realized by
weighting the training loss according to the importance, which is the ratio between p′(x)
and p(x).

w(x) :=
p′(x)

p(x)
.

In Figure 14(b), the learned result obtained by importance-weighted least-squares [150],

min
θ

n∑
i=1

w(xi)
(
M(xi)− yi

)2
,
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is illustrated. This shows that importance weighting can improve the accuracy of predict-
ing outputs for the test input samples {x′

i′}n
′

i′=1.
The above importance-weighted least-squares can be regarded as an application of

importance weighting to approximating the generalization error (or the expected test
loss):

G :=

∫∫
loss(y,M(x))p′(x, y)dxdy,

where loss(y, ŷ) denotes a point-wise loss when y is predicted by ŷ. More specifically, the
generalization error G can be approximated by the importance-weighted average of the
training loss:

G =

∫∫
loss(y,M(x))p′(y|x)p′(x)dxdy

=

∫∫
loss(y,M(x))p′(y|x)p

′(x)

p(x)
p(x)dxdy

=

∫∫
loss(y,M(x))w(x)p(x, y)dxdy

≈ 1

n

n∑
i=1

loss(yi,M(xi))w(xi).

Note that this importance weighting idea can be applied to any likelihood/loss-based
learning algorithms, including Fisher discriminant analysis, logistic regression, the support
vector machine, boosting, and the conditional random field, and it also plays an important
role for reducing the estimation bias in active learning and experimental design scenarios
[202, 84, 155, 81, 165, 163]. See [158] for more thorough discussion on importance-weighted
learning.

To implement importance-weighted learning, importance values {w(xi)}ni=1 are neces-
sary. However, training and test input densities p(x) and p′(x) are unknown in practice,
and thus the importance values should be estimated from data. A naive approach is to
estimate p(x) from {xi}ni=1 and p′(x) from {x′

i′}n
′

i′=1 separately and then take their ratio.
However, such a two-step procedure is not accurate because the error incurred in the
estimation of p(x) and p′(x) can be increased when their ratio is computed in the second
stage. Thus, directly estimating the ratio w(x) without estimating p(x) and p′(x) is more
preferable.

Following this idea, various methods of importance estimation have been developed,
for example, based on density estimation of p′(x) after uniformization of p(x) [40, 32],
logistic regression for discriminating data from p(x) and p′(x) [131, 33, 20], moment
matching between p′(x) and p(x)w(x) [131, 62, 87], integral equations between p′(x) and
p(x)w(x) [196, 132], density matching between p′(x) and p(x)w(x) under the Kullback-
Leibler divergence [173, 124, 187, 206, 211], least-squares importance fitting of w(x) to
p′(x)/p(x) [82, 87], and importance fitting of w(x) to p′(x)/p(x) under the Bregman
divergence [170].
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Among them, the least-squares importance fitting method has various practical advan-
tages, for example, an analytic-form solution that can be computed efficiently is available,
cross-validation is available for hyperparameter tuning, the optimal convergence rate is
achieved both in parametric and non-parametric settings [82, 87], and the highest numeri-
cal stability in terms of condition numbers is achieved among a class of importance estima-
tors [88]. Furthermore, dimensionality reduction methods for improving the accuracy of
importance estimation in high-dimensional problems have been developed [159, 176, 209].
See [168] for more comprehensive discussion on direct importance estimation.

4.2.2 Relative Importance-Weighted Learning

Let us continue using the illustrative example described in Figure 13 and Figure 14. The
true importance function w(x) is plotted in Figure 13(a). This shows that, among many
training samples, only a small number of samples at around x = 2 have large impor-
tance weights and other samples have almost zero weights. This implies that importance-
weighted learning in this example is rather unreliable because the learned function is
essentially obtained from only a few training samples.

Such unreliable behavior is caused by the fact that the importance function w(x) can
take very large values. To cope with this problem, the relative importance weight is useful
[212]:

w(β)(x) =
p′(x)

βp′(x) + (1− β)p(x)
,

where β ∈ [0, 1] is the relativity parameter. The relative importance weight w(β)(x) is
reduced to the ordinary importance weight w(x) when β = 0. As β is increased, the
relative importance weight gets flatter and is reduced to the uniform weight w(β)(x) = 1
when β = 1 (Figure 15). The non-negativity of the importance function, p′(x)/p(x) ≥ 0,
assures that the relative importance weight is bounded from above by 1/β:

w(β)(x) =
1

β + (1− β) p(x)
p′(x)

≤ 1

β
.

The least-squares method combined with the relative importance weight is called relative
importance-weighted least-squares :

min
θ

1

2

n∑
i=1

w(β)(xi)
(
M(xi)− yi

)2
,

where the relativity parameter β controls the trade-off between bias and variance.
Now let us consider the problem of estimating the relative importance weight w(β)(x)

from {xi}ni=1 and {x′
i′}n

′

i′=1. We use the following linear-in-parameter model wα(x) for
learning the relative importance weight w(β)(x):

wα(x) =
b∑

j=1

αjψj(x) = α
⊤ψ(x),
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Figure 15: Relative importance. p′(x) is the normal distribution with mean 0 and variance
1, and p(x) is the normal distribution with mean 0.5 and variance 1.

where α = (α1, . . . , αb)
⊤ is the parameter vector and ψ(x) = (ψ1(x), . . . , ψb(x))

⊤ is the
basis function vector. As basis functions, we may use, for example, the Gaussian kernels:

wα(x) =
n′∑
j=1

αj exp

(
−
∥x− x′

j∥2

2σ2

)
,

where σ2 denotes the Gaussian width.
Then the parameter α is learned so that the following criterion J(α) is minimized:

J(α) =

∫ (
wα(x)− w(β)(x)

)2(
βp′(x) + (1− β)p(x)

)
dx

=

∫
α⊤ψ(x)ψ(x)⊤α

(
βp′(x) + (1− β)p(x)

)
dx

− 2

∫
α⊤ψ(x)p′(x)dx+ C,

where the third term,

C =

∫
w(β)(x)p′(x)dx,

is a constant irrelevant to the parameter α and thus can be ignored. Approximating
the expectations in the first and second terms by sample averages and adding the ℓ2-
regularizer, we have the following training criterion:

min
α

[
α⊤Ĝβα− 2α⊤ĥ+ λ∥α∥2

]
,

where Ĝβ and ĥ, a b× b matrix and a b-dimensional vector, are defined as

Ĝβ =
β

n′

n′∑
i′=1

ψ(x′
i′)ψ(x

′
i′)

⊤ +
1− β
n

n∑
i=1

ψ(xi)ψ(xi)
⊤ and ĥ =

1

n′

n′∑
i′=1

ψ(x′
i′).
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importance value at xi.

This training criterion is a convex quadratic function of α and its minimizer α̂ can be
obtained analytically as

α̂ =
(
Ĝβ + λI

)−1

ĥ.

This method is called relative unconstrained least-squares importance fitting (RuLSIF)
[212]. Tuning parameters such as the regularization parameter λ and the Gaussian width
σ2 can be optimized via cross-validation with respect to J .

An example of relative importance estimation by RuLSIF is illustrated in Figure 16.

4.2.3 Importance-Weighted Model Selection

Choice of the relativity parameter β as well as other tuning parameters such as basis
functions and regularization parameters is crucial for obtaining better performance in
practice. For model selection, various methods such as the Akaike information crite-
rion [3], the subspace information criterion [164], and cross-validation [154] are available.
However, under the covariate shift, these model selection techniques based on training
samples {(xi, yi)}ni=1 do not give valid evaluation of the prediction accuracy of outputs
for test inputs {x′

i′}n
′

i′=1.
Under the covariate shift, importance-weighted variants of such model selection meth-

ods are useful [150, 162, 160]. The simplest model selection method called importance-
weighted cross-validation is given as follows:

1. Randomly split training samples T = {(xi, yi)}ni=1 into m disjoint subsets {Ti}mi=1

of (approximately) the same size.

2. Repeat for i = 1, . . . ,m;
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(a) Obtain a learned function fi from T \Ti (i.e., all samples without Ti).
(b) Evaluate the generalization error using hold-out samples Ti as

Ĝi =


1

|Ti|
∑

(x,y)∈Ti

w(x)
(
fi(x)− y

)2
(Regression),

1

|Ti|
∑

(x,y)∈Ti

w(x)

2

(
1− sign

(
fi(x)y

))
(Classification),

where |Ti| denotes the number of elements in the set Ti.

3. Output the average of Ĝ1, . . . , Ĝm as the final evaluation Ĝ of the generalization
error:

Ĝ =
1

m

m∑
i=1

Ĝi.

4.2.4 Applications

Importance-weighted learning has been successfully applied to various real-world prob-
lems, including brain-computer interface [160, 107], robot control [64, 4, 65, 221], speaker
identification [210], age prediction from face images [190], activity recognition from ac-
celerometers [66], natural language processing [187], spam filtering [22], targeted adver-
tising [21], HIV therapy screening [19], and wafer alignment in semiconductor exposure
apparatus [163]. Below, we describe application of covariate shift adaptation in 3D human-
pose estimation from monocular videos [205].

We use theHumanEva-I dataset [151], which contains synchronized multi-view videos
and motion-capture data for 3 subjects performing multiple activities: Walking, jogging,
boxing, throwing and catching, and gesturing. As input x, we extract the histogram-
of-oriented-gradient (HoG) feature [26] of 270 dimensions from videos taken by 3 color
cameras with 9630 image-pose frames for each camera. Output y is a corresponding
pose vector, which means that we consider a multi-dimensional regression problem. We
randomly select n samples from the set of 3 × 4815 = 14445 frames for training and use
the remaining 14445 frames for testing.

We consider the following scenarios:

Selection bias: The training set contains data from all 3 subjects, whereas the test set
only contains data from a single subject.

Subject transfer: The training set contains data from 2 subjects, whereas the test set
contains data from the remaining subject not included in the training set.

As regression algorithms, we use kernel regression (KR) [2], twin Gaussian processes
regression (TGP) [26], and the weighted k-nearest neighbor (WkNN) method [146]. See
[205] for the details of these algorithms. For KR and TGP, we consider their importance-
weighted variants which are referred to as IWKR and IWTGP.
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Each pose is represented by 20 3D-joint markers: y = [y(1)⊤, . . . ,y(20)⊤]⊤ ∈ R60, where
y(m) ∈ R3 for m = 1, . . . , 20. Error between true pose y∗ and its estimate ŷ is measured
by the average Euclidean distance:

Error(y∗, ŷ) =
1

20

20∑
m=1

∥ŷ(m) − y∗(m)∥.

Figure 17 shows the pose estimation error as a function of the training sample size n
averaged over all motions and 10 runs. The graphs clearly show that IWTGP and IWKR
outperform their non-adaptive counterparts and the baseline WkNN method.

4.3 Adaptation Techniques for Class-Balance Change

Class-balance change [142, 45] is the classification problem where class-prior probabilities
change but the conditional distribution of input x given class y remains unchanged:

p(y) ̸= p′(y) and p(x|y) = p′(x|y). (26)

Figure 18 illustrates an example of classification under class-balance change. When the
class balances are different in the training and test phases, naive training of a classifier
yields significant estimation bias even if the class-conditional input density is unchanged.

In the same way as covariate shift adaptation, estimation bias caused by class-balance
change can be canceled by weighting the training loss according to the class-balance ratio:

w(y) =
p′(y)

p(y)
.

Below, we focus on binary classification where label y takes either +1 or −1 for sim-
plicity.

4.3.1 Class-Balance Estimation

The training class-balance p(y) can be naively estimated by ny/n if ny samples belong to
class y in the training set {(xi, yi)}ni=1. The test class-balance p

′(y) can also be estimated
in the same way if a labeled test set {(x′

i′ , y
′
i′)}n

′

i′=1 is available. However, we are considering
a semi-supervised learning setup where only an unlabeled test set {x′

i′}n
′

i′=1 is available.
Thus, p′(y) cannot be estimated naively.

In the semi-supervised learning setup under Eq.(26), p′(y) can be estimated by fitting
a mixture qπ(x) of training class-wise densities p(x|y) to test input density p′(x) (see
Figure 19):

qπ(x) = πp(x|y = +1) + (1− π)p(x|y = −1).

The value of the parameter π corresponds to p′(y = +1), whereas 1 − π corresponds to
p′(y = −1).
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(b) Subject Transfer, S1
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(c) Selection Bias, S2
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(d) Subject Transfer, S2
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(e) Selection Bias, S3
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(f) Subject Transfer, S3

Figure 17: 3D human-pose estimation error as a function of the number of training
samples averaged over all motions for each subject. The best method and comparable
ones in terms of the average error according to the paired t-test at the significance level
5% are specified by ‘◦’.

47



−4 −2 0 2 4
0

0.1

0.2

0.3

x

 

 
p(y=+1|x)
p(y=−1|x)

(a) Training data

−4 −2 0 2 4
0

0.1

0.2

0.3

x

 

 
p’(y=+1|x)
p’(y=−1|x)

(b) Test data

Figure 18: Change in class balances shifts the optimal classification boundary. Class-
conditional input density is the same between the training and test phases (i.e., p(x|y) =
p′(x|y)), but class-prior probabilities are different (i.e., p(y) ̸= p′(y)).

p(x|y = −1)p(x|y = +1)

p
′(x)

Figure 19: p′(y) can be estimated by fitting a mixture of training class-wise densities
p(x|y) to test input density p′(x).

For the fitting of qπ to p′, we may use the Kullback-Leibler (KL) divergence [103] or
the Pearson (PE) divergence [128]:

KL(p′∥qπ) =
∫
p′(x) log

p′(x)

qπ(x)
dx,

PE(p′∥qπ) =
∫
qπ(x)

(
p′(x)

qπ(x)
− 1

)2

dx.

These divergences can be accurately approximated from samples by directly estimating the
density ratio p′(x)/qπ(x) without density estimation of p′(x) and qπ(x) [168]. However,
the density ratio function p′(x)/qπ(x) is sensitive to small variation, and therefore it is
not robust against outliers.

Here we consider the L2-distance between p′ and qπ:

L2(p′, qπ) =

∫ (
p′(x)− qπ(x)

)2
dx.
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The L2-distance can also be accurately approximated from samples by directly estimating
the density difference p′(x)− qπ(x), without density estimation of p′(x) and qπ(x) [172].

Historically, non-parametric estimation of mixture proportion π under the L2-distance
was first investigated in [67], which uses empirical distribution functions. Following this
seminal work, its variant based on kernel density estimation has been developed [184],
and this is further extended to choosing the kernel bandwidths jointly [68]. In the related
context of two-sample homogeneity testing under the L2-distance, the use of kernel density
estimators with fixed and equal bandwidths has been investigated [9].

4.3.2 L2-Distance Approximation

Here, we explain how the L2-distance can be directly approximated from data via direct
density-difference estimation [96, 172]. For simplicity, we consider the approximation
problem of the L2-distance between p and p′,

L2(p, p′) =

∫
f(x)2dx, where f(x) = p(x)− p′(x), (27)

from {xi}ni=1 and {x′
i′}n

′

i′=1.
We use the following Gaussian density-difference model:

g(x) =
n+n′∑
j=1

αj exp

(
−∥x− cj∥

2

2σ2

)
,

where

(c1, . . . , cn, cn+1, . . . , cn+n′) = (x1, . . . ,xn,x
′
1, . . . ,x

′
n′)

are Gaussian centers. The parameter α = (α1, . . . , αn+n′)⊤ in the density-difference model
is learned so that the following criterion J(α) is minimized:

J(α) =

∫ (
g(x)− f(x)

)2
dx

=

∫
g(x)2dx− 2

∫
g(x)f(x)dx+ C,

where the third term,

C =

∫
f(x)2dx,

is a constant irrelevant to the parameter α and thus can be ignored. The first term can
be computed analytically as ∫

g(x)2dx = α⊤Uα,
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Figure 20: Illustration of LSDD. “×” in Figure 20(b) denotes an estimated density dif-
ference value at xi and x

′
i′ .

where U is the (n+ n′)× (n+ n′) matrix with the (j, j′)-th element defined by

Uj,j′ =

∫
exp

(
−∥x− cj∥

2

2σ2

)
exp

(
−∥x− cj

′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cj − cj

′∥2

4σ2

)
.

Approximating the expectations in the second term by sample averages and adding the
ℓ2-regularizer, we have the following training criterion:

min
α

[
α⊤Uα− 2α⊤v̂ + λ∥α∥2

]
,

where v̂ is the (n+ n′)-dimensional vector with the j-th element defined by

v̂j =
1

n

n∑
i=1

exp

(
−∥xi − cj∥2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−∥x

′
i′ − cj∥2

2σ2

)
.

This training criterion is a convex quadratic function of α and its minimizer α̂ can be
obtained analytically as

α̂ = (U + λI)−1 v̂.

This method is called the least-squares density-difference (LSDD) estimator [172]. Tuning
parameters such as the regularization parameter λ and basis function ψ can be optimized
via cross-validation with respect to J . An example of density-difference estimation by
LSDD is illustrated in Figure 20.

If the true density-difference f in Eq.(27) is replaced with the LSDD estimator, we
obtain the following L2-distance estimator:

α̂⊤Uα̂.
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Similarly, from another expression of the L2-distance estimator,

L2(p, p′) =

∫
f(x)

(
p(x)− p′(x)

)
dx,

we obtain the following L2-distance estimator:

v̂⊤α̂.

It was shown that the linear combination of these estimators,

2v̂⊤α̂− α̂⊤Uα̂,

tends to have smaller bias [172], and thus this would be a more reliable L2-distance
estimator in practice.

4.3.3 Experiments

Here, we use four UCI benchmark datasets11 for experiments, where we randomly choose
10 labeled training samples from each class and 50 unlabeled test samples following true
class-prior:

π∗ = 0.1, 0.2, . . . , 0.9.

The LSDD method is compared with the following methods:

KDEi: Kernel density estimation (KDE) is used to approximate p′(x) and qπ(x) from
data and then the L2-distance is computed [184]. Two Gaussian widths are inde-
pendently chosen based on 5-fold least-squares cross-validation [69].

KDEj In the KDE-based method, two Gaussian widths are jointly chosen based on 5-fold
cross-validation in terms of the LSDD criterion [68]. That is, the cross-validated
LSDD criterion is computed as a function of two Gaussian widths and the best pair
that minimizes the criterion is selected.

EM: The class-prior estimation method based on the expectation-maximization algo-
rithm [142]. This method actually corresponds to distribution matching under the
KL divergence.

The left graphs in Figure 21 plot the mean and standard error of the squared difference
between true and estimated class-balances π over 1000 runs. These graphs show that
LSDD tends to provide better class-balance estimates than alternative approaches.

Next, we use the estimated class balance to train a classifier. We use a weighted
ℓ2-regularized least-squares classifier [138]. That is, a class label ŷ for a test input x is
estimated by

ŷ = sign

(
n∑

ℓ=1

θ̂ℓK(x,xℓ)

)
,

11http://archive.ics.uci.edu/ml/
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(d) Statlogheart dataset

Figure 21: Results of class-balance adaptation. Left: Squared error of class-balance esti-
mation. Right: Misclassification error by a weighted ℓ2-regularized least-squares classifier
with weighted cross-validation.
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where K(x,x′) is the Gaussian kernel function with kernel width κ. {θ̂ℓ}nℓ=1 are learned
parameters given by

(θ̂1, . . . , θ̂n) := argmin
θ1,...,θn

 n∑
i=1

πyi
nyi/n

(
n∑

ℓ=1

θℓK(xi,xℓ)− yi

)2

+ δ
n∑

ℓ=1

θ2ℓ

 ,
where π+1 = π̂, π−1 = 1−π̂, π̂ is a class-balance estimate, and δ (≥ 0) is the regularization
parameter. The Gaussian width κ and the regularization parameter δ are chosen by 5-fold
weighted cross-validation [160] in terms of the misclassification error.

The right graphs in Figure 21 plot the test misclassification error over 1000 runs. The
results show the LSDD-based method provides lower classification errors, which would be
brought by good estimates of test class-balances.

4.4 Conclusion

In this article, we reviewed semi-supervised adaptive learning techniques for the covariate
shift and class-balance change scenarios. In both cases, importance weighting plays an
essential role. See [133] for more general discussion on learning under different training
and test distributions.

If input-output samples are available from both training and test domains, weighted
learning according to the joint importance p′(x, y)/p(x, y) can in principle be used for
transferring training samples {(xi, yi)}ni=1 to the test domain even when p(x, y) and
p′(x, y) do not have an explicit link such as the covariate shift and class-balance change
[19, 168]. In this situation, not only transferring information from the training domain
to the test domain, but also the opposite transfer from the test domain to the training
domain is possible simultaneously. This is the idea of multi-task learning [30] and is also
an important branch of modern machine learning research.

Learning from input-output samples has already been studied extensively in statis-
tics and machine learning. However, collecting input-output samples is often expensive
and time-consuming in practice. Therefore, learning with side information such as addi-
tional input-only samples (semi-supervised learning) and additional related learning tasks
(transfer learning and multi-task learning), as well as new models of input-output data
collection such as crowdsourcing [137] and self-taught learning [134], will be important
challenges in the arriving big data era.

5 Information-Maximization Clustering

5.1 Introduction

The goal of clustering is to classify data samples into disjoint groups in an unsupervised
manner. K-means [117] is a classic but still popular clustering algorithm. However,
since k-means only produces linearly separated clusters, its usefulness is rather limited in
practice.
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To cope with this problem, various non-linear clustering methods have been devel-
oped. Kernel k-means [58] performs k-means in a feature space induced by a reproducing
kernel function [145]. Spectral clustering [149, 123] first unfolds non-linear data manifolds
by a spectral embedding method, and then performs k-means in the embedded space.
Blurring mean-shift [53, 28] uses a non-parametric kernel density estimator for model-
ing the data-generating probability density, and finds clusters based on the modes of the
estimated density. Discriminative clustering learns a discriminative classifier for separat-
ing clusters, where class labels are also treated as parameters to be optimized [203, 14].
Dependence-maximization clustering determines cluster assignments so that their depen-
dence on input data is maximized [153, 50]. See Section 5.3 for comprehensive reviews of
existing clustering methods.

These non-linear clustering techniques would be capable of handling highly complex
real-world data. However, they suffer from lack of objective model selection strategies12.
More specifically, the above non-linear clustering methods contain tuning parameters
such as the width of Gaussian functions and the number of nearest neighbors in kernel
functions or similarity measures, and these tuning parameter values need to be manually
determined in an unsupervised manner. The problem of learning similarities/kernels was
addressed in earlier works [118, 148, 37, 15], but they considered supervised setups, i.e.,
labeled samples are assumed to be given. [216] provided a useful unsupervised heuristic to
determine the similarity in a data-dependent way. However, it still requires the number of
nearest neighbors to be determined manually (although the magic number “7” was shown
to work well in their experiments).

Another line of clustering framework called information-maximization clustering ex-
hibited the state-of-the-art performance [1, 60]. In this information-maximization ap-
proach, probabilistic classifiers such as a kernelized Gaussian classifier [1] and a kernel
logistic regression classifier [60] are learned so that mutual information (MI) between fea-
ture vectors and cluster assignments is maximized in an unsupervised manner. A notable
advantage of this approach is that classifier training is formulated as continuous opti-
mization problems, which are substantially simpler than discrete optimization of cluster
assignments. Indeed, classifier training can be carried out in computationally efficient
manners by a gradient method [1] or a quasi-Newton method [60]. Furthermore, [1] pro-
vided a model selection strategy based on the information-maximization principle. Thus,
kernel parameters can be systematically optimized in an unsupervised way.

However, in the above MI-based clustering approach, the optimization problems are
non-convex, and finding a good local optimal solution is not straightforward in practice.
The goal of this paper is to overcome this problem by providing a novel information-
maximization clustering method. More specifically, we propose to employ a variant of
MI called squared-loss MI (SMI), and develop a new clustering algorithm whose solution
can be computed analytically in a computationally efficient way via kernel eigenvalue de-
composition. Furthermore, for kernel parameter optimization, we propose to use a non-
parametric SMI estimator called least-squares MI (LSMI) [179, 157], which was proved

12“Model selection” in this paper refers to the choice of tuning parameters in kernel functions or
similarity measures, not the choice of the number of clusters.
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to achieve the optimal convergence rate with an analytic-form solution. Through exper-
iments on various real-world datasets such as images, natural languages, accelerometric
sensors, and speeches, we demonstrate the usefulness of the proposed clustering method.

The rest of this paper is structured as follows. In Section 5.2, we describe our proposed
information-maximization clustering method based on SMI and analyze its properties.
Then the proposed method is compared with existing clustering methods qualitatively
in Section 5.3 and quantitatively in Section 5.4. Finally, this paper is concluded in Sec-
tion 5.5.

5.2 Information-Maximization Clustering with Squared-Loss
Mutual Information

In this section, we describe our proposed clustering algorithm.

5.2.1 Formulation of Information-Maximization Clustering

Suppose that we are given d-dimensional i.i.d. feature vectors of size n,

{xi | xi ∈ Rd}ni=1,

which are drawn independently from a probability distribution with density p(x). The
goal of clustering is to give cluster assignments,

{yi | yi ∈ {1, . . . , c}}ni=1,

to the feature vectors {xi}ni=1, where c denotes the number of classes. Throughout this
paper, we assume that c is known.

In order to solve the clustering problem, we take the information-maximization ap-
proach [1, 60]. That is, we regard clustering as an unsupervised classification problem,
and learn the class-posterior probability p(y|x) so that “information” between feature
vector x and class label y is maximized.

The dependence-maximization approach [153, 50] (see also Section 5.3.7) is related to,
but substantially different from the above information-maximization approach. In the
dependence-maximization approach, cluster assignments {yi}ni=1 are directly determined
so that their dependence on feature vectors {xi}ni=1 is maximized. Thus, the dependence-
maximization approach intrinsically involves combinatorial optimization with respect to
{yi}ni=1. On the other hand, the information-maximization approach involves contin-
uous optimization with respect to the parameter α included in a class-posterior model
pθ(y|x;α). This continuous optimization of α is substantially easier to solve than discrete
optimization of {yi}ni=1.

Another advantage of the information-maximization approach is that it naturally al-
lows out-of-sample clustering based on the discriminative model pθ(y|x;α), i.e., a cluster
assignment for a new feature vector can be obtained based on the learned discriminative
model.
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5.2.2 Squared-Loss Mutual Information

As an information measure, we adopt squared-loss mutual information (SMI). SMI be-
tween feature vector x and class label y is defined by

SMI :=
1

2

∫ c∑
y=1

p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dx, (28)

where p(x, y) denotes the joint density of x and y, and p(y) is the marginal probability
of y. SMI is the Pearson divergence [128] from p(x, y) to p(x)p(y), while the ordinary MI
[38],

MI :=

∫ c∑
y=1

p(x, y) log
p(x, y)

p(x)p(y)
dx, (29)

is the Kullback-Leibler divergence [103] from p(x, y) to p(x)p(y). The Pearson divergence
and the Kullback-Leibler divergence both belong to the class of Ali-Silvey-Csiszár diver-
gences (which is also known as f -divergences, see [5, 39]), and thus they share similar
properties. For example, SMI is non-negative and takes zero if and only if x and y are
statistically independent, as the ordinary MI.

In the existing information-maximization clustering methods [1, 60] (see also Sec-
tion 5.3.8), MI is used as the information measure. On the other hand, in this paper, we
adopt SMI because it allows us to develop a clustering algorithm whose solution can be
computed analytically in a computationally efficient way via kernel eigenvalue decompo-
sition.

5.2.3 Clustering by SMI Maximization

Here, we give a computationally-efficient clustering algorithm based on SMI (28).
Expanding the squared term in Eq.(28), we can express SMI as

SMI =
1

2

∫ c∑
y=1

p(x)p(y)

(
p(x, y)

p(x)p(y)

)2

dx−
∫ c∑

y=1

p(x)p(y)
p(x, y)

p(x)p(y)
dx+

1

2

=
1

2

∫ c∑
y=1

p(y|x)p(x)p(y|x)
p(y)

dx− 1

2
. (30)

Suppose that the class-prior probability p(y) is set to a user-specified value πy for y =
1, . . . , c, where πy > 0 and

∑c
y=1 πy = 1. Without loss of generality, we assume that

{πy}cy=1 are sorted in the ascending order:

π1 ≤ · · · ≤ πc.

If {πy}cy=1 is unknown, we may merely adopt the uniform class-prior distribution:

p(y) =
1

c
for y = 1, . . . , c, (31)
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which will be non-informative and thus allow us to avoid biasing clustering solutions13.
Substituting πy into p(y), we can express Eq.(30) as

1

2

∫ c∑
y=1

1

πy
p(y|x)p(x)p(y|x)dx− 1

2
. (32)

Let us approximate the class-posterior probability p(y|x) by the following kernel
model:

pθ(y|x;α) :=
n∑

i=1

αy,iK(x,xi), (33)

where α = (α1,1, . . . , αc,n)
⊤ is the parameter vector, ⊤ denotes the transpose, andK(x,x′)

denotes a kernel function with a kernel parameter t. In the experiments, we will use a
sparse variant of the local-scaling kernel [216]:

K(xi,xj) =


exp

(
−∥xi − xj∥2

2σiσj

)
if xi ∈ Nt(xj) or xj ∈ Nt(xi),

0 otherwise,

(34)

where Nt(x) denotes the set of t nearest neighbors for x (t is the kernel parameter), σi is

a local scaling factor defined as σi = ∥xi − x(t)
i ∥, and x

(t)
i is the t-th nearest neighbor of

xi.
Further approximating the expectation with respect to p(x) included in Eq.(32) by

the empirical average of samples {xi}ni=1, we arrive at the following SMI approximator:

ŜMI :=
1

2n

c∑
y=1

1

πy
α⊤

yK
2αy −

1

2
, (35)

where αy := (αy,1, . . . , αy,n)
⊤ and Ki,j := K(xi,xj).

For each cluster y, we maximize α⊤
yK

2αy under ∥αy∥ = 1. Since this is the Rayleigh
quotient, the maximizer is given by the normalized principal eigenvector of K [73]. To
avoid all the solutions {αy}cy=1 to be reduced to the same principal eigenvector, we impose
their mutual orthogonality: α⊤

y αy′ = 0 for y ̸= y′. Then the solutions are given by the
normalized eigenvectors ϕ1, . . . ,ϕc associated with the eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of
K. Since the sign of ϕy is arbitrary, we set the sign as

ϕ̃y = ϕy × sign(ϕ⊤
y 1n),

where sign(·) denotes the sign of a scalar and 1n denotes the n-dimensional vector with
all ones.

13Such a cluster-balance constraint is often employed in existing clustering algorithms [149, 203, 126].
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On the other hand, since

p(y) =

∫
p(y|x)p(x)dx ≈ 1

n

n∑
i=1

pθ(y|xi;α) =
1

n
α⊤

yK1n,

and the class-prior probability p(y) was set to πy for y = 1, . . . , c, we have the following
normalization condition:

1

n
α⊤

yK1n = πy.

Furthermore, probability estimates should be non-negative, which can be achieved by
rounding up negative outputs to zero.

Taking these normalization and non-negativity issues into account, cluster assignment
yi for xi is determined as the maximizer of the approximation of p(y|xi):

yi = argmax
y

[max(0n,Kϕ̃y)]i

(nπy)−1 max(0n,Kϕ̃y)⊤1n

= argmax
y

πy[max(0n, ϕ̃y)]i

max(0n, ϕ̃y)⊤1n

,

where 0n denotes the n-dimensional vector with all zeros, the max operation for vectors
is applied in the element-wise manner, and [·]i denotes the i-th element of a vector. Note

that we used Kϕ̃y = λyϕ̃y in the above derivation. For out-of-sample prediction, cluster
assignment y′ for new sample x′ may be obtained as

y′ := argmax
y

πy max
(
0,
∑n

i=1K(x′,xi)[ϕ̃y]i

)
λy max(0n, ϕ̃y)⊤1n

.

We call the above method SMI-based clustering (SMIC).

Discussions: Given an SMI approximator ŜMI defined by Eq.(35), a natural optimiza-
tion criterion would be to impose non-negativity and normalization constraints on the
parameter α. However, this results in a non-convex optimization problem and it is not
straightforward to obtain the global optimal solution or even a good local solution without
any prior knowledge. For this reason, we decided to introduce the unit-norm constraint
∥αy∥ = 1 on the parameter, which allows us to obtain the global optimal solution analyti-
cally even though the optimization problem is still non-convex. Although the introduction
of the unit-norm constraint is a heuristic, this formulation has an advantage that we do
not have to specify a good initial solution and it will be shown to work well in experiments
in Section 5.4.

5.2.4 Kernel Parameter Choice by SMI Maximization

The solution of SMIC depends on the choice of the kernel parameter t included in the
kernel function K(x,x′). Since SMIC was developed in the framework of SMI maxi-
mization, it would be natural to determine the kernel parameter t so as to maximize
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SMI. A direct approach is to use the SMI estimator ŜMI given by Eq.(35) also for kernel

parameter choice. However, this direct approach is not favorable because ŜMI is an unsu-
pervised SMI estimator (i.e., SMI is estimated only from unlabeled samples {xi}ni=1). On
the other hand, in the model selection stage, we have already obtained labeled samples
{(xi, yi)}ni=1, and thus supervised estimation of SMI is possible. For supervised SMI esti-
mation, a non-parametric SMI estimator called least-squares mutual information (LSMI)
[179] was shown to achieve the optimal convergence rate. For this reason, we propose to

use LSMI for model selection, instead of ŜMI (35).
LSMI is an estimator of SMI based on paired samples {(xi, yi)}ni=1. The key idea of

LSMI is to learn the following density-ratio function [168],

r(x, y) :=
p(x, y)

p(x)p(y)
, (36)

without going through density estimation of p(x, y), p(x), and p(y). More specifically, let
us employ the following density-ratio model:

rθ(x, y;θ) :=
∑
ℓ:yℓ=y

θℓL(x,xℓ), (37)

where θ = (θ1, . . . , θn)
⊤ and L(x,x′) is a kernel function with a kernel parameter γ. In

the experiments, we will use the Gaussian kernel:

L(x,x′) = exp

(
−∥x− x

′∥2

2γ2

)
, (38)

where the Gaussian width γ is the kernel parameter.
The parameter θ in the above density-ratio model is learned so that the following

squared error is minimized:

min
θ

1

2

∫ c∑
y=1

(
rθ(x, y;θ)− r(x, y)

)2
p(x)p(y)dx. (39)

Let θy be the parameter vector corresponding to the kernel bases {L(x,xℓ)}ℓ:yℓ=y, i.e.,
θy is the sub-vector of θ = (θ1, . . . , θn)

⊤ consisting of indices {ℓ | yℓ = y}. Let ny be the
length of θy, i.e., the number of samples in cluster y. Then an empirical and regularized
version of the optimization problem (39) is given for each y as follows:

min
θy

[
1

2
θ⊤y Ĥ

(y)θy − θ⊤y ĥ(y) +
δ

2
θ⊤y θy

]
, (40)

where δ (≥ 0) is the regularization parameter. Ĥ(y) is the ny × ny matrix and ĥ(y) is the
ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

ny

n2

n∑
i=1

L(xi,x
(y)
ℓ )L(xi,x

(y)
ℓ′ ),

ĥ
(y)
ℓ :=

1

n

∑
i:yi=y

L(xi,x
(y)
ℓ ),
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where x
(y)
ℓ is the ℓ-th sample in class y (which corresponds to θ̂

(y)
ℓ ).

A notable advantage of LSMI is that the solution θ̂(y) can be computed analytically
as

θ̂(y) = (Ĥ(y) + δI)−1ĥ(y).

Then a density-ratio estimator is obtained analytically as follows14:

r̂(x, y) =

ny∑
ℓ=1

θ̂
(y)
ℓ L(x,x

(y)
ℓ ).

The accuracy of the above least-squares density-ratio estimator depends on the choice
of the kernel parameter γ included in L(x,x′) and the regularization parameter δ in
Eq.(40). [179] showed that these tuning parameter values can be systematically optimized
based on cross-validation as follows: First, the samples Z = {(xi, yi)}ni=1 are divided into
M disjoint subsets {Zm}Mm=1 of approximately the same size (we use M = 5 in the
experiments). Then a density-ratio estimator r̂m(x, y) is obtained using Z\Zm (i.e., all
samples without Zm), and its out-of-sample error (which corresponds to Eq.(39) without
irrelevant constant) for the hold-out samples Zm is computed as

CVm :=
1

2|Zm|2
∑

x,y∈Zm

r̂m(x, y)
2 − 1

|Zm|
∑

(x,y)∈Zm

r̂m(x, y),

where
∑

x,y∈Zm
denotes the summation over all combinations of x and y in Zm (and thus

|Zm|2 terms), while
∑

(x,y)∈Zm
denotes the summation over all pairs (x, y) in Zm (and

thus |Zm| terms). This procedure is repeated for m = 1, . . . ,M , and the average of the
above hold-out error over all m is computed as

CV :=
1

M

M∑
m=1

CVm.

Then the kernel parameter γ and the regularization parameter δ that minimize the average
hold-out error, CV, are chosen as the most suitable ones.

Finally, based on an expression of SMI (28),

SMI = −1

2

∫ c∑
y=1

r(x, y)2p(x)p(y)dx+

∫ c∑
y=1

r(x, y)p(x, y)dx− 1

2
,

14Note that, in the original LSMI paper [179], the entire parameter θ = (θ1, . . . , θn)
⊤ for all classes

was optimized at once. On the other hand, we found that, when the density-ratio model rθ(x, y;θ)
defined by Eq.(37) is used for SMI approximation, exactly the same solution as the original LSMI paper
can be computed more efficiently by class-wise optimization. Indeed, in our preliminary experiments, we
confirmed that our class-wise optimization significantly reduces the computation time compared with the
original all-class optimization, with the same solution. Note that the original LSMI is applicable to more
general setups such as regression, multi-label classification, and structured-output prediction. Thus, our
speedup was brought by focusing on classification scenarios where Kronecker’s delta function is used as
the kernel for class labels in the density-ratio model (37).
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Figure 22: Schematic of the proposed clustering algorithm. We prepare T kernel candi-
dates {Kt(x,x

′)}Tt=1, compute cluster assignments {y(t)i }
n,T
i=1,t=1 by SMIC, and choose the

best one that maximizes LSMI.

Input: Feature vectors X = {xi}ni=1 and the number c of clusters
Output: Cluster assignments Y = {yi}ni=1

For each kernel parameter candidate t ∈ T
Y (t) ←− SMIC(X , t, c);
LSMI(t)←− LSMI(X ,Y(t));

end

t̂←− argmax
t∈T

LSMI(t);

Y ←− Y(t̂);

Figure 23: Pseudo code of information-maximization clustering based on SMIC and LSMI.
The kernel parameter t refers to the tuning parameter included in the kernel function
K(x,x′) in the cluster-posterior model (33). Pseudo codes of SMIC and LSMI are de-
scribed in Figure 24 and Figure 25, respectively.

the SMI estimator called LSMI is given as follows:

LSMI := − 1

2n2

n∑
i,j=1

r̂(xi, yj)
2 +

1

n

n∑
i=1

r̂(xi, yi)−
1

2
, (41)

where r̂(x, y) is a density-ratio estimator obtained above. Since r̂(x, y) can be computed
analytically, LSMI can also be computed analytically.

We use LSMI for model selection of SMIC. More specifically, we compute LSMI as a
function of the kernel parameter t of K(x,x′) included in the cluster-posterior model (33),
and choose the one that maximizes LSMI. See Figure 22 for a schematic. A pseudo code
of the entire SMI-maximization clustering procedure is summarized in Figures 23–25.

Discussions: ŜMI given by Eq.(35) is used for determining cluster assignments {yi}ni=1,
while LSMI is used for model selection. Since LSMI was shown to be the optimal ap-
proximator of SMI, it would be more natural to use LSMI also for determining cluster
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Input: Feature vectors X = {xi}ni=1, kernel parameter t,
and the number c of clusters

Output: Cluster assignments Y = {yi}ni=1

K ←− Kernel matrix for samples X and kernel parameter t;
ϕy ←− y-th principal eigenvectors of K for y = 1, . . . , c;

ϕ̃y ←− ϕy × sign(ϕ⊤
y 1n) for y = 1, . . . , c;

yi ←− argmax
y∈{1,...,c}

[max(0n, ϕ̃y)]i

max(0n, ϕ̃y)⊤1n

for i = 1, . . . , n;

Y ←− {yi}ni=1;

Figure 24: Pseudo code of SMIC (with the uniform class-prior distribution). The kernel
parameter t refers to the tuning parameter included in the kernel function K(x,x′) in the
cluster-posterior model (33). If the class-prior probability p(y) is set to a user-specified

value πy for y = 1, . . . , c, yi is determined as argmax y
πy [max(0n,ϕ̃y)]i

max(0n,ϕ̃y)⊤1n
.

Input: Feature vectors X = {xi}ni=1 and cluster assignments Y = {yi}ni=1

Output: LSMI (an SMI estimate)

Z ←− {(xi, yi)}ni=1;
{Zm}Mm=1 ←− M disjoint subsets of Z;
For each kernel parameter candidate γ ∈ Γ

For each regularization parameter candidate δ ∈ ∆
For each fold m = 1, . . . ,M

r̂γ,δ,m(x, y)←− Density ratio estimator for (γ, δ) using Z\Zm;
CVm(γ, δ)←− Hold-out error of r̂γ,δ,m(x, y) for Zm;

end

CV(γ, δ)←− 1

M

M∑
m=1

CVm(γ, δ);

end
end

(γ̂, δ̂)←− argmin
γ∈Γ,δ∈∆

CV(γ, δ);

r̂(x, y)←− Density ratio estimator for (γ̂, δ̂) using Z;

LSMI←− − 1

2n2

n∑
i,j=1

r̂(xi, yj)
2 +

1

n

n∑
i=1

r̂(xi, yi)−
1

2
;

Figure 25: Pseudo code of LSMI. The kernel parameter γ refers to the tuning parameter
included in the kernel function L(x,x′) in the density-ratio model (37).
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assignments in a dependence-maximizing way [153, 50]. However, this is not practical
because maximizing LSMI with respect to cluster assignments {yi}ni=1 is a hard optimiza-
tion problem and a naive greedy-search strategy may not give a good solution without
any prior knowledge. For this reason, we decided to use different criteria, ŜMI and LSMI,
for determining cluster assignments and model selection. In principle, it is possible to use
an arbitrary clustering algorithm in the first step and then evaluate its validity by LSMI
in the second stage, although ŜMI and LSMI are “consistent” in the sense that they are
both approximators of SMI.

5.2.5 Perturbation Stability Analysis

Here, we analyze the perturbation stability of the proposed clustering algorithm.
Let us denote the set of symmetric matrices of size n by Sn ⊂ Rn×n, and the Frobenius

norm of a matrix by ∥ · ∥Frob. For A ∈ Sn, we denote by λ(A) the spectra of A, i.e., the
set of all eigenvalues of A. For ϵ > 0, a subset Λ(A) of λ(A) is said to be an ϵ-cluster of
(the spectra of) A, if the following two conditions are met:

1. Λ(A) has a diameter smaller than ϵ.

2. dH(Λ(A), λ(A) \ Λ(A)) > ϵ, where dH is the Hausdorff distance.

First, we review a fundamental perturbation result given in the appendix of [99],
Lemma 5.2 of [100], and pp.33–34 in [197].

Proposition 1 (Finite-dimensional perturbation). For A ∈ Sn, let µ1 > · · · > µk be
the eigenvalues of A counted without multiplicity, and W1, . . . ,Wk be the corresponding
eigenspaces. Let Pj(A) be the orthogonal projection onto Wj for j = 1, . . . , k. For 1 ≤
r < k, define the eigengap

δr := min
j=1,...,r

{µj − µj+1}.

Fix r, let 0 < ϵ ≤ δr/4, and assume perturbation B ∈ Sn with ∥B∥Frob < ϵ. Then,

1. The spectra λ(A + B) of (A + B) can be partitioned into r + 1 subsets, i.e., r
ϵ-clusters Λj(A+B) for j = 1, . . . , r and the residue Rr satisfy

Λj(A+B) ⊂ B(µj, ϵ), (42)

where B(µj, ϵ) denotes the open ball with center µj and radius ϵ, and

dH(Rr, {µ1, . . . , µr}) > δr − ϵ.

2. Denote by Pj(A+B) the orthogonal projection onto the direct sum of the eigenspaces
of (A + B) with eigenvalues in the cluster Λj(A + B) for j = 1, . . . , k. For all
j = 1, . . . , r, we have

tr(Pj(A+B)) = tr(Pj(A)) (43)

and
∥Pj(A+B)− Pj(A)∥Frob ≤ 4∥B∥Frob/δr. (44)
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Intuitively speaking, Eq.(42) says that the perturbed eigenvalues are close to the
original eigenvalues, Eq.(44) says that the perturbed eigenspaces are close to the original
eigenspaces, and Eq.(43) guarantees the same dimensionality of the eigenspaces and thus
the same multiplicity of perturbed and original eigenvalues, provided that the eigenvalues
of A are well-separated, i.e., the eigengap δr is more than 4∥B∥Frob.

Now we apply the above result to SMIC. Recall that SMIC maximizes the objective
function defined in Eq.(35),

1

2n

c∑
y=1

1

πy
α⊤

yK
2αy −

1

2
,

subject to the orthonormality of {α1, . . . ,αc}. We can bound the difference between
empirical and optimal solutions under a kernel matrix perturbation ∆ ∈ Sn with
∥∆∥Frob ≪ ∥K∥Frob as follows:

Theorem 2 (Kernel matrix perturbation). Suppose that the kernel function satisfies
K(x,x) = 1 for all x. Let µ1 > · · · > µr be the first r eigenvalues of the kernel ma-
trix K counted without multiplicity, such that µr is the c-th largest eigenvalue of K if
counted with multiplicity. Define the eigengap

δr = min
j=1,...,r

{µj − µj+1}.

Assume that the kernel matrix K is perturbed as

K ′ =K +∆,

where ∆ ∈ Sn with ∥∆∥Frob < δr/4. Denote by v and {ϕ1, . . . ,ϕc} the optimal value and
solutions of SMIC for K, and by v′ the optimal value of SMIC for K ′. Then we have

|v − v′| < ∥∆∥Frob/π1, (45)

and there exist optimal solutions {ϕ′
1, . . . ,ϕ

′
c} for K ′ such that

∥ϕy − ϕ′
y∥2 ≤ 4∥∆∥Frob/δr for y = 1, . . . , c, (46)

where ∥ · ∥2 denotes the ℓ2-norm.

A proof of Theorem 2 is provided in Appendix 5.6. This theorem shows that the
difference in SMIC solutions is bounded by the amount of perturbation in the kernel
matrix, which is a desirable property in practice. Note that, by “there exist optimal
solutions {ϕ′

1, . . . ,ϕ
′
c}”, we mean that {ϕ′

1, . . . ,ϕ
′
c} need to be chosen carefully, since

SMIC involves non-convex optimization and thus there may exist multiple globally optimal
solutions. However, if K has c distinct top eigenvalues which would be a usual case in
practice, it will be easy to determine ϕ′

y because the only degree of freedom is its sign.
Next, we analyze the post-processing step of SMIC.
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Theorem 3 (Post-processing perturbation). Under the same assumption as Theorem 2,
suppose that {ϕ′

1, . . . ,ϕ
′
c} satisfy Eq.(46). Without loss of generality, we further assume

that
1⊤
nϕy > 0 and 1⊤

nϕ
′
y > 0 for y = 1, . . . , c.

Define the soft response vectors based on the solutions {ϕ1, . . . ,ϕc} and {ϕ′
1, . . . ,ϕ

′
c} as

fy = πyϕ
+
y /(1

⊤
nϕ

+
y ) and f ′

y = πyϕ
′+
y /(1

⊤
nϕ

′+
y ) for y = 1, . . . , c,

respectively, where ϕ+
y = max(0n,ϕy) and ϕ

′+
y = max(0n,ϕ

′
y). Then, for y = 1, . . . , c, we

have
∥fy − f ′

y∥2/
√
n < 16

√
2πy∥∆∥Frob/δr.

A proof of Theorem 3 is provided in Appendix 5.7. This theorem shows that SMIC is
stable with respect to kernel matrix perturbation ∆. That is, the root-mean-square error
∥fy − f ′

y∥2/
√
n will vanish as n → ∞, if the intensity of the perturbation measured by

∥∆∥Frob/δr is asymptotically an infinitesimal, i.e., ∥∆∥Frob/δr ∈ o(1) in terms of n.

5.3 Existing Clustering Methods

In this section, we review existing clustering methods and qualitatively discuss the relation
to the proposed approach.

5.3.1 K-Means Clustering

K-means clustering [117] would be one of the most popular clustering algorithms. It
tries to minimize the following distortion measure with respect to the cluster assignments
{yi}ni=1:

c∑
y=1

∑
i:yi=y

∥xi − µy∥2, (47)

where µy :=
1
ny

∑
i:yi=y xi is the centroid of cluster y and ny is the number of samples in

cluster y.
The original k-means algorithm is capable of only producing linearly separated clusters

[46]. However, since samples are used only in terms of their inner products, its non-linear
variant can be immediately obtained by performing k-means in a feature space induced
by a reproducing kernel function [58].

As the optimization problem of (kernel) k-means is NP-hard [6], a greedy optimization
algorithm is usually used for finding a local optimal solution in practice. It was shown
that the solution to a continuously-relaxed variant of the kernel k-means problem is given
by the principal components of the kernel matrix [217, 44]. Thus, post-discretization of
the relaxed solution may give a good approximation to the original problem, which is
computationally efficient. This idea is similar to the proposed SMIC method described
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in Section 5.2.3. However, an essential difference is that SMIC handles the continuous
solution directly as a parameter estimate of the class-posterior model.

The performance of kernel k-means depends heavily on the choice of kernel functions,
and there is no systematic way to determine the kernel function. This is a critical weakness
of kernel k-means in practice. On the other hand, our proposed approach offers a natural
model selection strategy, which is a significant advantage over kernel k-means.

5.3.2 Spectral Clustering

The basic idea of spectral clustering [149, 123] is to first unfold non-linear data manifolds
by a spectral embedding method, and then perform k-means in the embedded space. More
specifically, given sample-sample similarity Wi,j ≥ 0 (large Wi,j means that xi and xj are
similar), embedded samples are obtained as the minimizer of the following criterion with
respect to {ξi}ni=1 under some normalization constraint:

n∑
i,j

Wi,j

∥∥∥∥∥ 1√
Di,i

ξi −
1√
Dj,j

ξj

∥∥∥∥∥
2

,

where D is the diagonal matrix with i-th diagonal element given by Di,i :=
∑n

j=1Wi,j.
Consequently, the embedded samples are given by the principal eigenvectors of
D− 1

2WD− 1
2 , followed by normalization. Note that spectral clustering was shown to

be equivalent to a weighted variant of kernel k-means with some specific kernel [43].
The performance of spectral clustering depends heavily on the choice of sample-sample

similarity Wi,j. [216] proposed a useful unsupervised heuristic to determine the similarity
in a data-dependent manner, called local scaling :

Wi,j = exp

(
−∥xi − xj∥2

2σiσj

)
,

where σi is a local scaling factor defined as

σi = ∥xi − x(t)
i ∥,

and x
(t)
i is the t-th nearest neighbor of xi. t is the tuning parameter in the local scaling

similarity, and t = 7 was shown to be useful [216, 156]. However, this magic number “7”
does not seem to work always well in general.

If D− 1
2WD− 1

2 is regarded as a kernel matrix, spectral clustering will be similar to
the proposed SMIC method described in Section 5.2.3. However, SMIC does not require
the post k-means processing since the principal components have clear interpretation
as parameter estimates of the class-posterior model (33). Furthermore, our proposed
approach provides a systematic model selection strategy, which is a notable advantage
over spectral clustering.
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5.3.3 Blurring Mean-Shift Clustering

Blurring mean-shift [53] is a non-parametric clustering method based on the modes of the
data-generating probability density.

In the blurring mean-shift algorithm, a kernel density estimator [152] is used for mod-
eling the data-generating probability density:

p̂(x) =
1

n

n∑
i=1

K
(
∥x− xi∥2/σ2

)
,

where K(ξ) is a kernel function such as a Gaussian kernel K(ξ) = e−ξ/2. Taking the
derivative of p̂(x) with respect to x and equating the derivative at x = xi to zero, we
obtain the following updating formula for sample xi (i = 1, . . . , n):

xi ←−
∑n

j=1Wi,jxj∑n
j′=1Wi,j′

,

where Wi,j := K ′ (∥xi − xj∥2/σ2
)
and K ′(ξ) is the derivative of K(ξ). Each mode of the

density is regarded as a representative of a cluster, and each data point is assigned to the
cluster which it converges to.

[29] showed that the blurring mean-shift algorithm can be interpreted as an
expectation-maximization algorithm [41], where Wi,j/(

∑n
j′=1Wi,j′) is regarded as the pos-

terior probability of the i-th sample belonging to the j-th cluster. Furthermore, the above
update rule can be expressed in a matrix form as X ←−XP , where X = (x1, . . . ,xn) is
a sample matrix and P :=WD−1 is a stochastic matrix of the random walk in a graph
with adjacency W [35]. D is defined as Di,i :=

∑n
j=1Wi,j and Di,j = 0 for i ̸= j. If

P is independent of X, the above iterative algorithm corresponds to the power method
[59] for finding the leading left eigenvector of P . Then, this algorithm is highly related

to the spectral clustering which computes the principal eigenvectors of D− 1
2WD− 1

2 (see
Section 5.3.2). Although P depends onX in reality, [28] insisted that this analysis is still
valid since P and X quickly reach a quasi-stable state.

An attractive property of blurring mean-shift is that the number of clusters is automat-
ically determined as the number of modes in the probability density estimate. However,
this choice depends on the kernel parameter σ and there is no systematic way to determine
σ, which is restrictive compared with the proposed method. Another critical drawback of
the blurring mean-shift algorithm is that it eventually converges to a single point (i.e., a
single cluster, see [34]), and therefore a sensible stopping criterion is necessary in practice.
Although [28] gave a useful heuristic for stopping the iteration, it is not clear whether
this heuristic always works well in practice.

5.3.4 Discriminative Clustering

The support vector machine (SVM) [193] is a supervised discriminative classifier that tries
to find a hyperplane separating positive and negative samples with the maximum margin.

67



[203] extended SVM to unsupervised classification scenarios (i.e., clustering), which is
called maximum-margin clustering (MMC).

MMC inherits the idea of SVM and tries to find the cluster assignments y =
(y1, . . . , yn)

⊤ so that the margin between two clusters is maximized under proper con-
straints:

min
y∈{+1,−1}n

max
λ

2λ⊤1n − ⟨K ◦ λλ⊤,yy⊤⟩

subject to − ε ≤ 1⊤
ny ≤ ε and 0n ≤ λ ≤ C1n,

where ◦ denotes the Hadamard product (also known as the entry-wise product), and ε
and C are tuning parameters. The constraint −ε ≤ 1⊤

ny ≤ ε corresponds to balancing
the cluster size.

Since the above optimization problem is combinatorial with respect to y and thus
hard to solve directly, it is relaxed to a semi-definite program by replacing yy⊤ (which
is a zero-one matrix with rank one) with a real positive semi-definite matrix [203]. Since
then, several approaches have been developed for further improving the computational
efficiency of MMC [191, 220, 219, 108, 199].

The performance of MMC depends heavily on the choice of the tuning parameters ε
and C, but there is no systematic method to tune these parameters. The fact that our
proposed approach is equipped with a model selection strategy would practically be a
strong advantage over MMC.

Following a similar line to MMC, a discriminative and flexible framework for clustering
(DIFFRAC) [14] was proposed. DIFFRAC tries to solve a regularized least-squares prob-
lem with respect to a linear predictor and class labels. Thanks to the simple least-squares
formulation, the parameters in the linear predictor can be optimized analytically, and
thus the optimization problem is much simplified. A kernelized version of the DIFFRAC
optimization problem is given by

min
y∈{+1,−1}n

tr(ΠΠ⊤κΓ(ΓKΓ+ nκIn)
−1Γ),

where Π is the n× c cluster indicator matrix, which takes 1 only at one of the elements
in each row (this corresponds to the index of the cluster to which the sample belongs)
and others are all zeros. κ (≥ 0) is the regularization parameter, and Γ := In − 1

n
1n1

⊤
n

is a centering matrix. In practice, the above optimization problem is relaxed to a semi-
definite program by replacing ΠΠ⊤ with a real positive semi-definite matrix. However,
DIFFRAC is still computationally expensive and it suffers from lack of objective model
selection strategies.

5.3.5 Generative Clustering

In the generative clustering framework [46], class labels are determined by

ŷ = argmax
y

p(y|x) = argmax
y

p(x, y),
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where p(y|x) is the class-posterior probability and p(x, y) is the data-generating proba-
bility. Typically, p(x, y) is modeled as

pθ(x, y;β,π) = pθ(x|y;β)pθ(y;π),

where β and π are parameters. Canonical model choice is the Gaussian distribution for
pθ(x|y;β) and the multinomial distribution for pθ(y;π).

However, since class labels {yi}ni=1 are unknown, one may not directly learn β and π
in the joint-probability model pθ(x, y;β,π). An approach to coping with this problem is
to consider a marginal model,

pθ(x;β,π) =
c∑

y=1

pθ(x|y;β)pθ(y;π),

and learns the parameters β and π by maximum likelihood estimation [46]:

max
β,π

n∏
i=1

pθ(xi;β,π).

Since the likelihood function of the above mixture model is non-convex, a gradient method
[7] may be used for finding a local maximizer in practice. For determining the number of
clusters (mixtures) and the mixing-element model pθ(x|y;β), likelihood cross-validation
[69] may be used.

Another approach to coping with the unavailability of class labels is to regard {yi}ni=1 as
latent variables, and apply the expectation-maximization (EM) algorithm [41] for finding
a local maximizer of the joint likelihood:

max
β,π

n∏
i=1

pθ(xi, yi;β,π).

A more flexible variant of the EM algorithm called the split-and-merge EM algorithm
[189] is also available, which dynamically controls the number of clusters during the EM
iteration.

Instead of point-estimating the parameters β and π, one can also consider their dis-
tributions in the Bayesian framework [24]. Let us introduce prior distributions pθ(β) and
pθ(π) for the parameters β and π. Then the posterior distribution of the parameters is
expressed as

pθ(β,π|X ) ∝ pθ(X|β,π)pθ(β)pθ(π),

where X = {xi}ni=1. Based on the Bayesian predictive distribution,

p̂(y|x,X ) ∝
∫∫

pθ(x, y|β,π)pθ(β,π|X )dβdπ,
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class labels are determined as

max
y
p̂(y|x,X ).

Because the integration included in the Bayesian predictive distribution is computa-
tionally expensive, conjugate priors are often adopted in practice. For example, for the
Gaussian-cluster model pθ(x|y;β), the Gaussian prior is assumed for the mean parameter
and the Wishart prior is assumed for the precision parameter (i.e., the inverse covariance)
for the multinomial model pθ(y;π), the Dirichlet prior is assumed. Otherwise, the poste-
rior distribution is approximated by the Laplace approximation [116], the Markov chain
Monte Carlo sampling [10], or the variational approximation [13, 57]. The number of
clusters can be determined based on the maximization of the marginal likelihood :

pθ(X ) = argmax
y

∫∫
pθ(X|β,π)pθ(β)pθ(π)dβdπ. (48)

The generative clustering methods are statistically well-founded. However, density
models for each cluster p(x|y) need to be specified in advance, which lacks flexibility
in practice. Furthermore, in the Bayesian approach, the choice of cluster models and
prior distributions are often limited to conjugate pairs in practice. On the other hand,
in the frequentist approach, only local solutions can be obtained in practice due to the
non-convexity caused by mixture modeling.

5.3.6 Posterior-Maximization Clustering

Another possible clustering approach based on probabilistic inference is to directly max-
imizes the posterior probability of class labels Y = {yi}ni=1 [24]:

max
Y

p(Y|X ).

Let us model the cluster-wise data distribution p(X|Y) by pθ(X|Y ,β).
An approximate inference method called iterative conditional modes [104] alternatively

maximizes the posterior probabilities of Y and β until convergence:

Ŷ ←− pθ(Y|X , β̂),
β̂ ←− pθ(β|X , Ŷ).

When the Gaussian model with covariance identity is assumed for pθ(Y|X ,β), this algo-
rithm is reduced to the k-means algorithm (see Section 5.3.1) under the uniform priors.

Let us consider the class-prior probability p(Y) and model it by pθ(Y|π). Introducing
the prior distributions pθ(β) and pθ(π), we can approximate the posterior distribution of
Y as

pθ(Y|X ) ∝
∫∫

pθ(X|Y ,β)pθ(β)pθ(Y|π)pθ(π)dβdπ.
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Similarly to generative clustering described in Section 5.3.5, conjugate priors such as
the Gauss-Wishart prior and the Dirichlet prior are practically useful in improving the
computational efficiency. The number of clusters can also be similarly determined by
maximizing the marginal likelihood (48). However, direct optimization of Y is often
computationally intractable due to cn combinations, where c is the number of clusters
and n is the number of samples. For this reason, efficient sampling schemes such as the
Markov chain Monte Carlo are indispensable in this approach.

A Dirichlet process mixture [51, 11] is a non-parametric extension of the above ap-
proach, where an infinite number of clusters are implicitly considered and the number
of clusters is automatically determined based on observed data. In order to improve the
computational efficiency of this infinite mixture approach, various approximation schemes
such as Markov chain Monte Carlo sampling [121] and variational approximation [25] have
been introduced. Furthermore, variants of Dirichlet processes such as hierarchical Dirich-
let processes [181], nested Dirichlet processes [141], and dependent Dirichlet processes
[109] have been developed recently.

However, even in this non-parametric Bayesian approach, density models for each
cluster still need to be parametrically specified in advance, which is often restricted to
Gaussian models in practice. This highly limits the flexibility of clustering.

5.3.7 Dependence-Maximization Clustering

The Hilbert-Schmidt independence criterion (HSIC) [61] is a dependence measure based
on a reproducing kernel functionK(x,x′) [12]. [153] proposed a dependence-maximization
clustering method called clustering with HSIC (CLUHSIC), which tries to determine clus-
ter assignments {yi}ni=1 so that their dependence on feature vectors {xi}ni=1 is maximized.

More specifically, CLUHSIC tries to find the cluster indicator matrix Π (see Sec-
tion 5.3.4) that maximizes

tr(KΠAΠ⊤),

where Ki,j := K(xi,xj) and A is a c × c cluster-cluster similarity matrix. Note that
ΠAΠ⊤ can be regarded as the kernel matrix for cluster assignments. [153] used a greedy
algorithm to optimize the cluster indicator matrix, which is computationally demanding.
[215] gave spectral and semi-definite relaxation techniques to improve the computational
efficiency of CLUHSIC.

HSIC is a kernel-based independence measure and the kernel function K(x,x′) needs
to be determined in advance. However, there is no systematic model selection strategy for
HSIC, and using the Gaussian kernel with width set to the median distance between sam-
ples is a standard heuristic in practice [145]. On the other hand, our proposed approach
is equipped with an objective model selection strategy, which is a notable advantage over
CLUHSIC.

Another line of dependence-maximization clustering adopts mutual information (MI)
as a dependency measure. Recently, a dependence-maximization clustering method called
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mean nearest-neighbor (MNN) clustering was proposed [50]. MNN is based on the k-
nearest-neighbor entropy estimator proposed by [102].

The performance of the original k-nearest-neighbor entropy estimator depends on the
choice of the number of nearest neighbors, k. On the other hand, MNN avoids this
problem by introducing a heuristic of taking an average over all possible k. The resulting
objective function is given by

c∑
y=1

1

ny − 1

∑
i ̸=j:yi=yj=y

log(∥xi − xj∥2 + ϵ), (49)

where ϵ (> 0) is a smoothing parameter. Then this objective function is minimized with
respect to cluster assignments {yi}ni=1 using a greedy algorithm.

Although the fact that the tuning parameter k is averaged out is convenient, this
heuristic is not well justified theoretically. Moreover, the choice of the smoothing param-
eter ϵ is arbitrary. In the MATLAB code provided by one of the authors, ϵ = 1/n was
recommended, but there seems no justification for this choice. Also, due to the greedy op-
timization scheme, MNN is computationally expensive. On the other hand, our proposed
approach offers a well-justified model selection strategy, and the SMI-based clustering
gives an analytic-form solution which can be computed efficiently.

5.3.8 Information-Maximization Clustering with Mutual Information

Finally, we review methods of information-maximization clustering based on mutual infor-
mation [1, 60], which belong to the same family of clustering algorithms as our proposed
method.

Mutual information (MI) is defined and expressed as

MI :=

∫ c∑
y=1

p(x, y) log
p(x, y)

p(x)p(y)
dx

=

∫ c∑
y=1

p(y|x)p(x) log p(y|x)dx−
∫ c∑

y=1

p(y|x)p(x) log p(y)dx. (50)

Let us approximate the class-posterior probability p(y|x) by a conditional-probability
model p(y|x;α) with parameter α. Then the marginal probability p(y) can be approxi-
mated as

p(y) =

∫
p(y|x)p(x)dx ≈ 1

n

n∑
i=1

p(y|xi;α). (51)

By further approximating the expectation with respect to p(x) included in Eq.(50) by the
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empirical average of samples {xi}ni=1, the following MI estimator can be obtained [1, 60]:

M̂I :=
1

n

n∑
i=1

c∑
y=1

p(y|xi;α) log p(y|xi;α)

−
c∑

y=1

(
1

n

n∑
i=1

p(y|xi;α)

)
log

(
1

n

n∑
j=1

p(y|xj;α)

)
. (52)

In [1], the Gaussian model,

p(y|x;α) ∝ exp

(
−∥x− cy∥

2

2s2y
+ by

)
,

(or its kernelized version) is adopted, where α = {cy, sy, by}cy=1 is the parameter. Then a

local maximizer of M̂I with respect to the parameter α is found by a gradient method.
On the other hand, in [60], the logistic model

p(y|x;α) ∝ exp
(
α⊤

y x
)
, (53)

(or its kernelized version) is adopted, where α = {αy}cy=1 is the parameter. Then a local

maximizer of M̂I with respect to the parameter α is found by a quasi-Newton method.
Finally, cluster assignments {yi}ni=1 are determined as

yi = argmax
y

p(y|xi; α̂),

where α̂ is a local maximizer of M̂I. Below, we refer to the above method as MI-based
clustering (MIC).

In the kernelized version of MIC, the user needs to determine parameters included
in the kernel function such as the kernel width or the number of nearest neighbors. [1]

proposed to choose the kernel parameters so that M̂I (52) is maximized. Thus, cluster
assignments and kernel parameters can be consistently determined under the common
guidance of maximizing M̂I. However, since M̂I is an unsupervised estimator of MI, it is
not accurately enough; in the model selection stage, cluster labels {yi}ni=1 are available and
thus supervised estimation of MI is more favorable. Indeed, there exists a more powerful
supervised MI estimator called maximum-likelihood MI (MLMI) [180], which was proved
to achieve the optimal non-parametric convergence rate.

The derivation of MLMI follows a similar line to LSMI explained in Section 5.2.4, i.e.,
the density-ratio function (36) is learned. More specifically, the following density-ratio
model rθ(x, y;θ) is used:

rθ(x, y;θ) :=
∑
ℓ:yi=y

θℓL(x,xℓ),

where θ = (θ1, . . . , θn)
⊤ and L(x,x′) is a kernel function with a kernel parameter γ.

Then the parameter θ is learned so that the Kullback-Leibler divergence from p(x, y)
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to rθ(x, y;θ)p(x)p(y) is minimized15. An empirical version of the MLMI optimization
problem is given as

max
θ

1

n

n∑
i=1

log rθ(xi, yi;θ)

s.t.
1

n2

n∑
i,j=1

rθ(xi, yj;θ) = 1 and θ ≥ 0n,

where the inequality for vectors is applied in the element-wise manner. This is a convex
optimization problem, and thus the global optimal solution θ̂, which tends to be sparse,
can be easily obtained by, e.g., iteratively performing gradient ascent and projection [173].

Then an MI estimator called MLMI is given as follows:

MLMI :=
1

n

n∑
i=1

log rθ(xi, yi; θ̂).

The kernel parameter γ included in the kernel function L(x,x′) can be optimized by
cross-validation, in the same way as LSMI [180].

5.4 Experiments

In this section, we experimentally evaluate the performance of the proposed and existing
clustering methods.

5.4.1 Illustration

First, we illustrate the behavior of the proposed method using the following 4 artificial
datasets with dimensionality d = 2 and sample size n = 200:

(a) Four Gaussian blobs: For the number of classes c = 4, samples in each class are
drawn from the Gaussian distributions with mean (2, 2)⊤, (−2, 2)⊤, (2,−2)⊤, and
(−2,−2)⊤ and covariance matrix 0.25I2, respectively.

(b) Circle & Gaussian: For c = 2, samples in one class are drawn from the 2-
dimensional standard normal distribution, and samples in the other class are equi-
distantly located on the origin-centered circle with radius 5. Then noise following
the origin-centered normal distribution with covariance matrix 0.01I2 is added to
each sample.

(c) Double spirals: For c = 2, the i-th sample in one class is given by
(ℓi cos(mi), ℓi sin(mi))

⊤, and the i-th sample in the other class is given by
(−ℓi cos(mi),−ℓi sin(mi))

⊤, where ℓi = 1 + 4(i− 1)/n and mi = 3π(i− 1)/n. Then
noise following the origin-centered normal distribution with covariance matrix 0.01I2
is added to each sample.

15Note that rθ(x, y;θ)p(x)p(y) can be regarded as a model of p(x, y).
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(d) High & low densities: For c = 2, samples in one class are drawn from the 2-
dimensional standard normal distribution, and samples in the other class are drawn
from the 2-dimensional origin-centered normal distribution with covariance matrix
0.01I2.

The class-prior probability was set to be uniform. The generated samples were central-
ized and their variance was normalized in the dimension-wise manner (see the top row of
Figure 26). As a kernel function, we used the sparse local-scaling kernel (34) for SMIC,
where the kernel parameter t was chosen from {1, . . . , 10} based on LSMI with the Gaus-
sian kernel (38).

The top graphs in Figure 26 depict the cluster assignments obtained by SMIC with
the uniform class-prior, and the bottom graphs in Figure 26 depict the model selection
curves obtained by LSMI (i.e., the values of LSMI as functions of the model parameter t).
The clustering performance was evaluated by the adjusted Rand index (ARI) [74] between
inferred cluster assignments and the ground truth categories (see Appendix 5.8 for the
details of ARI). Larger ARI values mean better performance, and ARI takes its maximum
value 1 when two sets of cluster assignments are identical. The results show that SMIC
combined with LSMI works well for these toy datasets.

Figure 27 depicts the cluster assignments and model selection curves obtained by MIC
with MLMI (see Section 5.3.8), where pre-training of the kernel logistic model using the
cluster assignments obtained by self-tuning spectral clustering [216] was carried out for
initializing MIC [60]. The figure shows that qualitatively good clustering results were
obtained for the datasets (a) and (b). However, for the datasets (c) and (d), poor results
were obtained due to local optima of the objective function (52).

Figure 28 and Figure 29 depict class-posterior probabilities estimated by SMIC and
MIC, respectively. The plots show that, for the datasets (a), (b), and (c) where the clus-
ters are clearly separated, the estimated class-posterior probabilities are almost zero-one
functions and thus the class prediction is highly certain. On the other hand, for the dataset
(d) where the two clusters are overlapped, the estimated class-posterior probabilities tend
to take intermediate class-posterior probabilities.

5.4.2 Influence of Imbalanced Class-Prior Probabilities

Next, we experimentally investigate how imbalanced class-prior probabilities (i.e., the
sample size in each cluster is significantly different) influence the clustering performance
of SMIC.

We continue using the 4 artificial datasets used in Section 5.4.1, but we set the true
class-prior probability as

p(y = 1) = p(y = 2) = 0.1, 0.15, 0.2, 0.25,

p(y = 3) = p(y = 4) =
1− p(y = 1)− p(y = 2)

2
,
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Figure 26: Illustrative examples. Cluster assignments obtained by SMIC (top) and model
selection curves obtained by LSMI (bottom).
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Figure 27: Illustrative examples. Cluster assignments obtained by MIC (top) and model
selection curves obtained by MLMI (bottom).
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(d) High & low densities

Figure 28: Illustrative examples. Class-posterior probabilities estimated by SMIC.

T
ru

e 
cl

as
s 

y*

 

 

50 100 150 200
1
2
3
4

Sample index

C
la

ss
−

po
st

er
io

r 
pr

ob
ab

ili
ty

 p
(y

|x
)

 

 

50 100 150 200

y=1

y=2

y=3

y=4

0

0.2

0.4

0.6

0.8

(a) Four Gaussian blobs

T
ru

e 
cl

as
s 

y*

 

 

50 100 150 200
1

1.5

2

Sample index

C
la

ss
−

po
st

er
io

r 
pr

ob
ab

ili
ty

 p
(y

|x
)

 

 

50 100 150 200

y=1

y=2
0.2

0.4

0.6

0.8

(b) Circle & Gaussian

T
ru

e 
cl

as
s 

y*

 

 

50 100 150 200
1

1.5

2

Sample index

C
la

ss
−

po
st

er
io

r 
pr

ob
ab

ili
ty

 p
(y

|x
)

 

 

50 100 150 200

y=1

y=2
0.2

0.4

0.6

0.8

(c) Double spirals

T
ru

e 
cl

as
s 

y*

 

 

50 100 150 200
1

1.5

2

Sample index

C
la

ss
−

po
st

er
io

r 
pr

ob
ab

ili
ty

 p
(y

|x
)

 

 

50 100 150 200

y=1

y=2

0

0.2

0.4

0.6

0.8

1

(d) High & low densities

Figure 29: Illustrative examples. Class-posterior probabilities estimated by MIC.
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Figure 30: Illustrative examples. The mean ARI over 100 runs as functions of the class-
prior probability p(y = 1). The two methods were judged to be comparable in terms of
the average ARI by the t-test at the significance level 1%.

for the dataset (a), and

p(y = 1) = 0.2, 0.3, 0.4, 0.5,

p(y = 2) = 1− p(y = 1),

for the datasets (b)–(d). The following 2 approaches are compared:

SMIC: SMIC with the uniform class-prior probabilities π1 = π2 = 1/2.

SMIC∗: SMIC with the true class-prior probabilities π1 = p(y = 1) and π2 = p(y = 2).

The mean and standard deviation of ARI over 100 runs are plotted in Figure 30,
showing that the difference between SMIC and SMIC∗ is negligibly small. Indeed, the
two methods were judged to be comparable to each other in terms of the average ARI by
the t-test at the significance level 1% for all tested cases. This would be a natural result
in clustering because class-prior probabilities only mildly affect cluster boundaries and
such mild change in cluster boundaries do not significantly affect clustering solutions.

The above results imply that SMIC is not sensitive to the choice of class-prior prob-
abilities. Thus, in practice, SMIC with the uniform class-prior distribution may be used
when the true class-prior is unknown.
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5.4.3 Performance Comparison

Finally, we systematically compare the performance of the proposed and existing clus-
tering methods using various real-world datasets such as images, natural languages, ac-
celerometric sensors, and speeches.

Setup We compared the performance of the following methods, all of which do not
contain open tuning parameters and therefore experimental results are fair and objective:

KM: K-means [117] (see also Section 5.3.1). We used the software included in the MAT-
LAB Statistics Toolbox, where initial values were randomly generated 100 times
and the best result in terms of the k-means objective value was chosen as the final
solution.

SC1: Spectral clustering [149, 123] (see also Section 5.3.2) with the Gaussian similarity.
The Gaussian width is set to the median distance between all samples, which is a
popular heuristic in kernel methods [145]. We used the publicly available MATLAB
code16, where the post k-means processing was repeated 10 times with heuristic
initialization: The first center was chosen randomly from samples, and then the
next center was iteratively set to the farthest sample from the previous ones. The
best result in terms of the k-means objective value over 10 repetitions was chosen
as the final solution.

SC2: Spectral clustering with the self-tuning local-scaling similarity [216], instead of the
Gaussian similarity.

MNN: Mean nearest-neighbor clustering [50] (see also Section 5.3.7). We used the MAT-
LAB code provided by one of the authors17. Following the suggestions provided in
the program code, the number of iterations was set to 10 and the smoothing pa-
rameter ϵ (see Eq.(49)) was set to ϵ = 1/n.

MIC: MI-based clustering with kernel logistic models and the sparse local-scaling kernel
[60] (see also Section 5.3.8), where model selection is carried out by maximum-
likelihood MI (MLMI) [180]. We implemented this method using MATLAB, which
is a combination of the MIC code personally provided by one of the authors, and the
MLMI code available from the web page of one of the authors18. Following the sug-
gestion provided in the original program code, MIC was initialized by pre-training
of the kernel logistic model using the cluster assignments obtained by spectral clus-
tering. The tuning parameter t included in the sparse local-scaling kernel (34) was
chosen from {1, . . . , 10} based on MLMI with Gaussian kernels (see Section 5.3.8).
The Gaussian kernel width in MLMI was chosen from {10−2, 10−1.5, 10−1, . . . , 102}

16http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html
17http://www.levfaivishevsky.webs.com/NIC.rar
18http://sugiyama-www.cs.titech.ac.jp/~sugi/software/MLMI/index.html
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based on cross-validation. As suggested in the MLMI code provided by the au-
thor, the number of kernel bases in MLMI was limited to 200, which were randomly
chosen from all n kernels.

SMIC: SMI-based clustering with the sparse local-scaling kernel and the uniform class-
prior distribution (see Section 5.2.3), where model selection is carried out by least-
squares MI (LSMI) [179] (see also Section 5.2.4). We implemented SMIC and
LSMI using MATLAB by ourselves. The tuning parameter t included in the
sparse local-scaling kernel (34) was chosen from {1, . . . , 10} based on LSMI with
Gaussian kernels (see Section 5.2.4). The Gaussian kernel width and regulariza-
tion parameter included in LSMI were chosen from {10−2, 10−1.5, 10−1, . . . , 102} and
{10−3, 10−2.5, 10−2, . . . , 101}, respectively, based on cross-validation. Similarly to
MLMI, the number of kernel bases in LSMI was limited to 200, which were ran-
domly chosen from all n kernels.

In addition to the clustering quality in terms of ARI, we also evaluated the computa-
tional efficiency of each method by the CPU computation time.

Datasets We used the following 6 real-world datasets.

Digit (d = 256, n = 5000, and c = 10): The USPS hand-written digit dataset19, which
contains 9298 digit images. Each image consists of 256 (= 16× 16) pixels and rep-
resents a digit in {0, 1, 2, . . . , 9}. Each pixel takes a value in [−1,+1] corresponding
to the intensity level in gray-scale. We randomly chose 500 samples from each of
the 10 classes, and used 5000 samples in total.

Face (d = 4096, n = 100, and c = 10): The Olivetti Face dataset20, which contains 400
gray-scale face images (40 people; 10 images per person). Each image consists of
4096 (= 64× 64) pixels and each pixel takes an integer value between 0 and 255 as
the intensity level. We randomly chose 10 people, and used 100 samples in total.

Document (d = 50, n = 700, and c = 7): The 20-Newsgroups dataset21, which contains
20000 newsgroup documents across 20 different newsgroups. We merged the 20
newsgroups into the following 7 top-level categories: “comp”, “rec”, “sci”, “talk”,
“alt”, “misc”, and “soc”. Each document is expressed by a 10000-dimensional
bag-of-words vector of term-frequencies. Following the convention [78], we trans-
formed the term-frequency vectors to the term frequency/inverse document fre-
quency (TFIDF) vector, i.e., we multiplied the term-frequency by the logarithm
of the inverse ratio of the documents containing the corresponding word. We ran-
domly chose 100 samples from each of the 7 classes, and used 700 samples in total.
We applied principal component analysis (PCA) [130, 79] to the 700 samples, and
extracted 50-dimensional feature vectors.

19http://www.gaussianprocess.org/gpml/data/
20http://www.cs.toronto.edu/~roweis/data.html
21http://people.csail.mit.edu/jrennie/20Newsgroups/
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Word (d = 50, n = 300, and c = 3): The SENSEVAL-2 dataset22 for word-sense disam-
biguation. We took the noun “interest” appeared in 1930 contexts, having 3 different
meanings: “advantage, advancement or favor”, “a share in a company or business”,
and “money paid for the use of money” (i.e., 3 classes). From each surrounding con-
text, we extracted a 14936-dimensional feature vector [127], which includes three
types of features: part-of-speech of neighboring words with position information,
bag-of-words in the surrounding context, and local collocation [106]. We randomly
chose 100 samples from each of the 3 classes, and used 300 samples in total. We
applied PCA to the 300 samples, and extracted 50-dimensional feature vectors.

Accelerometry (d = 5, n = 300, and c = 3): The ALKAN dataset23, which contains 3-
axis (i.e., x-, y-, and z-axes) accelerometric data collected by the iPod touch. In
the data collection procedure, subjects were asked to perform three specific tasks:
walking, running, and standing up. The duration of each task was arbitrary, and the
sampling rate was 20Hz with small variations. Each data-stream was then segmented
in a sliding window manner with window width 5 seconds and sliding step 1 second
[66]. Depending on subjects, the position and orientation of the accelerometer was
arbitrary—held by hand or kept in a pocket or a bag. For this reason, we took the
ℓ2-norm of the 3-dimensional acceleration vector at each time step, and computed
the following 5 orientation-invariant features from each window: mean, standard
deviation, fluctuation of amplitude, average energy, and frequency-domain entropy
[17, 18]. We randomly chose 100 samples from each of the 3 classes, and used 300
samples in total.

Speech (d = 50, n = 400, and c = 2): An in-house speech dataset, which contains short
utterance samples recorded from 2 male subjects speaking in French with sampling
rate 44.1kHz. From each utterance sample, we extracted a 50-dimensional line
spectral frequencies vector [80]. We randomly chose 200 samples from each class,
and used 400 samples in total.

For each dataset, the experiment was repeated 100 times with random choice of sam-
ples from the database, where the cluster size is balanced. Samples were centralized
and their variance was normalized in the dimension-wise manner, before feeding them to
clustering algorithms.

Results The experimental results are described in Table 1. For the digit dataset, MIC
and SMIC outperform KM, SC1, SC2, and MNN in terms of ARI. The entire computation
time of SMIC including model selection is faster than the other methods. For the face
dataset, SC2, MIC, and SMIC are comparable to each other and are better than KM,
SC1, and MNN in terms of ARI. For the document and word datasets, SMIC tends to
outperform the other methods. For the accelerometry dataset, MNN performs the best

22http://www.senseval.org/
23http://alkan.mns.kyutech.ac.jp/web/data.html
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and SMIC follows. Finally, for the speech dataset, MIC and SMIC work comparably well,
and are significantly better than the other methods.

The above results showed that MIC worked reasonably well, implying that the MLMI-
based model selection strategy is practically useful. However, SMIC was shown to work
even better than MIC, with much less computation time. The accuracy improvement of
SMIC over MIC was gained by computing the SMIC solution in a closed-form without
any heuristic initialization. The computational efficiency of SMIC was brought by the
analytic computation of the optimal solution and the class-wise optimization of LSMI
(see Section 5.2.4).

The performance of MNN and SC2 was rather unstable because of the heuristic aver-
aging of the number of nearest neighbors in MNN and the heuristic choice of local scaling
in SC. In terms of computation time, they are relatively efficient for small- to medium-
sized datasets, but they are expensive for the largest dataset, digit. SC1 did not perform
as well as SC2, except for the digit dataset. KM was not reliable for the document and
speech datasets because of the restriction that the cluster boundaries are linear. For the
digit, face, and document datasets, KM was computationally very expensive since a large
number of iterations were needed until convergence to a local optimum solution.

We also performed similar experiments with smaller numbers of samples. Table 2
describes the results, showing that the tendency of the experimental does not change
significantly and the proposed SMIC still performs well.

Finally, we considered the imbalanced setup where the sample size of the first class
was set to be m times larger than other classes with the total number of samples fixed to
the same number. The results are summarized in Table 3, showing that the performance
of all methods tends to be degraded as the degree of cluster imbalance increases. This
implies that clustering becomes more challenging if the cluster size is imbalanced. Among
the compared methods, SMIC (with the uniform prior) still worked better than other
methods.

Overall, the proposed SMIC combined with LSMI was shown to be a practically useful
alternative to existing clustering approaches.

5.5 Conclusions

In this paper, we proposed a novel information-maximization clustering method that
learns class-posterior probabilities in an unsupervised manner so that the squared-loss
mutual information (SMI) between feature vectors and cluster assignments is maximized.
The proposed algorithm, called SMI-based clustering (SMIC), allows us to obtain clus-
tering solutions analytically by solving a kernel eigenvalue problem. Thus, unlike the
previous information-maximization clustering methods [1, 60], SMIC does not suffer from
the problem of local optima. Furthermore, we proposed to use an optimal non-parametric
SMI estimator called least-squares mutual information (LSMI) for data-driven parameter
optimization. Through experiments, SMIC combined with LSMI was demonstrated to
compare favorably with existing clustering methods.

In experiments, the proposed clustering method was shown to be useful for various
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Table 1: Experimental results on real-world datasets (with equal cluster size). The average
clustering accuracy (and its standard deviation in the bracket) in terms of ARI and the
average CPU computation time in second over 100 runs are described. Larger ARI is
better, and shorter computation time is preferable. The best method in terms of the
average ARI and methods judged to be comparable to the best one by the t-test at the
significance level 1% are described in boldface. Computation time of MIC and SMIC
corresponds to the time for computing a clustering solution after model selection has
been carried out. For references, computation time for the entire procedure including
model selection is described in the square bracket, which depends on the number of
model candidates (in the current setup, we had 81 (= 9× 9) candidates).

Digit (d = 256, n = 5000, and c = 10)
KM SC1 SC2 MNN MIC SMIC

ARI 0.42(0.01) 0.46(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
Time 1414.6 561.3 495.1 228.4 69.1[1728.9] 7.1[144.1]

Face (d = 4096, n = 100, and c = 10)
KM SC1 SC2 MNN MIC SMIC

ARI 0.60(0.11) 0.37(0.08) 0.62(0.11) 0.47(0.10) 0.64(0.12) 0.65(0.12)
Time 127.6 1.8 1.6 0.6 1.7[34.3] 0.0[14.9]

Document (d = 50, n = 700, and c = 7)
KM SC1 SC2 MNN MIC SMIC

ARI 0.00(0.00) 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
Time 28.5 9.9 11.1 4.5 9.7[226.9] 0.6[41.2]

Word (d = 50, n = 300, and c = 3)
KM SC1 SC2 MNN MIC SMIC

ARI 0.04(0.05) 0.01(0.02) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
Time 2.4 1.7 1.8 1.7 1.4[85.6] 0.3[36.7]

Accelerometry (d = 5, n = 300, and c = 3)
KM SC1 SC2 MNN MIC SMIC

ARI 0.50(0.03) 0.20(0.26) 0.60(0.16) 0.73(0.05) 0.61(0.24) 0.68(0.12)
Time 0.2 1.7 1.7 1.8 1.3[137.2] 0.6[36.4]

Speech (d = 50, n = 400, and c = 2)
KM SC1 SC2 MNN MIC SMIC

ARI 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.04(0.15) 0.18(0.16) 0.21(0.25)
Time 0.4 2.1 1.9 1.8 1.3[134.3] 0.5[43.0]
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Table 2: Experimental results on real-world datasets for different numbers of samples.
ARI values are described in the table. The results for n are the same as the ones reported
in Table 1.

Digit (d = 256, n = 5000, and c = 10)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.42(0.01) 0.46(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)

n ∗ 3/4 0.43(0.01) 0.47(0.01) 0.25(0.02) 0.45(0.03) 0.64(0.09) 0.65(0.05)
n ∗ 1/2 0.43(0.02) 0.47(0.01) 0.26(0.02) 0.44(0.04) 0.61(0.12) 0.64(0.05)
n ∗ 1/4 0.41(0.02) 0.45(0.02) 0.28(0.03) 0.43(0.04) 0.60(0.10) 0.59(0.06)

Face (d = 4096, n = 100, and c = 10)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.60(0.11) 0.37(0.08) 0.62(0.11) 0.47(0.10) 0.64(0.12) 0.65(0.12)

n ∗ 3/4 0.59(0.12) 0.29(0.07) 0.53(0.12) 0.41(0.11) 0.62(0.12) 0.64(0.12)
n ∗ 1/2 0.60(0.14) 0.17(0.08) 0.36(0.12) 0.26(0.11) 0.55(0.12) 0.57(0.13)

Document (d = 50, n = 700, and c = 7)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.00(0.00) 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)

n ∗ 3/4 0.00(0.00) 0.01(0.03) 0.10(0.02) 0.09(0.02) 0.01(0.02) 0.20(0.03)
n ∗ 1/2 0.00(0.00) 0.04(0.05) 0.10(0.02) 0.09(0.02) 0.02(0.03) 0.19(0.03)
n ∗ 1/4 0.00(0.00) 0.10(0.05) 0.11(0.03) 0.10(0.03) 0.03(0.04) 0.19(0.05)

Word (d = 50, n = 300, and c = 3)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.04(0.05) 0.01(0.02) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)

n ∗ 3/4 0.02(0.03) 0.00(0.01) 0.02(0.02) 0.02(0.02) 0.04(0.04) 0.07(0.05)
n ∗ 1/2 0.02(0.02) 0.00(0.00) 0.02(0.03) 0.02(0.02) 0.03(0.03) 0.07(0.05)
n ∗ 1/4 0.02(0.04) -0.00(0.02) 0.02(0.03) 0.02(0.03) 0.04(0.06) 0.05(0.05)

Accelerometry (d = 5, n = 300, and c = 3)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.50(0.03) 0.20(0.26) 0.60(0.16) 0.73(0.05) 0.61(0.24) 0.68(0.12)

n ∗ 3/4 0.50(0.05) 0.25(0.29) 0.64(0.18) 0.72(0.08) 0.60(0.25) 0.69(0.12)
n ∗ 1/2 0.51(0.09) 0.33(0.30) 0.65(0.18) 0.71(0.09) 0.62(0.24) 0.72(0.13)
n ∗ 1/4 0.54(0.14) 0.56(0.21) 0.65(0.18) 0.66(0.14) 0.58(0.23) 0.71(0.14)

Speech (d = 50, n = 400, and c = 2)
ARI KM SC1 SC2 MNN MIC SMIC
n 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.04(0.15) 0.18(0.16) 0.21(0.25)

n ∗ 3/4 0.00(0.01) 0.00(0.01) 0.00(0.01) 0.01(0.09) 0.17(0.14) 0.24(0.26)
n ∗ 1/2 0.00(0.01) 0.01(0.01) 0.00(0.01) 0.01(0.05) 0.13(0.11) 0.17(0.22)
n ∗ 1/4 0.01(0.03) 0.01(0.02) 0.00(0.02) 0.02(0.07) 0.12(0.12) 0.09(0.18)
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Table 3: Experimental results on real-world datasets under imbalanced setup. ARI values
are described in the table. Class-imbalance was realized by setting the sample size of the
first class m times larger than other classes. SMIC was computed with the uniform prior
(i.e., the non-informative prior). The results for m = 1 are the same as the ones reported
in Table 1.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

m = 1 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
m = 2 0.52(0.01) 0.21(0.02) 0.43(0.04) 0.60(0.05) 0.63(0.05)

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

m = 1 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
m = 2 0.01(0.01) 0.10(0.03) 0.10(0.02) 0.01(0.02) 0.19(0.04)
m = 3 0.01(0.01) 0.10(0.03) 0.09(0.02) -0.01(0.03) 0.16(0.05)
m = 4 0.02(0.01) 0.09(0.03) 0.08(0.02) -0.00(0.04) 0.14(0.05)

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
m = 2 0.00(0.07) -0.01(0.01) 0.01(0.02) -0.02(0.05) 0.03(0.05)

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
m = 2 0.48(0.05) 0.54(0.14) 0.58(0.11) 0.49(0.19) 0.69(0.16)
m = 3 0.49(0.05) 0.47(0.10) 0.42(0.12) 0.42(0.14) 0.66(0.20)
m = 4 0.49(0.06) 0.38(0.11) 0.31(0.09) 0.40(0.18) 0.56(0.22)

types of data. However, the amount of improvement is large for some datasets, while it is
mild for other datasets. It is thus practically important to gain more insights on in what
case the proposed method is advantageous. Also, theoretically elucidating statistical con-
sistency of the proposed method as well as investigating the perturbation stability in more
details is also an important challenge. We will also analyze properties of other popular
clustering algorithms within the framework of information-maximization clustering.

The sparse local-scaling kernel (34) was shown to be useful in experiments. Since this
produces a sparse kernel matrix, the computation of SMIC (i.e., solving a kernel eigenvalue
problem) can be carried out very efficiently. However, if model selection is taken into
account, the proposed clustering procedure is still computationally rather demanding
due to the repeated computation of LSMI, which requires to solve a system of linear
equations. In the experiments, we used the Gaussian kernel (38) for LSMI and found it
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useful in practice. However, it produces a dense kernel matrix and thus a dense system
of linear equations need to be solved, which is computationally expensive. If a sparse
kernel is used also for LSMI, its computational efficiency will be highly improved. In our
preliminary experiments, the use of the sparse local-scaling kernel for LSMI improved the
computational efficiency, but it did not perform as well as the Gaussian kernel. Thus, our
important future work is to find a sparse kernel that gives an accurate approximation of
SMI with high computational efficiency.

As addressed in [153], kernelized methods can be applied to clustering of non-vectorial
structured objects such as strings, trees, and graphs by employing kernel functions defined
for such structured data [115, 47, 90, 101, 91, 55, 54]. Since these structured kernels usually
contain tuning parameters, the performance of clustering methods without systematic
model selection strategies depends on subjective parameter tuning, which is not preferable
in practice. For Gaussian kernels, there exists a popular heuristic that the Gaussian
width is set to the median distance between samples [145]. However, there seems no such
common heuristic for structured kernels. In such scenarios, the proposed method will be
highly advantageous because it allows systematic model selection for any kernels. We will
explore this direction in our future work.

We experimentally showed that the proposed method with the uniform class-prior
distribution still works well even when the true class-prior probability is not uniform. This
is a useful property in practice since the true class-prior probability is often unknown.
Another way to address this issue is to estimate the true class-prior probability in a data-
driven fashion, for example, iteratively performing clustering and updating the class-prior
probabilities. We will investigate such an adaptive approach in our future work.

The proposed method uses SMI as the common guidance for clustering, although we
are using two SMI approximators: ŜMI defined by Eq.(35) for finding clustering solutions

and LSMI defined by Eq.(41) for selecting models. Since ŜMI does not explicitly include
cluster labels {yi}ni=1, it has a simple form and therefore is suited for efficient maximization.
Indeed, we can obtain an optimal solution analytically by solving an eigenvalue problem.
However, since ŜMI is an unsupervised estimator where the cluster labels {yi}ni=1 are not
used, it may not be accurate enough for model selection purposes. Indeed, our preliminary
experiments showed that the use of ŜMI is not appropriate as a model selection criterion.
On the other hand, since LSMI achieves the optimal non-parametric convergence rate, its
high accuracy is suitable for model selection purposes. However, LSMI explicitly requires
cluster labels {yi}ni=1 and thus is not suited for efficient maximization. Based on the
optimality of LSMI, we ideally want to use LSMI consistently for both finding clustering
solutions and selecting models. However, its optimization involves discrete optimization
of {yi}ni=1, which is cumbersome in practice. Our future challenge is to develop a practical
clustering algorithm based directly on LSMI or alternative information measures.
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5.6 Proof of Theorem 2

For the kernel matrix K, the optimal value v can be expressed as

v =
1

2n

c∑
y=1

1

πy
λ2y(K)− 1

2
,

where π1 ≤ · · · ≤ πc are class-prior probabilities, λ1(K) ≥ · · · ≥ λc(K) ≥ 0 are eigen-
values of K, and the solutions ϕ1, . . . ,ϕc are given by the eigenvectors associated with
λ1(K), . . . , λc(K). The optimal value v′ and solutions ϕ′

1, . . . ,ϕ
′
c for K

′ can be charac-
terized similarly. Then we have

|v − v′| = 1

2n

∣∣∣∣∣
c∑

y=1

1

πy

(
λ2y(K)− λ2y(K ′)

)∣∣∣∣∣
=

1

2n

∣∣∣∣∣
c∑

y=1

1

πy
(λy(K) + λy(K

′)) (λy(K)− λy(K ′))

∣∣∣∣∣
≤ 1

2n

c∑
y=1

1

πy
(λy(K) + λy(K

′)) |λy(K)− λy(K ′)|

≤ ∥∆∥Frob
2n

c∑
y=1

1

πy
(λy(K) + λy(K

′))

≤ ∥∆∥Frob
2nπ1

c∑
y=1

(λy(K) + λy(K
′))

=
∥∆∥Frob
2nπ1

(tr(K) + tr(K ′))

= ∥∆∥Frob/π1,

where, in the third line, we used |λy(K)−λy(K ′)| < ∥∆∥Frob implied by Eqs.(42) and (43),
and we used in the last line tr(K) = tr(K ′) = n implied by the assumption K(x,x) = 1
for all x. Thus, Eq.(45) was proved.

Eq.(46) is immediately implied by Eq.(44). More specifically, ϕ′
y needs to be carefully

chosen from the corresponding eigenspace ofK ′ by minimizing the angle between ϕ′
y and

ϕy (i.e., maximizing ϕ⊤
y ϕ

′
y), since the optimal solution to SMIC is not necessarily unique.

However, if ϕ′
y is set to be the eigenvector associated to eigenvalue µj with multiplicity

one, we only need to determine its sign. 2

5.7 Proof of Theorem 3

We use the following two lemmas in the proof of Theorem 3:

Lemma 4. For α,β ∈ Rn, we have

∥α− β∥22 ≥ ∥α+ − β+∥22 + ∥α− − β−∥22,
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where α+ = max(0n,α) and α
− = min(0n,α), and max and min for vectors are computed

in element-wise manners.

Proof. Denote by αi and βi the i-th components of α and β, respectively. Then, for all
i, we have

(αi − βi)2 = (α+
i − β+

i )
2 + (α−

i − β−
i )

2, if αiβi ≥ 0,

(αi − βi)2 > (α+
i − β+

i )
2 + (α−

i − β−
i )

2, if αiβi < 0,

which complete the proof.

Lemma 5. For α,β ∈ Rn, we have

∥αβ⊤ − βα⊤∥Frob ≤
√
2∥α∥2∥β∥2.

Proof. By definition,

∥αβ⊤ − βα⊤∥2Frob = tr((αβ⊤ − βα⊤)⊤(αβ⊤ − βα⊤))

= tr((βα⊤ −αβ⊤)(αβ⊤ − βα⊤))

= tr(βα⊤αβ⊤ − βα⊤βα⊤ −αβ⊤αβ⊤ +αβ⊤βα⊤)

= ∥α∥22tr(ββ⊤)−α⊤βtr(βα⊤)− β⊤αtr(αβ⊤) + ∥β∥22tr(αα⊤)

= ∥α∥22∥β∥22 − (α⊤β)2 − (β⊤α)2 + ∥β∥22∥α∥22
≤ 2∥α∥22∥β∥22.

The lemma follows by taking square roots of the beginning and the end of the above chain
of equations.

Using the above lemmas, we prove Theorem 3. First of all, we have

fy − f ′
y =

πy(ϕ
+
y ϕ

′+⊤
y − ϕ′+

y ϕ
+⊤
y )1n

1⊤
nϕ

+
y · 1⊤

nϕ
′+
y

.

Since
∥ϕy∥1 = ∥ϕ+

y ∥1 + ∥ϕ−
y ∥1, 1⊤

nϕy = ∥ϕ+
y ∥1 − ∥ϕ−

y ∥1, and 1⊤
nϕy > 0,

we can know that ∥ϕ+
y ∥1 > ∥ϕy∥1/2, and

1⊤
nϕ

+
y = ∥ϕ+

y ∥1 > ∥ϕy∥1/2 > ∥ϕy∥2/2 = 1/2.

Similarly, 1⊤
nϕ

′+
y > 1/2 and thus it turns out that

(1⊤
nϕ

+
y · 1⊤

nϕ
′+
y ) > 1/4.

Next, let α = ϕ+
y and β = ϕ′+

y − ϕ+
y . Then it holds that

ϕ+
y ϕ

′+⊤
y − ϕ′+

y ϕ
+⊤
y = α(α+ β)⊤ − (α+ β)α⊤ = αβ⊤ − βα⊤.
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Table 4: Notation for Rand index and adjusted Rand index.

(a) (b)

C∗1 · · · C∗c Sum
C1 n1,1 · · · n1,c n1
...

...
. . .

...
...

Cc nc,1 · · · nc,c nc

Sum n∗
1 · · · n∗

c n

Pairs in {C∗y′}cy′=1

Same Different
Pairs in Same mC,C∗ mC,C̄∗

{Cy}cy=1 Different mC̄,C∗ mC̄,C̄∗

Consequently, we have

∥fy − f ′
y∥2 < 4πy∥(αβ⊤ − βα⊤)1n∥2

< 4πy∥1n∥2∥αβ⊤ − βα⊤∥2
≤ 4
√
nπy∥αβ⊤ − βα⊤∥Frob,

where ∥ · ∥2 on Rn×n means the operator norm induced by ∥ · ∥2 on Rn, and the last line
is due to the fact that ∥ · ∥2 is the ℓ∞-norm of the spectra and ∥ · ∥Frob is the ℓ2-norm of
the spectra. According to Lemma 5, it holds that

∥fy − f ′
y∥2 < 4

√
nπy
√
2∥α∥2∥β∥2

= 4
√
2nπy∥ϕ+

y ∥2∥ϕ′+
y − ϕ+

y ∥2
< 4
√
2nπy∥ϕy∥2∥ϕ′

y − ϕy∥2
≤ 16

√
2nπy∥∆∥Frob/δr,

where the third line is due to Lemma 4, and we used in the last line the facts that ϕy is
an eigenvector of K and ϕ′

y satisfies Eq.(46). Finally, dividing the above inequality by√
n completes the proof. 2

5.8 Rand Index and Adjusted Rand Index

Here, we review the definitions of the Rand index (RI) [135] and the adjusted Rand index
(ARI) [74], which are used for evaluating the quality of clustering results. Let {y∗i }ni=1 be
the ground-truth cluster assignments, and let {yi}ni=1 be a clustering solution obtained by
some algorithm. The goal is to quantitatively evaluate the similarity between {yi}ni=1 and
{y∗i }ni=1.

The most direct way to evaluate the discrepancy between {yi}ni=1 and {y∗i }ni=1 would be
to naively verify the correctness of the predicted labels. However, in clustering, predicted
class labels {yi}ni=1 do not have to be equal to the true labels {y∗i }ni=1, but only their
partition matters. The correctness of the partition may be evaluated by verifying the
correctness of the predicted labels for all possible label permutations. However, this is
computationally expensive if the number of classes is large. RI and ARI are alternative
performance measures that can overcome this computational problem in a systematic way.
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For the two partitions {yi}ni=1 and {y∗i }ni=1, let Cy and C∗y (y = 1, . . . , c) be sets of
indices of samples in cluster y, respectively:

Cy = {yi | yi = y},
C∗y = {y∗i | y∗i = y}.

Let ny,y′ be the number of samples that are assigned to the cluster Cy and the cluster C∗y′ .
Let ny (resp. n∗

y) be the number of samples that are assigned to the cluster Cy (resp. C∗y′).
The notation is summarized in Table 4(a).

Let mC,C∗ , mC,C̄∗ , mC̄,C∗ , and mC̄,C̄∗ be defined as

mC,C∗ :=
c∑

y,y′=1

(
ny,y′

2

)
,

mC,C̄∗ :=
c∑

y=1

(
ny

2

)
−mC,C∗ ,

mC̄,C∗ :=
c∑

y′=1

(
n∗
y′

2

)
−mC,C∗ ,

mC̄,C̄∗ :=

(
n
2

)
−mC,C∗ −mC,C̄∗ −mC̄,C∗ ,

where mC,C∗ denotes the number of pairs of samples that are assigned to the same cluster
both in {Cy}cy=1 and {C∗y′}cy′=1, mC,C̄∗ denotes the number of pairs of samples that are
assigned to the same cluster in {Cy}cy=1 but are assigned to different clusters in {C∗y′}cy′=1,
mC̄,C∗ denotes the number of pairs of samples that are assigned to the same cluster in
{C∗y′}cy′=1 but are assigned to different clusters in {Cy}cy=1, and mC̄,C̄∗ denotes the number
of pairs of samples that are assigned to different clusters both in {Cy}cy=1 and {C∗y′}cy′=1.
mC,C∗ + mC̄,C̄∗ can be considered as the number of “agreements” between {Cy}cy=1 and
{C∗y′}cy′=1, while mC,C̄∗ +mC̄,C∗ can be regarded as the number of “disagreements” between
{Cy}cy=1 and {C∗y′}cy′=1. The notation is summarized in Table 4(b).

The Rand index (RI) [135] is defined and expressed as

RI :=
mC,C∗ +mC̄,C̄∗

mC,C∗ +mC,C̄∗ +mC̄,C∗ +mC̄,C̄∗

= (mC,C∗ +mC̄,C̄∗)
/(n

2

)
.

The Rand index lies between 0 and 1, and takes 1 if the two clustering solutions {Cy}cy=1

and {C∗y′}cy′=1 agree with each other perfectly.
A potential drawback of the Rand index is that its expected value is not a constant

(say, 0) if two clustering solutions are completely random. To overcome this problem, the
adjusted Rand index (ARI) was proposed [74]. ARI is defined as

ARI :=
mC,C∗ +mC̄,C̄∗ − µ

mC,C∗ +mC,C̄∗ +mC̄,C∗ +mC̄,C̄∗ − µ
.
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µ is the expected value of mC,C∗ +mC̄,C̄∗ :

µ := E
[
mC,C∗ +mC̄,C̄∗

]
,

where E denotes the expectation over cluster assignments. ARI takes the maximum value
1 when two sets of cluster assignments are identical, and takes 0 if the index equals its
expected value.

Under the assumption that the clustering solutions {Cy}cy=1 and {C∗y′}cy′=1 are randomly
drawn from a generalized hyper-geometric distribution, it holds that

E [mC,C∗ ] = (mC,C∗ +mC,C̄∗)(mC,C∗ +mC̄,C∗)
/(n

2

)
,

E
[
mC̄,C̄∗

]
= (mC,C̄∗ +mC̄,C̄∗)(mC̄,C∗ +mC̄,C̄∗)

/(n
2

)
.

Then ARI can be expressed as

ARI =

(
n
2

) c∑
y,y′=1

(
ny,y′

2

)
−

c∑
y=1

(
ny

2

) c∑
y′=1

(
n∗
y′

2

)
1

2

(
n
2

)[ c∑
y=1

(
ny

2

)
+

c∑
y′=1

(
n∗
y′

2

)]
−

c∑
y=1

(
ny

2

) c∑
y′=1

(
n∗
y′

2

) .

Note that RI and ARI can be defined even when two sets of cluster assignments {yi}ni=1

and {y∗i }ni=1 have different numbers of clusters, i.e., {Cy}cy=1 and {C∗y′}c
′

y′=1 with c ̸= c′. This
is highly convenient in practice since, when the number of true clusters is large, clustering
algorithms often produce clustering solutions with a smaller number of clusters (i.e., some
of the clusters have no samples). Even in such cases, RI and ARI can still be used for
evaluating the quality of clustering solutions.
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[40] J. Ćwik and J. Mielniczuk. Estimating density ratio with application to discriminant
analysis. Communications in Statistics: Theory and Methods, 18(8):3057–3069,
1989.

[41] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, series B,
39(1):1–38, 1977.

[42] F. Desobry, M. Davy, and C. Doncarli. An online kernel change detection algorithm.
IEEE Transactions on Signal Processing, 53(8):2961–2974, 2005.

[43] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means, spectral clustering and nor-
malized cuts. In Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 551–556, New York, NY, USA,
2004. ACM Press.

[44] C. Ding and X. He. K-means clustering via principal component analysis. In
Proceedings of the Twenty-First International Conference on Machine Learning
(ICML2004), pages 225–232, New York, NY, USA, 2004. ACM Press.

[45] M. C. du Plessis and M. Sugiyama. Semi-supervised learning of class balance under
class-prior change by distribution matching. In J. Langford and J. Pineau, editors,
Proceedings of 29th International Conference on Machine Learning (ICML2012),
pages 823–830, Edinburgh, Scotland, Jun. 26–Jul. 1 2012.

[46] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York,
NY, USA, second edition, 2001.

[47] N. Duffy and M. Collins. Convolution kernels for natural language. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 625–632, Cambridge, MA, USA, 2002. MIT Press.

[48] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407–499, 2004.

[49] S. Eguchi and J. Copas. Interpreting Kullback-Leibler divergence with the Neyman-
Pearson lemma. Journal of Multivariate Analysis, 97(9):2034–2040, 2006.

[50] L. Faivishevsky and J. Goldberger. A nonparametric information theoretic cluster-
ing algorithm. In A. T. Joachims and J. Fürnkranz, editors, Proceedings of 27th
International Conference on Machine Learning (ICML2010), pages 351–358, Haifa,
Israel, Jun. 21–25 2010.

[51] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals
of Statistics, 1(2):209–230, 1973.

97



[52] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[53] K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density func-
tion, with application in pattern recognition. IEEE Transactions on Information
Theory, 21(1):32–40, 1975.
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[100] V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral
operators. Bernoulli, 6(1):113–167, 2000.

[101] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete in-
put spaces. In Proceedings of the Nineteenth International Conference on Machine
Learning, pages 315–322, 2002.

[102] L. F. Kozachenko and N. N. Leonenko. Sample estimate of entropy of a random
vector. Problems of Information Transmission, 23(9):95–101, 1987.

[103] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22:79–86, 1951.

[104] K. Kurihara and M. Welling. Bayesian k-means as a “maximization-expectation”
algorithm. Neural Computation, 21(4):1145–1172, 2009.

[105] S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov
networks using l1-regularization. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 817–824, Cambridge,
MA, 2007. MIT Press.

101



[106] Y. K. Lee and H. T. Ng. An empirical evaluation of knowledge sources and learn-
ing algorithms for word sense disambiguation. In Proceedings of Conference on
Empirical Methods in Natural Language Processing, pages 41–48, 2002.

[107] Y. Li, H. Kambara, Y. Koike, and M. Sugiyama. Application of covariate shift adap-
tation techniques in brain computer interfaces. IEEE Transactions on Biomedical
Engineering, 57(6):1318–1324, 2010.

[108] Y. F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Tighter and convex maximum
margin clustering. In D. van Dyk and M. Welling, editors, Proceedings of Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS2009),
volume 5 of JMLR Workshop and Conference Proceedings, pages 344–351, Clearwa-
ter Beach, FL, USA, Apr. 16–18 2009.

[109] D. Lin, E. Grimson, and J. Fisher. Construction of dependent Dirichlet processes
based on Poisson processes. In J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-
Taylor, and A. Culotta, editors, Advances in Neural Information Processing Systems
23, pages 1387–1395, 2010.

[110] H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. The nonparanormal
skeptic. In Proceedings of the 29th International Conference on Machine Learning
(ICML2012), 2012.

[111] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estima-
tion of high dimensional undirected graphs. Journal of Machine Learning Research,
10:2295–2328, 2009.

[112] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point detection in time-
series data by relative density-ratio estimation. Neural Networks, 43:72–83, 2013.

[113] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point detection in time-
series data by relative density-ratio estimation. Neural Networks, 43:72–83, 2013.

[114] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum. Learning
to detect a salient object. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(2):353–367, 2011.

[115] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419–
444, 2002.

[116] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge, UK, 2003.

[117] J. B. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

102



and Probability, volume 1, pages 281–297, Berkeley, CA, USA, 1967. University of
California Press.

[118] M. Meila and J. Shi. Learning segmentation by random walks. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 873–879, Cambridge, MA, USA, 2001. MIT Press.

[119] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection
with the lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

[120] V. Moskvina and A. Zhigljavsky. Change-point detection algorithm based on the
singular-spectrum analysis. Communications in Statistics: Simulation and Compu-
tation, 32:319–352, 2003.

[121] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.

[122] R. M Neal. Slice sampling. The Annals of Statistics, 31(3):705–741, 2003.

[123] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems 14, pages 849–856, Cambridge, MA, USA,
2002. MIT Press.

[124] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence function-
als and the likelihood ratio by convex risk minimization. IEEE Transactions on
Information Theory, 56(11):5847–5861, 2010.

[125] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence function-
als and the likelihood ratio by convex risk minimization. IEEE Transactions on
Information Theory, 56(11):5847–5861, 2010.

[126] G. Niu, B. Dai, L. Shang, and M. Sugiyama. Maximum volume clustering: A
new discriminative clustering approach. Journal of Machine Learning Research,
14(Sep.):2641–2687, 2013.

[127] Z.-Y. Niu, D.-H. Ji, and C. L. Tan. A semi-supervised feature clustering algorithm
with application to word sense disambiguation. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language
Processing, pages 907–914, 2005.

[128] K. Pearson. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philosophical Magazine Series 5,
50(302):157–175, 1900.

103



[129] K. Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50:157–175, 1900.

[130] K. Pearson. On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine, 2(6):559–572, 1901.

[131] J. Qin. Inferences for case-control and semiparametric two-sample density ratio
models. Biometrika, 85(3):619–630, 1998.

[132] Q. Que and M. Belkin. Inverse density as an inverse problem: The fredholm equation
approach. Technical Report 1304.5575, arXiv, 2013.
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