NPS-CAG-15-003

‘ PRAESTANTIA PER SCIENT A5 ’

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

AN EXPERIMENT WITH RTEMS
by
David J. Shifflett and Thuy D. Nguyen

February 2015

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE OMB NG Do o8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From-To)
12-02-2015 Technical Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
AN EXPERIMENT WITH RTEMS 5b. GRANT NUMBER
5¢c. PROGRAM ELEMENT
NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
David J. Shifflett and Thuy D. Nguyen 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION REPORT
Naval Postgraduate School NUMBER

Monterey, CA 93943-5000
NPS-CAG-15-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

The views expressed in this material are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

14. ABSTRACT

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open source real-time executive used in many embedded
systems. This report describes our effort to gain hands-on experience with RTEMS and provides instructions on how to build and use
RTEMS in two different operating environments.

15. SUBJECT TERMS

RTEMS, SPARC simulator, Raspberry Pi.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18. NUMBER 19a. NAME OF

a. REPORT b. ABSTRACT | c. THIS PAGE | OF ABSTRACT OF PAGES RESPONSIBLE PERSON
Thuy D. Nguyen

Unclassified Unclassified Unclassified uu 43 19b. TELEPHONE

NUMBER (include area code)
(831) 656-3989

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Ronald A. Route Douglas A. Hensler
President Provost

The report entitled “An Experiment with RTEMS” was prepared for the Cyber Academic

Group at the Naval Postgraduate School.

Further distribution of all or part of this report is authorized.

This report was prepared by:

David J. Shifflett Thuy D. Nguyen

Faculty Associate — Research Faculty Associate — Research
Reviewed by: Released by:

Cynthia E. Irvine Jeffrey D. Paduan

Chair of Cyber Academic Group Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open
source real-time executive used in many embedded systems. This report describes our
effort to gain hands-on experience with RTEMS and provides instructions on how to

build and use RTEMS in two different operating environments.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I, INTRODUCTION ..ottt e e nnae e e 11
A, MOTIVATION . ..ot 11
B. REPORT ORGANIZATION ...ttt 12

II. METHODS AND EQUIPMENToiiiiiiiiiiiiee e e 13
A. RTEMS OVERVIEW.......ooiiiiiiit et 13
B. APPROAGCH ...t 13
C. EQUIPMENT PREREQUISITES.........ccoiiiiiiie e 15

1. Hardware requirements for the development systemccccccevvniiinnnn. 15
2. Hardware requirements for the target system...........cccoovevevieve e cecce e 15
3. Hardware requirements for the Raspberry Piconsolecc.ccocvininnnn. 16
4. Hardware requirements for the Windows Systemccccccoeevveveiieinenne 16
5. Software requirements for the development system.........cccccoeiiiinininnnn. 16
6. Software requirements for the target systemccccccovveviiicie v, 16
7. Software requirements for the Raspberry Piconsole............cccoconininnnn. 16
8. Software requirements for the Windows systemccccccovvevviieiieneennenn, 17

. PROCEDURESco ettt nnae e 19
A. DEVELOPMENT SYSTEM SET-UP.....cccoooiiiiiiniiesesteeeeeie e 19
B. EXECUTION OF RTEMS IN ASIMULATOR ..., 23
C. EXECUTION OF RTEMS ON RASPBERRY Plcccccooiiiiiiiiiiiiieiincis 25

IV. CONCLUSION AND FUTURE WORK ... 37

LIST OF REFERENCES.........cooi ittt 39

INITIAL DISTRIBUTION LIST ..ottt 41

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 1. Simulator experiment diagram.cceeeieieienereeee s 14
Figure 2. Bare hardware experiment diagram............cccocveveiieieeiesie e 14
Figure 3. Listing 0Ff SPARC t0O0IS.cccoiiiiiiiiiieieee s 22
Figure 4. Compiler version for SPARC CPU.cccocoiiiiiiiiccece e 22
Figure 5. Listing of sample appliCations.coveieieiiieniicee s 24
Figure 6. GDB SImMUIAtor STArtUD........cccveiieieieecie e 25
Figure 7. Output of ticker application in the GDB simulator.cccccoceveiiiinininnne. 25
Figure 8. Listing 0f ARM 100IS.........c.coiiiiiiieiicce e 27
Figure 9. Compiler version for ARM CPU..........ccooiiiiiiiieeeee s 27
Figure 10. Installed Raspberry PitO0IS.ccccoiiiiiieiiece e 28
Figure 11. Raspberry Pi sample executables. ... 29
Figure 12. RKIDUI SEALUS.c.eeeveiieiicie et 30
Figure 13. A Raspberry Pi bootable file ..o 30
Figure 14. Contents of SD card ready for booting on the Raspberry Pi.........ccccccoeenennee. 32
Figure 15. Output of ticker application on Raspberry Pi ... 33
Figure 16. RKI Start-Up SCIEENecuiiieie ettt sttt 34
Figure 17. RKI file-related COMMANGScccooiiiiiiiiieci s 35
Figure 18. RKI WhetStone reSUILS...........cov i 36

Figure 19.

R FESOUICE USAJE......c.vviiireeieeireesiee e 36

THIS PAGE INTENTIONALLY LEFT BLANK

10

l. INTRODUCTION

This report describes our effort to gain hands-on experience with the Real-Time
Executive for Multiprocessor Systems (RTEMS) in support of our investigation of
network covert communications in space systems--specifically in the context of

commercially hosted payloads.

A. MOTIVATION

RTEMS is an open source, high performance, real-time executive used in many
embedded systems, including space flight and aviation [1]. RTEMS supports a number of
space-qualified microprocessors such as LEON (SPARC) [2] and RAD750 (PowerPC)
[3], making it a popular candidate for space systems. Space missions that utilize RTEMS
for on-board instruments include four spacecraft developed by the European Space
Agency (ESA)—Herschel, Planck, Pleiades and Aeolus, and the Mars Reconnaissance
Orbiter (National Aeronautics and Space Administration). On the ESA satellites, RTEMS
is used in the scheduling engine of the Spacecraft Management Unit [4]. For the Mars
orbiter, RTEMS is used in Electra Proximity Link software-defined radio which is
responsible for relaying commands and data between Earth and landers on Mars [5].
RTEMS is also one of the real-time operating systems that NASA’s Core Flight Software
(CFS) supports; CFS is used on the Lunar Reconnaissance Orbiter and other NASA
missions [6].

The rising cost of developing and maintaining government-owned space vehicles
has pushed the Department of Defense to pursue a piggyback approach that allows
hosting government-supplied payloads on commercial space platforms. These
commercially hosted payloads require stringent confidentiality protection to protect
against illegal information leakage. We are currently investigating covert channel attacks
on network protocols used in spacecraft that host multiple payloads operating at different
sensitivity levels, i.e., spacecraft with multilevel security capabilities. We have identified
several potential covert channels in the MIL-STD-1553B and SpaceWire protocols [7]
and, since RTEMS supports these protocols, knowing the inner working of RTEMS will

11

allow further experimentation to determine real-world exploitation scenarios and

defenses against the identified covert channels.

B. REPORT ORGANIZATION
The remainder of this report begins with information about the RTEMS

distribution and the approach we used for this experiment. Next, we provide instructions
on how to build and use RTEMS in two different operating environments. Last, we close

with a brief description of future work.

12

II. METHODS AND EQUIPMENT

Our experimentation with RTEMS includes two scenarios: running RTEMS in a
hardware simulator and running RTEMS on a single board computer (SBC). This section
discusses the choices made for each of these experiments, and the equipment necessary to

perform the experiments.

A. RTEMS OVERVIEW

“The Real-Time Executive for Multiprocessor Systems or RTEMS is a [sic] open
source fully featured Real Time Operating System or RTOS that supports a variety of
open standard application programming interfaces (API) and interface standards such as
POSIX and BSD sockets” [8]. RTEMS is available on a wide variety of CPUs (e.g.,
ARM, SPARC, PowerPC and Intel) [9] and an even wider range of processor boards
[10]. Support for a processor board is provided through a Board Support Package (BSP).
To use RTEMS, a developer first decides the target CPU and BSP, builds the RTEMS
tools (e.g., compiler, linker, and debugger) for that combination, and then uses those tools
to build RTEMS and the desired RTEMS application. The result is a single executable
file containing both RTEMS and the application.

RTEMS provides standard operating system interfaces for file systems, graphics
libraries, networking, memory management, task management, etc. Many of these
interfaces are POSIX-compliant for portability.

B. APPROACH

Our strategy consists of two experiments. The first experiment tests RTEMS on a
simulator that is distributed with RTEMS. Using the simulator allows us to verify the
build environment, experiment with RTEMS functionalities, and prepare for running it on
an SBC. The second experiment exercises RTEMS on bare hardware using a selected
SBC. Figure 1 shows a block diagram of the first experiment and Figure 2 shows a

diagram of the second experiment.

13

Development system

External systems

RTEMS source code
and development

tools

Internet connection
Code

2..——-—*"" ? repositories

Target Simulator

RTEMS
Executable J

Figure 1. Simulator experiment diagram.

Target system

(Raspberry Pi)
Development system
_______ Bootable RTEMS
application

RTEMS source code
and development
tools

SD

memory USB-serial

card cable

Console system

Terminal emulator

Figure 2. Bare hardware experiment diagram.

14

For the bare hardware experiment, the first step is to choose an SBC on which
RTEMS can run. Support for MIL-STD-1553B [11] and SpaceWire [12], and
compatibility with RTEMS, through an existing BSP, are the deciding factors.

The candidate boards were: BAE RAD750 [13], Motorola MCP750 [25],
Raspberry Pi [16], and Aeroflex-Gaisler GR-LEON4-ITX [14] and GR-CPCI-LEON4-
N2X [15]. Four of these boards were rejected for two reasons: 1) availability—the
MCP750 is no longer produced, though used versions are available and 2) cost—the
RAD750 and LEON4 boards are too expensive for research experimentation.

The Raspberry Pi was used for the bare hardware experiment for two reasons: the
existence of an RTEMS BSP for the Raspberry Pi and the availability of online resources
for building RTEMS to run on the Raspberry Pi [17].

C. EQUIPMENT PREREQUISITES
This section describes the hardware and software requirements.

1. Hardware requirements for the development system
For both experiments, a development system meeting the following requirements
IS required:
e The system must have at least a 100 GB hard disk and 4 GB of RAM.
e The system must have Internet connectivity for updates, package installs,
and access to the git repositories.
The development system can be either a physical computer or a virtual machine.

2. Hardware requirements for the target system

The simulator experiment runs directly on the development system.

The bare hardware experiment runs on a Raspberry Pi model B+ board. No
special configuration of the Raspberry Pi is required for this experiment.

A micro Secure Digital (SD) memory card and an SD card reader are required to
copy files from the development system to the SD card for use with the Raspberry Pi. We
used the Insignia SD/MMC Memory Card Reader (model NS-CR2021).

15

3. Hardware requirements for the Raspberry Pi console

A separate system is required to act as a console for the Raspberry Pi. This system
must be able to establish a serial connection via a USB interface, usually through a
terminal emulation program, such as Putty [26] or CoolTerm [27]. We used an Apple
Mac Pro running the CoolTerm terminal emulator software. This system is connected to

the Raspberry Pi via a special USB-serial cable [20].

4. Hardware requirements for the Windows system
We used a Windows system to copy Raspberry Pi boot files, and RTEMS

executable files, to an SD card for booting the Raspberry Pi.

5. Software requirements for the development system
The development system needs the base Fedora 19 installation [23] and the
following additional packages required by RTEMS: ncurses-devel, git, bison, gcc, cvs,
gcc-c++, flex, texinfo, patch, perl-Text-ParseWords, zlib-devel, and python-devel.
The following software must be downloaded from git repositories as needed
during the experimentation procedures:
e RTEMS Source Builder
e RTEMS source
e Anexample RTEMS application for the Raspberry Pi

6. Software requirements for the target system
The software needed to boot the Raspberry Pi can be downloaded from the
Raspberry Pi git repository (http://github.com/raspberrypi/firmware/tree/master/boot).
The files needed are:
e bootcode.bin

e start.elf

7. Software requirements for the Raspberry Pi console
The Raspberry Pi console system needs a terminal emulator program, such as

Putty or CoolTerm.

16

8. Software requirements for the Windows system
The Windows system needs the drivers for the SD card reader.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

I1l. PROCEDURES

This section describes the procedures to run an RTEMS executable in a SPARC
simulator and on a Raspberry Pi.

Section A provides instructions for setting up a development system to handle the
building of RTEMS and RTEMS applications. Section B gives instructions for building
and running an RTEMS executable within a simulator—an RTEMS executable includes
both RTEMS and an application. Finally, Section C contains instructions for how to build
an RTEMS executable for the Raspberry Pi and run it on a Raspberry Pi.

In the instructions below the reader will enter many commands in a terminal
window on the development system. These commands are formatted in Courier 12

font.

A. DEVELOPMENT SYSTEM SET-UP

In this example Fedora 19 was chosen to be the host operating system because it
is well understood and there is documentation for installing RTEMS on Fedora 19 [18].
Preparation of this system includes installing software packages needed by RTEMS,
using the RTEMS Source Builder (RSB) to build the tools (compiler, linker, debugger,
etc.) required to build RTEMS, making a local copy of the RTEMS source repository,
and building the RTEMS BSP for the target system.

Step 1: Install Fedora 19

During the installation of Fedora 19, a root user and a development user must be
created. These procedures assume the development user is named user and the privileged
root user is named root. The full details of installing Fedora 19 are beyond the scope of

this report, but can be found in [23].

Step 2: Enable execution of privileged commands
Privileged commands must be invoked during the preparation of the development
system, and installation of RTEMS. The steps to enable the development user to run

privileged commands are:

19

© O N o’

Login as user.

Start a terminal window.

Switch privileges to run as root. Execute ‘su -’ and enter the password for
root when prompted.

Enable user to run privileged commands. At the root prompt, execute
‘visudo’. Directions for using this editor can be found in [28].

Scroll down to the line that looks like ‘root ALL=(ALL) ALL".

Copy and paste this line immediately below the line being copied.

In the new line, change root to user.

Save the file and exit the editor.

Exit from the root prompt. Execute ‘exit’.

Step 3: Update Fedora 19
RTEMS needs software beyond the base installation of Fedora 19. The steps to

update the system and add packages needed by RTEMS are:

are:

1.
2.

Login as user and start a terminal window.

Completely update the base operating system. Execute ‘sudo yum
update’.

Add the packages needed by RTEMS. Execute ‘sudo yum install
ncurses-devel git bison gcc cvs gcc-c++ flex texinfo

patch perl-Text-ParseWords zlib-devel python-devel’.

Step 4: Build RTEMS tools
The RTEMS tools are built using the RTEMS Source Builder. The steps to do this

> w0 npoe

Login as user and execute the following commands.

mkdir -p ~/development/rtems/src

cd -p ~/development/rtems/src

git clone git://git.rtems.org/rtems-source-
builder.git

cd rtems-source-builder/

20

10.

11.

source-builder/sb-check

This command verifies that all necessary dependencies have been satisfied. If

any errors are shown, or dependencies are not satisfied, resolve the problems,

or missing dependencies, before continuing.

cd rtems

../source-builder/sb-set-builder --list-bsets

This command lists available versions and architectures.

../source-builder/sb-set-builder --log=l-sparc.txt -

-prefix=$HOME/development/rtems/4.11 —--with-rtems

4.11/rtems-sparc

e As specified by the last parameter, this command builds the RTEMS tools
version 4.11 for the SPARC CPU. Other version and CPU combinations
are available as listed by the output of step 8 above.

e This command should build completely without errors. The last line
output should look similar to: ‘Build Set Time: 2:08:47.078118".

e The file specified by the -—1o0g parameter will contain all build
commands and output.

ls ~/development/rtems/4.11/bin/sparc*

This command lists the tools created.

The resulting list should be similar to that shown in Figure 3.

To verify the tools are built successfully, check the version of a particular

tool. For example, to check the version of the file sparc-rtems4.11-gcc,

execute ‘sparc-rtems4.11-gcc -v’. A result similar to that shown in

Figure 4 is expected.

21

e

[user@localhost ~]$

Terminal - user@localhost: ~
File Edit View Terminal Tabs Help

development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
development/rtems/4.11/bin/sparc-
[user@localhost ~14%
[user@localhost ~1%]

1s development/rtems/4.11/bin/sparc*
rtems4.11-addr21line
rtems4.11-ar
rtems4.11-as
rtems4.11-c++
rtems4,11-c+filt
rtems4.11-cpp
rtems4.11-difftest
rtems4,11-elfedit
rtems4.11-g++
rtems4.11-gcc
rtems4.11-gcc-4.8.3
rtems4.11-gcc-ar
rtems4.11-gcc-nm
rtems4.11-gcc-ranlib
rtems4.11-gcov
rtems4.11-gdb
rtems4.11-gprof
rtems4.11-1d
rtems4.11-1d.bfd
rtems4.11-nm
rtems4.11-objcopy
rtems4.11-objdump
rtems4.11-ranlib
rtems4.11-readelf
rtems4,11-run
rtems4.11-sis
rtems4,11-size
rtems4.11-sorttimes
rtems4.11-strings
rtems4,.11-strip

0008]|

(]

Figure 3. Listing of SPARC tools.

Terminal - user@localhost: ~
File Edit View Terminal Tabs Help

user(®localhost: ~/Documents
[user@localhost ~]1$% sparc-rtems4.11-gcc -v
Using built-in specs.
COLLECT_GCC=sparc-rtems4.11-gcc
COLLECT_LTO_WRAPPER=/home/user/development/rtems/4.11/1ibexec/gcc/sparc-rtems4,1
1/4.8.3/1to-wrapper
Target: sparc-rtems4.11

Configured with:

| user(@localhost: ~

-

0oee

x
=

../gcc-4.8.3/configure --prefix=/home/user/development/rtems/4.

11 --bindir=/home/user/development/rtems/4.11/bin --exec prefix=/home/user/devel
opment/rtems/4.11 --includedir=/home/user/development/rtems/4.11/include --libdi
r=/home/user/development/rtems/4.11/1ib --libexecdir=/home/user/development/rtem
s/4.11/libexec --mandir=/home/user/development/rtems/4.11/share/man --infodir=/h
ome/user/development/rtems/4.11/share/info --datadir=/home/user/development/rtem
s/4.11/share --build=i686-1inux-gnu --host=i686-1linux-gnu --target=sparc-rtems4.
11 --disable-libstdcxx-pch --with-gnu-as --with-gnu-1d --verbose --with-newlib -
-with-system-zlib --disable-nls --without-included-gettext --disable-win32-regis
try --enable-version-specific-runtime-1libs --disable-1to --enable-newlib-io-c99-
formats --enable-newlib-iconv --enable-newlib-iconv-encodings=big5,cp775,cp850,c
p852, cp855,cp866, euc_jp,euc_kr,euc_tw, iso_8859 1, iso_8859_ 10, iso_8859 11, iso_885
9 13,iso 8859 14, iso_8859 _15,iso 8859 2,iso 8859 3,iso 8859 4,iso 8859 5,iso_885
9 6,iso_8859_7,iso_8859 8, iso_8859 9,iso_ir_111,koi8_r,koi8_ru,koi8 u,koi8 uni,u
cs_2,ucs_2_internal,ucs_2be,ucs_2le,ucs 4,ucs_4 internal,ucs_4be,ucs_4le,us_asci

i,utf_lﬁ?u?f_lﬁbe,utf_lﬁle,utf_8,win_1250,win_1251,win_1252,win_1253,win_1254,wi

n_1255,win_1256,win_1257,win_1258 --enable-threads --disable-plugin --enable-lan

guages=c, c++

Thread model: rtems
gcc version 4.8.3 20140522 (RTEMS 4.11-RSB-d790668e390357c4c5fca82704806b9453151
ad42-1,gcc-4.8.3/newlib-19-Aug-2014) (GCC)
[user@localhost ~1$ [

Figure 4. Compiler version for SPARC CPU.

22

B. EXECUTION OF RTEMS IN A SIMULATOR
The ability to execute RTEMS in a simulator allows quick verification of the
build environment, and quick experimentation with changes to RTEMS or the

application.

Step 1: Build RTEMS and sample applications

First obtain the RTEMS source from the RTEMS git repository, then prepare
RTEMS for building, finally configure, and build RTEMS. The result is a set of RTEMS
executables that are built for the SPARC Instruction Simulator (‘sis”) BSP. This BSP
allows the generated executables to run within the SPARC simulator for testing,
verification and experimentation. The steps to build RTEMS are (see [19]):

1. Login as user and execute the following commands.

2. cd ~/development/rtems/src/
git clone git://git.rtems.org/rtems.git rtems
export PATH=$HOME/development/rtems/4.11/bin:S$SPATH
cd rtems
./bootstrap
cd ..

mkdir b-sis

© o N o 0o &~ W

cd b-sis

10. ../rtems/configure --target=sparc-rtems4.11 --
enable-rtemsbsp=sis --enable-tests=samples --
disable-posix

11. make

12. sudo PATH=$HOME/development/rtems/4.11/bin:S$SPATH
make install

13. To verify that the sample applications were built, execute ‘find . -name

‘* exe’’. Aresult similar to that shown in Figure 5 is expected.

23

=

(8] Terminal - user@localhost: ~/development/rtems/src/b-sis 0066
File Edit View Terminal Tabs Help
[user@localhost b-sis]$ find . -name '*.exe' =

./sparc-rtemsd.11/c/sis/testsuites/samples/base_sp/base_sp.exe
./sparc-rtemsd.11/c/sis/testsuites/samples/minimum/minimum.exe
./sparc-rtems4.11/c/sis/testsuites/samples/unlimited/unlimited.exe
./sparc-rtems4.11/c/sis/testsuites/samples/fileio/fileio.exe
./sparc-rtems4.11/c/sis/testsuites/samples/pppd/pppd.exe
./sparc-rtems4.11/c/sis/testsuites/samples/loopback/loopback.exe
./sparc-rtemsd.11/c/sis/testsuites/samples/paranoia/paranoia.exe
./sparc-rtemsd.11/c/sis/testsuites/samples/nsecs/nsecs.exe
./sparc-rtems4.11/c/sis/testsuites/samples/capture/capture.exe
./sparc-rtemsd.11/c/sis/testsuites/samples/hello/hello.exe
./sparc-rtems4.11/c/sis/testsuites/samples/ticker/ticker.exe
[user@localhost b-sis]$

-

Figure 5. Listing of sample applications.

Step 2: Start the simulator

The simulator is a feature built into the debugger (GDB). The steps to start the

debugger with a target program are:

1.

2
3.
4

Login as user and execute the following commands.
export PATH=$HOME/development/rtems/4.11/bin:S$SPATH

cd ~/development/rtems/src/b-sis

sparc-rtems4.l1l-gdb "find . -name ticker.exe’

This command starts the simulator with the ticker application as the target
program. A result similar to that shown in Figure 6 is expected. Note: the
command above uses the grave, or backtick, character, not an apostrophe, or
single quote, character.

Step 3: Run the sample application

From the debugger prompt, load and run the target application. The steps to run

the ticker application are:

1.

2
3
4.
5

target sim
load
run
quit

A result similar to that shown in Error! Reference source not found.Figure
7 is expected.

24

-

(8] Terminal - user@localhost: ~/development/rtems/src/b-sis 006086]
File Edit View Terminal Tabs Help

[user@localhost b-sis]$ sparc-rtems4.11-gdb ~find . -name ticker.exe’

GNU gdb (GDB) 7.7

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "--host=i686-linux-gnu --target=sparc-rtems4.11".
Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./sparc-rtems4.11/c/sis/testsuites/samples/ticker/ticker.ex
e,..done.

(gdb) 1

Figure 6. GDB simulator startup.

-

e Terminal - user@localhost: ~/development/rtems/src/b-sis 00686]
Eile Edit View Terminal Tabs Help

(gdb) target sim

Connected to the simulator.

(gdb) load

(gdb) run

Starting program: /home/user/development/rtems/src/b-sis/sparc-rtems4.11/c/sis/t
estsuites/samples/ticker/ticker.exe

¥**+ BEGIN OF TEST CLOCK TICK ***

TALl rtems_clock_get_tod 09:00:00 12/31/1988
TA2 - ltems_clock_get_tod - 09:00:00 12/31/1988
TA3 - rtems_clock_get_tod - 09:00:00 12/31/1988
TAl - rtems clock get tod - 09:00:05 12/31/1988
TA2 - rtems clock get tod - 09:00:10 12/31/1988
TA1 - rtems_clock_get_tod - 09:00:10 12/31/1988
TAL - rtems_clock_get_tod - 09:00:15 12/31/1988
TA3 - rtems_clock_get_tod - 09:00:15 12/31/1988
TA2 - rtems_clock_get_tod - 09:00:20 12/31/1988
TA1 - rtems_clock_get_tod - 09:00:20 12/31/1988
TA1 - rtems_clock_get_tod - 09:00:25 12/31/1988
TA2 - rtems_clock_get_tod - 09:00:30 12/31/1988
TA1l - rtems clock get tod - 09:00:30 12/31/1988
TA3 rtems clock get tod 09:00:30 12/31/1988

Hokok END OF TEST CLOCK TICK **+
[Inferior 1 (process 42000) exited normally]
(gdb)

Figure 7. Output of ticker application in the GDB simulator.

EXECUTION OF RTEMS ON RASPBERRY PI

To run an RTEMS executable on the Raspberry Pi platform, it is assumed that the

following dependencies are satisfied by performing the steps in sections A and B:

1. The RTEMS source builder has been installed in

$HOME/development/rtems/src/rtems-source-builder.

2. The RTEMS source has been installed in $HOME/development/rtems/src.

25

The steps described in this section closely follow those in sections A and B, i.e.,
build the RTEMS tools (for the ARM CPU), build the RTEMS BSP (for the Raspberry
Pi), build the executables, and run the executable (see [17]).

This experiment includes running two executables on the Raspberry Pi. The first
executable is the RTEMS sample ticker application and it is used to verify the build
environment, and the configuration of the hardware and console system. The second
executable is a more complicated RTEMS application that allows exploration of the

running RTEMS system.

Step 1: Build RTEMS tools
The steps to build the RTEMS tools for version 4.11 and the ARM CPU are:

1. Login as user and execute the following commands.
2. cd ~/development/rtems/src/rtems-source-

builder/rtems
This command sets the current directory to the RTEMS source builder
directory.

3. ../source-builder/sb-set-builder --log=l-arm.txt --
prefix=$HOME/development/rtems/4.11 4.11/rtems-arm
This command builds the RTEMS tools for version 4.11 for the ARM CPU.

4., 1s ~/development/rtems/4.11/bin/arm*

The resulting list should be similar to that shown in Figure 8.

5. To verify the tools are built successfully, check the version of a particular
tool. For example, to check the version of the file arm-rtems4.11-gcc, execute
‘arm-rtems4.1l1l-gcc -v’. Aresult similar to that shown in Error!

Reference source not found.Figure 9 is expected.

26

-

(8] Terminal - user@localhost: ~ 006080]

File Edit View Terminal Tabs Help

[user@localhost ~]$ 1s development/rtems/4.11/bin/arm#* =
development/rtems/4.11/bin/arm-rtems4.11-addr2line
development/rtems/4.11/bin/arm-rtems4.11-ar
development/rtems/4.11/bin/arm-rtems4.11-as
development/rtems/4.11/bin/arm-rtems4.11-c+
development/rtems/4.11/bin/arm-rtems4.11-c+filt
development/rtems/4.11/bin/arm-rtems4.11-cpp
development/rtems/4.11/bin/arm-rtems4.11-elfedit
development/rtems/4.11/bin/arm-rtems4.11-g+
development/rtems/4.11/bin/arm-rtems4.11-gcc
development/rtems/4.11/bin/arm-rtems4.11-gcc-4.8.3
development/rtems/4.11/bin/arm-rtems4.11-gcc-ar
development/rtems/4.11/bin/arm-rtems4.11-gcc-nm
development/rtems/4.11/bin/arm-rtems4.11-gcc-ranlib
development/rtems/4.11/bin/arm-rtems4.11-gcov
development/rtems/4.11/bin/arm-rtems4.11-gdb
development/rtems/4.11/bin/arm-rtems4.11-gprof
development/rtems/4.11/bin/arm-rtems4.11-1d
development/rtems/4.11/bin/arm-rtems4.11-1d.bfd
development/rtems/4.11/bin/arm-rtems4.11-nm
development/rtems/4.11/bin/arm-rtems4.11-objcopy
development/rtems/4.11/bin/arm-rtems4.11-objdump
development/rtems/4.11/bin/arm-rtems4.11-ranlib
development/rtems/4.11/bin/arm-rtems4.11-readelf
development/rtems/4.11/bin/arm-rtems4.11-run
development/rtems/4.11/bin/arm-rtems4.11-size
development/rtems/4.11/bin/arm-rtems4.11-strings
development/rtems/4.11/bin/arm-rtems4.11-strip
[user@localhost ~1%

Figure 8. Listing of ARM tools.

iG) Terminal - user@localhost: ~ 00606

File Edit View Terminal Tabs Help
user@localhost: ~/Documents # user@localhost: ~

b4

[user@localhost ~]$ arm-rtems4.11-gcc -v =
Using built-in specs.
COLLECT_GCC=arm-rtems4.11-gcc
COLLECT_LTO_WRAPPER=/home fuser/development/rtems/4.11/1ibexec/gcc/arm-rtems4.11/
4.8.3/lto-wrapper
Target: arm-rtems4.11
Configured with: ../gcc-4.8.3/configure --prefix=/home/user/development/rtemns/4.
11 --bindir=/home/user/development/rtems/4.11/bin --exec prefix=/home/user/devel
opment/rtems/4.11 --includedir=/home/user/development/rtems/4.11/include --libdi
r=/home/user/development/rtems/4.11/1ib --libexecdir=/home/user/development/rtem
s/4.11/1libexec --mandir=/home/user/development/rtems/4.11/share/man --infodir=/h
ome /user/development/rtems/4.11/share/info --datadir=/home/user/development/rtem
s/4.11/share --build=i686-1linux-gnu --host=i686-1linux-gnu --target=arm-rtems4,11

--disable-libstdcxx-pch --with-gnu-as --with-gnu-1d --verbose --with-newlib --w
ith-system-zlib --disable-nls --without-included-gettext --disable-win32-registr
y --enable-version-specific-runtime-1libs --disable-1lto --enable-newlib-io-c99-fo__
rmats --enable-newlib-iconv --enable-newlib-iconv-encodings=big5,cp775,cp850,cpd
52,cp855,cp866,euc_jp,euc_kr,euc_tw, iso_8859 1,iso 8859 10, iso_8859 11, iso_ 8859
13,iso 8859 14,iso 8859 15,iso 8859 2,iso 8859 3,iso 8859 4,iso 8859 5, iso 8850
6,iso 8859 7,iso 8859 8,iso 8859 9,iso ir 111,koi8 r,koi8 ru,koi8 u,koi8 uni,ucs
~2,ucs_2 internal,ucs 2be,ucs 2le,ucs 4,ucs 4 internal,ucs_4be,ucs_4le,us ascii,
utf 16,utf 16be,utf 161le,utf 8,win_1250,win_1251,win 1252,win 1253,win_1254,win_
1255,win_1256,win_1257,win 1258 --enable-threads --disable-plugin --enable-obsol
ete --enable-languages=c,c++
Thread model: rtems
gcc version 4.8.3 20140522 (RTEMS 4.11-RSB-d790668e390357c4c5fcag2704806b9453151
a42-1,gcc-4.8.3/newlib-19-Aug-2014) (GCC)

[user@localhost ~]% I

Figure 9. Compiler version for ARM CPU.

27

Step 2: Build RTEMS and sample executables
The steps to build RTEMS and a set of sample executables for the Raspberry Pi

are.

1. Login as user and execute the following commands.

2. cd ~/development/rtems/src

3. mkdir b-rpi

4. cd b-rpi

5. ../rtems/configure --target=arm-rtems4.ll --enable-
rtemsbsp=raspberrypi --enable-tests=samples --
enable-networking --enable-posix --
prefix=/opt/rtems4.11/rpi

6. make

7. sudo PATH=S$HOME/development/rtems/4.11/bin:S$PATH
make install

8. To verify that the build and installation worked correctly, execute the
following commands. Results similar to those shown in Figure 10 and Figure
11Error! Reference source not found., respectively, are expected.
a. 1ls -artl /opt/rtems-4.11/rpi

b. find . -name ‘*.exe’ -print

-

e Terminal - user@localhost: ~ 00ee
File Edit View Terminal Tabs Help

user(@localhost: ~/Documents % user@localhost:; ~ b4
[user@localhost ~]$ 1s -artl fopt/rtems-4.11/rpi =
total 28

drwxr-xr-x. 7 root root 4096 Nov 14 18:00 .

drwxr-xr-x. 2 root root 4096 Nov 14 18:40 bin

drwxr-xr-x. 3 root root 4096 Nov 14 18:40 1lib

drwxr-xr-x. 3 root root 4096 Nov 14 18:41 make

drwxr-xr-x. 4 root root 4096 Nov 14 18:41 share

drwxr-xr-x. 3 root root 4096 Nov 14 18:41 arm-rtems4.11

drwxr-xr-x. 5 root root 4096 Dec 12 17:19 ..

[user@localhost ~]$ I

Figure 10. Installed Raspberry Pi tools.

28

(8] Terminal - user@localhost: ~/development/rtems/src/b-rpi

File Edit View Terminal Tabs Help

[user@localhost b-rpil$ find . -name '*,exe' -print
./arm-rtems4.11/c/raspberrypi/testsuites/samples/base sp/base sp.exe
./arm-rtems4.11/c/raspberrypi/testsuites/samples/minimum/minimum,.exe

./arm-rtems4.11/c/raspberrypi/testsuites/samples/fileio/fileio.exe
./arm-rtems4.11/c/raspberrypi/testsuites/samples/pppd/pppd.exe
./arm-rtems4.11/c/raspberrypi/testsuites/samples/loopback/loopback.exe
.farm-rtems4.11/c/raspberrypi/testsuites/samples/paranoia/paranoia.exe
./arm-rtems4.11/c/raspberrypi/testsuites/samples/nsecs/nsecs.exe
.farm-rtems4.11/c/raspberrypi/testsuites/samples/capture/capture.exe
./arm-rtems4.11/c/raspberrypi/testsuites/samples/hello/hello.exe
.farm-rtems4.11/c/raspberrypi/testsuites/samples/ticker/ticker.exe
[user@localhost b-rpil$ I

Figure 11. Raspberry Pi sample executables.

Step 3: Build the RKI executable

The RTEMS Kernel Image (RKI) executable that is found on the RTEMS on

Raspberry Pi. The steps to download and build this executable are:

1. Login as user and execute the following commands.
cd ~/development/rtems/src

git clone http://github.com/alanc98/rki.git

2
3
4. cd rki
5

./arm-rtems4.11/c/raspberrypi/testsuites/samples/unlimited/unlimited.exe

0066

Raspberry Pi blog [17] allows more detailed testing of an RTEMS executable on the

The file Makefile included in the downloaded source is specific to the blog

owner’s environment and must be modified to work in the environment

described herein. To do this, execute the following commands:
a. mv Makefile Makefile.orig

b. cp Makefile.orig Makefile

c. Edit the file Makefile, make the following changes:

e Change the line RTEMS_TOOL_BASE ?= /home/alan/Projects/rtems/4.11
to RTEMS_TOOL_BASE ?= /home/user/development/rtems/4.11.

e Change the line RTEMS_BSP_BASE ?= /home/alan/Projects/rtems/4.11
to # RTEMS_BSP_BASE ?= /home/alan/Projects/rtems/4.11.

e Change the line WARNINGS = -Wall to WARNINGS = -Wall -Wno-

unused-but-set-variable.

29

6. To build the RKI executable, execute ‘make ARCH=arm-rtems4.11
BSP=raspberrypi
RTEMS BSP BASE=/home/user/development/rtems/src/b-
rpi’.

7. To verify that the build was successful, execute ‘find . -name

‘rki.*’ -print’. Aresultsimilar to that shown in Figure 12 is expected.

iG] Terminal - user@localhost: ~/development/rtems/src/rki 006086
File Edit View Terminal Tabs Help

user@localhost: ~/Documents # | user@localhost: ~/development/rtems/sr¢/rki
[user@localhost rkil$ find . -name 'rki.*' -print 3

./legacy-build/arm-rtems4.11-raspberrypi/rki.bin
./legacy-build/arm- rtems4.11- raspberrypi/rki.elf
[user@localhost rkil$ I

Figure 12. RKI build status.

Step 4: Create a bootable application

Before a sample application can run on the Raspberry Pi, its executable must be
converted into a file type that the Raspberry Pi boot loader recognizes. The steps to
convert the ticker executable are:

1. Login as user and execute the following commands.
2. cd ~/development/rtems/src/b-rpi

3. mkdir ~/rpi kernels

4. arm-rtems4.ll-objcopy -Obinary arm-

rtems4.11/c/raspberrypi/testsuites/samples/ticker/ti
cker.exe ~/rpi kernels/kernel.img
5. To verify that the file was converted, execute ‘1s -1 ~/rpi kernels’.

A result similar to that shown in Figure 13 is expected.

-

(6] Terminal - user@localhost: ~/development/rtems/src/b-rpi 00080]
File Edit View Terminal Tabs Help

user@localhost: ~/development/rtems/src/b... ® user@localhost: ~/development/rtems/src/rki

[user@localhost b-rpil$ 1s -1 ~/rpi kernels/ =

total 100

-rwxrwxr-x. 1 user user 1021968 Jan 21 18:34 kernel.img

[user@localhost b-rpils Ji

Figure 13. A Raspberry Pi bootable file

30

Step 5: Copy the converted RTEMS executable to a Windows 7 system

Transfer the bootable file from the development system to the Windows 7 system.

The steps to do this are:

1.

2.

On the development system, login as user and execute the following

commands.

sudo mkdir /mnt/cifs

This command creates a mount point for the Windows share.

sudo mount -t cifs -0 username=<Windows

user>,domain=<Windows domain> //<Windows

IP>/<Windows share> /mnt/cifs’[24]. Where

e <Windows user> is replaced by the username on the Windows system.

e <Windows domain> is replaced by the domain of the Windows system.

e <Windows IP> is replaced by the IP address, or name, of the Windows
system.

e <Windows share> is replaced by the name of the share on the Windows
system.

This command mounts the Windows share.

sudo cp

/home/user/development/rpi kernels/kernel.img

/mnt/cifs/<path>’. Where

e <path> is replaced by the appropriate path on the Windows share.

This command copies the file to the Windows share.

sudo umount /mnt/cifs

This command unmounts (disconnects) the Windows share.

Step 6: Prepare a bootable SD card

To boot the Raspberry Pi, a micro SD card is used. The steps to copy the boot

files and application from the Windows 7 system to the SD card are:

1.

Ensure that the boot files listed in Section 11.C.6 have been downloaded to the
Windows 7 system.

Insert the SD card reader into a USB port on the Windows 7 system.

If the SD card has any previous contents, save the files if necessary, and delete
all files from the SD card.

Copy the boot files to the root (top level) folder of the SD card.

Copy the converted RTEMS executable file (created in Step 4 above) to the
root folder of the SD card.

The contents of the SD card should be similar to that shown in
Figure 14.

31

@Qv_ » Computer » Removable Disk (D) = ‘¢,|| Search Removable Disk (D)
File Edit View Tools Help
Organize v Sharewith v Burn Newfolder = O @

i Libraries #e kemelimg 1/22
1% Computer

€ Network

avorites

== Bl)

>
Name Date modified Type Size

:54 AM VLC media file (bi... 18 KB
201 PM IrfanView IMG File 999 KB
|| start.elf 1/23/20159:55 AM ELF File 2,578 KB

£ bootcode.bin 1/23

Figure 14. Contents of SD card ready for booting on the Raspberry Pi

Step 6: Run the application

The steps to run the ticker application on the Raspberry Pi are:

1.
2
3.
4. Attach a USB-serial cable [20] to the Raspberry Pi according to the

Ensure the Raspberry Pi is powered off.
Remove the existing SD card, if any.

Install the SD card prepared in the previous step.

instructions in [21]. Do NOT use the red power cable.

Attach the USB-serial cable to the console computer. The instructions in [21]
include details showing how to install and run a terminal emulator on various
operating systems.

Start the terminal emulator program.

Apply power to the Raspberry Pi.

The output should be similar to that shown in Figure 15.

32

CoolTerm_115200.s5tc

NEH P B X @ 5@

Mew Open Save | Connect Disconnect | Clear Data | Options @ View Hex | Help

*** BEGIN OF TEST CLOCK TICK ***

TAl
TAZ
TA3
TAl
TAl
TAZ
TAl
TA3
TAl
TAZ
TAl
TAl
TA3
TAZ

rtems_clock_get_tod - @9:00:00 12/31/1988
rtems_clock_get_tod - @9:00:00 12/31/1988
rtems_clock_get_tod - @9:00:00 12/31/1988
rtems_clock_get_tod - @9:00:85 12/31/1988
rtems_clock_get_tod - @9:00:18 12/31/1988
rtems_clock_get_tod - @9:00:10 12/31/1988
rtems_clock_get_tod - @9:00:15 12/31/1988
rtems_clock_get_tod : 12/31/1988
rtems_clock_get_tod - @9:00:20 12/31/1988
rtems_clock_get_tod - @9:00:280 12/31/1988
rtems_clock_get_tod - @9:00:25 12/31/1988
rtems_clock_get_tod - @9:00:30 12/31/1988
rtems_clock_get_tod - @9:00:30 12/31/1988
rtems_clock_get_tod - @9:00:30 12/31/1988

1 1 1 1 1 1 1 1 1 1 1
=
O
=
=
.
W

% END OF TEST CLOCK TICK *

usbserial / 115200 8-N-1 ® ™ & RrRTs & DTR @ DCD

Connected 00:01:13 ® rx @cs @ose @R

P
Figure 15. Output of ticker application on Raspberry Pi

Step 7: Run the RKI on the Raspberry Pi

To run the RKI on the Raspberry Pi, use the Windows system to prepare the SD

card with the boot files, copy the RKI to the Windows system, then to the SD card, then

boot the Raspberry Pi. The steps to do this are:
1.

If the SD card has any previous contents, save the files if necessary, and delete
all files from the SD card.

Copy the boot files (see 11.C.6) to the root (top level) folder of the SD card.
Unlike the ‘ticker’ example above, the RKI binary file does not need any
conversion. The file to copy is located on the development system at
/home/user/development/rtems/src/b-rpi/legacy-build/arm-rtems4.11-
raspberrypi/rki.bin. Copy this file to the Windows systems using Step 5 above
as an example. Copy this file to the root folder of the SD card.

Rename the file on the SD card to kernel.img.

Follow Step 6 above to run the RKI application. No modifications to this
procedure are required. The initial screen should be similar to that shown in

Figure 16.

33

CoolTerm_115200.stc

N$B o B X & ©

New Open Save Connect Disconnect Clear Data Options WView Hex Help

RTEMS Kernel Image Booting

*** RTEMS Info ***

COPYRIGHT (c) 1989-2008.

On-Line Applications Research Corporation (OAR).
rtems-4.10.99.0CARM/ARMv4/raspberrypi)

BSP Ticks Per 5Second = 10@
*** End RTEMS info ***

Populating Root file system from TAR file.
Setting up filesystems.

Initializing Local Commands.

Running /shell-init.

1: mkdir ram

2: mkrfs /dev/ramdisk

3: mount -t rfs /dev/ramdisk /ram
mounted /dev/ramdisk -»> /ram

4: hello

Hello RTEMS!

Create your own command here!
Starting shell....

RTEMS SHELL (Ver.l.@-FRC):/dev/console. Nov 14 Z@14. 'help' to list commands.

[/] #

Figure 16. RKI start-up screen

Warning: The RKI application executes with root privileges. Care should be taken
to not delete any system files, or make changes that could cause the system to become
unusable.

The startup of the RKI automatically executes the commands contained in the file
/shell-init (see Figure 16). This file includes commands to create and mount a RAM disk,
which allows direct access to a portion of the Raspberry Pi RAM as a file system.
Following the initialization, an RTEMS shell is started to allow the user to execute
arbitrary commands. There are commands to manipulate files, system date, time and real-
time clock, tasks, and many more. A list of commands can be seen by using the help
command. Full documentation of the RTEMS Shell can be found in [22]. Figure 17 is an

example of the help screen for file-related commands.

34

OO0 CoolTerm_115200.stc [=]
o G

DEB o B X &3 @

New Open Save : Connect Disconnect Clear Data : Options View Hex Help

[/] # help files
help: 1ist for the topic 'files’
cp -ecp [-R[-H | -L | -P1] [-f | -i] [-pv] src target

pwd - pwd # print work directory

15 - 1s [dir] # list files in the directory

chdir - chdir [dir] # change the current directory

mkdir - mkdir dir # make a directory

rmdir - rmdir dir # remove directory

chroot - chroot [dir] # change the root directory

chmod - chmod @777 nl1 n2... # change filemode

cat - cat nl [nZ [n3...]] # show the ascii contents

mkrfs - mkrfs [-v] [-s blksz] [-b grpblk] [-i grpinode] [-I] [-o %inode]
dev

mkdos - mkdos [-V label] [-s sectors/cluster] [-r size] [-v] path # forma
t disk

msdos fmt - is an <aglios> for command 'mkdos

mv - [-fiv] source target ...

rm - [-f I -i] [-dIPRrvW] file ...

Press any key to continue...

ln - 1n 1n [-fhinsv] source_file [target_file]

mknod - mknod mknod [-rR] [-F fmt] [-m mode] name [c | b] minor

lsof - lsof

mount - mount [-t type] [-r] [-L] [-o options] source target

unmount - unmount path # unmount disk

blksync - blksync driver # sync the block driver

blkstats - blkstats [-rl|--reset] PATH_TO_DEVICE

fdisk - disk format and utility functions

fdisk DISK_NAME
prints the partition table

fdisk DISK_NAME [FS N1 [N2 ... 1] ... [write] [FORMAT]
creates a new partition table

fdisk DISK_NAME register
creates a logical disk for each partition of the disk

fdisk DISK_NAME unregister
deletes the logical disks associated with the partitions of the di
sk

fdisk DISK_NAME mount
mounts the file system of each partition of the disk

fdisk DISK_NAME unmount
unmounts the file system of each partition of the disk

ootion values: 7|
usbserial / 115200 8-N-1 @ ™ & RTs @ DTR @ DCD
Connected 00:03:42 ® rx @cs @Dk @R

Figure 17. RKI file-related commands

There are also two benchmark-related commands dhrystone, and whetstone,
which can be used to compare RTEMS performance against other real-time operating

systems. Figure 18 is an example of the output of the whetstone benchmark.

35

ang CoolTerm_115200.stc (=)
D& o X @ - &
New Open Save @ Connect Disconnect ; Clear Data ; Options ; View Hex ; Help

[/] #

[/] # whetstone
Running Whetstone Command!

0 @ @ 1.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+0@
60 70 60 -6.7500e-02 -4.6465e-@1 -7.3153e-01 -1.1286e+00
70 60 60 -6.0913e-02 -4.5692e-01 -7.2207e-01 -1.1181e+00
1725) @ 1.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+0@
1050 1 Z 6.0000e+0@ 6.0000e+00 -7.2207e-01 -1.1181e+0@
16@ 1 2 4.9518e-01 4.9518e-81 4.9516e-01 4.9516e-01
4495 1 2 1.0000e+0@ 1.0000e+00 9.9994e-01 9.9394e-01
3080 1 2 3.0000e+00 Z.0000e+00 3.0000e+00 -1.1181e+0@
@ 2 3 1.0000e+0@ -1.0000e+00 -1.0000e+00 -1.0000e+0@
465 2 3 7.9611e-01 7.961le-81 7.961le-01 7.961le-01

Loops: 5, Iterations: 1@@, Duration: 7 sec

[Converted Double Precision Whetstones: 7.1 MIPS
[Completed Whetstone

[/] #

(/] #

Figure 18. RKI whetstone results

Additionally, there are commands that display information about RTEMS

resource usage, see Figure 19.

[/]1 # cpuuse
CPU USAGE BY THREAD

D | NAME | SECONDS
0x09010001 | IDLE | 1726.080000 | 98.822
@x00010001 | UIl | 0.5%0000 | 9.833
@x0a010002 | BSWP | 0.000000 | 0. 000
0x00010004 | shel | 19.810000 | 1.134
———————————— o e e e e e e e e e s e m e —_——
TIME SINCE LAST CPU USAGE RESET IN SECONDS: 1746. 670000
[#
[/] # stackuse
Stack usage by thread

ID NAME LOW HIGH CURRENT AVAILABLE USED
0x@9010001 IDLE @x00159608 - @x0015a607 @x0@15a598 4080 136
0x@a010001 UI1l 0x0015a0610 - Bx00162601 Ox00162418 32752 ge4
Ex00010002 BSWP 0x00162618 - Ox0@163617 @x0@163560 4080 276
0x@a010004 shel Ox0A163620 - Ox0016861f OxP0168058 20464 3960
7] #
[/] # perioduse
Period information by period
--- CPU times are in seconds ---
--- Wall times are in seconds ---

1D OWNER COUNT MISSED CPU TIME WALL TIME

MIN/MAX/AVG MIN/MAX/AVG
[/#
[/] # wkspace
C Program Heap and RTEMS Workspace are separate.
Number of free blocks: 1
Largest free block: 715552
[Total bytes free: 715552
Number of used blocks: 33
Largest used block: 175448
[Total bytes used: 333032
1 # s
z

Figure 19. RKI resource usage

36

IV. CONCLUSION AND FUTURE WORK

This report describes the results of our experiments with RTEMS. Our motivation
was to gain an understanding of the inner working of RTEMS to support research on
network-based covert communications in space systems constructed with multilevel
security capabilities. We have provided a set of instructions on how to build and run
RTEMS in a SPARC simulator and on a Raspberry Pi computer.

Future work includes extending the RKI application to handle Ethernet
networking, and running the Core Flight Software on RTEMS executing on the
Raspberry Pi. These two efforts will help further our understanding of both RTEMS

internals and the Core Flight Software system.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]
[12]

[13]

[14]

LIST OF REFERENCES

On-line Applications Research Corporation, “RTEMS C User’s Guide, edition
4.10.2 for RTEMS 4.10.2,” December 2011.

Aeroflex Gaisler AB, "Operating Systems Compilers and Real-time Operating
Systems for LEON and ERC32," April 2010. Available at:
http://www.gaisler.com/doc/operating_systems_product_sheet.pdf. Accessed:
January 2015.

On-line Applications Research Corporation, “RTEMS Wiki.” Available at:
https://devel.rtems.org/wiki/TBR/BSP/Rad750. Accessed: January 2015.

Saab Ericsson Space, "Spacecraft Management Unit," March 2005. Available at:
https://www.rtems.org/sites/default/files/Spacecraft_Management_Unit_Saab-2011-
10.pdf. Accessed: January 2015.

On-line Applications Research Corporation, "RTEMS Application Spotlight
Electra,” October 2011. Available at:
https://www.rtems.org/sites/default/files/Application-Electra-2011-10.pdf.
Accessed: January 2015.

National Aeronautics and Space Administration, "NASA’s Core Flight Software - a
Reusable Real-Time Framework," November 2014. Available at:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140017040.pdf. Accessed:
January 2015.

Nguyen, T. D., "A Study of Covert Communications in Space Platforms Hosting
Government Payloads," Naval Postgraduate School Technical Report NPS-CAG-
15-002, January 2015. (To be published)

On-line Applications Research Corporation, “RTEMS.” Available at:
https://www.rtems.org/. Accessed: January 2015.

On-line Applications Research Corporation, “RTEMS CPUs.” Available at:
https://devel.rtems.org/wiki/TBR/UserManual/SupportedCPUs. Accessed: January
2015.

On-line Applications Research Corporation, “RTEMS Board Support Packages.”
Available at: https://devel.rtems.org/wiki/TBR/Website/Board_Support_Packages.
Accessed: January 2015.

Military Standard MIL-STD-1553B: “Aircraft Internal Time Division
Command/Response Multiplex Data Bus,” September 21, 1978.

European Cooperation for Space Standardization, “ECSS-E-ST-50-12C SpaceWire
- Links, nodes, routers and networks,” July 2008.

BAE Systems, “BAE RAD750.” Available at: http://www.baesystems.com/our-
company-rzz/our-businesses/electronic-systems/product-sites/space-products-and-
processing/processors. Accessed: January 2015.

Aeroflex Gaisler AB, “GR-LEON4-1TX LEON4.” Available at:
http://gaisler.com/index.php/products/boards/gr-leon4-itx. Accessed: January 2015.

39

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

Aeroflex Gaisler AB, “GR-CPCI-LEON4-N2X.” Available at:
http://gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x. Accessed: January
2015.

Raspberry Pi. Available at: http://www.raspberrypi.org/. Accessed: January 2015.
Alan C., “RTEMS on Raspberry Pi,” March 28, 2013. [blog entry]. Available at:
http://alanstechnotes.blogspot.com/2013/03/rtems-on-raspberry-pi.html. Accessed:
January 2015.

On-line Applications Research Corporation, “RTEMS Source Builder.” Available
at: http://ftp.rtems.org/pub/rtems/people/chrisj/source-builder/source-builder.html.
Accessed: January 2015.

On-line Applications Research Corporation, “RTEMS Quick Start Guide.”
Available at: https://devel.rtems.org/wiki/TBR/UserManual/Quick_Start. Accessed:
January 2015.

Adafruit, Raspberry Pi console cable, USB-Serial cable. Available at:
http://www.adafruit.com/product/954. Accessed: January 2015.

Adafruit, “Using the Raspberry Pi console cable.” Available at:
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable.
Accessed: January 2015.

On-line Applications Research Corporation, “RTEMS Shell User’s Guide.”
Available at: http://docs.rtems.org/doc-current/share/rtems/html/shell/index.html.
Accessed: January 2015.

Red Hat, Inc., “Fedora 19 Installation Guide.” Available at:
http://docs.fedoraproject.org/en-US/Fedora/19/html/Installation_Guide. Accessed:
January 2015.

Red Hat, Inc., “Mounting Windows shares.” Available at:
https://access.redhat.com/solutions/448263. Accessed: January 2015.

Motorola, Inc., “MCP750 CompactPCI Single Board Computer Installation and
Use,” July 2002. Available at:
https://www.slac.stanford.edu/exp/glast/flight/docs/MCP750/MCP750_Install.pdf.
Accessed: February 2015.

Simon Tatham, “PuTTY: A Free Telnet/SSH Client.” Available at:
http://www.chiark.greenend.org.uk/~sgtatham/putty/. Accessed: February 2015.
Roger Meier, “Roger Meier's Freeware.” Available at: http://freeware.the-
meiers.org/. Accessed: February 2015.

Todd C. Miller, "Visudo Manual." Available at:
http://www.sudo.ws/visudo.man.html. Accessed: February 2015.

40

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Research Sponsored Programs Office, Code 41

Naval Postgraduate School
Monterey, CA 93943

41

