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1. Introduction 

The combination of low weight and high strength make aluminum (Al) and its alloys attractive 
materials in the development of new structures and systems employed by the US Army. The 
effectiveness of Al alloys can be further enhanced, by increases in strength and ductility, through 
the development of bulk nanograined microstructures. Powder metallurgy techniques can be used 
to develop bulk nanograined materials through the consolidation of nanograined powders. The 
development of the nanograined powder can be attained through multiple processing routes, but 
one of the more promising ways is through cryogenic attrition. One form of cryogenic attrition is 
low-energy grinding of conventional (micron-sized) powder with milling media (typically 
stainless steel balls) in liquid nitrogen (LN2).1 Cryogenic attrition, also called cryomilling (both 
terms will be used interchangeably in this report), has several advantages: 1) it can create large 
particle agglomerates consisting of nanograined powder, ensuring safe powder handling; 2) 
attrition in LN2 prevents sample contamination from oxygen and/or moisture; and 3) it can cause 
the formation of N inclusions that behave as grain stabilizers.2 Absorption of N via cryogenic 
attrition in LN2 resulted in high stability of the microstructure, such that the nanograins barely 
increased in size even after heat treatment or thermo-mechanical processing (TMP) at elevated 
temperatures. There is experimental evidence and theoretical models that suggest that N reacts 
with Al, leading to incorporation of N at surfaces and interfaces.3 Incorporation of N can 
enhance the strength of the composite by solid solution strengthening as well as by dispersion 
strengthening or the Orowan strengthening mechanism.4   

In cryomilling, a process control agent (PCA) is necessary to prevent excessive cold welding of 
the powders. However, PCAs introduce contaminants that have to be removed after milling to 
allow for clean and strong interfacial bonding between the nanostructured particles during TMP 
to transform the powders into bulk form. The removal process, known as degassing, is done by 
heating the powders to high temperature under vacuum. Recently we have explored using 
various PCAs and studied their effect on the mechanical response of trimodal Al metal matrix 
composites.5 Most of the PCAs commonly used (e.g., stearic acid, oleic acid, caprylic acid) 
contain carbon and hydrogen (H). It is important to have as little H as possible in the structural 
material to avoid brittleness.6–8 Hydrogen is difficult to get rid of during the degassing process, 
and a H-free surfactant is desirable for use in cryogenic attrition. Preliminary research was 
initiated under an Army Small Business Innovation Research effort using graphite as a PCA 
during cryomilling [Delahanty T, Pittsburgh Materials Technology, personal communication, 
2012 Jan.]. In this research we have employed graphite as a PCA that contains no H in order to 
reduce H concentration in the cryomilled powders after the degassing process. The degassing 
process allows for the possibility of grain growth for nanostructured Al and subsequent 
degradation of mechanical properties. 
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Absorption of N via cryogenic attrition in LN2 imparts stability to the microstructure such that 
the nanograins do not grow in size even after heat treatment or TMP at elevated temperatures. 
Therefore it is also important that we are able to retain as high an amount of N after degassing as 
possible. We performed cryogenic attrition of Al5083 powders for 8, 16, and 24 h with graphite 
as a PCA to study the effect of milling time on the microstructure, phases present, impurity 
concentrations (H and N) and stability of the powders upon degassing.  

2. Experiment 

A Szegvari Union Process 1-S attritor (Fig. 1) modified to allow for continuous flow of LN2 was 
used for cryogenic attrition of Al5083 (–325 mesh, Valimet, Inc). The Al5083 powder  
(800 g) was cryomilled in LN2 for 8, 16 and 24 h with a ball-to-powder weight ratio of 32:1. 
Graphite powder (0.15 wt%, Alfa Aesar) was V-blended with the Al5083 powder prior to 
cryogenic attrition to ensure a uniform distribution of PCA. Prior to adding the powder, the 
attritor tank was filled with LN2 and flushed 3 times for cleanliness. The tank was then refilled, 
allowing the temperature to stabilize at the operating temperature (–196 °C), after which the 
powder was added for runs of 8, 16, or 24 h. After cryogenic attrition, the powder and LN2 slurry 
was collected in a stainless steel bucket. The mill was purged with LN2 several times to collect as 
much powder as possible. The bucket was then put into a controlled atmosphere glove box to 
protect the powder as the LN2 boiled off. The powders were degassed at 410 °C in a custom-
made static vacuum degasser (Fig. 2) with a maximum vacuum of approximately 10–6 Torr. Once 
high vacuum was achieved, the furnace was ramped to the desired temperature over 6 h, soaked 
for 8 h, and then allowed to cool to room temperature. Table 1 lists the powders that were milled 
and degassed during these experiments. 

 
Fig. 1   The Szegvari attritor available at the US 

Army Research Laboratory (ARL), 
modified to enable cryogenic attrition
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Fig. 2   ARL degassing system. Powder was added to a metal canister and 
wrapped with a heater band (A). The vacuum system (B) then 
evacuated the canister to draw off volatiles and hinder oxidation. The 
mass spectroscopy system (C) may be used to identify volatiles boiled 
off by the sample. 

Table 1   Powder samples examined 

Sample ID Milling Time 
 (h) Notes  

Al5083 Not milled As received  

8CM 8 Cryomilled 8 h  

8CMD 8 Cryomilled 8 h and degassed at 410 °C for 8 h 

16CM-1 16 Cryomilled 16 h  

16CMD-1 16 Cryomilled 16 h and degassed at 410 °C for 8 h 

24CM-1 24 Cryomilled 24 h  

24CM-2 24 Cryomilled 24 h  

24CM-3 24 Cryomilled 24 h  

24CMD-1 24 Cryomilled 24 h and degassed at 410 °C for 8 h 
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The milled powders were characterized for morphology, microstructure, and chemistry. An 
Hitachi S4700 field emission scanning electron microscope (FESEM) was used to examine 
particle morphology after milling. A Leco ONH 836 inert gas fusion and thermal conductivity 
elemental analyzer was used to determine how much N and H were incorporated into the powder 
during the milling process. The crystallite size of the powders and identification of precipitates 
were determined using X-ray diffraction (XRD) via the Williamson/Hall method.9–13 

3. Results and Discussion 

3.1 FESEM Characterization 

The starting powder was examined using FESEM to determine the initial microstructure (Fig. 3).  
The powder is spherical in shape and unagglomerated with a particle size range of approximately 
0.5–20 µm.   

 

Fig. 3   FESEM micrographs of the starting Al5083 powder 

After 8 h of attrition, the shape of the particles became angular, the surface roughened, and the 
particles agglomerated (see Fig. 4). There are negligible observable differences in the size, 
morphology, and texture of milled Al agglomerates between samples milled for 8, 16, or 24 h 
(Fig. 5). This indicates that before or at 8 h of cryomilling time, there is a balance in the rate of 
the respective fracturing and cold welding of the powders.   
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Fig. 4   FESEM micrographs of 8-h cryomilled (8CM) powder 

 

Fig. 5   Comparison of agglomerate morphology of the powders cryomilled for 8, 16 or 24 h. Micrograph 
(A) is of 8CM, (B) is 16CM-1, and (C) is 24CM-2. 

Three batches of powder underwent cryogenic attrition for 24 h: 24CM-1, 24CM-2, and 24CM-3 
(Fig. 6). All 3 batches of the 24-h milled powders exhibit similar size and shape; therefore, the 
morphological changes from cryogenic attrition are repeatable from run to run. 
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Fig. 6   Comparison of powders produced by 3 different 24-h cryomilling runs 

Powder was also degassed at 410 °C after cryogenic attrition for 8, 16 and 24 h (8CMD, 
16CMD-1, and 24CMD-1; Fig. 7). Overall, there was no sintering observed. The 
morphology, size, and texture of the powders did not change with degassing. 

 

Fig. 7   Comparison of powders degassed at 410 °C as a function of milling time: A and B are micrographs 
of 8CMD; C and D are micrographs of 16CMD-1; and E and F are micrographs of 24CMD-1. 

There was no observable difference in the size or morphology between the powders 
cryomilled for various times and degassed.   

3.2 Elemental Analysis 

The results from the gas fusion chemical analysis are collected in Figs. 8 and 9. Figure 8 
shows the H concentration of as-cryomilled powders and the degassed powders. The 8-h 
cryomilled powder had 540 ppm of H. The same powder was used under the same milling 
conditions, but with 14.3-wt% boron carbide (B4C) using stearic acid as a PCA, had an H 
concentration of 1,000 ppm [Delahanty T, Pittsburgh Materials Technology, personal 
communication, 2012 Jan.]. The reduced H concentration in our sample might be the result 
of employing an H-free PCA. The H concentration was further reduced to 50 ppm after 
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degassing at 410 °C for 8 h. In this context, recognize that cold-pressed and high-strain-rate-
extruded samples, containing trimodal metal matrix composite consisting of unmilled 
Al5083 and 8-h cryomilled powders of Al5083 and B4C with stearic acid as a PCA and 
degassed at 410 °C, contained 90-ppm H; this is almost double the amount of H obtained in 
the 8-h milled and degassed powders processed in this research. Usually degassed powder, 
after going through primary consolidation and TMP, contains less H than just degassed 
powder. The relatively lower H content in the powders produced in this research could be 
ascribed to the use of graphite as a PCA.  

 
Fig. 8   Hydrogen concentration of cryomilled and degassed powders 

Figure 9 shows a linear increase in N concentration with milling time; Ye et al.14 reported an 
N concentration of 0.4 wt% for 8-h cryomilled Al5083 powder with stearic acid as a PCA. 
Hashemi-Sadraei15 also reported similar N concentrations (e.g., 0.9 wt% and 1.9 wt%, 
respectively) for 8-  and 24-h cryomilled Al5083 and 14.3-wt% B4C composites using 
stearic acid as a PCA. Degassing the powders does not alter the N concentration of the 
powders significantly. As mentioned, maintaining the N level is important, as this is the 
basis for forming the small nanodispersoids that give cryomilled Al its grain stability during 
sintering and results in improved mechanical response.  
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Fig. 9   Nitrogen concentration of milled and degassed powders 

3.3 X-ray Diffraction 

The XRD patterns of the cryomilled powder samples are shown in Fig. 10. Cryogenic 
attrition did not introduce any contaminates or produce phase changes that could be detected 
via XRD.   
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Fig. 10   XRD patterns for the cryomilled Al powders as a function of milling time 

All of the degassed powders show additional peaks primarily between 2θ = 30° and 50° (θ is 
Bragg angle) (Fig. 11), which could be ascribed to Al-manganese (Mn) alloy Al6Mn. This 
phase has been previously identified in degassed cryomilled Al5083 powder and has been 
found in as-cast parts made from Al5083 powder.5  
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Fig. 11   XRD patterns for the degassed Al powders 

The crystallite size and microstrain were calculated from the XRD profile based off of the 
Williamson/Hall method.9–13 This method follows Eq. 1 (derived from the Scherrer 
formula), 

 𝐻 cos 𝜃 = 𝐾𝜆
𝐺

+ 4𝜀 sin𝜃, (1) 

where H is the full width at half maximum of the XRD peaks (as obtained through the 
pseudo-Voigt fitting procedure), K is the Scherrer constant (varies between 0.9 and 1.0), λ is 
the wavelength of the X-ray radiation, G is grain size, and ε is microstrain. The full width at 
half maximum is influenced by the line broadening of the XRD spectra, which is caused by 
the material having small grains, strain, and machine broadening. The Williamson/Hall 
equation can be used to isolate the size and strain effects but cannot account for machine 
broadening; this can be done by running a standard material that does not show line 
broadening such as lanthanum hexaboride (LaB6) or, as in this report, cerium(IV) oxide 
(CeO2, or ceria). To determine the full width at half maximum, each peak is fit with a 
pseudo-Voigt function (where 2w is full width at half maximum).
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 Vp(x) = ηL(x) + (1 − η)G(x) with 0 < 𝜂 < 1, (2) 

 𝐿(𝑥) = 1
1+(𝑥−𝑥𝑜𝑤 )2

 , (3) 

and 

G(x) = exp ((− ln(2))(x−xo
w

)2).                                                 (4) 

After fitting, the calculated full widths at half maximum can be modeled using the Caglioti 
equation, 

 𝐻 = (𝑈𝑇𝑎𝑛 𝜃 + 𝑉𝑇𝑎𝑛𝜃 + 𝑊)2 
2 , (5) 

which can then be plugged into the Williamson/Hall equation and solved for both grain size and 
microstrain. While this method is a relatively easy and straight-forward way for calculating grain 
sizes and microstrains (especially with the right software), the results are only as good as the 
calculated fits of the data. A poor or improper fit could lead to erroneous measurements.12,13 

For the 8-h cryomilled sample, the calculated grain size is 44 nm. The grain size decreased to  
34 nm for the 16-h cryomilled powder and remained the same for the 24-h cryomilled powder. 
Degassing led to increases in grain size for the 8- and 24-h milled powders. The crystallite size 
for the 8-h degassed sample was calculated to be greater than 100 nm. The crystallite size 
measurement is valid only if the crystallite size remains below 100 nm; because coarse grains do 
not contribute to peak broadening, large grains are not accounted for in these measurements.  
XRD may report an artificially small grain size.9 The 24-h cryomilled and degassed powder had 
smaller grain sizes than the corresponding 8-h samples. This could indicate that the thermal 
stability of the grains resulting from enhanced concentrations of N species imparted during 
milling. There was no change in grain size after degassing for the 16-h sample. Grain size 
analysis via transmission electron microscopy is necessary to explain this and is currently being 
conducted. The microstrain for the 16-h sample is greater than that of 8-h sample and remains 
practically unchanged for the 24-h sample. The microstrain decreases after degassing due to 
strain relaxation. The results of XRD analysis are detailed in Table 2. 

Table 2   Grain size and strain measured via XRD line 
profile analysis 

 

Sample Crystallite size 
(nm) 

Strain 
(%) 

8CM 44 0.36 
8CM >100a 0.22 
8CM 34 0.41 

16CMD-1 34 0.27 
24CM-2 33 0.43 

24CMD-1 65 0.33 
aAny calculated value over 100 nm is invalid with this technique. 
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4. Conclusions 

To explore the applicability of employing an H-free PCA in cryomilling with a view to reducing 
the H content in Al-based lightweight structural alloys, Al5083 powders were subjected to 
cryogenic attrition for 8, 16, and 24 h with graphite as a PCA. The powders were degassed to 
remove moisture and other contaminants introduced during cryogenic attrition. The H content of 
the degassed powders reduced significantly after degassing due to moisture removal and was 
relatively low compared with those produced using H-containing surfactants. Nitrogen 
concentration increases with increasing cryogenic attrition time and is not altered by degassing. 
There were insignificant differences found in the agglomerate size, morphology, or texture 
regardless of cryogenic attrition time or degassing treatment. There were few to no differences 
found in the crystallite sizes between the as-milled samples. The only differences arose after 
degassing, where the powder milled for 8 h experienced more grain growth and exhibited less 
grain stability than the powder milled for 16 or 24 h. This suggests that cryogenic attrition for at 
least 16 h could lead to powders that can retain their nanograin sizes at higher sintering 
temperatures, leading to better consolidation and improved performance for parts made from 
nanograin cryomilled powder. Detailed experiments using the primary and secondary TMPed 
samples made from the cryomilled and degassed powders along with their microstructural 
characterizations will be performed to study the effect of H and N content on mechanical 
response and the results published soon. 
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