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ABSTRACT

This report lays out the mathematical framework and reasoning involved in
addressing the question of how to produce sophisticated false targets in both
range and Doppler to jam a radar. The explanations here are given from first
principles in order to clarify the approach used in writing software to address
the task. They constitute standard radar theory seen through a physicist’s
eyes, and are recorded as background to the approach taken in addressing the
jamming task in a later report.

We discuss in detail how a radar generates a range–Doppler plot, using
a set of parameters that describe the outgoing radar signal and the relevant
characteristics of the target whose impulse response is known. We also ex-
plain necessary concepts from a mathematical physicist’s viewpoint: bounds
on pulse parameters, correlation/convolution, the theory of Hilbert transforms,
the relevant Fourier analysis, and general concepts of radar signal processing
such as ambiguity functions and the maximum detectable range of a target.
This entire discussion is aimed at indicating the approach and philosophy used
to solve the various problems encountered while working on the task.
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How to Create and Manipulate Radar Range–Doppler Plots

Executive Summary

This report lays out the mathematical framework and reasoning involved in addressing
the question of how to produce sophisticated false targets in both range and Doppler to
jam a radar. The explanations here are given from first principles in order to clarify the
approach used in writing software to address the task. They constitute standard radar
theory seen through a physicist’s eyes, and are recorded as background to the approach
taken in addressing the jamming task in a later report, currently in publication.

We first derive the relevant radar equations that allow the radar scenario to be modelled
numerically. An in-depth discussion of correlation follows, which is central to the operation
of a matched filter. Next we explain how to model the returned signal from knowledge of
the target’s impulse response. Following a discussion of Doppler windowing is an analysis
of what constitutes valid and useful pulse and processing parameters, such as sampling
interval and bandwidth, with an explanation of blind speed and velocity aliasing. We
then explain the mathematics of how a jammer can add time-dependent phases to a signal
with the aim of manipulating that signal’s Doppler content, together with the simpler
manipulation of its range content carried out by adding delay to the signal.

Appendices discuss the Hilbert transform and the relation of correlation to convolution,
including first-principles examples of these. Calculation of signal-to-noise ratios and how
to combine the cross sections of many scatterers is also included. The report closes with
an explanation of the use of the ambiguity function. Explanations of textbook concepts of
radar signal processing have been given in this report as a way of indicating the approach
and philosophy used to solve the various problems encountered while working on the
jamming task.
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1 Introduction

This report lays out the mathematics involved in simulating the jamming of a radar to
induce it to generate false targets having structure in both range and Doppler. We begin
with the basic concepts of radar signal processing, then build on them, step by step, to
arrive at the relevant false-target mathematics. This mathematics can then be used to
simulate numerically the interaction of a radar with a target composed of perhaps many
thousands of scatterers of known cross section. By simulating how the radar interacts, we
can then also simulate jamming it to produce false targets.

We start by setting up the relevant radar equations that allow the radar scenario to
be modelled numerically. An in-depth discussion of correlation follows, which is central
to the operation of a matched filter. After a discussion of Doppler windowing and why it
is generally used, is an analysis of what constitutes valid and useful pulse and processing
parameters such as sampling interval and bandwidth, with an explanation of blind speed
and velocity aliasing. We then explain how time-dependent phases can be added to a
“returned” signal sent by a jammer to a radar with the aim of manipulating that signal’s
target-velocity content, together with the simpler manipulation of its range content which
can be done by adding delay to the signal. Finally, appendices discuss the Hilbert trans-
form, the relation of correlation to convolution (with examples of how correlation and
convolution are implemented from first principles), signal-to-noise theory, and the use of
the ambiguity function.

2 The Mathematics of Emitted

and Received Signals

The pages that follow show each step of assembling the mathematics that describes a radar
interaction. We begin with a discussion of the use of complex numbers to represent a real
signal.

The electromagnetic field that comprises a propagating radar signal is very complicated
both in space and in time. But there is no requirement to analyse it exactly: we need only
consider its far-field component, and of this, it’s sufficient to work with the electric field
only, since that is always related to the magnetic field in a well-defined way. At any given
point, the electric field of a radar signal can be represented by a unit-length vector (the
field’s polarisation) which is multiplied by a number that varies sinusoidally in time with
frequency f . We will assume the vector is given (i.e. the polarisation is known), and will
represent the field by the sinusoidally varying number alone.

Sinusoids are particularly useful for signal processing, being a special case of signals with an
exponential form. An exponential signal is unique in that its form is preserved when it passes
through a linear time-shift-invariant system. A linear system can be treated as processing a sum of
signals component-wise and adding the results; a time-shift-invariant system is one that processes
identically today as it did yesterday. Most of the important systems in the signal processing world
are linear time-shift invariant. The usefulness of the exponential signal here embodies the fact
that exponential signals are the eigenfunctions of linear time-shift-invariant systems.

The information content of a signal is almost always placed as a modulation onto a high-
frequency carrier wave. The use of this carrier is only partly dictated by available wave-
generating technology and transparency of Earth’s atmosphere to different wavelengths.

UNCLASSIFIED 1
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One main reason for transmitting information on a high-frequency carrier follows from
the fact that waves of length λ emitted coherently1 from an aperture of diameter a will
diffract to form a beam of angular width approximately λ/a. Only by using relatively
high frequencies (meaning small λ) will a beam’s width be small enough that it will
deposit a good fraction of its energy on a distant target. Another reason for using high
frequencies follows from the fact that the radio waves travel at a set speed. To transmit
more information, we can’t hope to send the same wave at a higher speed. Instead, we
must place a higher density of information into the wave, by giving the modulation more
structure: and this we do by shortening the duration of the wave’s modulation changes that
encode the information. Thus the wave’s shape must be made to change more rapidly,
and Fourier analysis tells us that such rapid changes require the signal to be a sum of
monochromatic waves over a large spread of frequencies. (That is, high data rates are
built from large bandwidth.) The bandwidth is spread around the carrier frequency, and
if the frequencies making up a large bandwidth are all to be high enough to ensure that
the beam has the required low angular width, then the carrier frequency must be high.

Yet another reason for using a high carrier frequency involves the range–velocity trade-
off examined on page 34: higher carrier frequencies enable the radar to measure both larger
ranges and higher radial velocities in a single measurement. But these higher frequencies
also produce more “blind speeds”, discussed on page 35.

Suppose then that we have formed a signal by modulating both the amplitude and
phase of a carrier wave of angular frequency ω0 = 2πf0. We have given the signal a large
bandwidth, but in practice this bandwidth is still much less than the carrier frequency. In
that case, the amplitude and phase do not vary so drastically as to alter the signal radically
from a recognisable sinusoid; in other words, the signal is confined to a relatively narrow
frequency interval around (and compared to) its carrier. This type of signal is often referred
to as narrow band; even though it might have a large bandwidth, it is “relatively” narrow
band compared to the carrier. (In contrast, a signal that is not narrow band is not usefully
described by the “analytic signal” analysis that follows.) We can represent a narrow-band
signal by a sine or cosine; the choice is arbitrary since the two functions differ only by a
constant phase. Suppose we choose a sine, writing the signal as A(t) sin[ω0t + φ(t)] where
A(t) and φ(t) are the signal’s instantaneous amplitude and phase respectively. (We’ll drop
the time dependence of A and φ for brevity in the equations that follow.) The task of
the radar receiver is to determine A and φ from one measurement to the next. Note that
“phase” is sometimes taken to mean φ(t) and sometimes ω0t + φ(t), but there should be
no ambiguity in the discussion that follows.

Focus on determining φ, since we’ll see that the amplitude A emerges along with φ.
The phase is an angle, and an angle always needs two pieces of information to be fully
determined. Certainly any angle is just one number, but it’s the ratio of two quantities: the
arc length that the angle scribes on a given circle, and the radius of that circle. Ordinarily
the radius is set to have length one, in which case the angle is a single number, the length
of the arc—but this is a convention. Another way of realising that an angle needs two

1By coherent waves is meant a set of wave fronts with constant wavelength, direction, and relative
phase. Electromagnetic waves produced by radar transmitters and lasers are coherent; electromagnetic
waves produced by a household torch are not. The waves flowing from a torch are coherent over tiny
time scales and tiny distances, but this coherence is constantly changing and so is somewhat trivial. Real

coherence is all about the large-scale effects of wave interference, so it requires “tidy” waves at large scales
and long periods of time.
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pieces of information to be fully determined is to represent the angle by a vector of any
length r in the xy plane; the vector’s two components, r cos φ and r sin φ, are the required
two pieces of information that fully determine φ. In fact the length r is redundant, since
it can be extracted from r cos φ and r sin φ by summing the squares of these two numbers.
So we can ignore it, and our two pieces of information that will fully determine the phase φ
of the signal will be cos φ and sin φ. In principle, these can be extracted in the following
way when representing the signal by a sine or by a cosine. (More discussion of this in a
radar hardware context can be found in [1].)

Representing the Signal by a Sine: Write the signal as A sin(ω0t + φ) and ex-
tract cos φ and sin φ by mixing (multiplying) the signal with reference signals 2 sin ω0t
and 2 cos ω0t. In equations (2.2)–(2.8) that follow, we will employ the following standard
trigonometric identities:

−2 sin α sin β = cos(α + β)− cos(α− β) , 2 sin α cos β = sin(α + β) + sin(α− β) ,

2 cos α cos β = cos(α + β) + cos(α− β) , cos(α + β) = cos α cos β − sin α sin β . (2.1)

First, mix the signal with 2 sin ω0t:

A sin(ω0t + φ) 2 sin ω0t = A cos φ

“I data”

−A cos(2ω0t + φ)

filtered out

. (2.2)

The second term on the right-hand side of (2.2) has a high frequency and so is removed
by a low-pass filter. The first term is our first piece of information that determines φ.
Because it was produced by mixing our representative signal (a sine) with an oscillation
described in the same way (i.e. also a sine), it’s called the in-phase data (“I data”) of the
signal.

Now mix the signal with 2 cos ω0t:

A sin(ω0t + φ) 2 cos ω0t = A sin φ

“Q data”

+ A sin(2ω0t + φ)

filtered out

. (2.3)

Again the second term is filtered out, and the first term is called the signal’s quadra-
phase data2 (“Q data”). Traditionally, the I and Q data are combined into a phasor: a
vector with xy coordinates (I, Q) = A(cos φ, sin φ). The amplitude A(t) of the signal is
the time-varying length of this phasor.

The above mixing process is reversed to convert the I/Q data back to a modulated
signal ready to be sent by a radar transmitter. The I data in (2.2) resulted from mixing
the signal with a sine, so now mix the I with a sine; the Q data in (2.3) resulted from
mixing the signal with a cosine, so now mix the Q with a cosine. Then add the results:

A cos φ

I data

sin ω0t + A sin φ

Q data

cos ω0t = A sin(ω0t + φ) . (2.4)

The resulting signal A sin(ω0t + φ) can then be sent out by the transmitter.

2The use of “quad” here, as in quadrant or square, relates to the idea of a square’s right-angled corners:
these mimic the right angle between two phasors that represent a sine and a cosine.
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Representing the Signal by a Cosine: If we choose instead to write the signal
as A cos(ω0t + φ) (where this φ differs from that used in the sine representation above),
very little changes in the above analysis. Again we mix the signal with 2 sin ω0t and 2 cos ω0t.
This time begin with 2 cos ω0t:

A cos(ω0t + φ) 2 cos ω0t = A cos φ

I data

+ A cos(2ω0t + φ)

filtered out

. (2.5)

The second term is filtered out, and because the first term was produced by mixing our
representative signal (a cosine) with an oscillation described in the same way (i.e., a cosine),
it’s called the I data of the signal, just as for the sine case above. Now mix the signal
with 2 sin ω0t:

A cos(ω0t + φ) 2 sin ω0t = −A sin φ

Q data

+ A sin(2ω0t + φ)

filtered out

. (2.6)

Filter the second term out and, as before, call the first term the signal’s Q data. Again
the I and Q data can be combined into a phasor, but this time a minus sign is included:
(I,−Q) = A(cos φ, sin φ). We see that the resulting phasor is identical to that formed
when representing the signal by a sine (that is, if we include the minus sign).

Again the I/Q data can be converted to a signal ready for transmitting. The I data
in (2.5) resulted from mixing the signal with a cosine, so now mix the I with a cosine; the
Q data in (2.6) resulted from mixing the signal with a sine, so now mix the Q with a sine.
Then add the results:

A cos φ

I data

cos ω0t − A sin φ

Q data

sin ω0t = A cos(ω0t + φ) . (2.7)

The resulting signal A cos(ω0t + φ) is now sent out by the transmitter.

The above mixing procedure is all about our choosing to represent a sinusoid as either
a sine or a cosine. We must choose one or the other, and the choice corresponds to our
deciding what to label as the I data and what to label as the Q data after the mixing
process. “I data” refers to the output of mixing the signal with the sinusoid that will
represent the signal; i.e., to the output of mixing the signal with 2 sin ω0t if we choose
to represent the signal by a sine, and 2 cos ω0t if we choose to represent the signal by a
cosine. The I and Q numbers then describe the signal completely.

Refinements from Superhet Receivers In practice, most radar receivers are of the
superheterodyne type; instead of removing the carrier in one step, superheterodynes remove
it in a series of smaller steps as a way of improving the final signal-to-noise ratio. But the
procedure at each step is identical to that described above. For example, begin with a
signal A sin(ω0t + φ) and mix it with a reference wave that incorporates an intermediate
frequency ωIF:

A sin(ω0t + φ) 2 cos[(ω0 − ωIF)t ] = A sin(ωIFt + φ) + A sin[(2ω0 − ωIF)t + φ ] . (2.8)

The second term on the right-hand side of (2.8) is now filtered out, leaving the first
term which is just like the original signal but with a new, lower-frequency carrier ωIF.
The mixing/filtering process is now applied to this term (using a still lower intermediate
frequency) in one or more steps until we have removed the carrier entirely. Along the way
several stages of amplification will also have been applied.
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2.1 Using Complex Numbers to Represent I/Q Data

The numbers A and φ—really A(t), φ(t)—give a phasor A(cos φ, sin φ) whose relatively
small changes over time embody the modulation of the carrier wave. A phasor of the actual
radio-frequency signal can be constructed by making the A-φ phasor spin at constant
angular speed ω0. To see why, simply rotate the A-φ phasor by angle ω0t using a matrix
multiplication:

spinning phasor =

[

cos ω0t − sin ω0t
sin ω0t cos ω0t

]

rotate vector by ω0t

[

A cos φ
A sin φ

]

vector to be
rotated

=

[

A cos(ω0t + φ)
A sin(ω0t + φ)

]

rotated vector

, (2.9)

so that the radio-frequency signal is either the x- or the y-component of this rapidly
spinning phasor.

Any phasor is traditionally a vector [ a
b ], but converting it to the complex number a + ib

makes it arguably easier to manipulate. For example, in the vector picture, to increase
the phase by angle θ we rotate the phasor vector using a matrix multiplication:

[

a
b

]

rotated by θ

=

[

cos θ − sin θ
sin θ cos θ

] [

a
b

]

; (2.10)

in contrast, the complex-number version of (2.10) employs “everyday” multiplication:

(a + ib)rotated by θ = (cos θ + i sin θ) (a + ib) . (2.11)

This complex notation is compact but not mystical. Equation (2.11) is a “rendering down”
of (2.10) in which the seemingly redundant repetition of the sine and cosine in the rotation
matrix has been removed, at the small cost of introducing an “i”.3 The term cos θ + i sin θ
is written as eiθ by defining the exponential of a complex number to have the same Taylor-
series form as the exponential of a real number.4 Complex notation converts (2.9) to

“circling” complex number = eiω0t

rotate complex
number by ω0t

Aeiφ

complex number
to be rotated

= Aei(ω0t+φ)

rotated complex
number

, (2.12)

which can (arguably) be thought of as simplifying the mathematics of rotating phasors:
compare the elaborate layout of (2.9) with the simplicity of (2.12).

The process of extracting the I/Q content at time t from a rotating phasor can now be
viewed as multiplying it by e−iω0t, which removes its rapidly rotating carrier content (or
equivalently, switches to a rotating frame in phasor-space!). Likewise, converting I/Q data
to a signal ready to send out at time t can be viewed as multiplying its phasor by eiω0t.

3Here we have rendered down a two-dimensional rotation matrix. When the same idea is applied to
three-dimensional rotations, what results is quaternions, whose i, j, k seem to attract mystical descriptions
by some in the computer graphics community. But again, quaternions can be treated as simply the result of
rendering down redundant matrix information while retaining “everyday” multiplication. In practice, it’s
tedious to multiply quaternions using i, j, k; instead we multiply them using a non-standard multiplication.
But aside from that, quaternions still replace a 9-element matrix by a 4-element array, so have advantages
of economy in numerical work.

4That is, eiθ ≡ 1 + iθ + (iθ)2/2! + · · · = cos θ + i sin θ, where the last equality comes about by noting
that the real and imaginary parts of the complex series are identical to the Taylor series of cosine and sine
respectively. Note that this sum defines eiθ , because there is otherwise no a priori meaning to a complex
exponential; the series expansion defines it in the same way as if iθ were real. But a small amount of
analysis (found in books on complex variables) shows that this definition gives eiθ all the behaviour that
we know and expect of a real exponential—behaviour such as eiθeiφ = ei(θ+φ), and so on.

UNCLASSIFIED 5
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2.2 Analytic Signals and Fourier Analysis

Regardless of whether a real signal is written as A(t) sin[ω0t + φ(t)] or A(t) cos[ω0t + φ(t)],
the corresponding complex-number phasor A(t)ei[ω0t+φ(t)] produced by (2.12) is called the
(corresponding) analytic signal. Its phasor rotates counter-clockwise with an instantaneous
angular velocity of d/dt (phasor angle) = ω0 + φ′(t), which we have assumed is not too
different from ω0 because the signal is narrow band.

This conversion of a real signal to an analytic signal is related to, but crucially not
the same as, the idea of complex-Fourier analysing the real signal. It’s instructive to
compare these processes of (1) converting a real signal to its analytic signal and (2) Fourier
decomposing the real signal into complex components. Consider the real signal cos ω0t with
ω0 > 0—hardly a useful signal, but a sufficient example for this discussion. Note that a
real signal can always be written using only positive frequencies; the very idea of a negative
frequency emerges only in the following Fourier analysis.

Converting the real signal to its analytic signal: The analytic signal formed from
the real signal cos ω0t is a single phasor eiω0t. Both the real signal and its analytic
signal are considered to have the same single frequency ω0, which is always positive.

Complex-Fourier decomposing the real signal: A real signal can always be Fourier
decomposed into sines and cosines. This decomposition requires two sets of summa-
tions and integrations, one for the sines sin ωt and one for the cosines cos ωt (the
zero subscript is omitted as ω is an index of summation or integration), so that all
terms in the Fourier analysis tend to appear twice. But sin ωt and cos ωt can both be
written as linear combinations of the complex exponentials eiωt and e−iωt. Of course,
we would gain nothing by converting real sinusoids to complex exponentials if the
result was merely to replace a “sine, cosine” pair with an “eiωt, e−iωt” pair. But if
we allow the frequencies ω = 2πf in the complex Fourier decomposition to assume
negative values as well as positive, this pair of complex exponentials collapses to just
one: eiωt, where ω now ranges over all real numbers, negative as well as positive,
in the summations and integrations. So the Fourier decomposition writes cos ω0t
(with ω0 > 0) as a sum of two phasors 1/2 eiω0t and 1/2 e−iω0t rotating in opposite
directions.

This use of negative frequencies in Fourier analysis might initially seem strange,
but they are simply a way of halving the amount of Fourier notation needed—with
the added huge benefit of rendering the complex Fourier transform and its inverse
almost identical, which aids the mathematics. However, this Fourier language now
allocates the idea of a single frequency ω not to sin ωt and cos ωt, but rather to eiωt.
So when we Fourier-decompose the real signal cos ω0t into two complex exponen-
tials, cos ω0t = 1/2 eiω0t + 1/2 e−iω0t, we say that cos ω0t contains two frequencies: ω0

and −ω0. The negative frequency −ω0 contains no more information than the pos-
itive frequency ω0, and is present only to simplify the Fourier language. Perhaps
these two frequencies ω0 and −ω0 should be called “Fourier frequencies” to reinforce
the idea that they result from complex-Fourier decomposing a signal cos ω0t (ω0 > 0)
that is clearly simple harmonic motion at a single frequency ω0. More usual is to
call ω0 and −ω0 simply the frequencies, while the positive ω0 is called the repetition
rate.

6 UNCLASSIFIED
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Table 1: A comparison of how the basic functions are viewed in the analytic-
signal picture versus the complex-Fourier analysis picture

Analytic-signal picture Fourier picture

eiω0t One frequency ω0 > 0 One frequency ω0 > 0 or < 0
sin ω0t or cos ω0t One frequency ω0 > 0 Two frequencies, ω0 and −ω0

General real signal One instantaneous Frequency spectrum
frequency ω(t) > 0 with ω = −∞→ +∞

Table 1 summarises the difference between the analytic signal and Fourier decomposing
the real signal. To reiterate:

– When converting the real signal cos ω0t to its analytic signal eiω0t, both the real
signal and the analytic signal are considered to have the same single frequency ω0,
which is always positive.

– Fourier analysis of the real signal cos ω0t works with components eiωt with ω = ω0

and −ω0, and these components are each considered to have a single frequency ω.
The real signal cos ω0t is then considered to have two frequencies, one positive and
one negative.

The analytic signal results when a real signal is converted to a single phasor, and is
precisely the single-phasor model of an oscillating wave that is described in any number
of introductory physics texts. In contrast, complex-Fourier decomposing a real signal
produces phasors in pairs with frequencies of opposite sign, whose utility lies in their
simplification of signal processing mathematics.

Indeed, converting cos ω0t to its analytic signal eiω0t is indistinguishable from singling
out the positive-frequency term 1/2 eiω0t from the complex Fourier pair and doubling its
amplitude. Because of this, signal processing textbooks sometimes describe creating the
analytic signal as “discarding the negative frequency”. Unfortunately, this mixes complex-
Fourier language—which considers cos ω0t to have two frequencies of opposite sign—with
analytic-signal language, which recognises only positive frequencies and so considers cos ω0t
to have a single frequency. The analytic signal in principle has nothing to do with discard-
ing negative frequencies, and yet it can be constructed in practice by discarding negative
frequencies and doubling the weights of the positive frequencies. This is explained further
in Appendix A.3.

The signals emitted by most radars are not pure sinusoids, but they tend to be suf-
ficiently narrow band that a phasor can still meaningfully be used to portray them. In
this report we assume that the conversion of the received real signal to an analytic signal
(the production of I/Q data) has already occurred in the radar receiver, so that we deal
purely with the analytic signal at all times. That is, the radar receiver can be viewed as
converting the incoming real signal to a stream of complex numbers. We also write the
signal just prior to being emitted as a complex number, remembering that in practice the
mixing operation in (2.7) will then be used by the radar hardware to convert that complex
number to a real signal, which is then physically emitted.

UNCLASSIFIED 7
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In general of course, a real signal s(t) could be converted to any one of an infinite
number of different complex signals: just add an imaginary part which can be anything.
But only one of these complex signals, the analytic signal sc(t), is considered to be special,
due to its useful properties discussed in Appendix A. That appendix describes the Hilbert
transform, a procedure that constructs the analytic signal from a given real signal after
the entire real signal has been received. This is in contrast to the mixing of the real signal
with sin ω0t and cos ω0t that is done by a radar receiver while it’s receiving that signal.

If the real signal is narrow band around a carrier frequency ω0, the analytic signal
will contain a factor of eiω0t. This mathematical factoring out of the zero-information
carrier from the information-carrying modulation renders some common signal processing
manipulations easier and tidier. For example, consider an emitted carrier wave with
frequency ω0 that is bounced from a receding target and returns “red-shifted” as ω0 − 2 Hz.
If we were to use real sinusoids in our analysis, we would compare the emitted wave’s
time-varying part sin ω0t with the received time-varying part sin(ω0 − 2 Hz)t. To extract
the Doppler frequency and its sign, we’d need to refer always to the carrier ω0, and
would note that the received frequency was less than the carrier by 2 Hz, so that the
Doppler frequency was −2 Hz, corresponding to a receding target. On the other hand,
complex notation renders the extraction of the Doppler shift much more straightforward:
we have an “emitted signal” eiω0t and a “received signal” ei(ω0−2 Hz)t, and one stage of
our mathematical analysis simply removes the carrier by multiplying the returned signal
by e−iω0t, which we can do in principle by simply ignoring eiω0t in the mathematics. The
result is ei(−2 Hz) t, which trivially yields an angular Doppler frequency of −2 Hz. So the
Doppler frequency and its correct sign emerge immediately in the complex approach.

2.3 Visualising Transmission and Reception of a Signal

The above discussion makes the point that when a radio signal enters a radar receiver,
the receiver produces a stream of complex numbers. It’s not the case that we are merely
using complex numbers as a redundant way to represent real numbers for mathematical
convenience. Instead, after processing, the received signal has been converted to a stream
of complex numbers, with no redundancy in its information content.

With this in mind, we begin by constructing the signal received by a radar whose
transmitter and receiver are co-located (as they always are in this report). Write the
narrow-band analytic signal emitted at time t at the transmitter/receiver site as

transmitted signal sc(t) = u(t) eiω0t , (2.13)

where u(t) is the complex form of the I/Q data: the signal’s modulation. The signal only
attains this far-field form at a distance from the radar of several wavelengths, by which time
the near-field contribution has become insignificant. But that distance is small enough
that we can consider the signal to be sc(t) at the radar itself.

Suppose that this signal is bounced off a target at a distance r, which may be moving
with a constant radial velocity5 v = dr/dt. We ask: what analytic signal gc(t) is received
by the radar at time t? (Note that the word “analytic” is understood as always present
and will be omitted from now on.)

5Note that v is positive for a receding target. Some radar books use this convention, while others
define v = −dr/dt, making v negative for a receding target.
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c× time

ct

c(t− td/2)

c(t− td)

0

radial distance r

emit

bounce

receive

radar target

a

r0

Figure 1: A plot of c× time versus radial distance for the motion of both
radar and target, where c is the speed of light. The scenario is analysed in the
radar’s frame, so the radar is at r = 0 for all time. The target is at r = r0

at time 0. For a receding target, v > 0.

The scenario is shown in Figure 1. With c the speed of light, this figure plots c× time
versus radial distance for the motions of radar and target, and incorporates the radar sig-
nal. Because the vacuum speed of light is always measured by a constant-velocity emitter
or receiver to have the same value (with corrections for air and a possibly accelerated
frame being negligible here), we can, with complete generality, analyse the scenario in the
radar’s frame, meaning we can set the radar emitter/receiver to be at rest throughout the
scenario. That is, only the relative motion of radar and target matters, so place the radar
at r = 0 for the duration of the scenario, with the target at r = r0 at t = 0. To facilitate
later discussion, suppose that t = 0 starts a coherent processing interval, to be studied
later in Section 5.

One very useful feature of this diagram is that because ∆r = c∆t for light, the radar
signals always have a 45◦ slope, which allows us to make quick use of simple geometry to
analyse the interactions presented on it.

The signal emitted at some general time t is sc(t) = u(t)eiω0t. What is received at
some general time t? This received signal is essentially just a lower-amplitude version
of what was emitted at the earlier time t− td, where td is the time delay from emission
to reception. The signal emitted at t− td was u(t− td) eiω0(t−td). After bouncing from
the target, this signal is received almost unchanged at time t except for the presence of
(a) some amplitude A(rbounce) that depends on the target’s distance rbounce at the time
of bounce, and (b) a possible phase shift φ0 generated when the signal interacted with
the target, which we’ll absorb into A(rbounce) by making that amplitude complex. So the

UNCLASSIFIED 9



DSTO–TN–1386 UNCLASSIFIED

signal received at time t is

gc(t) = A(rbounce) u(t− td) eiω0(t−td). (2.14)

The geometry of 45◦ light rays in Figure 1 indicates immediately that

ctd = 2rbounce. (2.15)

Thus (2.14) becomes

gc(t) = A(rbounce) u(t− td) eiω0t e−iω02rbounce/c. (2.16)

The target range at the time of bounce is rbounce = r0 + v(t− td/2). How does this value
compare with the range at the time of emission, r0 + v(t− td), and the range at the time
of reception, r0 + vt? The difference in both cases is vtd/2. What is td? Since the target
travels distance a at velocity v in time t− td/2, we know that

ctd/2 = r0 + a , and a = v(t− td/2) . (2.17)

It follows that

ctd =
2(r0 + vt)

1 + v/c
≃ 2(r0 + vt) , (2.18)

where the last approximation holds because generally the target speed |v| will be much
less than c. Then

vtd/2 = v/c× ctd/2 ≃ v/c (r0 + vt) . (2.19)

Suppose r0 = 104 m, v = 10 m/s, and the current pulse is 32 pulses into a coherent pro-
cessing interval. The time from the start of one pulse to the next is 100 µs, so that
t ≃ 32×100 µs. The range difference vtd/2 is then, making use of SI units,

vtd/2 ≃ 10

3×108
× (104 + 10× 0.0032) metres ≈ 0.5 mm. (2.20)

Note also that vt ≃ 3 cm here, so |vt| ≪ r0, simplifying (2.19) to

td ≃ 2r0/c . (2.21)

The difference vtd/2 between the ranges at emission, bounce, and reception is so small
that we are free to replace the range at bounce in (2.16) with either the range at emission
or reception. But it’s important to note that comparing (2.15) with (2.21) doesn’t allow
us to replace rbounce with the range at the start of the coherent processing interval r0

when Doppler measurements are involved, because that replacement will discard all infor-
mation about the target velocity, which won’t allow later Doppler processing to be used.
Even so, the amplitude of the pulse is not sensitive to the changing ranges involved, so
can be calculated at the start of the coherent processing interval, meaning for range r0.
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Equation (2.16) becomes

gc(t) ≃ A(r0) u(t− td) eiω0t







e−iω02/c × range at emission

e−iω02/c × range at bounce

e−iω02/c × range at reception







(any choice is valid)

= A(r0) u(t− td) eiω0t







e−iω02/c[r0+v(t−td)]

e−iω02/c[r0+v(t−td/2)]

e−iω02/c[r0+vt]







= A(r0) u(t− td) eiω0t e−iω02r0/c







e−iω02v(t−td)/c

e−iω02v(t−td/2)/c

e−iω02vt/c







. (2.22)

The first option in (2.22) is the simplest when writing modelling code, and last option is
the simplest to analyse mathematically:

Received signal when used for modelling:

gc(t) ≃ A(r0) u(t− 2r0/c

time of emission

) eiω0t e−iω02/c × range at emission (2.23)

Received signal when used for analysis:

gc(t) ≃ A(r0) u(t− 2r0/c) eiω0t e−iω02r0/c e−iω02vt/c (2.24)

The Doppler Frequency

Consider that a wave’s angular frequency is the rate of increase of its phase at a fixed
position: ω = ∂ phase/∂t. (Refer to (7.6) ahead for more analysis of this last expression.)
So, from (2.24), the angular frequency of the returned wave measured at the receiver is
ωr = d/dt (ω0t− ω02r0/c− ω02vt/c). When the radial target velocity v is constant (which
it is to a high approximation over the course of the radar interaction6), the received
frequency is

ωr ≃ ω0 − ω02v/c . (2.25)

The (angular) Doppler frequency ωD is defined to be the increase in carrier frequency from
transmission to reception:

ωD ≡ ωr − ω0 ≃ −ω0 2v/c . (2.26)

The usual (i.e. non-angular) Doppler frequency follows from (2.26):

fD =
ωD

2π
= −f0 2v/c . (2.27)

This is often written as fD = −2v/λ0, with λ0 the wavelength corresponding to the carrier
frequency f0. All of the expressions above assume a narrow-band modulation u(t) that,
to a close approximation, doesn’t appreciably alter the carrier frequency. This is certainly
the case with radar signals.

6When v is not constant, (2.26) acquires a term −ω0 2v̇t/c, which will generally be very small.
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Calculating the Amplitude A(t)

We find the amplitude A by asking how the amplitude of a radar wave relates to its
transmitted power. The standard quantity in electromagnetic theory is the Poynting
vector S, which has the direction of energy flow of the wave, and whose magnitude is the
wave’s areal power density, being its power per unit area normal to that direction:

S = ε0c2E ×B , (2.28)

where ε0 is the permittivity of the vacuum (we treat air as approximately a vacuum as
far as radar propagation is concerned), and c is the speed of light in a vacuum. The
electric and magnetic fields of a vacuum electromagnetic wave are always perpendicular
with strengths related by E = cB, so it follows that the magnitude of the Poynting vector
is S = ε0c E2. The value of 1/(ε0c) is approximately 377 Ω, the famous “impedance of the
vacuum”.

Far from the source, the radiated electromagnetic field can be visualised as a sinusoid
of amplitude A, so its electric-field strength is E = A sin(ω0t + φ). We see that the areal
power density S = ε0c E2 fluctuates sinusoidally over one period of the carrier wave; this is
too rapid to be measured, but it’s sufficient to consider the average areal power density 〈S〉
over a period of the wave:

〈S〉 = ε0c 〈E2〉 = ε0c 〈A2 sin2(ω0t + φ)〉 = ε0c A2/2 . (2.29)

Clearly, a similar expression holds if the wave is represented by a complex exponential
with complex amplitude A: just replace A2 by |A|2. If u(t) has value 0 when the radar
is not emitting a pulse and modulus 1 when the radar is emitting a pulse, we can calcu-
late A from (2.29). First consider one-way propagation. Here subscript T denotes target,
t denotes transmitted, r denotes received by the radar, and we require AT , the value of A
immediately before the wave strikes the target.

|AT |2 =
2

ε0c
× average areal power density received by target at r

=
2

ε0c
× PT

target area
=

2

ε0c
PT

4π

GT λ2
=

2

ε0c

PtGtλ
2

(4πr)2
GT

PT from one-way
radar equation

4π

GT λ2

=
PtGt

2πε0c r2
, (2.30)

so that

AT =
1

r

√

PtGt

2πε0c
eiφ0 (2.31)

for some phase φ0.

For two-way propagation, the value Ar of A for the signal received after being bounced
from the target is not simply given by (2.31) with r replaced by 2r, because the interaction
with the target complicates the picture:

|Ar|2 =
2

ε0c
× average areal power density received from target at r

=
2

ε0c
× Pr

receiver area
=

2

ε0c
Pr

4π

Gtλ2
=

2

ε0c

PtG
2
t σλ2

(4π)3 r4

Pr from two-way
radar equation

4π

Gtλ2

=
2PtGtσ

ε0c (4π)2 r4
, (2.32)
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so that

Ar =
1

4πr2

√

2PtGtσ

ε0c
eiφ0 , (2.33)

where this φ0 is in general different to the φ0 in (2.31). We are interested in two-way
propagation, so focus on (2.33). Equations (2.23) and (2.24) become

Received signal when used for modelling:

gc(t) ≃
1

4πr2
0

√

2PtGtσ

ε0c
eiφ0 u(t− 2r0/c

time of emission

) eiω0t e−iω02/c × range at emission (2.34)

Received signal when used for analysis:

gc(t) ≃
1

4πr2
0

√

2PtGtσ

ε0c
eiφ0 u(t− 2r0/c) eiω0t e−iω02r0/c eiωDt (2.35)

As expected, the power in the received signal (which is proportional to its amplitude
squared) is proportional to the fourth power of target distance, the effective radiated
power PtGt, and the target cross section σ.

The determiner of range in (2.35) is the time delay td = 2r0/c from transmission to
reception. Later we’ll discuss the correlation procedure that extracts this time delay, and
hence the range r0. Equation (2.35) also includes a constant-phase term of e−iω02r0/c, and
of course the unknown phase eiφ0 introduced when the signal interacted with the target.
It doesn’t matter that the radar receiver cannot be aware of these additional phases,
because any constant-phase term in (2.35) won’t affect the range–Doppler calculations in
Section 4.2 and beyond.

3 Modelling the Returned Signal

For the sake of visualisation, we’ll assume the radar illuminates a ship that is represented
by a large number of known scatterers. So we require to model the signal returned from
these scatterers, given some known emitted signal. If the emitted and received signals are
represented by sampled I/Q data, two ways to model the received signal are as follows.

The high-fidelity way: We can construct the received signal at all sampled times, by
back-tracing the rays that enter the receiver to their sources, one at each scatterer.
This method works perfectly well but is very slow, because it requires the emitted
signal to be calculated many times. For example, if there are 1000 scatterers and 500
sampling times at which we require the received signal, then at each sampling time,
we must trace the signal via 1000 scatterers back to the emitter, thus calculating 1000
values of the emitted signal for each of those 500 times, making 500,000 calculations
of the emitted signal. This approach is prohibitively CPU-expensive.

The slightly lower-fidelity way: This approach makes use of linear time-shift-invariant
signal processing theory. It only requires the returned signal to be calculated corre-
sponding to a ping signal emitted at time zero—meaning that a total of only 1000
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LTSI system

LTSI system

δ[t] h[t] known

f [t] g[t] = ?

Figure 2: A “black box” that illustrates the approach of calculating the
response of an LTSI system. Top: given an impulse δ[t], we know the re-
sponse h[t]. Bottom: given a signal f [t], what is the response g[t]?

calculations are needed for the above 1000 scatterers. A further processing gain can
also be achieved, as some of the calculations depend only on the emitted signal and
so can be made off line. We’ll use this approach in this report and will describe it
in detail now.

Linear time-shift-invariant theory calculates the output of a “linear time-shift-invariant
(LTSI) system” given some input, subject to two assumptions:

– the system is linear : if we e.g. triple the strength of the input signal, the strength
of the output signal will be tripled; and if two signals are input simultaneously, the
output will be the sum of the individual outputs from those signals;

– the system is time-shift invariant: whether a signal is input today or tomorrow
doesn’t affect the output signal. Clearly this only applies to a moving ship over
short time intervals.

The radar interaction is certainly linear. As for time-shift invariance, how small must the
relevant time interval be for the invariance to apply? We saw in Figure 1 and (2.19) that
an emitted signal will return after a time interval td ≃ 2(r0 + vt)/c. Only when vt≪ r0

will there be no “stretching” of flight times of successive signals. This inequality holds for
the typical example considered in Section 2.3 so, for our scenarios, the time-shift invariance
holds well.

The central result of LTSI theory is that the signal output from an LTSI system equals
the convolution of the signal input with the system’s impulse response. The system’s
impulse response is its output when the input is an impulse: a “spike” in the continuous
case, or a “1” in the discrete case. We prove this central result while referring to Figure 2.
Consider a signal that has been sampled at times t to give numbers f [t] (the brackets
denote the discreteness of f). It enters the LTSI “black box” and is transformed into an
output g, sampled as g[t], where we denote the transformation as g = L(f). Given f [t],
what is g[t]? We know the system’s response h[t] when a single “1” is input to it at
time zero. This signal that is “1” at time zero and “0” at all other times is denoted δ[t];
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that is, δ[0] ≡ 1 and δ[t 6= 0] ≡ 0. So we know that h[t] = L(δ[t]). Now:

g[t] = L(f [t]) = L
(∑

t′

f [t′] δ[t − t′]
)

linearity
=====

∑

t′

f [t′] L(δ[t − t′])
time-shift

======
invariance

∑

t′

f [t′] h[t− t′]

≡ (f ∗ h) [t] , (3.1)

where f ∗ h is the convolution of f and h:

(f ∗ h) [t] ≡
∑

t′

f [t′] h[t− t′] . (3.2)

The key equation of LTSI theory is g = f ∗ h, or

output signal = input signal ∗ impulse response . (3.3)

Appendix B has a tutorial on convolution; I think that practice with convolving two arrays
from first principles using pen and paper is invaluable to understanding the procedure.

3.1 Calculating the Ship’s Impulse Response

To calculate the elements of the ship’s impulse response h[t], realise that they are the
returns of an emitted pulse that is a single “1”. That is, emit a single “1” at time zero
and place the returns from all the scatterers (in temporal order of course) into an array h,
which becomes the impulse response for use in later calculations. Of course, we don’t
assume that we know where the ship is, and so we should calculate the impulse response
of a region of interest: everything that lies between some range Rnear to some range Rfar.
This could include sea clutter, but in the following discussion I’ll assume without loss of
generality that only the ship gives a return.

The impulse response h of the “system” (ship plus environment) is supposed to be
everything returned from the moment that we emit the “1” impulse. That is, we emit
an impulse and then immediately listen to hear what the world throws back at us. We
can begin to create this impulse response by initialising an array of zeroes, some of which
will eventually be replaced by returns. How many zeroes are in this array? As shown in
Figure 3 on the following page, the array is initialised with zeroes that are place holders
for samples taken at time intervals of ts. In principle we then calculate the return of each
scatterer in the world, and add that return to the nearest element in time of the impulse
response array h. But in practice we need only calculate the returns of the scatterers
in the region of interest. This means that the red zeroes in the figure don’t interest us,
and for efficient memory management we can ignore them, and account for their absence
simply by adding Rnear to all ranges that are calculated from the impulse response that
was initialised with the black zeroes in Figure 3.

So given a sampling interval of ts, the impulse response is initialised to an array of
M zeroes, such that (M − 1)ts is the time interval between the return from Rnear to the
return from Rfar:

(M − 1)ts ≃ 2Rfar/c− 2Rnear/c . (3.4)
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Rnear Rfar

c× time

r0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

cts

Figure 3: The idea behind calculating the ship’s impulse response: create
an array of zeroes, then increment its relevant elements by the returns from
a “1” sent out that bounces from each scatterer.

In practice we must ensure that M is a whole number:

M − 1 = round

[
2(Rfar −Rnear)

cts

]

. (3.5)

Now bounce a signal “1” off each scatterer and find the time when it returns, adding the
returned signal to the element of h whose index is the nearest one that corresponds to
that time of return. For scatterer n at range rn the nearest index will be kn, where

(kn − 1)ts ≃ 2rn/c− 2Rnear/c , (3.6)

again with some rounding:

kn − 1 = round

[
2(rn −Rnear)

cts

]

. (3.7)

The return of the impulse “1” is the return of a signal with modulation 1 emitted at
time zero. Now use (2.34) to write

modulation of return =
1

4πr2
0

√

2PtGtσ

ε0c
eiφ0 e−iω02/c × range at emission. (3.8)

Calculate this quantity for each scatterer; e.g., calculate it for scatterer n and add this to
element kn of the array h, found from (3.7). This modulation must be added to element kn

because it might well be that two closely spaced scatterers (in range) both contribute to
this element.
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4 The Correlation Procedure

When our radar emits a signal that reflects from a stationary target and returns to us in a
degraded form, we can correlate the emitted and received signals to calculate the round-
trip time. Each signal is sampled and digitised. Write the sampled emitted signal (carrier
removed) as an array E of complex numbers, of length e. Likewise, the received signal
(sampled at the same rate and with carrier removed) is an array R of length r. Further,
denote the complex conjugate of a number z by z∗, and introduce the idea of the complex
conjugate of a sequence and its reverse. For example, a 3-sample array E =

[
E1 E2 E3

]

has
E∗ ≡ [E∗

1 E∗
2 E∗

3

]
, and E† ≡ [E∗

3 E∗
2 E∗

1

]
. (4.1)

Write the correlation of E with R as a new sequence E ⋆ R.

Calculating E ⋆ R is visualised in (4.2) below. Write the elements of E∗ as a length-e
movable row above a stationary row of the r elements of R, such that the last-received
(rightmost) element of E∗ lies above the first element of R, and then multiply these two
elements; this product E∗

e R1 is the first element of E ⋆ R. To calculate the next element
of E ⋆ R, shift E∗ one element to the right and again multiply each element of E∗ with
the element of R (if any) immediately below it. There will now be two such products, and
they are added to give the second element of E ⋆ R. Continue this procedure until there
are no more products to be calculated. In other words, after each shift of E∗ one element
to the right, we form the dot product of the overlapping subsequences:

E∗ =
[
E∗

1 E∗
2 E∗

3 . . . E∗
e

] −→ moving to right

R =
[

R1 R2 R3 . . . Rr

received signal

]

E ⋆ R =
[
E∗

e R1, E∗
e−1R1 + E∗

e R2, E∗
e−2R1 + E∗

e−1R2 + E∗
e R3, . . . , E∗

1Rr

]
(4.2)

[The correlation process is sometimes defined using E and R∗, which differs only by a
complex conjugate from (4.2) and so is just as valid to use.] This procedure will always
produce a peak in the absolute value of the correlation when a sequence, on being correlated
with itself, matches up with itself—which is the whole point of correlating two sequences:
to search for one within the other. (The proof is omitted but straightforward, and uses
the Cauchy-Schwarz theorem for complex sequences.) This peak would not be guaranteed
to occur—and in practice will seldom occur—if the complex conjugate were not used in
the correlation procedure.

Correlation “⋆” turns out to be almost the same process as convolution “∗” (not to be
confused with a complex conjugate here, which uses this symbol as a superscript):

A ⋆ B = A† ∗B , (4.3)

where “†” was defined in (4.1). This is essential to note, because convolution can be
carried out efficiently using a fast Fourier transform, implying that correlation can be
implemented in the same efficient way. Of great use is the fact that convolution is com-
mutative: A ∗B = B ∗A, and associative: (A ∗B) ∗C = A ∗ (B ∗C). Correlation is
neither of these; specifically,

A ⋆ B = (B ⋆ A)†, (A ⋆ B) ⋆ C = A† ⋆ (B ⋆ C). (4.4)

Appendix B gives some further comments on how correlation is related to convolution.
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4.1 Relating Correlation to Distance and Velocity

Each of the above “correlation steps” (shifting E∗ to the right by one sample) corresponds
to testing for a new posited time interval between emission and reception; this time interval
corresponds to a posited range to the target. If we plot the absolute value of the correlation
versus this range, then the range value at which the graph peaks is where we presume the
target to be.

The target may well be moving, in which case we cannot expect a good correlation of
emitted and returned signals. Instead, we must allow that R might be Doppler shifted
from E. This might be arranged by performing the above correlation process many times;
each time, we subtract some amount of posited Doppler frequency from R. What results
is many plots of correlation output versus range: one plot for each of the posited Doppler
frequencies. These plots can be stacked to form a surface plot of correlation output (or
rather its absolute value, since it’s generally complex) versus range and Doppler frequency.
The properties of this graph, the ambiguity function for the radar signal used, have been
studied extensively, and it forms the standard approach to determining how well any newly
designed signal might perform in practice. We might hope to find a sharp spike in the
function at the correct values of range and Doppler frequency. In fact, one of the various
theorems of the function’s properties discussed in [2] states that it’s impossible to craft a
signal that will produce such a spike. Appendix G shows how the ambiguity function is
created in practice.

The ambiguity function is built by stacking many correlation–range plots, each for a
particular value of Doppler frequency. Historically, radar receivers have not calculated
target range and velocity in this way, perhaps because of the large amount of computer
processing required. Instead they build a range–Doppler plot by stacking many frequency
spectra of correlation data that have been obtained pulse by pulse from a coherent pulse
train, with each spectrum calculated for a particular value of range. The details of this
procedure are given in Section 5.

Summarising, the correlation of emitted and received signals is traditionally done in
either of two ways:

The ambiguity function: For each value of Doppler frequency in an appropriate do-
main, plot the correlation of part or all of the signal sent out versus range, and
stack the graphs across frequency. This approach is used off-line for analysing radar
waveforms.

The range–Doppler plot: For each value of range in an appropriate domain, plot the
frequency spectrum of the correlations produced from a series of pulses in a coherent
pulse train, and stack the graphs across range. Radar hardware does this.

The process of correlating the returned signal with the emitted signal is known as
applying a matched filter, whose name perhaps derives from something like the following
argument. The primary process here is that of correlating the emitted and returned sig-
nals to locate the emitted signal within the returned signal. In principle, this correlation
could be done in an infinite number of different ways; the question is, which of these ways
can best detect a signal in the presence of noise? Determining this correlation procedure
has traditionally followed a linear time-shift-invariant approach (mentioned at the start
of Section 2), perhaps because that approach was historically the easiest method to build
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into analogue hardware. If the noise in the returned signal is assumed to be “white”
(meaning temporally uncorrelated), then it’s not difficult to show [3] that the best way to
correlate emitted and returned signals using a linear time-shift-invariant approach is via
a convolution. Convolution turns out to be a type of moving mean, and a moving mean
removes (“filters”) signal components of certain frequencies. So in this sense the corre-
lation process can be viewed as a type of filtering process, whose filter stencil “matches”
the signal. Although the standard correlation procedure is often simply introduced as a
convolution, it’s useful to remember that convolution is just one choice of how correlation
might be implemented. But convolution is the standard choice, because it turns out to
maximise the ratio of what results from filtering the signal, compared to what results from
filtering the ever-present noise.

4.2 Calculating the Target Range

As on page 17, sample the modulation of the emitted signal into a length-e array E of
complex numbers. Likewise, sample the modulation of the received signal at the same rate
into the complex array R of length r. The sampling time interval is ts. We will correlate
E with R, using (4.3) to produce an array of correlation numbers via a convolution.
Calculating the target range requires knowledge only of the absolute value of each of these
numbers, so call the array of these absolute values C:

C = |E ⋆ R| = |E† ∗R| , (4.5)

which is accomplished by the Matlab command

C = abs( conv(conj(fliplr(E)), R) );

The array C has length e + r − 1, as can be shown by examining what happens when E

(length e) is correlated with R (length r), with reference to (4.6) below. First, there are
r correlation operations (producing the first r elements of C) as the right-most element
of E∗ starts at the left-most element of R and shifts element-by-element to eventually
“hit” the right-most element of R. As E∗ continues moving to the right, e− 1 more
correlation operations occur until E∗ eventually “falls off the right-hand end” of R.

One of the elements of C will be a maximum, defining the best correlation of E and R.
What time delay between emitted and received signals does this or any other element of C
correspond to? For the sake of the numerical argument below, suppose that the sampled
received signal contains the emitted signal somewhere within it. That is, suppose that R

is composed of n noise numbers (small numbers that won’t correlate well with E, which
we replace by zeroes for the purpose of this discussion) followed by E (which might have
some added noise, but that’s immaterial to this discussion so is omitted), followed by more
noise numbers:

E∗ =
[

E∗
1 E∗

2 E∗
3 . . . E∗

e

] −→ moving to right

R =
[

0 0 0 . . . 0

n noise numbers

E1 E2 E3 . . . Ee

emitted signal

0 0 0 . . . 0

more noise numbers

]
. (4.6)

The peak correlation occurs when E∗ has slid in from the left and now is exactly alongside
(above) the copy of E that is inside R, element for element. The number of correlation
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events that this corresponds to is the sum of two numbers: n correlations with the noise
numbers, and then e correlations to line up alongside E. So the peak occurs at element
number n + e of the correlation array C (whose elements are numbered 1 to e + r − 1).
But we know that the time interval td between emission and reception of the signal is
composed of 7 n lots of ts, because there are n− 1 inter-element occurrences of ts in the
noise signal, plus one extra occurrence of ts to reach element E1:

0
ts←→ 0

ts←→ 0 . . . 0
n noise numbers, so

n− 1 lots of t
s

ts←→ E1

1 lot of t
s

td = nts

. . . (4.7)

Because the index of the element of C that corresponds to maximum correlation is n + e,
we conclude that

td = nts =
(

[index of peak correlation of C ]− e
)

ts . (4.8)

(This equation refers to the index of the element of C that gives the peak correlation, not
the element itself.) The time interval td corresponds to a target range of ctd/2, so the
range inferred from the above correlation is

target range =
(

[index of peak correlation of C ]− e
) cts

2
. (4.9)

As a check, (4.9) says that if the correlation elements of C peak at index e, the target
range must be zero. This makes sense because it corresponds to the absence of the first n
noise numbers in (4.6): the signal is being returned as soon as it’s emitted, corresponding
to a target at zero distance from the radar.

Equation (4.9) computes the target range from the peak correlation index of C; but
we can just as well apply it to every index of C to give the computed range had that
index denoted the maximum element of C. (In particular, increasing the correlation index
by one results in a computed range increase of cts/2.) This idea allows us to rescale the
time-delay axis to range, which is a more useful parameter than time delay for analysing
a real radar return.

Incorporating the Target’s Impulse Response h

Equation (3.3) says that R = E ∗ h. The correlation of emitted and received signals is
then

E ⋆ R
(4.3)
=== E† ∗R = E† ∗ (E ∗ h) = (E† ∗E) ∗ h . (4.10)

This is the central equation that we’ll use to correlate emitted and returned signals:

Correlation = E ⋆ R = (E† ∗E) ∗ h . (4.11)

7This calculation is “coarse” by an amount set by ts since we are treating n = td/ts as a whole number,
even though it will not be in practice. But when ts is small, the range error in the above analysis is
negligible.
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The array of emitted I/Q data E doesn’t change from pulse to pulse, so E† ∗E can be
pre-computed, and then convolved at run time with the ship’s impulse response h, which
is updated at the start of each new pulse. The absolute values of the result form the
array C in (4.5) that will return the ship’s distance via (4.9). Also, the correlation arrays
E1 ⋆R1, E2 ⋆R2, . . . from pulses 1, 2, . . . form successive rows of the matrix M discussed
ahead on page 22, whose columns turn out to hold Doppler information.

Note that in general, prepending or appending zeroes to one or both of any arrays
A and B has the effect of prepending or appending those zeroes to A ∗B. This fact is
worth remembering whenever an array begins with a set of zeroes that we wish to exclude
for reasons of efficient calculation. This idea was actually implicit in the discussion on
page 15 when we spoke of adding the offset Rnear to all ranges calculated using an h that
had no unnecessary leading zeroes.

So much for extracting range information from the returned signal. We’ll now show
how to extract Doppler information from the correlations.

5 Creating a Range–Doppler Plot

A radar receiver generates a range–Doppler plot by emitting a set of N coherent pulses,
then correlating each pulse with that pulse’s return. (It doesn’t correlate the entire pulse
train it emits with the entire train returned; cf. the ambiguity function in Appendix G.)
We’ll see shortly that the correlations over successive pulses contain Doppler information,
which can be extracted for each range cell from a discrete Fourier transform (DFT) of the
correlations in that range cell.

For simplicity, suppose we have a single point target, and consider the first pulse E1

emitted in the coherent pulse train. Its modulation u(t) is sampled at intervals of ts and
digitised into a sequence of, say, 4 complex numbers:

E1 =
[
u1 u2 u3 u4

]
. (5.1)

The return R1 of the first pulse is received beginning at some time t0. Referring to (2.35)
for one scatterer, write R1 as some modulation times the sampled Doppler shift:

R1 =
[
eiωDt0 ua , eiωD(t0+ts) ub , eiωD(t0+2ts) uc , eiωD(t0+3ts) ud

]

= eiωDt0
[
ua , eiωDts ub , eiωD2ts uc , eiωD3ts ud

]
, (5.2)

where ua, ub, uc, ud are values of the signal emitted at earlier times that incorporate the
other phase shifts in (2.35). For simplicity in what follows, write the constants in these
expressions as

α ≡ eiωDt0 , β ≡ eiωDts , (5.3)

so that

E1 =
[
u1 u2 u3 u4

]
, R1 = α

[
ua βub β2uc β3ud

]
. (5.4)

We might expect the next pulse E2 emitted in the coherent pulse train to be identical
to E1, with the target still returning the modulation ua, ub, uc, ud since it moves negligibly
in the pulse repetition interval T from one pulse to the next. Or there might be some
known phase shift from one emitted pulse to the next, as well as the fact that the reference
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oscillator used to remove the carrier signal is not completely stable and introduces some
arbitrary phase to each emitted pulse. So call the total phase shift φn for the nth pulse,
with φ1 ≡ 0. This phase is preserved in the returned pulse:

E2 =
[
u1 u2 u3 u4

]
eiφ2 ,

R2 =
[
eiωD(t0+T ) ua , eiωD(t0+T +ts) ub , eiωD(t0+T +2ts) uc , eiωD(t0+T +3ts)ud

]
eiφ2

= αeiωDT [ua βub β2uc β3ud

]
eiφ2 . (5.5)

Similarly,

E3 =
[

u1 u2 u3 u4

]

eiφ3 ,

R3 =
[
eiωD(t0+2T ) ua , eiωD(t0+2T +ts) ub , eiωD(t0+2T +2ts) uc , eiωD(t0+2T +3ts)ud

]
eiφ3

= αeiωD2T [ua βub β2uc β3ud

]
eiφ3 , (5.6)

and in general, for the nth pulse in the coherent train,

En =
[
u1 u2 u3 u4

]
eiφn , Rn = αeiωD(n−1)T [ua βub β2uc β3ud

]
eiφn . (5.7)

Now correlate En with Rn, noting that the conjugation used in the correlation process
cancels the unknown phase φn:

En ⋆ Rn = E†
n ∗Rn

=
[
u∗

4 u∗
3 u∗

2 u∗
1

]
✘✘✘
e−iφn ∗ αeiωD(n−1)T [ua βub β2uc β3ud

]

✟
✟✟eiφn

= αeiωD(n−1)T [u∗
4 ua , u∗

4 βub + u∗
3 ua , . . . , u∗

1 β3ud

]
. (5.8)

Now make this sequence the nth row of a matrix M : this matrix will have N rows because
each row contains one of the N correlations performed during the coherent processing
interval (CPI) comprised of N pulses. The process of correlating each of the N pulses
with itself is illustrated in Figure 4. We correlate the first pulse sent out with its return,
and set the resulting sequence of numbers to be the first row of the matrix M . The
numbers in this row are the correlations represented by the blue dots in the top peaked
“curve” of the figure. The peak corresponds to the best correlation, which gives the range
to the target using the procedure of (4.9). But we won’t actually use these correlation
numbers directly to calculate this range, because after having done the correlations, it
turns out that we’ll Fourier-transform the matrix M . However, the resulting matrix will
preserve the placement of the correlation peaks.

After having correlated the first emitted pulse with its return, we do the same with the
second pulse emitted and its return, setting the resulting sequence of numbers to be the
second row of the matrix M . This row’s numbers are the blue dots in the second peaked
curve of Figure 4. (The peak will lie at approximately the same range as the peak in the
top row, because the target has barely moved in time T .) We do this for all N pulses—all
of the blue dots in the figure—to build the entire correlation matrix M , row by row.

With M constructed, focus on any of its columns. Inspection of (5.8) shows that this
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Pulse 1
correlation

Pulse 2
correlation

Pulse N
correlation

DFT DFT DFT DFT

Range

cts/2

(ts = sampling time interval)

T (PRI)

“fast time”

“slow time”

Figure 4: The general scheme followed to build a range–Doppler plot via
range slices

column will be












1

eiωDT

eiωD2T

...

eiωD(N−1)T













×
(

some constant that changes
from column to column

)

. (5.9)

The sequence of N numbers in this column equals an irrelevant constant times a sequence
of N numbers that can be treated as samples of eiωDt at times t = 0, T, 2T, . . . So if we
calculate the frequency spectrum of the entire column, then—given that we’re using a
point target in this discussion—we will (ideally) find a single angular frequency ωD to be
present. This corresponds to the target recession velocity v via (2.26) or (2.27):

target recession velocity v =
−cωD

2ω0
=
−cfD

2f0
. (5.10)

The frequency spectrum of the column in (5.9) is found using a DFT, which produces
an array of the amounts of each frequency present. These frequencies are equally spaced,
running from approximately minus the Nyquist frequency to the Nyquist frequency for the
sampled set; see the discussion in Section 6 for details of the exact bounds of the spectrum,
specifically (6.4) and (6.5). The Nyquist frequency is 1/(2T ), or half the pulse repetition
frequency. This array of frequencies can be converted to radial velocities using (5.10).
That is, each of these frequencies, if it were the actual Doppler frequency of the target,
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would correspond to a velocity given by (5.10), in which case we need only multiply the
entire array of frequencies by −c/(2f0) to convert it from frequency to radial velocity.
Ideally, a moving point target might be expected to produce a single sharp peak at its
Doppler frequency, but in practice the sampling process spreads this peak out over many
frequencies.

We now repeat the above DFT analysis for each column of M . Only the common
factor outside the brackets in (5.9) changes from column to column but, being constant in
time, it’s not detected by the DFT and so doesn’t affect the spectrum produced. Hence
each column yields a frequency spectrum, and this column (with its frequency spectrum)
corresponds to a particular range by way of the discussion following (4.9) on page 20. That
discussion is worth repeating here: if we apply (4.9) to every correlation index—meaning
each column number of M—then we’ll obtain the range corresponding to that column
number, and this converts the time axis to range. So the frequency spectrum for each
column of M becomes a slice of a surface drawn over range and velocity axes, and this
surface is the range–Doppler plot.

The same procedure applies to a target composed of multiple point scatterers. The
signals returned from multiple point scatterers simply add, and the linearity of the convo-
lution procedure ensures that each velocity present gives rise to its own Doppler peak.

6 Comments on Applying a Discrete Fourier

Transform

Different schemes for ordering the elements of a DFT exist. For this report we define a
length-N sequence {x0, . . . , xN−1} to have a length-N DFT of {X−[N/2], X−[N/2]+1, . . . }
(where, for positive a, the notation [a] denotes the greatest integer 6 a). We use the
convention of reference [4] with the choice α = 1 there:

Xn =
1

N

N−1∑

k = 0

xk e
−i2πkn/N , n = −[N/2],−[N/2] + 1, . . . ,

[
N − 1

2

]

(N values). (6.1)

The inverse transform too is a sum over N numbers:

xk =

[ N−1
2 ]
∑

n = −[N/2]

Xn ei2πkn/N , 0 6 k 6 N − 1. (6.2)

In practice for any data set of reasonable size, the DFT is implemented using an algorithm
called a fast Fourier transform (FFT). Older implementations of the FFT required N to
be a power of 2; if N wasn’t a power of 2, zeroes were typically appended to the data set
to increase its length to a power of 2. Of course, this zero padding changed the data, and
so had the obvious side effect of introducing spurious frequencies to the spectrum. These
unwanted frequencies were tolerated some years ago because only by zero padding to a
power-of-2 length could the FFT be used at all. But current FFT algorithms are very
fast even when N is not a power of 2, and so the absolute need for zero padding is now a
thing of the past. (Appendix D has more discussion of this zero padding.) Note that this
padding is distinct from the appending with zeroes that’s required when using DFTs to
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convolve sequences of different lengths, discussed in Appendix B, and which has nothing
to do with powers of 2. That procedure works exactly with the extra zeroes: it’s simply
not about building a spectrum or a choice of FFT algorithm.

Nonetheless, emitting a power-of-2 number of pulses in a coherent processing interval
still seems to be common practice, even in digital radars.

The Matlab function fft orders its DFT amplitudes in a way that renders negative
frequencies positive and greater than the Nyquist frequency. I don’t see any point in
adding twice the Nyquist frequency to a negative frequency purely to make it positive (as
if negative frequencies are something to avoid), when that resulting positive frequency,
being now greater than Nyquist, is invalid from a DFT point of view. Instead, I give an
example of implementing the DFT in Matlab that leaves negative frequencies negative,
using the code of Table C1 in Appendix C. Note that the arrays x and X in that table are
arrays of numbers; that is, the first element of X is denoted X(1) in Matlab, even though
it’s called X−[N/2] in (6.1). Table C2 gives equivalent Mathematica code.

Here is an example of plotting a frequency spectrum using Table C1’s Dft function in
Matlab. Suppose the data has been sampled in time intervals of ts into an array data.
The DFT of data is the array

DFT_of_data = Dft(data);

Plot DFT_of_data versus frequency by first constructing an appropriate frequency domain,
which will be a sequence of N numbers {−f̂ ,−f̂ + ∆f,−f̂ + 2∆f, . . . } for some f̂ > 0
and frequency increment ∆f . The increment ∆f is the reciprocal of the duration of the
sampling interval. Note that this duration is not the time tf of the last sample minus the
time ti of the first sample. Rather, the periodic nature of sinusoids means that the internals
of the DFT really work on an infinite-length array made by repeating the data endlessly
before and after the actual period of sampling. So the DFT effectively assumes the data
begins anew at time tf + ts, and thus the sampling interval has duration tf + ts − ti. If
the data consists of N samples spaced ts apart, this duration must equal Nts, so

∆f =
1

tf + ts − ti
=

1

Nts
. (6.3)

The value of f̂ must be determined separately for each of the cases of N even or odd.

N even: For example, suppose N = 4 so that (6.1) gives the transform as {X−2, X−1, X0, X1}.
It follows that in general, the frequency domain is {−f̂ , . . . , f̂ −∆f}, and this has
extent f̂ −∆f − (−f̂), which we know must equal (N − 1)∆f . Hence

f̂ =
N∆f

2

(6.3)
===

1

2ts
= Nyquist frequency. (6.4)

N odd: Suppose N = 5, so that the transform is {X−2, X−1, X0, X1, X2}. In general the
frequency domain is {−f̂ , . . . , f̂} with extent 2f̂ , which must also equal (N − 1)∆f .
Hence

f̂ =
(N − 1)∆f

2
=

N∆f

2
− ∆f

2
= Nyquist frequency− ∆f

2
. (6.5)

This can all be implemented in Matlab with
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Figure 5: Left: Data sampled at 40 Hz of two complex exponentials at
frequencies 5 Hz and −12 Hz. Right: The DFT has peaks at the correct
frequencies with the correct weights.

Delta_f = samplingFrequency/N;

nyquistFrequency = samplingFrequency/2;

if abs(mod(N ,2)) < 1e -10

% DFT has even length N.

f_hat = nyquistFrequency;

frequencyDomain = linspace(-f_hat , f_hat -Delta_f , N);

else

% DFT has odd length N.

f_hat = nyquistFrequency - Delta_f/2;

frequencyDomain = linspace(-f_hat , f_hat , N);

end

The plot of, say, the absolute value of the DFT is accomplished with

stem( frequencyDomain , abs( DFT_of_data))

As an example, suppose we sample the function ei2π(5 Hz)t − 3 ei2π(−12 Hz)t at intervals
of 1/40 second. The Nyquist frequency is half the sampling rate, or 20 Hz, so the DFT
will certainly detect the frequencies of 5 Hz and −12 Hz. Suppose now, that by chance we
happened to choose the end sampling time to be one sampling interval (1/40 s) less than
a period of time that contains a whole number of cycles of both frequencies present. One
second is such a period of time (it contains exactly 5 cycles of one wave and 12 cycles of
the other), so suppose we sample from time 0 to time 1− 1/40 s, shown at left in Figure 5.
This sampling choice guarantees that the DFT “sees” two infinitely long sinusoids, so that
it will faithfully produce only peaks at the two frequencies 5 Hz and −12 Hz. This can
indeed be seen in the frequency spectrum at the right in Figure 5, where we have plotted
the actual DFT and not its absolute value, because in this case it’s composed of real
numbers anyway. The peaks are in the expected places with the correct weights.

Now suppose we sample the same function at intervals of 1/20 second, from 0 to
1− 1/20 s, shown at left in Figure 6. The Nyquist frequency is now 10 Hz. This is high
enough to capture the 5 Hz sinusoid (shown at the right in Figure 6), but not high enough
to capture the one at −12 Hz. As a result, the DFT algorithm effectively shifts the
−12 Hz peak up or down by multiples of the frequency domain width (which is twice the
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Figure 6: Left: Data sampled at 20 Hz of two complex exponentials at fre-
quencies 5 Hz and −12 Hz. Right: The lower sampling rate preserves the 5 Hz
peak, but the −12 Hz peak has been aliased to −12 Hz + sampling rate = 8 Hz.

Nyquist frequency—i.e., the sampling frequency) until the result is within the frequency
domain. So we find the correct frequency “aliased” to −12 Hz + 20 Hz = 8 Hz, as seen at
the right in Figure 6.

More realistically, suppose now that we sample the same function from 0 to fully 1 sec-
ond, since we’ll generally have no knowledge of what frequencies make up the spectrum—
that is, after all, why we are Fourier transforming the data in the first place! This will
add one extra sampling point to the sinusoids, with the result that the DFT no longer
sees two pure sinusoids; rather, it sees a jump where each copy of the signal begins and
ends, in the infinite chain of copies placed side by side in time that the DFT works with.
As a result, even if we do sample quickly enough to capture both frequencies—again at
1/40 second at top left in Figure 7—the discontinuity in the joining of the sinusoids in the
data results in many more pure sinusoids (i.e. frequencies) being present in the Fourier
spectrum. That is, more sinusoids are required to synthesise a curve with a discontinuous
jump.

This sampling behaviour of the discrete Fourier transform is the reason why more
frequencies are present (now with complex weights) in Figure 7 around the dominant
frequencies of 5 Hz and −12 Hz. This broadening of the peaks in the Fourier spectrum is
an unavoidable consequence of our practical inability to sample the data set for just the
right amount of time to ensure each sinusoid joins smoothly to a copy of itself when the
data is repeated endlessly by the Fourier transform.

6.1 Windowing Sampled Data

The above jump that occurs in the wrap-around of the sampling sequence will almost
always be present in any real sample, because we almost never deal with simple sinusoids
along with time intervals that have fortuitously been chosen as accurately as was done
to create Figures 5 and 6. The extraneous frequencies introduced by this jump can be
partly removed by eliminating the jump; that is, by forcing the data to match up in
the sampling period wrap-around that the Fourier transform “assumes” takes place. The
usual way of doing this is simply to reduce the data values to zero near the beginning
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Figure 7: Top left: Data sampled at 40 Hz of two complex exponentials at
frequencies 5 Hz and −12 Hz. Top right: The data has been sampled in such
a way as to cause a jump where the DFT “joins” copies of it together in an
infinite chain. The result is that more frequencies are required to reconstruct
the data. Bottom: Absolute values of the complex weights of the spectrum
at top right.

and end of the sampling period. This is done by multiplying the data by a smooth bell-
shaped function that has value zero at the end points of the data sequence and value
one in its middle. Several choices of this “windowing” function exist, each with different
trade-offs in the resulting spectrum. Perhaps the two most popular are the Hamming
and Blackman windows. The three main indicators of filter performance in the frequency
domain are:

Flat passband: Ideally, frequencies required to be passed with equal weightings should
not acquire any ripples in those weightings. The Blackman window has less passband
ripple than the Hamming.

High roll-off rate: There should be a well-defined drop in the Fourier spectrum between
frequencies required to be passed and frequencies required to be stopped. The Ham-
ming window has a slightly faster (better) roll-off than the Blackman.

Good stopband attenuation: Frequencies required to be stopped by the filter should
be attenuated very strongly. The Blackman window has a better stopband attenua-
tion than the Hamming.
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Figure 8: Left: The sampled data of Figure 7, now Blackman windowed.
Right: The neighbouring frequencies near 5 Hz and −12 Hz have been sup-
pressed, at the cost of the peaks at 5 and −12 being widened.

The stopband attenuation is arguably more important than roll-off, so the Blackman
window might be considered as generally the most desirable to use, as discussed in [5].

If we take the “badly sampled” data plotted in Figure 7 and create a new data set
by multiplying this data by a Blackman window, and then plot the absolute value of the
DFT of this new data, we obtain the plots of Figure 8. The windowing does suppress the
spurious “side lobes” around 5 Hz and −12 Hz, but at the cost of broadening and lowering
the two peaks at those frequencies.

Windowing is used in range–Doppler processing to reduce side lobes in both Doppler
and range. For Doppler windowing, recall that for each range value, the Doppler infor-
mation in the received pulse is simply the Fourier spectrum of the column of correlations
in (5.9). As discussed in the previous few pages and in Figure 8, we can eliminate spuri-
ous Doppler frequencies by windowing each of these columns before Fourier-transforming
them.

Windowing in range can be performed by windowing a copy of the emitted pulse, then
correlating that copy with the returned pulse. For modelling the radar interaction, this
procedure modifies (4.10) in the following way. Write the windowed emitted pulse as Ew,
in which case (4.10) becomes

correlation = Ew ⋆ R = E†
w ∗R = E†

w ∗ (E ∗ h) = (E†
w ∗E) ∗ h . (6.6)

As with the unwindowed case, E†
w ∗E can be calculated offline.

Range–Doppler plots showing “before and after” results of Doppler windowing are given
in Section 10. The use of range windowing does not give as dramatic an improvement in
the final plot as the use of Doppler windowing, so no range windowing has been used in
those plots.

7 Representative Pulse Types

A rectangular pulse can be viewed as a continuous wave being switched on for a time τ ,
its pulse width. Aside from this, we investigate two other pulse types in this report.
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7.1 Barker-coded Pulse

A Barker-coded pulse has more structure than a rectangular pulse of the same width.
Signals with rich structure autocorrelate very well (i.e. they correlate with themselves to
give a well-defined and narrow single peak, resulting in a high-quality matched filter), but
the larger bandwidth required to build this structure destroys some Doppler information
when compared to the smaller bandwidth of a rectangular pulse. The reason is that a
Doppler frequency shift will generally be less apparent (i.e. less measurable) when a larger
spread of frequencies is present.

The modulation that defines a Barker code is a series of rectangular pulses, called
chips, placed side by side with no gap, with weightings either +1 or −1; that is, they
either have no effect on the phase of the carrier (+1) or they add 180◦ to it (−1). Such a
pulse autocorrelates to give a high central peak when the signal matches with itself, flanked
by low correlation “side lobes” with a saw-tooth shape. Demanding an even saw-tooth
pattern of side lobes results in just seven known Barker codes: it has been conjectured
that no longer Barker codes exist. For an example of Barker autocorrelation, consider the
length-7 Barker code:

[
+1 +1 +1 −1 −1 +1 −1

]
(i.e. this has 7 chips). This autocorrelates

to give the following, remembering from Appendix B that correlation is accomplished by
complex-conjugating one reversed signal (which is real in this case) and convolving this
with the other signal—which here is of course identical to the first signal:

[−1 1 −1 −1 1 1 1
] ∗ [

1 1 1 −1 −1 1 −1
]

=
[−1 0 −1 0 −1 0 7 0 −1 0 −1 0 −1

]
. (7.1)

We see here the high peak in the middle, with the characteristic Barker saw-tooth side
lobes.

7.2 Chirped Pulse

A chirped signal varies its frequency continuously throughout each of its pulses. This
endows it with much structure, resulting in a higher-quality autocorrelation. The sin-
gle chirped pulse thus acquires the range resolution that only a much shorter constant-
frequency pulse would have. But the benefit of using the longer (chirped) pulse is that
this long pulse requires a lower energy density than a short (non-chirped) pulse to achieve
the same result, and so is both easier to generate and less visible to the target than the
non-chirped pulse.

As in (2.13), write the emitted signal as sc(t) = u(t) eiω0t. We will show shortly that
for a signal beginning at time t0 composed of N chirped pulses of period T and width τ ,
the emitted chirped signal is

sc(t) = eiω0t
[

F
(
t− t0

)
+ F

(
t− t0 − T

)
+ · · · + F

(
t− t0 −N − 1 T

)]

, (7.2)

where

F (t) =

{

eiπµt2
0 6 t 6 τ

0 otherwise
(7.3)

for some constant µ. (In fact, it will turn out that such an sc(t) is not quite an analytic
signal because its spectrum can contain negative frequencies; however, these are negligibly
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present when the carrier frequency is large enough, which it usually is. See further discus-
sion and examples in Section 9.1.) The rationale behind the form of the modulation F (t)
in (7.3) is as follows. A general signal sc(t) = A(t) eiφ(t) can be Fourier decomposed as

sc(t) =

∞∫

−∞

Sc(ω) eiωt dω , (7.4)

where

Sc(ω) =
1

2π

∞∫

−∞

sc(t) e
−iωt dt =

1

2π

∞∫

−∞

A(t) ei[φ(t)−ωt] dt . (7.5)

Now choose any value of ω: almost no contribution to the last integral in (7.5) occurs
when its phase φ(t)− ωt is changing rapidly with time, because in such a case many
complex numbers of essentially random phases are being added, giving a result of about
zero. This cancellation won’t happen when φ(t)− ωt is not changing rapidly with time.
That is, we expect the dominant contribution to the integral to occur when φ(t)− ωt is
roughly constant over time, or d/dt [φ(t)− ωt] ≈ 0, or φ′(t) ≈ ω. (This reasoning is known
as the method of stationary phase.) For example, at some time, say t = 41, Sc(ω) has the
most support at ω = φ′(41) = (say) 2. That is, we presume that at t = 41, the frequency
spectrum Sc(ω) is peaked around a dominant frequency of ω = 2. In general, at time t
the dominant frequency of the signal sc(t) = eiφ(t) is

ω ≈ φ′(t) . (7.6)

Refer to (7.2) and (7.3) and focus on the basic signal component eiω0t+iπµt2
. At time t its

dominant angular frequency is ω0 + 2πµt, which is the carrier plus an extra part that grows
linearly with time; this constitutes the chirp and is the rationale for the form of (7.3). The
angular frequency ω0 + 2πµt corresponds to an actual frequency of f0 + µt, which explains
why π is conventionally included in (7.3). It’s clear that µ is the slope of the straight-line
plot of chirped frequency versus time, as shown in Figure 10 on page 36.

8 Selecting Valid Pulse Parameters

In this section we describe how to choose pulse parameters that guarantee valid range–
Doppler plots. We illuminate a single possibly moving target at distance r from our radar
by the train of pulses shown in Figure 9. The parameters describing this pulse train are
used in the subsections that follow.

8.1 Attainable Range Measurement of a Pulse Train

A radar’s receiver is necessarily switched off during the time interval τ that it emits a pulse.
Any target closer than cτ/2 will then cause some of the reflected pulse to be received while
the receiver is switched off. This minimum range cτ/2 is called the radar’s blind range.

Likewise, the return from any target at range greater than cT /2 (where T is the PRI)
will arrive at the radar receiver either during or after it emits the next pulse of its train.
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Pulse width τ

Pulse rep. interval T
sampling interval t

s

time

Figure 9: A series of pulses with parameters indicated. Only the envelopes
of the pulses are shown.

We cannot know that such a return belonged to the first pulse and not the second, so
ranges greater than cT /2 create ambiguities in the measured range; thus cT /2 is called
the maximum unambiguous range. The radar’s useful range extent then runs from the
blind range rmin = cτ/2 to the maximum unambiguous range rmax = cT /2:

cτ/2 6 r 6 cT /2 . (8.1)

Note that rmin = cτ/2 is also the range resolution or range bin width ∆rres of a simple
rectangular pulse [i.e. µ = 0 in (7.3)], being the difference of the two closest-together
ranges r1, r2 such that the returned pulse from a target at r1 will be received without
overlapping the returned pulse from a target at r2. Section 9—starting with (9.1)—
calculates the range resolution of pulses with more structure.

8.2 Bounds on the Pulse Repetition Interval T

Given a target at range r, the above discussion of blind range and maximum unambiguous
range shows that τ and T must be chosen to ensure the target is visible to the radar, or

cτ/2 6 r 6 cT /2 . (8.2)

This places bounds on the pulse width τ and the PRI T :

cτ max/2 = r = cT min/2 . (8.3)

We focus in particular on Tmin:
Tmin = 2r/c . (8.4)

An upper bound Tmax to the PRI arises by avoiding Doppler ambiguities in the following
way. Refer to (2.27), which gives the Doppler frequency as

fD = −2f0 v/c (8.5)
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for a carrier frequency f0. We will be extracting the Doppler frequency from numbers
sampled at a rate of 1/T (not 1/ts: remember that Doppler information is sampled from
pulse to pulse, at one range value). Nyquist’s theorem says that approximately half this
rate is the maximum Doppler frequency that a DFT can detect,8 so

2f0|v|
c

= |fD| <
1

2T
. (8.6)

This rearranges to give

T <
c

4f0|v|
, so that Tmax =

c

4f0|v|
. (8.7)

We must choose a PRI between Tmin and Tmax:

2r

c
< T <

c

4f0|v|
. (8.8)

8.3 Attainable Speed Measurement of a Pulse Train

There is a maximum unambiguous speed vmax that a given pulse train is able to detect,
irrespective of whether the target is approaching or receding. Also, while the train can in
principle detect a minimum speed of zero, it does have a speed resolution ∆vres. We will
calculate vmax and ∆vres here. First, (8.5) gives the target’s radial velocity (positive for
receding) as

v =
−cfD

2f0
. (8.9)

Remember from (8.6) that the maximum-detectable Doppler frequency is approximately
fmax

D ≡ 1/(2T ). The maximum unambiguous speed comes from the absolute value of (8.9):

vmax =
cfmax

D

2f0
=

c

2f0

1

2T
=

c

4f0T
. (8.10)

The speed resolution ∆vres arises because the calculated Doppler spectrum is a set of
points and not a continuous curve, since this spectrum results from Fourier-transforming
the N numbers in (5.9). The resolution corresponds to the speed spacing between these
points. The Doppler frequency spacing is ∆fD = 1/(NT ) [use (6.3) with ts replaced by T ],
and this converts to the speed resolution using the same factor as in (8.9):

∆vres =

∣
∣
∣
∣

−c∆fD

2f0

∣
∣
∣
∣ =

c

2f0NT
=

c

2f0∆tCPI
, (8.11)

where ∆tCPI is the length NT of the CPI.

8I say “approximately” because the actual number is f̂ in (6.4) and (6.5), where the ts of those equations
is replaced by T here.
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Alternative Views of v
max

and ∆v
res

It’s instructive to derive the maximum unambiguous speed detectable by one particularly
simple wave train in an alternative way to the above. Suppose the radar emits an infinite
number of impulses spaced T apart. (That is, let τ → 0 and N →∞.) The frequency
spectrum of this train is easily calculated: it turns out to be an infinite series of spikes
spaced 1/T apart. We can define the maximum unambiguous speed to be that whose effect
is to shift these spikes by no more than half their spacing, since otherwise we wouldn’t be
able to tell whether any particular spike had moved to the left or the right. That is, we
require the absolute value of the Doppler shift, f02v/c from (2.27), to be less than half
the frequency spike spacing of 1/T :

f02v

c
6

1

2T
. (8.12)

Equality in (8.12) defines vmax:
f02vmax

c
≡ 1

2T
, (8.13)

and this rearranges to give (8.10) again.

The speed resolution ∆vres is sometimes related heuristically to a simple wave picture in
the following way. (This argument doesn’t use the above infinite wave train.) Recall (8.11):

∆vres ≡
c∆fD

2f0
, (8.14)

where ∆fD is the (positive) spacing between points in the Doppler spectrum—which is
also the smallest positive Doppler frequency measurable. Let this smallest frequency
correspond to a nominal longest “Doppler wavelength” λD ≡ c/∆fD (but note that this
does not correspond to a physical wave). Because ∆fD = 1/(NT ) = 1/∆tCPI, we have

λD =
c

∆fD
= c ∆tCPI . (8.15)

This equation portrays the speed resolution as resulting from the fitting of precisely one
of these longest “Doppler wavelengths” into the distance travelled by light in one coherent
processing interval.

Distance–Velocity Maxima Tradeoff

Equations (8.1) and (8.10) combine to give

rmax vmax =
c2

8f0
. (8.16)

We see here a tradeoff between maximum unambiguous range and maximum unambigu-
ous speed: for a given carrier frequency f0, increasing one must decrease the other. This
is another reason why high carrier frequencies are desirable in radar: a high carrier fre-
quency f0 allows both rmax and vmax to be large simultaneously. But see the remark just
after (8.18) ahead.
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8.4 Doppler Aliasing

The target’s radial velocity was given in terms of the Doppler frequency in (8.9). But all
velocities that produce Doppler frequencies outside the DFT’s domain will be aliased into
that domain by the action of the DFT: the DFT will add the necessary number of multiples
of the frequency domain width 1/T to the Doppler frequencies of those higher velocities
to shift their frequencies into that domain. In other words, the Doppler frequency f DFT

D

produced by the DFT (which might not equal the actual Doppler frequency fD) will be
indistinguishable from all frequencies present in the data that have value f DFT

D + n/T with
n ranging over all integers. Those other frequencies correspond to velocities vn via (8.9):

vn ≡
−c (f DFT

D + n/T )

2f0
for all integers n. (8.17)

So all vn will be aliased to the v given by (8.9), meaning that a target with recession
velocity vn (for any integer n) will appear to have velocity v on the range–Doppler plot. In
particular, target velocities that are aliased down to zero speed are potentially hazardous,
since they become indistinguishable from the background and hence cannot trigger any
velocity-sensitive sensor to acquire the target as being possibly of interest. These blind
speeds are |vn| such that f DFT

D = 0, or

|vn| ≡
cn

2f0T
, for n = 1, 2, 3, . . . (8.18)

Unfortunately, given that the spacing between blind speeds is c/(2f0T ), a high carrier
frequency f0 allows more blind speeds in some given speed range. This is a counter-
argument to the remark just after (8.16) that high carrier frequencies are desirable.

8.5 Range–Doppler Coupling

Refer to Figure 10, whose black line segment is the frequency versus time of a single chirped
pulse of duration τ , the pulse width. A stationary target returns a pulse whose frequency
is plotted as the blue line segment, and a moving target at the same range returns a pulse
whose frequency is plotted as the red line segment. The amount of Doppler shift fD in the
picture is exaggerated; a realistic figure is about one millionth of the carrier frequency f0.

The slope of the red segment is actually slightly different to that of the blue: if the frequency of
the emitted pulse is f = f0 + µt (refer Section 7.2), and the returned pulses start at time td (the
time delay in Figure 1), then the blue segment is just the black segment shifted to the right by td,
meaning the blue has equation

f = f0 + µ(t − td) . (8.19)

This has slope µ. But (2.25) says that the received frequency is ω0(1 − 2v/c), so that the red
segment has equation

f = (1 − 2v/c) [f0 + µ(t − td)] , (8.20)

which has slope (1 − 2v/c)µ. The value of v/c is typically ±10−6, so the slopes of red and blue
are almost identical.

The key feature of Figure 10 relates to finding the parts of the emitted and received
pulses that correlate best. The emitted pulse segment labelled “1” in the figure (the small
black rectangle) will correlate well with the returned segment labelled 2 in the absence of
Doppler shift. In the presence of Doppler shift, we might hope segment 1 would correlate
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tE

f = f0
+ µt

0 td

Figure 10: Range–Doppler coupling for a chirped pulse. The black line
segment is the emitted pulse. A returned pulse with no Doppler shift is the
blue line segment, and a returned pulse with Doppler shift is the red line
segment, in this case for an approaching target.

well with segment 2′ in order to derive the same time shift necessary to give the range.
But, in fact, segment 1 might better correlate with segment 3 since they share the same
frequency. (This assumes some chirp is present, in which case we cannot expect to be able
to take the limit µ→ 0 at the end of our calculation.) That means the Doppler shift has
the effect of making it appear as if the returned pulse arrived early by an error time tE , for
the case when fD has the same sign as µ. (If the signs are different, the red segment will
appear to have arrived later than the blue segment.) Because the red line in the figure has
about the same slope as the blue and black lines, we can write µ ≃ fD/tE for any choice
of signs, and infer a range error of

∆r = measured range− true range

=
c(td − tE)

2
− ctd

2

=
−ctE

2
=
−cfD

2µ
=
−c

2µ
× −2vf0

c
=

vf0

µ
, µ 6→ 0 . (8.21)

This error is called range–Doppler coupling, and amounts to about 7 centimetres for the
target of Figure 16 ahead. Given that it has such a small value for our scenarios of interest,
we don’t consider it further in this report.

9 Range Resolutions of Different Pulse Types

A standard expression in radar signal processing is that a pulse’s range resolution, or range
bin width, is given by

∆rres ≈
c

2B
, (9.1)

where B is the pulse’s bandwidth. This isn’t a hard and fast rule, in that it suggests
that “bandwidth” is a well-defined term, which isn’t quite the case. In principle the total
bandwidth of a signal is defined as the width (say, the “full width at half maximum”) of the
support of the signal’s frequency spectrum; but this width can be infinite, so in practice the
total bandwidth is defined as the width of the dominant part of the spectrum’s support.

36 UNCLASSIFIED



UNCLASSIFIED DSTO–TN–1386

One rationale for (9.1) is the following. Most pulses used in radar have a spectrum
that is shaped something like a top hat of width B, meaning this spectrum’s support is
fairly well defined and the spectrum is reasonably flat throughout this width. Neglecting
noise, the returned pulse’s spectrum is similar to the emitted pulse’s spectrum, save for a
small Doppler shift. The correlation of the emitted signal E with the returned signal R
is E ⋆ R = E† ∗R; in other words, a convolution of a reversed and conjugated E with R.
This convolution is the inverse Fourier transform of a product: the product of the Fourier
transform of E† and the Fourier transform of R, probably with some zero appending
as discussed around (B11), which will alter the bandwidths somewhat, but presumably
not by much. The Fourier transform of E† has bandwidth B, and the Fourier transform
of R has bandwidth approximately B, and both spectra are centred at almost the same
frequency. So their product is approximately another top hat of width B. The inverse
Fourier transform of this bandwidth-B function (which will be the correlation E ⋆R) must
then have a typical width of 1/B. But a well-crafted pulse’s correlation with its return
will be a spike, so that this spike has a width of about 1/B, meaning the correlation peak
is spread over a time interval of 1/B. The associated range resolution of the pulse is c/2
times this width, which gives (9.1).

Equation (9.1) is reasonable qualitatively, in that a large bandwidth (large B) means
high pulse complexity, which means high autocorrelation ability, which leads to very good
range resolution (small ∆rres). Fourier analysis shows that bandwidth of a rectangular
pulse formed by multiplying a single-frequency carrier by a top-hat window of duration τ is
B ≈ 1/τ , for which case (9.1) produces the expected ∆rres = cτ/2 quoted just after (8.1).

So range resolution is determined by bandwidth, not pulse width. Suppose we have
a radar pulse of duration τ and bandwidth B, which might have some internal structure
such as a chirp or a Barker code. The bandwidth of this highly structured pulse is greater
than the bandwidth of a duration-τ rectangular pulse (i.e. one with no internal structure
apart from its carrier), this bandwidth being 1/τ . Now imagine a rectangular pulse with
no structure, duration 1/B, and bandwidth B, which has therefore the same range reso-
lution as the actual pulse. If the actual pulse has high structure (large B), this imagined
rectangular pulse with the same large bandwidth B will have a very small duration 1/B,
smaller than τ . This smaller duration of this (structureless) rectangular pulse is called
the effective pulse width of the original highly structured pulse: τeff ≡ 1/B < τ . Although
this imagined narrow and simple-to-generate pulse has the same range resolution as the
wide and difficult-to-generate structured pulse, emitting the imagined simple pulse over
the comparatively short time τeff requires the radar to reach a high power level, which
might be impossible; better is for the radar to emit the structured pulse over the longer
time τ , for which a lower average power suffices. Also, a lower average emitted power
means the radar is less visible to the target.

The actual pulse of duration τ is sometimes called the uncompressed pulse, while the
imagined plain rectangular pulse of duration τeff is sometimes called the compressed pulse.
The compression ratio is defined as the ratio of these widths:

compression ratio ≡ τ

τeff
= Bτ > 1 . (9.2)

The compression ratio is a measure of the emitted pulse’s structure: higher structure means
higher compression ratio. Also, the compression ratio determines the emitted pulse’s range
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resolution using (9.1):

∆rres ≈
c

2B
=

cτeff

2
=

cτ/2

compression ratio
. (9.3)

In words, the range resolution ∆rres of the actual long structured pulse (the “uncompressed
pulse”, duration τ) equals the range resolution of the imagined short structureless rect-
angular “compressed pulse” (duration τeff < τ), which equals the range resolution of an
imagined structureless rectangular pulse (duration τ , not τeff) divided by the compression
ratio.

In some analogue radars, chirped pulses are physically compressed on reception by
filtering them through, for example, a “surface acoustic wave device”, which passes dif-
ferent frequencies at different speeds to physically compress the returned pulse, achieving
the range resolution of this “compressed pulse” without the high power requirement of
a short pulse. But modern digital radars no longer compress pulses on reception, so for
them the terms “uncompressed pulse”, “compressed pulse”, and “compression ratio” are
not literal: the terms are not meant to imply that the received (or emitted) radar pulse
is ever compressed. (I think this terminology of compression, once useful for analogue
radars, is misleading for digital radars and shouldn’t be used.) Note also that in some
texts, the actual pulse’s autocorrelation function is also called the compressed pulse, as
might be the actual pulse’s correlation with its return. So, what is called a compressed
pulse might be (a) an imagined narrow pulse of duration τeff, or (b) a correlation sequence
of the actual (“uncompressed”) pulse with either itself or its return; and this sequence is
not a radar pulse at all.

Either way, in a digital radar, a compressed pulse is not the compressed version of
some kind of “uncompressed” pulse. Nothing ever gets compressed. In the digital radar
age where surface acoustic wave devices are no longer used to physically compress radar
pulses, the technique of frequency modulation is not meant to be visualised as having the
magical effect of physically compressing a radar pulse. It simply gives the pulse more
structure, which leads to better autocorrelation. The emitted or “uncompressed” pulse is
the only radar pulse that actually exists.

9.1 Range Resolution of a Chirped Signal

Using a large chirp [a large µ in (7.3)] endows a pulse with more structure, which in turn
gives it more bandwidth (a “high compression ratio”), thus giving a better (i.e. smaller)
range resolution.

Let’s calculate the amount of chirp µ in (7.3) required for a given pulse width and
desired range resolution. The range resolution is given by (9.1):

∆rres ≈
c

2Btot
, (9.4)

where we’ve now written Btot for the total bandwidth of a single chirped pulse; this band-
width is distinct from the amount by which the pulse’s instantaneous frequency changes
during the chirp, which is its swept bandwidth Bswept. Although the notion of bandwidth
is not scrupulously well-defined, we can find an approximate value of this total bandwidth
by Fourier transforming a single chirped pulse, described next.
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Calculating the Bandwidth of a Chirped Pulse

Over the duration τ of a single pulse, the chirped wave train of (7.2) and (7.3) is

sc(t) = ei2π(f0t+ µ
2

t2) ≡ eiφ(t) , (9.5)

where f0 is the carrier frequency and µ is the chirp parameter, quantifying how the sig-
nal frequency changes during the pulse. Equation (7.6) expresses the frequency used to
quantify the bandwidth as

f(t) =
φ′(t)

2π
= f0 + µt , (9.6)

showing that the instantaneous frequency f(t) does indeed grow linearly. The pulse’s
frequency spectrum Sc(ω) is given by the Fourier transform of sc(t):

Sc(ω) =

∫ ∞

−∞
e−iωtsc(t) dt =

∫ τ

0
ei(−ω+ω0)t+iπµt2

dt , (9.7)

where ω0 ≡ 2πf0. Evaluate this integral with the identity

∫

e−ax2+bx dx =
1

2

√
π

a
e

b2

4a erf

(√
a x− b

2
√

a

)

, (9.8)

to give

Sc(ω) =
1

2

√

i

µ
e

−i(ω−ω0)2

4πµ

[

erf

(
√

−iπµ τ +
i(ω − ω0)

2
√

− iπµ

)

− erf
i(ω − ω0)

2
√

− iπµ

]

. (9.9)

Note that µ is not trivially able to be set to zero here, because the identity (9.8) relies
on the process of “completing the square”, which has no meaning if µ = 0. But we can
certainly set µ to be arbitrarily small.

Alternatively, we could make the real and imaginary parts of Sc(ω) more explicit by
using the Fresnel integrals S(x) and C(x), where

{
S(x)

C(x)

}

≡
∫ x

0

{
sin

cos

}
πu2

2
du . (9.10)

These lead to the identity

∫

eiax2+ibx dx =

√
π

2a
e

−ib2

4a
[
C(u) + iS(u)

]
(9.11)

where

u ≡
√

2a

π
x +

b√
2πa

, (9.12)

enabling the Fourier transform in (9.7) to be written alternatively to (9.9) as

Sc(ω) =
1

√

2µ
e

−i(ω−ω0)2

4πµ







C

(
√

2µ τ + −ω+ω0

π
√

2µ

)

−C

(

−ω+ω0

π
√

2µ

)

+ iS

(
√

2µ τ + −ω+ω0

π
√

2µ

)

− iS

(

−ω+ω0

π
√

2µ

)







. (9.13)

Plots of |Sc(ω)| versus frequency f = ω/(2π) using (9.9) are shown in Figure 11 on the
next page. The carrier ω0 just shifts the spectrum, so has been set to zero in each plot.
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µ = 10−8, τ = 0.1. Eqn (9.17) gives Btot ≃ 10.
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µ = 50, τ = 0.1. Eqn (9.17) gives Btot ≃ 15.
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µ = −5, τ = 0.2. Eqn (9.17) gives Btot ≃ 6.
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µ = 2, τ = 2. Eqn (9.17) gives Btot ≃ 4.5.

- 10 - 5 0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Frequency f

 S
pe

ct
ru

m
¤

µ = 2, τ = 5. Eqn (9.17) gives Btot ≃ 10.2.
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µ = 20, τ = 5. Eqn (9.17) gives Btot ≃ 100.2.

Figure 11: Frequency spectra of single pulses with various values of µ and τ ,
whose units are immaterial here. The carrier has been removed; thus zero
frequency corresponds to the carrier frequency. The values of the bandwidth
calculated using (9.17) are listed, and compare well with a visual inspection
of, say, the full width at half maximum in each plot.

Note that usually the bandwidth is much smaller than the carrier frequency, so that in accordance
with the comments in Section 2 and Appendix A, the signal sc(t) in (9.5) essentially has only a
positive-frequency spectrum. Nevertheless, were ω0 to be very small, sc(t) would certainly have
some negative frequencies in its spectrum, which is at odds with the fact that an analytic signal
only has positive-frequency components. The fact is that sc(t) in (9.5) is not exactly an analytic
signal; applying the Hilbert transform to its real part is not guaranteed to give its imaginary part.
But when the carrier frequency is high enough—which is perhaps always the case—the plots of
Figure 11 show that the spectrum essentially does have only positive frequencies.
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f = f0 f = f0 + µt f = f0 + µτ

0 τ

t

Figure 12: An idealised fusion of two plane wave trains used to derive (9.17)

The plots of Figure 11 show that the behaviour of the spectra as µ and τ vary is not
straightforward. But there is some latitude in the definition of a spectrum’s bandwidth,
given that technically each plot in Figure 11 has infinite support. The bandwidth in each
plot can be considered or defined as a kind of “full width at half maximum”. Here we derive
a simple expression for the bandwidth which agrees well with full-width-at-half-maximum
values in Figure 11.

Begin by treating a chirped pulse as the product of a particular type of idealised wave
train and a top-hat function. The idealised wave train is shown in Figure 12. It has a
constant amplitude and the following frequency behaviour:

– For t = −∞→ 0 it has a frequency f0.

– For t = 0→ τ it has a frequency f0 + µt, so that its frequency increases linearly at
a rate of µ over the width τ of the pulse, reaching a value of f0 + µτ .

– For t = τ →∞ it remains at this frequency of f0 + µτ .

The top-hat function is nonzero only for the pulse duration t = 0→ τ . The real chirped
pulse is then the product:

chirped pulse = idealised wave train× top-hat of width τ. (9.14)

The bandwidth Btot is found by Fourier analysing this pulse; here F {} stands for a Fourier
transform and “∗” for convolution:

spectrum

bandwidth Btot

= F {chirped pulse}

= F {idealised wave train × top hat}
= F {idealised wave train}

bandwidth =Bswept

∗ F {top hat}
a sinc function

of bandwidth 1/τ

. (9.15)

The idealised wave train is a fusion of two plane waves: its early-time or “left part”
has a single frequency f0 (shown in red in Figure 12), its late-time or “right part” has
a single frequency f0 + µτ (shown in blue in Figure 12), and there is an intermediate
transition region (green) which passes through all frequencies in between, f0 → f0 + µτ .
Remember that an infinite plane wave with a single frequency has no bandwidth, so we
can approximate (even define) the bandwidth of the entire wave train as being solely the
sweep of frequencies in the intermediate green region:

Bswept = |µ|τ . (9.16)
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This is the first factor in the convolution on the right-hand side of (9.15). The second factor
there is a sinc function of well-known bandwidth 1/τ . Now, if we convolve two functions
of approximate widths |µ|τ and 1/τ in (9.15), we can expect the result—which amounts
to “smudging” one using the other9—to have a width that is approximately the sum of
these widths, or |µ|τ + 1/τ . So the required single-pulse bandwidth Btot is approximately
this sum:

Btot ≃ |µ|τ + 1/τ . (9.17)

As far as I’m aware, radar textbooks tend not to distinguish between Bswept and Btot,
and seem only ever to write (9.16) as the expression for “the” bandwidth B. But simply
writing “B = |µ|τ” (or what is more likely, “B = µτ”) doesn’t return the baseline value
of 1/τ in the no-chirp case (µ = 0). In contrast, (9.17) does return 1/τ in that case.

Applying (9.17) to the µ, τ values in Figure 11 gives the bandwidths listed in its sub-
captions. There is a good visual agreement between (9.17)’s Btot and the typical support
of each plot, given by e.g. its full width at half maximum.

Now substitute (9.17) into (9.4) to give the range resolution of the chirped pulse:

∆rres ≃
c

2 (|µ|τ + 1/τ)
. (9.18)

Given a pulse width τ and a desired range resolution ∆rres, we can find the necessary
chirp parameter µ from (9.18):

µ ≃ ±
(

c

2∆rres
− 1

τ

)
1

τ
. (9.19)

There are two values possible here, corresponding to an “up chirp” (µ > 0) and a “down
chirp” (µ < 0).

The chirped pulse has an effective pulse width of

τeff =
1

Btot
=

1

|µ|τ + 1/τ
=

τ

|µ|τ2 + 1
. (9.20)

Alternatively, its compression ratio is τ/τeff = |µ|τ2 + 1.

Choosing a Sampling Interval for a Chirped Pulse

We require our pulse sampling procedure to capture the emitted wave’s modulation ade-
quately, but there is no point in making the sampling frequency excessively high. Given
that we will sample at a constant rate, then when the emitted signal is chirped, we need to
sample at two or more times the largest modulation frequency present to satisfy Nyquist’s
criterion for detecting this modulation. However, if we do this and then reduce the chirp
to zero (so that its largest modulation frequency goes to zero), the sampling frequency
will then go to zero: we will stop sampling it! To prevent this, we also require to sample
the pulse at least, say, 10 times. So we must set a lower bound on the sampling frequency.

9Convolving two sequences is exactly the same procedure as setting the reverse of one sequence to be
a moving-mean template of weights that “smoothens” or “smudges” the other sequence. Which sequence
plays which role here is immaterial, because A ∗ B = B ∗ A.
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To quantify this further, note that (9.5) gives the chirp modulation as eiπµt2
, so

the instantaneous non-angular frequency of this modulation at time t is approximately,
from (7.6),

1

2π

d

dt
πµt2 = µt . (9.21)

Irrespective of whether µ is positive or negative, the absolute value of the modulation
frequency is |µ|t, which attains a maximum value of |µ|τ at the end of the chirp. We
sample at n1 times this rate at the very least (where n1 is at least the 2 of the previous
paragraph to satisfy Nyquist); i.e. the sampling frequency must be at least n1|µ|τ . But
also, we require at least n2 samples in the whole pulse (where n2 was 10 in the previous
paragraph), giving a sampling frequency of at least n2/τ . So choose the larger of n1|µ|τ
and n2/τ ; any larger number would only lead to wasteful oversampling. Now, sampling
frequencies are reciprocals of sampling times, so this choice of larger sampling frequency
corresponds to a choice of smaller sampling time:

ts = min

{
1

n1|µ|τ
,

τ

n2

}

. (9.22)

9.2 Range Resolution of a Barker-coded Pulse

The bandwidth of a binary phase-coded pulse such as a Barker approximately equals the
bandwidth of one of its chips.10 Since each chip is just the carrier modulated by a top hat,
the chip’s bandwidth equals the reciprocal of its duration. If the pulse width is τ , each
chip of an n-chip Barker code has duration τ/n; hence the bandwidth of the pulse must
be B = n/τ , giving the pulse a range resolution of

∆rres ≈
c

2B
=

cτ

2n
. (9.23)

Compare this to (9.3): the number of chips n plays the same role here as the compression
ratio of a chirped pulse. Alternatively, the Barker’s effective pulse width is

τeff = 1/B = τ/n , (9.24)

giving the Barker-n pulse a “compression ratio” of τ/τeff = n.

10 Representative Range–Doppler Plots

In this section we generate range–Doppler plots for various coherent processing intervals
of non-chirped and chirped pulses. The first plots use 32 pulses per interval, first without
and then with Doppler windowing. The number of pulses per CPI in the windowed set is
then increased to 256 as a simple example of showing how this increase leads to a better
Doppler resolution—but not a better range resolution. All plots use a 10 GHz carrier.

10This statement can be verified numerically when the chip polarities are chosen randomly, but I doubt
that any solid proof of it is possible, because bandwidth itself is not precisely defined. Clearly it will fail
if the chips all have the same polarity. Its truth is probably due to the idea that generally bandwidth
is inversely proportional to signal length, so that a short-duration feature of the signal (such as a chip)
requires more bandwidth than a long-duration feature, and so the bandwidth of that short-duration feature
will account for most of the total bandwidth.
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10.1 Series of Non-Chirped Rectangular Pulses, Before and

After Windowing

For a target at 500 m approaching at 100 m/s, the information on selecting valid pulse
parameters in Section 8 allows us to set parameters for a series of rectangular non-
chirped pulses. Equation (8.8) specifies that the PRI should lie between 3.3 and 75 mi-
croseconds, so we have used the average value of 39 microseconds, corresponding to a
PRF of about 26 kHz. A range–Doppler plot with no windowing is shown at the left of
Figure 14. The peak correlation occurs at range 510 metres and velocity −105 m/s.

Target distance: 500 m
Target recession velocity: −100 m/s
Range-bin width: ∆rres = 150 m
Pulse-train length: N = 32 pulses per CPI
Pulse width: τ = 1 µs
PRI (8.8): T = 39 µs (PRF = 26 kHz)
Blind range and max. unambiguous range (8.1): 150 m and 5846 m respectively
Max.-detectable speed and resolution (8.10), (8.11): 192 m/s, 12 m/s
Chirp factor (9.19): µ = 0 MHz2 (τeff = 1 µs)
Sampling interval (9.22): ts = 0.067 µs (n1 = 2, n2 = 15)
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Figure 13: A CPI of 32 pulses with range resolution of 10 metres, no chirp,
PRI = 39 µs (PRF = 26 kHz), pulse width 1 µs, sampling interval 0.067 µs,
and no Doppler windowing. Left: modulation of emitted signal. Right: re-
ceived signal.

At the bottom of Figure 14 is a range–Doppler plot made of the same target, but
now incorporating Doppler windowing. The Doppler tail is now completely absent at the
expense of a slight broadening of the Doppler peak. The peak correlation now occurs at
range 500 metres. The velocity still peaks at −105 m/s.

This “tidying up” of the range–Doppler plot is the reason why windowing functions are
useful, especially when windowing is used in the presence of background noise and other
targets.

44 UNCLASSIFIED



UNCLASSIFIED DSTO–TN–1386

200
400

600
800

−100
0

100

0

5

10

15

Range (m)

| Frequency spectrum |, 32 pulses, µ = 0 MHz2

Recession velocity (m/s)

| F
re

qu
en

cy
 s

pe
ct

ru
m

 |

200
400

600
800

−100
0

100

−2

0

2

4

6

Range (m)

| Frequency spectrum |, 32 pulses, µ = 0 MHz2

Recession velocity (m/s)

| F
re

qu
en

cy
 s

pe
ct

ru
m

 |

Figure 14: Top: The CPI of 32 pulses in Figure 13 gives this range–
Doppler plot. No Doppler windowing has been used. Bottom: The same
scenario with Doppler windowing included.
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Figure 15: A CPI with the same parameters used for Figure 14, with
Doppler windowing, but now using 256 pulses. The higher number of pulses
increases the Doppler resolution.

Figure 15 shows range–Doppler for the same parameters used for Figure 14, including
windowing, but now with 256 pulses per CPI. The range result is again 500 metres, but
the higher number of pulses has increased the Doppler resolution, so that the velocity is
now much more localised near its peak at −102 m/s.
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10.2 Series of Chirped Rectangular Pulses with Doppler

Windowing

The parameters in the table below have been used to create a series of chirped pulses,
again for a target at 500 m approaching at 100 m/s. Equation (8.8) specifies that the
PRI should lie between 3.3 and 75 microseconds, so we have used the average value of
39 microseconds.

Target distance: 500 m
Target recession velocity: −100 m/s
Range-bin width: ∆rres = 10 m
Pulse-train length: N = 32 pulses per CPI
Pulse width: τ = 1 µs
PRI (8.8): T = 39 µs (PRF = 26 kHz)
Blind range and max. unamb. range: 150 m and 5846 m respectively
Max.-detectable speed and resolution (8.10), (8.11): 192 m/s, 12 m/s
Chirp factor (9.19): µ = 14.0 MHz2 (τeff = 1/15 µs)
Sampling interval (9.22): ts = 0.036 µs (n1 = 2, n2 = 15)

The effective pulse width is τeff = 1/15 µs, giving a chirp factor of µ = 14 MHz2. Some
intuitive feel for the value of µ results from writing it as 14 MHz/µs. Equation (9.6) gives
the carrier frequency of the emitted pulse as f = f0 + µt, so for the 1 µs duration of the
chirp the carrier frequency increases at a rate of µ = 14 MHz/µs, giving a total frequency
increase of 14 MHz. This is the swept bandwidth of one pulse. (This, of course, is just a re-
statement of (9.16), which gives the frequency change over a pulse width as Bswept = |µ|τ .)
Compare this 14 MHz frequency increase with the carrier frequency of 10 GHz: the signal
is indeed narrow band.

Figure 16 (top) shows the resulting range–Doppler plot. The peak correlation occurs at
range of 498 metres and a velocity of −105 m/s. The chirp gives a better range resolution
than the non-chirped pulse trains in Figures 14 and 15, although the fact that we don’t
quite get a peak at 500 metres is probably just due to a chance placement of the sampling.
The bottom plot of Figure 16 shows the same scenario but now using 256 pulses, which
gives better Doppler resolution.
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Figure 16: Top: A CPI of 32 pulses with Doppler windowing, range res-
olution of 10 metres, chirp µ =14.0 MHz2, PRI = 39 µs, pulse width 1 µs,
sampling interval 0.036 µs. The chirp increases the range resolution. Bot-

tom: The same for a CPI of 256 pulses, showing a clear increase in Doppler
resolution.
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11 Creating Range and Velocity Offsets

for Use in Jamming

A radar target might actively record the signal and re-emit a copy, perhaps altered, after
some time interval. The alteration is accomplished by a set of electronics called a tap,
which increases the signal strength (wave amplitude), and possibly introduces a time-
dependent phase shift. We describe these alterations in this section. As in Section 2.3, the
analytic signal emitted by the radar at time t is u(t) eiω0t, and the target motion is also
modelled as in that section. The question: how should the tap alter the signal to offset
its range and velocity on the receiver’s range–Doppler map?

11.1 Creating a Range Offset

The tap delay Ttap that gives a desired range offset is straightforward to compute. Delaying
a tap’s return by Ttap leads the radar to measure the tap to lie a distance of ∆r = cTtap/2
further away than its true value. So for any given ∆r, the required delay is

Ttap ≃ 2∆r/c . (11.1)

For example, if we wish the target to appear to be 150 metres further away than what it
really is, set ∆r = 150 m in (11.1) and infer that a tap must delay the signal for a time of

Ttap =
2× 150 m

300 m/µs
= 1 µs . (11.2)

11.2 Creating a Velocity Offset

A tap can introduce a velocity-offset structure to the range–Doppler plot by injecting a
time-dependent phase change to each pulse it returns. We can see this in the following
way. Refer to the third option of (2.22):

gc(t) ≃ A(r0) u(t− td) eiω0t e−iω0
2
c

(r0+vt). (11.3)

Suppose that a tap multiplies each I/Q number it generates by e−iω02/c ∆vt, which has the
effect of replacing v in (11.3) with v + ∆v. We then expect a new velocity of v + ∆v to
be measured. In practice, of course, the tap has a clock of its own which is offset from the
receiver’s clock by some toffset. So replace the factor of e−iω02/c ∆vt by

e−iω0
2
c

∆v(t + toffset) = e−iω0
2
c

∆vt × a constant phase factor. (11.4)

So this tap’s clock offset produces a constant phase shift, which is of no real consequence
in the radar signal processing. The additional Doppler shift detected by the radar that
arises from ∆v follows from (2.26), whose linearity implies that

∆ωD = −ω0 2∆v/c . (11.5)

Here we have a recipe for creating a single Doppler offset from a given tap. But in addition,
although each tap is assumed capable of returning only one time-delayed signal to the radar
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for each pulse incident on it—producing a single major range offset—the tap is assumed
to be capable of building this return by summing multiple altered copies of the incident
pulse, where each alteration consists of an amplitude/phase variation made to the pulse.
Each of these copies that are returned simultaneously will give rise to its own peak in the
Doppler spectrum produced by the radar, with all of these peaks at the same range for a
given tap.

Returning, say, two altered copies of the incident signal back to the radar from tap n,
corresponding to velocity offsets ∆v1 and ∆v2, effectively requires multiplying one copy

by w
(1)
n e−iω02/c ∆v1t

[
= w

(1)
n e

i∆ω
(1)
D,n

t ] and another copy by w
(2)
n e−iω02/c ∆v2t

[
= w

(2)
n e

i∆ω
(2)
D,n

t ]

for weights w
(1)
n , w

(2)
n , and summing these two copies. This corresponds to multiplying the

incident signal by the single number

w
(1)
n e−iω02/c ∆v1t + w

(2)
n e−iω02/c ∆v2t [

= w
(1)
n e

i∆ω
(1)
D,n

t + w
(2)
n e

i∆ω
(2)
D,n

t ] . (11.6)

This new factor becomes a generalised “Doppler offset” factor in the I/Q returned by the
tap. It multiplies the right-hand sides of the expressions in (2.34) and (2.35). It needn’t
have unit magnitude. It will produce two peaks in the receiver’s range–Doppler map at
different Doppler values but at a single range value. Of course, in general there can be any
number of terms in the phase sum. In fact we can synthesise an arbitrary Doppler profile

for tap n by summing some possibly large number of w
(j)
n e

i∆ω
(j)
D,n

t terms, although whether
the tap is capable of generating this large number of terms depends on its hardware.

In practice, only absolute values of the Doppler spectral components are conventionally
plotted in each range bin to build the range–Doppler map; phase information is discarded.

But inserting arbitrary time-independent phases into the weights w
(j)
n should make no

difference to the synthesised range–Doppler plot, and indeed they do not, as noted af-
ter (11.10) ahead.

So if we require to synthesise the Doppler profile in range bin “n” of an already existing
range–Doppler plot that was formed using, say, 32 pulses/CPI (and so has 32 velocity
values plotted at each range), then we might be able to use 32 velocity offsets: the values

of ∆ω
(1)
D,n to ∆ω

(32)
D,n will be those values corresponding to the velocities on the range–

Doppler plot by way of (11.5), and their weights w
(1)
n to w

(32)
n will be proportional to the

values being plotted on the “z axis” of the range–Doppler plot. But given that there is
always some velocity broadening along the Doppler axis, we might well need to specify
more than 32 velocity offsets to create the desired Doppler profile.

The Taps’ Impulse Response

The ship’s impulse response appeared in the calculation of Section 3.1. Here we show how
to modify that calculation to model the taps’ impulse response for including range and
velocity offsets. In particular, the return is delayed as per (11.1) (now using a subscript n
for tap n), so that a delayed return from tap n increments element number kn of the
impulse-response array h, where kn was calculated using (3.7) for no delay, but is now
calculated from

kn − 1 = round

[
2(rn + ∆rn −Rnear)

cts

]

. (11.7)
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Figure 17: A two-tap synthesis of two range bins, using the parameters
in (11.9) and (11.10). The first range bin has four velocity offsets and the
second has two velocity offsets.

The return itself now incorporates the weighted sum of Doppler offsets, such as in (11.6).
For tap n, (3.8) becomes

modulation of return =
1

4πr2
n

√

2PtGtσn

ε0c
eiφ0,n e−iω0

2
c

× range at emission
∑

j

w
(j)
n e−iω0

2
c

∆vjt

=
1

4πr2
n

√

2PtGtσn

ε0c
eiφ0,n e−iω0

2
c

× range at emission
∑

j

w
(j)
n e

i∆ω
(j)
D,n

t,

(11.8)

where t is the time at the start of the current pulse being emitted.

11.3 Example of Synthesising Range and Doppler Offsets

Figure 17 shows an example of a range–Doppler profile built from a set of velocity off-

sets ∆v
(j)
n that give rise to corresponding ∆ω

(j)
D,n, using two taps, with Blackman windowing

in Doppler, and incorporating an arbitrarily chosen signal-to-noise ratio of 20 dB, as shown
in the following table. A 10 GHz carrier is used.

Target distance: 500 m
Target recession velocity: 0 m/s
Range-bin width: ∆rres = 15 m
Pulse-train length: N = 32 pulses per CPI
Pulse width: τ = 1 µs
PRI (8.8): T = 40 µs (PRF = 25 kHz)
Blind range and max. unamb. range: 150 m and 5996 m respectively
Max.-detectable speed and resolution (8.10), (8.11): 187 m/s, 12 m/s
Chirp factor (9.19): µ = 9 MHz2 (τeff = 1/10 µs)
Sampling interval (9.22): ts = 0.1 µs (n1 = 2, n2 = 10)

UNCLASSIFIED 51



DSTO–TN–1386 UNCLASSIFIED

Tap 1 offsets range by ∆r1 = −340 m from the nominal target range of 500 m, and
has four Doppler offsets, at velocities of 135, 88, 50, and −24 m/s from the nominal target
recession velocity of 0 m/s, using tap weights of 1, 0.5, 0.2, 0.8 respectively:

∆r1 = −340 m,
{

∆v
(1)
1 , ∆v

(2)
1 , ∆v

(3)
1 , ∆v

(4)
1

}

= {135, 88, 50, −24} m/s,
{

w
(1)
1 , w

(2)
1 , w

(3)
1 , w

(4)
1

}

= {1, 0.5, 0.2, 0.8} . (11.9)

The parameters for tap 2 are

∆r2 = −100 m,
{

∆v
(1)
2 , ∆v

(2)
2

}

= {−50, 100} m/s,
{

w
(1)
2 , w

(2)
2

}

= {1, 2} . (11.10)

As expected, if we attach a random time-independent phase to each of the tap weights,
these plots are visually unaffected.

12 Final Comments and Acknowledgements

This report has addressed two aims. The first has been to act as a tutorial in the funda-
mentals of radar signal processing. My approach has been to start from the first principles
of electromagnetic theory, build an expression for the I/Q signal that is returned by an
arbitrary number of scatterers, then show how this yields range and Doppler information
when correlated with the emitted signal. I have also laid out some of the theoretical rea-
sons behind the various bounds placed on standard waveform parameters such as pulse
width and chirp bandwidth.

In the appendices that follow, I have analysed the Hilbert transform to show where
it comes from and why it’s useful. My approach stresses how it can be constructed in a
proper mathematical way without the arbitrariness found in the standard literature, where
the transform is typically defined as a principal value for no apparent reason other than
that this avoids a divergent integral. My approach does produce this same definition, but
now the principal value arises quite naturally.

I have also explored a pen-and-paper approach to convolution and correlation in an
appendix. The fact that “long multiplication” is actually a convolution is well known, but
I hope the appendix gives additional insight, in that it employs a little-known form of
long multiplication that matches the convolution routine far more closely than the usual
“school” method of long multiplication does.

The second aim of this report has been to describe the mathematics of how a signal
can be modified by a jammer so as to produce false targets in the radar receiver.

I wish to thank Roland Keir for his close involvement in the writing of this report.
Its contents also benefitted from feedback and discussions with Gavin Dickeson, Len Hall,
Stephen Howard, and Warren Marwood.
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Appendix A Some Discussion of the Hilbert

Transform

This appendix gives a derivation of the Hilbert transform with substantially more mathe-
matical detail than typically found in radar texts. It is mostly my own analysis of why the
Hilbert transform takes the form that it does. I have yet to find a radar textbook that dis-
cusses the Hilbert transform in a way that as a mathematical physicist I find illuminating;
hence I have taken an approach here that does speak to the mathematical physicist. But
additionally, the analysis here explains why the standard approach of radar texts works,
when that approach “fixes” a divergent integral in an apparently ad hoc manner.

Given a real signal s(t), we are generally not interested in its carrier; the information
in the signal is contained in its running amplitude and phase. The amplitude and phase
conventionally define the phasor representation of the signal. We will set s(t) to be the
real part of a complex signal sc(t), and then determine the choice of imaginary part that
gives a phasor clearly embodying the signal’s amplitude and phase. The resulting special
choice of complex signal will be called the analytic signal.

Suppose, first, that our real signal is s(t) = cos 5t. Set this to be the real part of sc(t);
we desire to have sc(t) = ei5t, since this represents a phasor of unit length (corresponding
to the unit amplitude of cos 5t), and constant spin rate ω = 5, corresponding to the an-
gular frequency ω = 5 of the real signal. An alternative choice is sc(t) = e−i5t, which also
has real part cos 5t. By convention, we’ll set sc(t) to have positive frequency: sc(t) = ei5t.
Notice that this contains one “phasor” frequency ω = 5 with unit weight. Compare this to
the real signal s(t) = cos 5t = 1/2 ei5t + 1/2 e−i5t, which is built from two Fourier frequen-
cies ω = ±5, each with weight 1/2.

This construction of a useful complex signal from the real one is trivial in this case,
but how might we go about it given a more complicated s(t)? After all, we can always
write s(t) = cos 5t in arbitrary ways, such as

s(t) = A(t) cos(3t + sin t) = B(t) cos(12t + et) (A1)

for some real A(t) and B(t), but that does not imply that it will be useful to define

sc(t) = A(t) exp i(3t + sin t) , or sc(t) = B(t) exp i(12t + et) . (A2)

That these two choices of sc(t) are generally not equal can be shown as follows. The real
parts of the two choices are equal by construction, so we must show that the choices’
imaginary parts are generally not equal. Do this by using (A1) to solve for A(t) and B(t):

A(t) =
s(t)

cos(3t + sin t)
, B(t) =

s(t)

cos(12t + et)
. (A3)

The imaginary parts of the two choices of sc(t) in (A2) must then be, from (A3),

A(t) sin(3t + sin t) = s(t) tan(3t + sin t) , (A4)

and
B(t) sin(12t + et) = s(t) tan(12t + et) . (A5)

These two imaginary parts are generally not equal, so the two choices of sc(t) in (A2) are
also generally not equal. And because the functions 3t + sin t and 12t + et were arbitrarily
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chosen, we see that there are an infinite number of choices of sc(t) that all have the same
real part s(t), but which have different imaginary parts. The question is, which choice
of sc(t) might be “best”?

Different choices of sc(t) will generally have frequency spectra that don’t resemble
the spectrum of s(t) = cos 5t. We define the best choice of sc(t) for s(t) = cos 5t to be
the standard phasor: sc(t) = ei5t. The frequency spectrum of this sc(t) has no nega-
tive frequencies, and has twice the amount of the positive frequency that appears in
s(t) = cos 5t = 1/2 ei5t + 1/2 e−i5t. This idea can now be applied to any real signal s(t):
choose sc(t) to be the function whose frequency spectrum has no negative frequencies,
and whose positive frequencies are the same as those of the real signal s(t), but with
twice the weighting. Such a function is easily constructed: Fourier-transform s(t) to give
its spectrum, remove the negative part, double the positive part, and take the inverse
Fourier transform, resulting in sc(t). This special choice of sc(t) is called the analytic
signal corresponding to the real signal s(t). In Fourier language, if the real signal s(t) has
spectrum S(ω):

s(t) =

∫ ∞

−∞
S(ω) eiωt dω , (A6)

then the analytic signal is

sc(t) =

∫ ∞

0
2S(ω) eiωt dω . (A7)

Before evaluating this integral, we’ll give an alternative discussion of the analytic signal
that also leads to (A7).

A.1 Alternative Derivation of the Analytic Signal

Here is another approach to constructing a “best” choice of complex signal sc(t) that is
not related to the discussion above. Given a real signal s(t), suppose we construct a linear
operator C that converts s(t) to a complex signal by adding an imaginary part iŝ(t), where
ŝ(t) is some special real function to be determined:

C{s(t)} ≡ s(t) + iŝ(t) . (A8)

We require only that for positive frequencies Ω (we are taking a minimalist approach by
dealing with positive frequencies only), C converts cos Ωt and sin Ωt into phasors, viz., the
complex exponential eiΩt, possibly with some scale factor. Specifically,

C{cos Ωt} ≡ eiΩt , (A9)

C{sin Ωt} = αeiΩt for some α . (A10)

These three requirements (A8)–(A10) will suffice to determine C fully. Write α = a + ib
for a, b real, and apply (A8) to the left-hand side of (A10) to give

sin Ωt + i ŝin Ωt = (a + ib)(cos Ωt + i sin Ωt) . (A11)

Equating the real and imaginary parts of (A11) and making use of the linear independence

of sine and cosine leads to α = −i, in which case ŝin Ωt = − cos Ωt. Thus

C{sin Ωt} = −ieiΩt . (A12)

56 UNCLASSIFIED



UNCLASSIFIED DSTO–TN–1386

We now have enough information to determine how C acts on sinusoids of both positive
and negative frequencies ω. Use the fact that cosine is an even function (cos θ = cos |θ|)
and sine is odd (sin θ = sgn θ sin |θ|) to write

C{cos ωt} = C{cos |ω|t} (A9)
=== ei|ω|t ,

C{sin ωt} = C{sgn ω sin |ω|t} (A12)
=== −i sgn ω ei|ω|t , (A13)

and therefore, on adding the first equation above to i× the second one,

C{eiωt} = (1 + sgn ω) ei|ω|t = 2θ(ω) eiωt , (A14)

where θ(ω) is the unit step function:11

θ(ω) ≡ 1/2 (1 + sgn ω) =







1 , ω > 0

1/2 , ω = 0

0 , ω < 0

. (A15)

We can now use the linearity of C to build C{s(t)} for a general real signal s(t). Begin
with the Fourier decomposition (A6), writing

C{s(t)} =

∫ ∞

−∞
S(ω) C{eiωt}dω =

∫ ∞

−∞
S(ω) 2θ(ω) eiωt dω =

∫ ∞

0
2S(ω) eiωt dω . (A16)

But the last integral above is just the right-hand side of (A7), which shows that C{s(t)} is
identical to the analytic signal sc(t) of (A7). So this alternative approach to complexi-
fying s(t) has reproduced the analytic signal described in (A1)–(A7). We need now only
evaluate (A7).

Notice that

ĉos Ωt
(A9)
=== sin Ωt = cos(Ωt − π/2) , and

ŝin Ωt
(A12)
=== −cos Ωt = sin(Ωt − π/2) . (A17)

This means that the imaginary part of the complex signal built from cos Ωt is found by simply
delaying cos Ωt by 90◦. The same is true for the imaginary part of the complex signal built
from sin Ωt. Because Fourier analysis states that a signal can be considered as a sum of sines and
cosines, we conclude that the complex part of the analytic signal is built by taking each of the
sinusoidal components of the real signal and delaying them by 90◦, or a quarter period.

A.2 Evaluating the One-Sided Fourier Integral (A7)

To evaluate (A7), begin by incorporating Fourier theory into the current analysis through
writing (A7) as an integral from −∞ to ∞:

sc(t) =

∫ ∞

0
2S(ω) eiωt dω =

∫ ∞

−∞
θ(ω) 2S(ω) eiωt dω

(A15)
===

∫ ∞

−∞
S(ω) eiωt(1 + sgn ω) dω

(A6)
=== s(t) +

∫ ∞

−∞
S(ω) eiωt sgn ω dω . (A18)

11I use θ(0) = 1/2, corresponding to the choice sgn 0 = 0. This aligns with the sense of continuity of
Fourier sums within the Fourier transform theory of discontinuous functions.
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The sgn ω in the last integral of (A18) can be converted to another Fourier integral through
the following piece of gymnastics. First, use the fact that

∫ ∞

−∞

sin ωτ

τ
dτ = π sgn ω . (A19)

Although sin ωτ
τ is not defined for τ = 0, it has a “removable discontinuity” there: a single

“hole” in the curve depicting the function, as it were. You will sometimes see it written
that sin x

x = 1 when x = 0. But this is not so; rather, only the limit exists: limx→0
sin x

x = 1,
and distinguishing between these two statements is precisely why the concept of a limit was
invented three centuries ago. The term “removable discontinuity” describes the fact that
functions with isolated holes in their otherwise continuous curves still have well-defined
integrals. So the presence of a single “hole” in the curve of the sinc function doesn’t stop
the integral (A19) from being well defined. But that means its principal value is also well
defined:

−
∫ ∞

−∞

sin ωτ

τ
dτ = π sgn ω , (A20)

where the principal value is defined as

−
∫ ∞

−∞
f(x) dx ≡ lim

ε→0+

[∫ −ε

−∞
f(x) dx +

∫ ∞

ε
f(x) dx

]

. (A21)

(For example, whereas
∫∞

−∞ dx/x is undefined, the principal value −∫∞
−∞ dx/x equals zero

because 1/x is an odd function.)

Writing (A19) in principal-value form (A20) allows us to introduce the following
principal-value integral:

−
∫ ∞

−∞

cos ωτ

τ
dτ = 0 (A22)

(for which the principal value is required) to conclude that

−
∫ ∞

−∞

eiωτ

τ
dτ = −

∫ ∞

−∞

cos ωτ + i sin ωτ

τ
dτ = iπ sgn ω . (A23)

Equation (A23) is almost a Fourier integral—but only in the principal-value sense. We
can eliminate the need for a principal value and convert (A23) fully to a Fourier integral
by defining the following continuous generalised function:

σ(t) ≡
{

1/t t 6= 0

0 t = 0 .
(A24)

Defining σ(t) as continuous makes it a generalised function in the same class as the Dirac delta
function, in that both of these functions can only be realised in practice as limiting cases of
sequences of functions. Two such sequences are [4]

πδ(t) = lim
ε→0+

ε

t2 + ε2
, σ(t) = lim

ε→0+

t

t2 + ε2
, (A25)

whose similarity reveals a close relationship between πδ(t) and σ(t), which we’ll see more of shortly.

Introducing σ(t) enables us now to write the principal-value integral (A23) as a Fourier
integral which is not a principal value, and which therefore can be brought into the fold
of Fourier theory:

−
∫ ∞

−∞

eiωτ

τ
dτ =

∫ ∞

−∞
eiωτ σ(τ) dτ ( = iπ sgn ω) . (A26)

58 UNCLASSIFIED



UNCLASSIFIED DSTO–TN–1386

(This is an important point; the fact that σ(t) is continuous and yet σ(0) = 0 is what
converts the principal-value integral to a normal integral.) Now the last integral in (A18)
can be written as (with dω and dτ repositioned for readability)

∫ ∞

−∞
S(ω) eiωt sgn ω dω =

1

iπ

∫ ∞

−∞
dω S(ω) eiωt iπ sgn ω

=
1

iπ

∫ ∞

−∞
dω S(ω) eiωt

∫ ∞

−∞
dτ eiωτ σ(τ) . (A27)

Swapping the order of integration yields

∫ ∞

−∞
S(ω) eiωt sgn ω dω =

1

iπ

∫ ∞

−∞
dτ σ(τ)

∫ ∞

−∞
dω S(ω) eiω(t+τ)

(A6)
===

1

iπ

∫ ∞

−∞
dτ σ(τ) s(t + τ) (A28)

=
1

iπ

∫ ∞

−∞
dτ σ(−τ) s(t− τ) (A29)

=
i

π

∫ ∞

−∞
dτ σ(τ) s(t − τ) (A30)

=
i

π
σ(t) ∗ s(t) ; (A31)

here (A29) follows from (A28) by essentially just a change of variables τ → −τ (alter-
natively, this expresses the fact that the signed area under any function is unchanged if
the function is reversed left–right); also, (A30) follows from (A29) because σ is an odd
function; and (A31) is a convolution. Finally, equation (A18) becomes

sc(t) = s(t) + iσ(t)/π ∗ s(t) , (A32)

which we compare with (A8) to write the Hilbert transform of the real signal as

H {s(t)} ≡ ŝ(t) = σ(t)/π ∗ s(t) . (A33)

On a side note, it’s apparent that any one-sided Fourier transform can be written as a sum of a
two-sided Fourier transform and a Hilbert transform. We can see this by writing (A8) as

sc(t) =
[
1 + iH

]
s(t) , or 1/2 sc(t) = 1/2

[
1 + iH

]
s(t) ; (A34)

now call on (A6) and (A7) to write the last expression above as

∫
∞

0

S(ω) eiωt dω =
1

2

[
1 + iH

]
∫

∞

−∞

S(ω) eiωt dω . (A35)

Radar texts probably universally write the generalised function σ(t) defined in (A24) as
simply 1/t. Although 1/t differs from σ(t) only at a single point, there is a marked differ-
ence in using 1/t versus using σ(t) in Fourier analysis: for example, whereas

∫∞
−∞ σ(t) cos t dt

exists (and equals zero),
∫∞

−∞
cos t

t dt does not exist. Radar texts typically invoke the prin-
cipal value to “fix” the divergence of an integral such as

∫∞
−∞

cos t
t dt, but I don’t believe

that mathematics should be done by ad hoc fixes when something breaks; there is no
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a priori reason for why enforcing a symmetrical approach to a singularity in an integration
should be a reasonable thing to do. That is, one should not invoke a principal value to
“fix” a divergent integral—if an integral diverges, then we should conclude that we’ve done
something wrong, and must go back to study the analysis in more detail.

In contrast, the approach taken in this appendix never invokes a principal value to
“fix” a divergent integral, because it has no divergent integrals. Rather, the principal
value was deliberately introduced in (A20) as a way of joining cos ωτ to sin ωτ to create
a complex exponential that would bring the full power of Fourier theory to bear, enabling
us to convert sgn ω to a Fourier integral in (A27); this then allowed the one-sided Fourier
integral (A7) to be calculated. There is nothing unusual about this use of a generalised
function to perform a difficult integral; anyone who is familiar with the delta function δ(t)
in Fourier theory should have no trouble accepting that it has a sister function, σ(t). In
fact, setting S(ω) = 1 in (A35) gives

∫ ∞

0
eiωt dω =

1

2

[
1 + iH

]
2πδ(t)

= πδ(t) + iσ(t)/π ∗ πδ(t)

= πδ(t) + iσ(t) , (A36)

showing that the two generalised functions appear side by side in this fundamental one-
sided Fourier integral.12 Equation (A36) also shows that σ(t) is the Hilbert transform
of πδ(t); again, a close relationship.

How do we invert the Hilbert transform? This can be done through the evaluation
of σ(t) ∗ σ(t). First, write the Fourier transform F of some f(t) as

F {f(t)} ≡
∫ ∞

−∞
eiωtf(t) dt = g(ω) ,

so that F −1{g(ω)} =
1

2π

∫ ∞

−∞
e−iωtg(ω) dω = f(t) . (A37)

Now, using the idea that the Fourier transform of a convolution equals the product of the
individual Fourier transforms, consider

F {σ(t) ∗ σ(t)} = F {σ(t)} × F {σ(t)} (A26)
=== (iπ sgn ω)2 =

{

−π2 ω 6= 0

0 ω = 0 .
(A38)

Next, invoke the inverse Fourier transform of both sides of (A38), noting that the remov-
able discontinuity at ω = 0 can be ignored for the purpose of doing the integral:

σ(t) ∗ σ(t) = F −1{−π2} (A37)
===

−π2

2π

∫ ∞

−∞
e−iωt dω = −π2δ(t) . (A39)

(This shows that σ(t)/π is a “convolutional square root of −1”, in the sense that δ(t) is
to convolution what 1 is to multiplication: convolving any function with δ(t) leaves that
function unchanged.) Now, the identity σ(t) ∗ σ(t) = −π2δ(t) enables us to invert the
Hilbert transform easily. Consider the following, with “(t)” omitted for clarity:

ŝ = H {s} = s ∗ σ/π , (A40)

12The identity (A36) was established by an entirely different route that used no Fourier transforms in
Chapter 11 of [4].
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so that

H {ŝ} = ŝ ∗ σ/π = s ∗ σ/π ∗ σ/π

= s ∗ −δ = −s = −H −1{ŝ} . (A41)

We conclude that H −1 = −H . Note also from this analysis that

H {δ} = σ/π , H {σ/π} = −δ , (A42)

which shows more of how the Hilbert transform connects these two generalised functions.

A.3 Numerical Evaluation of the Hilbert Transform

We can express the Hilbert transform as an integral over time in parallel streams here that
swap the roles of s and σ, because convolution is commutative:

ŝ(t) ≡ σ(t)/π ∗ s(t) = s(t) ∗ σ(t)/π

=
1

π

∫ ∞

−∞
σ(τ) s(t− τ) dτ =

1

π

∫ ∞

−∞
s(τ) σ(t − τ) dτ

=
1

π
−
∫ ∞

−∞

s(t− τ)

τ
dτ =

1

π
−
∫ ∞

−∞

s(τ)

t− τ
dτ . (A43)

These integrals are useful in theoretical work to calculate the analytic signal s + iŝ for
a simple real signal s(t). But they can be difficult to apply numerically when s(t) is
more complicated. When transforming a signal from samples that have all been collected
(i.e. we are not examining the problem of how best to transform in real time here), an easier
approach is to Fourier-transform any of these integrals in (A43), recognising that they are
convolutions, which converts them to a product of Fourier integrals, which is then inverse
Fourier transformed. This procedure can use the discrete Fourier transform and its inverse,
and is, in fact, completely identical to implementing the frequency-domain procedure that
we used to define the analytic signal in the paragraph immediately preceding (A6) above.

To reiterate, to form the analytic signal sc(t) of a real signal s(t), first Fourier-
transform s(t) to produce its spectrum. Then set the weights of all negative frequencies to
zero, double the weights of all positive frequencies, and, to provide a sense of Fourier con-
tinuity, leave the weight of the zero frequency unchanged: this is equivalent to multiplying
the spectrum by θ(ω) using (A15). Finally inverse Fourier-transform this new spectrum
to produce sc(t).

For a signal composed of a modulated sinusoid, the value of the modulation (i.e. en-
velope) at any time can be defined as the length of the phasor representing the complex
number sc(t):

envelope at time t = |sc(t)| =
√

s2(t) + ŝ2(t) . (A44)

The phase φ(t) can be defined as the argument of the complex number sc(t):

cos φ(t) ≡ s(t)

|sc(t)|
, sin φ(t) ≡ ŝ(t)

|sc(t)|
. (A45)

As referred to in (7.6), at any moment, the instantaneous or “currently dominant” angular
frequency is approximately φ′(t).
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Figure A1: An example of using the analytic signal to construct the enve-
lope (black) of the real signal in (A46) (red), together with the dominant or
running frequency at each time step (green, using the same y-axis for conve-
nience but actually different units). The blue curve is the Hilbert transform
of the red curve: we get a sense of the 90◦ lag referred to just after (A17).
The 200 Hz sampling rate gives a Nyquist frequency of 100 Hz, more than
adequate to reveal the signal’s structure.

Examples of constructing the envelope and instantaneous frequency of a modulated
signal are shown in Figures A1 and A2. We have used a combination of two modulation
frequencies, 1 Hz and 2 Hz, on a carrier with frequency 20 Hz:

s(t) = (7 + 5 sin 2πt sin 2π2t)

envelope

× sin 2π20t
carrier

. (A46)

For Figure A1 we sample at 200 Hz, giving a 100 Hz Nyquist frequency that is of course
well able to detect the 20 Hz carrier. The red curve in the plot is s(t) and the blue curve
is ŝ(t), which is seen to lag the red curve by about 90◦, consistent with the comment just
after (A17). The black envelope is calculated as the modulus of sc(t) (A44) at each time,
and clearly fits the signal (red) quite well. The phase is calculated from (A45) and then
numerically differentiated: the phase increment at each time step is divided by the step’s
time increment to give the dominant frequency at that time, which is plotted in green
(using the same y-axis for convenience but actually different units). As can be seen, this
dominant frequency matches that of the 20 Hz carrier very closely.

Figure A2 shows results for various sampling rates that progressively reduce to well
below carrier Nyquist. Although the carrier is generally not well detected, the modulation
(black curve) is certainly well estimated, showing that the Hilbert transform is quite robust
to lower-than-Nyquist sampling rates.

62 UNCLASSIFIED



UNCLASSIFIED DSTO–TN–1386

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 42 Hz

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 37 Hz

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 20 Hz

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 19 Hz

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 11 Hz

0 0.5 1 1.5 2

-20

-10

0

10

20

time (s)

Sampling at 7 Hz

Figure A2: Results for the signal of Figure A1, but now sampled at progres-
sively lower frequencies. The labels and legends of these plots are the same as
those of Figure A1 but are mostly omitted for clarity. Sampling at multiples
of the carrier (such as the 20 Hz at mid left) gives no useful result.
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Appendix B Tutorial on Correlation and

Convolution

The process of correlating two sequences of numbers is central to much of this report, and
a good understanding of it is necessary to follow the discussions that accompany equations
such as (4.6). This appendix gives step-by-step descriptions of the processes of correlation
and convolution. The two procedures are almost identical, so that a knowledge of one is
easily transferred to the other. Correlation (“⋆”) detects the extent to which a sequence
of numbers (the signal) is present inside a possibly longer sequence that is suspected
to contain the signal together with noise. In contrast, convolution (“∗”) is a procedure
that calculates the output of a linear time-shift-invariant system given some input, and
is heavily involved in Fourier transform theory. Rewriting a correlation as a convolution
enables us to search for one signal inside another, by using a standard technique for
convolving quickly and efficiently that is based on the discrete Fourier transform.

Although correlation is defined as essentially convolution below, there is no reason
that it has to be; convolution is simply the standard “matched filter” choice of correlation
procedure, chosen because convolution turns out to maximise the ratio of what results
from correlating something with a signal, compared to what results from correlating with
the noise that is invariably attached to that signal.

B.1 The Correlation Procedure

Consider searching for a sequence [−1, 2, 3], which constitutes a signal, within a sequence
that might contain the signal together with some noise. We’ll take this sequence to be
[0.1, 0.2, −1, 2.1, 3, 0.1].

Table B1 shows the steps of the procedure. It consists of moving [−1, 2, 3] in from the
left to overlap [0.1, 0.2, −1, 2.1, 3, 0.1], one element at a time, and at each step summing
the products of pairs of numbers that overlap: these pairs are shown in red. At each step,
this sum is output as the next element of the correlation sequence. The process is identical
to finding the euclidean dot product, at each step, of the two currently overlapping arrays
of red numbers. We write the correlation as

[−1, 2, 3] ⋆ [0.1, 0.2, −1, 2.1, 3, 0.1] =

[0.3, 0.8, −2.7, 4.1, 14.2, 4.2, −2.8, −0.1] . (B1)

The numbers to be correlated will generally be complex, and a complex conjugate
must be used in the correlation process. The reason was given on page 17: only by using
a complex conjugate will this procedure give a meaningful result: a peak when the signal
matches up with itself. Note that by convention, no explicit conjugation is written with
the “⋆” notation. For example when correlating [5, 6+2i, 3+8i] with [1+i, 3, 5−4i, 7],
we write the result as

[5, 6+2i, 3+8i] ⋆ [1+i, 3, 5−4i, 7] , (B2)

but the correlation is done by moving the conjugated sequence [5, 6−2i, 3−8i] in from
the left over [1+i, 3, 5−4i, 7].

The correlation in (B1) has a maximum 14.2 as its fifth element. As can be seen from
the steps of the procedure, it follows that the best estimate of where the signal sequence
begins within the signal-plus-noise sequence is the third entry of the latter. Locating the
best estimate like this is the idea behind the analysis of Section 4.2.
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Table B1: The array [−1, 2, 3] is correlated with [0.1, 0.2, −1, 2.1, 3, 0.1]
through the following steps. The result is the bottom row of numbers
[0.3, 0.8, −2.7, 4.1, 14.2, 4.2, −2.8, −0.1]. At each step, the number pairs
to be multiplied are written in red.

Correlation step 1: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3

Correlation step 2: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8

Correlation step 3: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8 −2.7

Correlation step 4: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8 −2.7 4.1

Correlation step 5: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8 −2.7 4.1 14.2

Correlation step 6: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8 −2.7 4.1 14.2 4.2

Correlation step 7: −1 2 3

0.1 0.2 −1 2.1 3 0.1

0.3 0.8 −2.7 4.1 14.2 4.2 −2.8

Correlation step 8: −1 2 3

0.1 0.2 −1 2.1 3 0.1

The final result: 0.3 0.8 −2.7 4.1 14.2 4.2 −2.8 −0.1
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B.2 The Convolution Procedure

The series of multiplications that implement a correlation (“⋆”) is in fact just a re-ordered
version of the set that implement a convolution (“∗”). Convolution is simply polynomial
multiplication, and the way it relates to correlation is via (4.3):

A ⋆ B = A† ∗B. (B3)

There is no mystery here; correlation and convolution are just two different procedures that
happen to be related by reversing and conjugating one of the sequences. Equation (B3)
expresses the correlation in (B1) with a convolution:

[−1, 2, 3] ⋆ [0.1, 0.2, −1, 2.1, 3, 0.1] = [3, 2, −1] ∗ [0.1, 0.2, −1, 2.1, 3, 0.1] . (B4)

Table B2 shows the steps followed in the convolution on the right-hand side of (B4). The
result is

[3, 2, −1] ∗ [0.1, 0.2, −1, 2.1, 3, 0.1] =

[0.3, 0.8, −2.7, 4.1, 14.2, 4.2, −2.8, −0.1] , (B5)

just as was obtained for the correlation in (B1).

We are working with real numbers only for convenience, but as an example of using complex
numbers, (B2) becomes

[5, 6+2i, 3+8i] ⋆ [1+i, 3, 5−4i, 7] = [3−8i, 6−2i, 5] ∗ [1+i, 3, 5−4i, 7]

= [11−5i, 17−20i, 6−53i, 58−90i, 67−34i, 35] . (B6)

The numbers in (B5) are, by design, the coefficients in the following polynomial mul-
tiplication:

(3 + 2z − z2) (0.1 + 0.2z − z2 + 2.1z3 + 3z4 + 0.1z5) =

0.3 + 0.8z − 2.7z2 + 4.1z3 + 14.2z4 + 4.2z5 − 2.8z6 − 0.1z7 . (B7)

These polynomials are defined to be the z-transforms of the original sequences (z is re-
placed by 1/z in an alternative definition of the transform). This means that convolving
two sequences is equivalent to multiplying their z-transforms and inverse z-transforming
the result, which converts the polynomial product back to a sequence of numbers—its
coefficients. This procedure forms the Convolution Theorem for the z-transform. The
polynomial formed from A ≡ {A0, A1, A2, . . . } is the z-transform of A:

Z{A} ≡ A0 + A1z + A2z2 + . . . (B8)

and similarly for B. The procedure in (B7) becomes

Z{A} ×Z{B} = Z{A ∗B} , (B9)

which is the Convolution Theorem. This correspondence between convolution and multi-
plication under some transform is a central theme of convolution theory.

The z that appears in the z-transform’s polynomial is not normally given any value;
it serves solely to convert a sequence to a function. But if we set z equal to 10 in the
polynomials of (B7), the convolution becomes a straightforward base-10 multiplication—
except that the digits in a base-10 multiplication are usually positive.
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Table B2: The array [3, 2, −1] is convolved with [0.1, 0.2, −1, 2.1, 3, 0.1]
by the procedure below. The result of each step is shown in red under
the solid line for that step, so that the last line becomes the convolution:
[0.3, 0.8, −2.7, 4.1, 14.2, 4.2, −2.8, −0.1]. All numbers that are multiplied
above the line—in pairs, from outside inwards—are written in red. We ap-
pend 2 zeroes to the right-hand sequence (2 being one less than the length of
the left-hand sequence); the only function of these is to facilitate the pairwise-
multiplication procedure when using pen and paper.

Convolution step 1: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 (= 3× 0.1)

Convolution step 2: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 (= 3× 0.2 + 2× 0.1)

Convolution step 3: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 −2.7 (= 3×−1 + 2× 0.2 − 1× 0.1)

Convolution step 4: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 −2.7 4.1 (= 3× 2.1 + etc.)

Convolution step 5: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 −2.7 4.1 14.2

Convolution step 6: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 −2.7 4.1 14.2 4.2

Convolution step 7: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

0.3 0.8 −2.7 4.1 14.2 4.2 −2.8

Convolution step 8: 3 2 −1 * 0.1 0.2 −1 2.1 3 0.1 0 0

The final result: 0.3 0.8 −2.7 4.1 14.2 4.2 −2.8 −0.1
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In fact, the digits needn’t be positive; there is nothing wrong with writing e.g. 28 as 32, meaning
30 − 2, so that a multiplication such as 54 × 28 becomes 54 × 32 = 1528 = 1512. Multiplication
is often done this way by fast human mental calculators, because it converts the “difficult” mul-
tiplication by 8 into an easy multiplication by 2, with the only price being a minor amount of
subtraction needed.

The carrying step necessary for base-10 multiplication is not a part of the convolution of
course; rather, it’s simply a consequence of the fact that any base-n system uses single digits to
represent numbers less than n.

Conventionally of course, the digits making up a base-10 number are written in the reverse
direction to that of the coefficients in (B7), so that the convolution that comprises a base-10
multiplication ends up being done from right to left. You can see this in more detail when
multiplying 1234 by 567, following the steps in Table B3. We first express the numbers as
sequences in base-10 by z-transforming them (with, effectively, z set equal to 10, although
we are so familiar with mentally equating a number with its “10-transform” that we might
not be explicitly aware of doing this step). Then we convolve the sequences, and finally
we inverse z-transform the resulting sequence back to a number—again, a step that we
might not explicitly be aware of doing, since we take for granted the actually deep notion
of equality between a number and its base-10 representation. In other words, we multiply
numbers—in principle a difficult task that involves lots of counting—by convolving their
“10-transforms”, which is a much easier task. We see then, that what we’re accustomed
to think of as multiplying two numbers written with digits is in fact a convolution of those
digits—with added “carrying steps” that are necessary when using a finite set of digits to
represent the numbers.

Convolution and the Discrete Fourier Transform

Equation (B9) holds fairly trivially. A similar expression results when the z-transform is
replaced by the discrete Fourier transform D, which transforms a sequence of complex
numbers to another sequence of the same length. If the sequences A and B have the same
length, then the Convolution Theorem states

D{A} ×D{B} = D{A ∗B} , (B10)

where the multiplication “×” of sequences P and Q is defined pointwise: (P ×Q)n ≡ PnQn.
When A and B have different lengths, a slight alteration to (B10) is needed. Their con-
volution A ∗B has length L = length(A) + length(B)− 1. Append zeroes to A and B

to make new arrays A′ and B′ respectively that both have length L. (Note, this is not
related to the mostly outdated practice of zero padding, discussed ahead in Appendix D.)
With the definition of the DFT used in this report [equations (6.1), (6.2), and Table C1
in Appendix C], the Convolution Theorem becomes

LD{A′} ×D{B′} = D{A ∗B} . (B11)

The Matlab functions fft and ifft differ in their normalisation from my Dft and DftInverse

of Table C1; Matlab’s normalisation makes (B11) slightly simpler:

DMatlab{A′} ×DMatlab{B′} = DMatlab{A ∗B} . (B12)

On the other hand, fft doesn’t immediately give the correct peak heights to spectra made
from it, whereas Dft does. Always check the normalisation used in your own choice of
Fast Fourier Transform routine.
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Table B3: Multiplying 1234 × 567 to get 699,678 by recognising that the
process is a convolution plus the mechanism of “carrying” which is necessary
to represent the result in a base-10 system. We prepend the left-hand factor
with a number of zeroes that is one less than the number of digits in the
right-hand factor. This procedure is the mirror image of the procedure in
Table B2.

Convolution step 1: 0 0 1 2 3 4 × 5 6 7

4× 7 = 28: 28

Convolution step 2: 0 0 1 2 3 4 × 5 6 7

3× 7 + 4× 6 + carried 2 = 47: 47 8

Convolution step 3: 0 0 1 2 3 4 × 5 6 7

2× 7 + 3× 6 + 4× 5 + carried 4 = 56: 56 7 8

Convolution step 4: 0 0 1 2 3 4 × 5 6 7

1× 7 + etc. = 39: 39 6 7 8

Convolution step 5: 0 0 1 2 3 4 × 5 6 7

0× 7 + etc. = 19: 19 9 6 7 8

Convolution step 6: 0 0 1 2 3 4 × 5 6 7

The final answer: 6 9 9 6 7 8

Equation (B11) is a highly efficient method for convolving A and B. For example, we
can use it to reproduce the result from Table B2 with this Matlab code:

A = [3 2 -1];

B = [0.1 0.2 -1 2.1 3 0.1];

A_prime = [A zeros(1, length (B) -1)];

B_prime = [B zeros(1, length (A) -1)];

(length (A)+ length (B) -1) * DftInverse( Dft(A_prime) .* Dft(B_prime) )

% The above line is identical to

ifft( fft( A_prime) .* fft( B_prime) )

We get the expected result of

[0.3 0.8 -2.7 4.1 14.2 4.2 -2.8 -0.1]

For very long arrays, convolution never uses the expensive procedure of Table B2. Instead,
it always uses the Convolution Theorem, specifically (B11) or (B12). But understanding
the procedure of Table B2 will make you a very adept convolver.

On a final note, this replacing of a difficult convolution by an easy pointwise multipli-
cation via the discrete Fourier transform is the reverse idea to the multiplication example
in Table B3. When learning arithmetic, we effectively replace difficult multiplication by
easy convolution via a “10-transform”—although few would ever describe it that way.
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Appendix C Sample Discrete Fourier Transform

Code

Here we list two examples of Matlab and Mathematica code to implement a DFT. Our
convention is to plot only frequencies with absolute value less than the Nyquist frequency;
thus negative frequencies are plotted as negative frequencies, and not wrapped around
to become positive frequencies greater than the Nyquist frequency. In particular, our
convention allows a plot of the DFT of a gaussian function to be another gaussian. This
mimics the fact that the continuous Fourier transform of a gaussian function is another
gaussian.

Table C1 shows an example of Matlab code that implements the DFT in (6.1) and
inverse DFT in (6.2). It might appear that the code here for a matrix could also be used
for an array, thus eliminating the need for the “if–else” block. But that isn’t so, because
the “, 1” in the fftshift command is really only appropriate for matrices; when used on
an array, it gives a different result for a row array than for a column array.

Table C2 has an example of Mathematica code that does the same job.

Table C1: An example of Matlab code that implements the DFT in (6.1)
and inverse DFT in (6.2). See the text above for the use of “, 1” in the
fftshift command.

The DFT can be implemented in Matlab with

function X = Dft(x)

% If x is an array:

if isvector(x) == 1

X = fftshift(fft(x))/length (x);

else

% x is a matrix , so act on each column separately.

X = fftshift(fft(x) ,1)/ size(x ,1);

end

The inverse DFT can be implemented with

function x = DftInverse(X)

% If X is an array:

if isvector(X) == 1

x = ifft( ifftshift(X)) * length (X);

else

% X is a matrix , so act on each column separately.

x = ifft( ifftshift(X ,1)) * size(X ,1);

end
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Table C2: An example of Mathematica code that implements the DFT
in (6.1) and inverse DFT in (6.2)

(* These do what Matlab 's fftshift and ifftshift do.

For x any list ,

Fftshift[ Ifftshift[x]] = Ifftshift[ Fftshift[x]] = x. *)

Fftshift[x_List ] := ( NN = Length [x];

Flatten[{ Take[x, -Floor[NN/2]] , Take[x, Ceiling[NN /2]]}] )

Ifftshift[x_List ] := ( NN = Length [x];

Flatten[{ Take[x, -Ceiling[NN/2]] , Take[x, Floor[NN /2]]}] )

Begin["Private `"]

(* These do what my Matlab functions Dft and DftInverse do ,

but just on an array. They are defined them here solely

for use in building Dft and DftInverse in a moment.

For x any list , DftInverseVector[ DftVector[x]] =

DftVector[ DftInverseVector[x]] = x.*)

DftVector[x_List ] := Fftshift[ Fourier[x,

FourierParameters -> {-1, -1}]]

DftInverseVector[X_List ] := InverseFourier[ Ifftshift[X],

FourierParameters -> {-1, -1}]

End[] (* "Private `" *)

(* These do what my Matlab functions Dft and DftInverse do ,

on arrays and on matrices. *)

Dft[ x_List] :=

If[Length [ Dimensions[x]] == 1,

(* x is an array *)

Private ` DftVector[x],

(* else x is a matrix *)

Transpose[

Table[Private `DftVector[ x[[All ,i]] ], {i, Length [ x[[1]] ]}]

]

]

DftInverse[ X_List ] :=

If[Length [ Dimensions[X]] == 1,

(* X is an array *)

Private ` DftInverseVector[X],

(* else X is a matrix *)

Transpose[

Table[Private ` DftInverseVector[ X[[All ,i]] ],

{i, Length [ X[[1]] ]}]

]

]
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Appendix D Zero Padding in the Discrete

Fourier Transform

The appending with zeroes that was required in the analysis around (B11) to convolve
two sequences with the DFT is an exact procedure: it gives the exact same result that’s
obtained when we convolve the two sequences using the approach of Table B2. This
appending is distinct from the historical zero padding of data mentioned in Section 6.
Older implementations of the FFT required the length of the data set to be a power of 2,
and so a data set with length other than this would have zeroes appended to create one
whose length was a power of 2. This zero padding changed the data and so introduced
spurious frequencies to the spectrum. These unwanted frequencies were tolerated because
only by zero padding to a power-of-2 length could the FFT be used at all. But current
FFT algorithms are very fast even when the data length is not a power of 2, so this zero
padding is no longer necessary.

To see why zero padding changes a Fourier transform, recall the central fact that the
DFT is a set of amplitudes of sinusoids. Because sinusoids are periodic, the DFT effectively
“assumes” that the sequence of numbers being transformed is periodic. The result is that
the corresponding Fourier series replicates the original sequence endlessly forward and
backward in time. For example, the 5-element sequence [1, 2, 3, 4, 5] is interpreted by the
DFT to be the infinite data set

. . . 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, . . . (D1)

What we mean here is that the Fourier series that returns the numbers [1, 2, 3, 4, 5] as
a function of times equal to, say, 1, 2, . . . , 5 will be the same as the series that returns
the numbers [1, 2, 3, 4, 5, 1, 2, 3, 4, 5] as a function of times 1, 2, . . . , 10. The DFTs of these
two sequences differ only by the presence of interspersed zeroes in the DFT of the second
sequence; but those zeroes are weights of sinusoids, and so the end result is that both se-
quences give rise to the same non-zero sinusoids: the same Fourier series. (Verify this using
Dft—but not fft, which doesn’t normalise appropriately.) But zero padding [1, 2, 3, 4, 5]
to the next power-of-2 length alters it to [1, 2, 3, 4, 5, 0, 0, 0], which is then interpreted by
the DFT as

. . . 1, 2, 3, 4, 5, 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0, . . . (D2)

The spectrum of this sequence is certainly different to that of (D1). In essence, the
triplets of zeroes in (D2) are treated as a constant stream of data that requires compar-
atively many frequencies to generate it, because many sinusoids are required to cancel
each other to produce a “zero-slope” sequence. The spectra generated from [1, 2, 3, 4, 5]
and [1, 2, 3, 4, 5, 0, 0, 0] are shown in Figure D1 on the following page. See the end of this
appendix for some discussion of the right-hand plot.

Some users of the DFT object that the DFT algorithm effectively replicates their data
into the past and future. They wish to let values of zero represent unknown values of the
system under observation, and so will append many zeroes to their data before Fourier
transforming it. The length of the padded sequence need not be a power of 2, so this zero
padding is not related to the historical zero padding required by early FFT algorithms.
When this zero-padded sequence is effectively replicated by the DFT, the zeroes have the
effect of pushing the data replications very far into the past and future from the sequence
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Figure D1: Left: Spectrum of [1, 2, 3, 4, 5], sampled once per second.
Right: Spectrum of [1, 2, 3, 4, 5, 0, 0, 0], sampled once per second. More and
different frequencies are necessary to construct the Fourier series that repre-
sents the second data set.

that is “located near the present”, so to speak. But there is no reason why this zero
estimate of what was never measured should be any more realistic than the replicating
alternative. Indeed, if we really don’t want the Fourier transform to treat our data as
periodic, then perhaps we shouldn’t be using a Fourier transform in the first place.

Nevertheless, suppose we append 1000 zeroes to [1, 2, 3, 4, 5] and then transform the
resulting long array. The resulting spectrum is shown in Figure D2. (The high density
of plot points in that figure obliges us to omit the stems that were used to highlight the
plot points of Figure D1.) The amplitudes being plotted are now quite small. This is
reasonable, given that each amplitude is the amount present of its corresponding sinusoid,
and the more sinusoids we have, the less we’ll generally need of each.

You can think of zero-padding data as equivalent to multiplying a longer set of data
by a top-hat function that zeroes the last segment of the data. Fourier-transforming this
product of data and top hat is identical to convolving the Fourier transforms of the data
and top hat. The top hat transforms to a sinc function, so the effect is to convolve the
correct spectrum with a sinc. This smears the spectrum out, introducing the spurious
frequencies mentioned at the start of this appendix. (But remember that this smearing
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Figure D2: The DFT of the array [1, 2, 3, 4, 5, 0, . . . , 0], where 1000 zeroes
are appended after the 5. The spectrum is still discrete, but the “stems” that
are used in Figure D1 are omitted here.
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has no relevance if we are using the FFT as a fast way of convolving two different-length
arrays.)

Zero padding is sometimes described as a way of returning a finer or better frequency
resolution. But the DFT cannot work magic: it cannot somehow go back out into the field
and return a whole new set of data points. Zero padding smoothens the spectrum with
a sinc function and returns a denser set of frequencies, but that doesn’t imply that these
frequencies actually exist in the data.

You can find zero padding described in the literature as relatively harmless because
the zeroes are “not new data” as they “don’t contribute to any sums in the FFT”. But,
of course, the FFT doesn’t know which of its input numbers are data and which are not
data; it simply processes an array that it can only treat uniformly. So the padded zeroes
effectively become new data—but false data. And that the zeroes don’t contribute to any
sums is quite irrelevant. The FFT requires as input the total number of data points, and
that number certainly increases when zeroes are appended, which changes the FFT output
non-trivially. Analogously, if we were to form a sum to calculate the mean of that data
and then do the same with appended zeroes included, the zeroes wouldn’t contribute to
that sum either—but they certainly would change the mean, as indeed they should.

Another way of seeing that zero padding has no a priori validity in building a spectrum
is to consider two researchers who independently collect identical data: say 100 numbers.
Their FFT algorithm requires its data set to have length a power of 2, so Researcher A
pads with 28 zeroes. Researcher B, on the other hand, collects 28 more data points and
is astonished to find that they’re all zeroes. A and B will end up Fourier transforming
identical sets of 128 numbers. But B has measured something that A has not, and so B
should surely produce a spectrum with more information than that obtained by A, and
yet does not; instead, Researcher A has by sheer coincidence or luck produced the exact
same spectrum obtained by B.

The acid test of any FFT algorithm is “Sample one or more noiseless sinusoids in the
way described for Figure 5 on page 26, and then plot the spectrum produced by the FFT.
This spectrum should be non-zero only for each of the frequencies used, as in Figure 5”.
The reason why no extra frequencies should appear is because that procedure samples the
sinusoids in such a way that when the DFT effectively strings copies of the data together,
what results still represents one or more pure sinusoids. (More generally we might choose
fractional frequencies, but the sampling required to preserve each as a single sinusoid in
the replication becomes more delicate then.)

For example, in Matlab’s notation, choose a sampling frequency sf that is a natural
number (i.e. anything in 1, 2, 3, . . . ) and form a set of data that oscillates at, say, 4 Hz:

data = sin(2*pi * 4 * linspace(0, 1 -1/sf , sf))

where the sampling frequency is above Nyquist’s 8 Hz. (The sampling frequency must be a
natural number in this case to ensure that Matlab builds an array of samples precisely cor-
responding to each time in the array 0 : 1/sf : 1-1/sf. That is, the final value 1-1/sf

must equal a natural number of increments 1/sf.) Yes, the sampling required by this test
is quite artificial, but that has no bearing on the use of this test to ascertain whether an
FFT algorithm works or not. The FFT of data should take on the value of exactly 0.5 at
the frequencies of exactly 4 and −4, and be exactly zero for all other frequencies. Zero-
padding data before FFT-ing it will fail this test. (Strangely, some zero-padders will insist
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that the two frequencies here of exactly 4 and −4 are incorrect. But those frequencies are
certainly correct because they represent a sine function of frequency exactly 4 Hz.)

A final comment: the right-hand spectrum in Figure D1 includes the negative Nyquist
frequency (−0.5) but not the positive one. Is this correct? It certainly is; the DFT has
8 elements here, and because the zero frequency is always present for both even- and
odd-length data sets, only the negative Nyquist frequency will be represented in the DFT
when the data has even length. But the weighting of this frequency includes the weighting
of the positive Nyquist frequency. For a closer inspection of this figure, use the DFT (6.1)
and its inverse (6.2). The array of data is [1, 2, 3, 4, 5, 0, 0, 0]. Call these data elements xk

for k = 0 to 7 respectively. The DFT of this array is [X−4, X−3, . . . , X3], whose elements
are respectively

0.375, −0.3232 + 0.1553 i, 0.375 − 0.25 i, −0.6768 + 0.9053 i, 1.875,

−0.6768 − 0.9053 i, 0.375 + 0.25 i, −0.3232 − 0.1553 i . (D3)

The absolute values of these numbers are plotted in the right-hand spectrum of Figure D1,
versus their frequencies, which are the set of n/N in (6.1), namely−4/8,−3/8,−2/8, . . . , 3/8.
These frequencies now insert into (6.2) to give the inverse transform, for k = 0 to 7:

xk =
3∑

n=−4

Xn ei2πkn/N

= 0.375 e
−4
8
i2πk + (−0.3232 + 0.1553 i) e

−3
8
i2πk + (0.375 − 0.25 i) e

−2
8
i2πk

+ (−0.6768 + 0.9053 i) e
−1

8
i2πk + 1.875 e

0
8
i2πk + (−0.6768 − 0.9053 i) e

1
8
i2πk

+ (0.375 + 0.25 i) e
2
8
i2πk + (−0.3232 − 0.1553 i) e

3
8
i2πk. (D4)

Setting k = 0 to 7 here returns the numbers [x0, x1, x2, x3, x4, x5, x6, x7] as [1, 2, 3, 4, 5, 0, 0, 0],
as expected.
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Appendix E Calculating a Signal-to-Noise Ratio

Here we calculate the signal-to-noise ratio (SNR) that results from a given set of radar
and pulse parameters. Knowledge of the SNR is necessary to allow us to add realistic
noise when modelling a returned signal.

Consider a coherent processing interval made of N emitted pulses. These pulses are
effectively combined, or integrated coherently, by the operation of the Fourier transform
of Sections 5 and 6 that produces Doppler information from those pulses.

The central equation that governs the combination of the pulses is the DFT (6.1).
When N is, say, 32, the DFT is a weighted sum of the samples x0, . . . , x31, and returns
the numbers X−16, . . . , X15. The weights are unit-magnitude complex numbers. When N
complex noise samples are transformed in this way, their weighted sum can be treated as
a “random walk”. It’s well known that the root-mean-square distance from start to end of
N unit-length steps in a random walk equals

√
N . Now use the fact that the power of an

electromagnetic wave is proportional to the square of its amplitude, so:

mean power of N noise samples ∝ mean of (displacement due to N steps)2

= (root-mean-squared displacement due to N steps)2

= (
√

N × distance covered by 1 step)2

∝ N × power of 1 noise sample. (E1)

The two proportionality constants above are reciprocals of each other, so we arrive at

mean power of N noise samples = N × power of 1 noise sample. (E2)

This might be expected: it says that 10 light bulbs combine to give 10 times the brightness
of one light bulb, because the non-coherent light from an incandescent bulb can be treated
as noise.

Adding signals instead of noise is a different matter, because the phasors that describe
the signals are coherent: adding them is essentially like constructing a path from the steps
of a sober man, not a drunk one. The phasors, like the sober man’s steps, all point in about
the same direction, so that the distance from start to end of N of these signal phasors
is N times the length of one signal phasor. That means the power present in the sum of
N signals is N2 times the power of one signal. In other words, 10 “phase-locked” lasers
add their light to produce a central spot whose brightness is 100 times the brightness of
the spot due to a single laser—albeit that bright spot is narrower than the spot due to a
single laser, as expected from energy conservation.

The purpose of the weights e−i2πkn/N in the DFT (6.1) is to cancel the phase increases
that result from any particular frequency. For example, if we wish to extract from a
signal the sinusoidal component whose phase is increasing (its phasor is rotating) at one
radian per second, then we can subtract from each sample a phase that grows by one
radian per second, and add the results. Only the sought-after component of the signal will
then yield a series of complex numbers of constant phase, so that they add coherently; all
other components will yield a series of complex numbers of varying phases, and these will
produce some cancellation when they add. The result is that the sought-after component
is amplified, while other components are suppressed. In this way, the DFT adds signals
and noise. The peaks that result in the range-Doppler plot have their signal increased by

UNCLASSIFIED 77



DSTO–TN–1386 UNCLASSIFIED

a factor of N2 and their noise increased by a factor of N . So the signal-to-noise ratio of
N pulses is N2/N , or N , times the SNR of one pulse.

The term coherent pulse integration denotes this N -fold gain from the Fourier trans-
form that generates Doppler information. The signal-to-noise ratio of the coherently inte-
grated power in N pulses is

SNR of N pulses = N × signal power in one pulse

noise power in one pulse
. (E3)

We need the signal and noise powers in one pulse.

Signal power in one pulse:

signal power in one pulse =
energy received in one pulse

width of correlation peak
. (E4)

The radar has gain G, carrier wavelength λ, losses L, and the scatterer has cross section σ
and distance r. The two-way radar equation says

energy received in one pulse =

[
energy emitted
in one pulse

]

× G2σλ2

(4π)3r4L
. (E5)

The width of the correlation peak is 1/B where B is the emitted pulse’s bandwidth.

Noise power in one pulse: This is kTsB, where k is Boltzmann’s constant, Ts is the
radar’s system temperature (which is its noise factor times the actual temperature), and
B is the receiver bandwidth [6], which equals the emitted pulse’s bandwidth B if there is
no reason to make it smaller or larger than B: smaller would prevent the receiver from
receiving all that it’s required to, and larger would make the receiver produce excess noise.
Equation (E3) becomes

SNR of N pulses = N × energy received in one pulse

width of correlation peak× kTsB

= N ×
[

energy emitted
in one pulse

]

× G2σλ2

(4π)3r4L 1
B kTsB

=

[

energy emitted
in one CPI

]

× G2σλ2

(4π)3r4L kTs
. (E6)

The gain of a basic “one-lobe” radar is

G =
4π

solid angle of beam
. (E7)

The solid angle of, say, a beam of rectangular cross section just equals the product of its
two defining angles, each in radians.
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E.1 Simulating Receiver Noise

Equation (E6) can be used to derive an expression for the noise which, when added to a
pulse, simulates the noise generated in a receiver.

First, consider two sources injected into a narrow-band IF amplifier: a zero-mean
gaussian noise voltage of standard deviation ν (we have already used “σ” for cross section),
and a sinusoidal signal voltage of amplitude A. The signal-to-noise ratio for one pulse is

SNR =
mean signal power

mean noise power
=

mean of square of signal voltage

mean of square of noise voltage
=

A2/2

ν2
. (E8)

Referring to (E6) for N = 1, we then have, for a transmitted power Pt (considered constant
over one pulse width τ , not one PRI),

A2

2ν2
= SNR for one pulse = Ptτ ×

G2σλ2

(4π)3r4L kTs
, (E9)

from which it follows that

ν =
Ar2

Gλ

√

(4π)3L kTs

2Ptτσ
. (E10)

From this ν a complex-number noise can now be generated: it has an amplitude drawn from
the gaussian distribution N (0, ν2), and a random phase uniformly distributed between 0
and 2π.

E.2 Maximum Detectable Range of a Target

Suppose we know the signal-to-noise ratio SNRgiven that is expected for our radar, based
on standard theory in radar texts that combines the probability of false alarm, probability
of detection, and model of the background clutter such as a Swerling model. Equation (E6)
can use SNRgiven to calculate the maximum range at which our radar will detect a target.
To see how, note that in (E6) as the target–radar separation r reduces, the SNR increases,
which is quite reasonable. If we now increase r again, the SNR will drop until it reaches
SNRgiven. This value of r is the maximum range rmax at which the target can be detected
for the given signal-to-noise ratio SNRgiven. We require to find r, given SNRgiven. Call the
energy emitted in one CPI “ECPI”, so that (E6) becomes

SNRgiven =
ECPI G2σλ2

(4π)3r4
maxL kTs

. (E11)

The losses L might be a function of range, so rearrange (E11) to solve for rmax:

r4
maxL(rmax) =

ECPI G2σλ2

(4π)3 SNRgiven kTs
. (E12)

As an example, we calculate the maximum range at which a target of cross section
σ = 5000 m2 can be seen by a radar with the following parameters:

SNRgiven = 63 , carrier = 9.3 GHz (i.e. λ = 0.0322 m) , Pt = 300 W ,

τ = 16 µs , 16 pulses/CPI , G = 500 , Ts = 710 K , PRI = 500 µs . (E13)
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Note that a power of Pt = 300 W means the 300 W is treated as constant over τ , the pulse
width; Pt is not the mean power over a PRI.

For the losses L, we’ll include only atmospheric attenuation. A textbook figure for this
is 0.022 dB/km at 10 GHz, which is close enough to the carrier for our calculation. We
must be very careful with the units. I think it’s a very under-utilised observation about
units that just as “6/2” means “the number of 2s in 6”, or 3, the expression “2r/(1 km)”
means “the number of kilometres in 2r”, which is another way of saying “2r expressed in
kilometres”. This observation allows a sentence about units to be expressed in concrete
mathematics. First, convert the decibels here to bels to write the attenuation as 0.0022
bels per kilometre. This figure then allows (actually defines) the attenuation over our
two-way radar trip of distance of 2r to be written as

L(r) = 100.0022 2r
1 km . (E14)

Equation (E12) becomes

r4
max 100.0022

2rmax
1 km =

this is ECPI
︷ ︸︸ ︷

300 J/s× 16 µs/pulse× 16 pulses/CPI × 5002 × 5000 m2 × 0.03222 m2

(4π)3 × 63 × 1.38 × 10−23 J/K× 710 K

≃ 8.13× 1019 m4. (E15)

Take the fourth root of each side to give

rmax 100.0011
rmax
1 km ≃ 95 km , (E16)

and then divide both sides by 1 km:

rmax

1 km
100.0011

rmax
1 km ≃ 95 . (E17)

As expected, this equation is dimensionless: we can set a dimensionless x ≡ rmax/(1 km)
(“x is rmax in kilometres”) and solve x 100.0011x = 95. This equation is easy to solve by trial
and error; however, for a sophisticated approach, try using the Method of False Position.
More generally, False Position never fails, unlike the more well-known but potentially
chaotic Newton-Raphson method, which can fail catastrophically in general use.

The result is x ≃ 78: the maximum detectable range of the target is rmax ≃ 78 km.
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Appendix F How to Amalgamate the Cross

Sections of Many Scatterers

The previous appendix’s calculation of the maximum range at which a ship can be seen
required knowledge of the ship’s cross section σ. In practice we might know the cross
sections of a thousand individual scatterers that are used to model the ship. How can we
amalgamate these to form a good estimate of the total cross section σ of the ship?

Refer to page 12, and consider the electric field of the returned wave that is incident
on the radar. As usual, we assume that a single polarisation is being used. If the electric
field’s amplitude and phase are represented by the complex number A, then (2.29) and
the comment after it say that the average areal power density is 〈S〉 = ε0c |A|2/2. This is
the average power per unit area incident on the receiver. The radar equation tells us that
this power density is proportional to the target cross section, so write

|A|2 = K2σ (F1)

for some positive constant K that depends on the parameters present in the radar equation
(which is easily calculated but which we don’t need to know).

But the same argument applies to the power density received from the individual
scatterers that make up the target. Writing the electric field amplitude and phase from
the jth scatterer as complex Aj, we have

A =
∑

j

Aj , and |Aj |2 = K2σj . (F2)

This last equation allows us to write Aj = K
√

σj eiφj for some phase φj . Combining (F1)
and (F2) gives

K2σ = |A|2 =
∣
∣
∣

∑

j

Aj

∣
∣
∣

2
=
∣
∣
∣

∑

j

K
√

σj eiφj

∣
∣
∣

2
. (F3)

The total effective cross section of the target is then

σ =
∣
∣
∣

∑

j

√
σj eiφj

∣
∣
∣

2
=
∑

j

√
σj eiφj

∑

k

√
σk e−iφk

=
∑

jk

√
σjσk ei(φj−φk) =

∑

j

σj +
∑

jk
j 6= k

√
σjσk ei(φj−φk). (F4)

For a target composed of many scatterers, the phases φj − φk vary randomly over all
values 0 to 2π. It follows that if the scatterers all have similar cross sections, the last sum
over j and k is approximately zero. Hence to a high approximation,

σ ≃
∑

j

σj . (F5)

That is, the total cross section of the target is effectively just the sum of the cross sections
of the individual scatterers that make it up. This is a simple result, but it requires a large
number of scatterers of roughly similar cross sections that are all returning signals with
uncorrelated phases.
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Appendix G Examples of Calculating Ambiguity

Functions

The ambiguity function introduced in Section 4.1 is nothing more nor less than the corre-
lation of an emitted signal with its return, when that return has acquired some Doppler
shift. The function can be considered as a stacking of correlation plots, one for each value
of the target Doppler, where this stacking creates a surface in three dimensions.

Specifically, each slice of this surface at some target Doppler ωD is the absolute value
of the correlation of the signal with a copy of itself that has been Doppler shifted—
meaning each of the copy’s elements has been multiplied by a Doppler factor eiωDt, where
t increments from one element to the next within the copy. For example, the zero-Doppler
slice of the ambiguity function is the absolute value of the correlation of the signal with
an unaltered copy of itself; i.e., the slice is the signal’s autocorrelation.

In principle, the signals that will most clearly show the target are those whose ambi-
guity functions have a high central peak and low side lobes. For example in the next few
pages, examining whatever central peak may be present, and whether it’s surrounded by
other peaks, shows why rectangular non-chirped pulses are not as useful for radar signals
as are more structured pulses, such as those that have been Barker coded.

Each of the following plots shows the ambiguity function of the chosen signal type. For
each frequencies in a set of Doppler frequencies, we plot the absolute value of correlation
versus sample number using the ideas of Section 4.2, and then we stack each of these plots
together along the frequency axis. This produces a surface plot which is the ambiguity
function for the chosen waveform. The correlation is that of the pulse with a copy of itself
that has been Doppler shifted.

The kernel of creating these ambiguity functions is the following Matlab code, shown
here for the case of a single rectangular pulse (although the actual code used for the
following plots contained more detail):

t = 0 : 0.1 : 4;

signal = ones(1, length (t));

dopplerFrequencies = -5 : 0.1 : 5;

% Initialise.

correlations = zeros(length ( dopplerFrequencies), 2*length ( signal ) -1);

rowNumber = 0;

for angularDoppler = 2*pi * dopplerFrequencies

rowNumber = rowNumber + 1;

correlation(rowNumber ,:) = ...

Correlate(signal , exp(1i* angularDoppler*t).* signal );

end

The matrix abs(correlation) can now be plotted. The above code calls on the one-
line function Correlate, which gives its output in the order used in this report, being the
conjugated reverse of Matlab’s xcorr output without the unnecessary extra zeroes present
in the output of xcorr:
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function correlation = Correlate(array1 , array2 )

% Correlates array1 with array2 .

correlation = conv( fliplr( conj( array1 )), array2 );

Figure G1 plots the ambiguity functions of various pulse types. In particular, the
frequency of the chirp has been made to change very quickly throughout the pulse to
highlight the rotation of the main lobe of the surface, as compared to the lobe of the
single rectangular pulse. The Barker pulse has a well-defined central peak, but at a cost of
added range side lobes that will, of course, add some noisy structure to a range–Doppler
plot.

Figure G1: Ambiguity functions for various pulse types: single rectangular
pulse, a series of five rectangular pulses (whose PRI is twice the pulse width),
a Barker-4 pulse and a fast-changing chirp.
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Italicised numbers denote where the entry is defined.
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of chirped pulse, 39
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Barker coding, 30
blind range, 31
blind speeds, 35

carrier wave, 1
chips, 30
chirped pulse, 30
coherent processing interval, 22
coherent pulse integration, 77, 78
coherent pulse train, 18
coherent waves, 2
complex signal, 55
convolution procedure, 15, 17, 65
correlation procedure, 17, 65

distance–velocity tradeoff, 34
Doppler frequency, 11

effective pulse width, 37

FFT test, 75
frequency aliasing, 35
frequency spectrum calculation

and plotting, 24

Hilbert transform, 8, 59

I/Q data, 3
impulse response, 14

linear time-shift-invariant systems, 1, 14

matched filter, 18
maximum unambiguous range, 32
maximum unambiguous speed, 33
method of stationary phase, 31
mixing signals, 3
moving-mean filter, 19

narrow-band signals, 2

phase determination, 2
Poynting vector, 12
PRI bounds, 32
pulse compression, 37

quaternions, 5

radar system temperature, 78
range bin width, 32
range measurement bounds, 31
range resolution, 32, 36, 43
range–Doppler coupling, 36
range–Doppler plot, 18
repetition rate, 6

sampling interval restrictions, 42
speed measurement bounds, 33
speed resolution, 33
super-het receivers, 4

windowing data, 27

z-transform, 67
zero padding in FFT, 24, 73
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