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ABSTRACT

Traditional biometric recognition systems rely on a

single biometric signature for authentication. While the advantage
of using multiple sources of information for establishing the
identity has been widely recognized, computational models for
multimodal biometrics recognition have only recently received attention.
We propose a multimodal sparse representation method,

which represents the test data by a sparse linear combination of
training data, while constraining the observations from different
modalities of the test subject to share their sparse representations.
Thus, we simultaneously take into account correlations as well as
coupling information among biometric modalities.We modify our
model so that it is robust to noise and occlusion. A multimodal
quality measure is also proposed to weigh each modality as it gets
fused. Furthermore, we also kernelize the algorithm to handle
non-linearity in data. The optimization problem is solved using an
efficient alternative direction method. Various experiments show
that our method compares favorably with competing fusion-based
methods.
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Joint Sparse Representation for Robust Multimodal

Biometrics

Recognition

Sumit ShekharStudent Member, IEEBR/ishal M. Patel,Member, IEEENasser M. Nasrabadkellow, |IEEE,
and Rama Chellapp#&ellow, IEEE

Abstract—Traditional biometric recognition systems rely on a
single biometric signature for authentication. While the alvan-
tage of using multiple sources of information for establising the
identity has been widely recognized, computational model$or
multimodal biometrics recognition have only recently recéved at-
tention. We propose a multimodal sparse representation mébd,
which represents the test data by a sparse linear combinatioof
training data, while constraining the observations from diferent
modalities of the test subject to share their sparse represgations.
Thus, we simultaneously take into account correlations as @ll as
coupling information among biometric modalities. We modify our
model so that it is robust to noise and occlusion. A multimodg
quality measure is also proposed to weigh each modality as giets
fused. Furthermore, we also kernelize the algorithm to hante
non-linearity in data. The optimization problem is solved wsing an
efficient alternative direction method. Various experimeris show
that our method compares favorably with competing fusion-tased
methods.

Index Terms—Multimodal biometrics, feature fusion, sparse
representation.

I. INTRODUCTION

simultaneously spoof multiple biometric traits of a gerauin
user. Due to sufficient population coverage, these systeens a
able to address the problem of non-universality.

Classification in multibiometric systems is done by fus-
ing information from different biometric modalities. The
information fusion can be done at different levels, which
can be broadly divided into feature level, score level and
rank/decision level fusion. Due to preservation of raw in-
formation, feature level fusion can be more discriminative
than score or decision level fusion [4]. But, there have been
very few efforts in exploring feature level fusion in the
biometric community. This is because of the differences in
features extracted from different sensors in terms of tymk a
dimensions. Often the features have large dimensions, and
fusion becomes difficult at the feature level. The prevalent
method is feature concatenation, which has been used for
different multibiometric settings [5]-[7]. However, forigh-
dimensional feature vectors, simple feature concatematiay
be inefficient and non-robust. A related work in the machine
learning literature is of Multiple Kernel Learning (MKL),

Unimodal biometric systems rely on a single source Qfhich aims to integrate information from different featsire

information such as a single iris or fingerprint or face foy jearning a weighted combination of respective kernels. A
authentication [1]. Unfortunately these systems have @&l djatailed survey of the methods for MKL can be found in
with some of the following inevitable problems [2]: (a) Npis 8] However, for multimodal systems, weight determinatio
data: poor lighting on a user's face or occlusion are exasplgyring testing is important, based on the quality of differe
of noisy data. (b) Non-universality: the biometric syster,qqalities. Such a framework is not feasible in MKL setting.
based on a single source of evidence may not be ablenRihods like [9], [10] try to exploit information from labei
capture meaningful data from some users. For instance, 4y unlabeled data from a different view to improve classifie
iris biometric system may extract incorrect texture pamer performance. Similarly, SVM-2k [11] jointly learns SVM for
from the iris of certain users due to the presence of contagly views. But, these methods are difficult to generalize to
lenses. (c) Intra-class variations: in the case of fingBtPriyytimodal setting, as common in biometric fusion. A Fisher
recognition, presence of wrinkles due to wetness [3] Cfiscriminant analysis based method has also been proposed f
cause these variations. These types of variations Oﬁemoc&tegrating multiple views [12], but it is also similar to MK

when a user incorrectly interacts with the sensor. (d) Spogfih kernel Fisher discriminant analysis as the base learne
attack: hand signature forgery is an example of this type @‘3]'

attf';lck. It hz_:\s bee_n observed that some of the limitations .ofm recent years, theories of Sparse Representation (SR) and
unimodal biometric systems can be addressed by deployiRgmpressed Sensing (CS) have emerged as powerful tools
multimodal biometric systems that essentially integrate tfor efficient processing of data in non-traditional ways][14
evidence presented by multiple sources of information SU§js has led to a resurgence in interest in the principles
as iris, fingerprints an_d face. Such _systems are Ie_ss vidigerays SR and CS for biometrics recognition [15]. Wrigkt

to spoof attacks as it would be difficult for an imposter tg [16] proposed the seminal sparse representation-based

Sumit Shekhar, Vishal M. Patel and R. Chellappa are with thpaBtment classification (SRC) algor'thm for face recognition. It was

of Electrical and Computer Engineering and the Center fotofation
Research, UMIACS, University of Maryland, College Park, D742 USA
(e-mail: {sshekha,pvishalm,rarh@umiacs.umd.edu)

Nasser M. Nasrabadi is with the U.S. Army Research Lab, AdeldD
20783 USA (e-mail: nasser.m.nasrabadi@us.army.mil).

shown that by exploiting the inherent sparsity of data, one
can obtain improved recognition performance over tradélo
methods especially when the data is contaminated by various
artifacts such as illumination variations, disguise, asin
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Fig. 1: Overview of our algorithm.

and random pixel corruption. Pillat al. extended this work
for robust cancelable iris recognition in [17]. Nagesh and L
[18] presented an expression-invariant face recognitiethod
using distributed CS and joint sparsity models. Patell.[19]
proposed a dictionary-based method for face recognitialeun
varying pose and illumination. A discriminative dictiogar
learning method for face recognition was also proposed by
Zhang and Li [20]. For a survey of applications of SR and CS «
algorithms to biometric recognition, see [14], [15], [2122]
and the references therein. .
Motivated by the success of SR in unimodal biomet-
ric recognition, we propose a joint sparsity-based algarit
for multimodal biometrics recognition. Figure 1 presents a

sions of different modalities by forcing different featare
to interact through their sparse coefficients. Furthermore
the proposed algorithm can efficiently handle large di-
mensional feature vectors.

We make the classification robust to occlusion and noise
by introducing an error term into the optimization frame-
work.

The algorithm is easily generalizable to handle multiple
test inputs from a modality.

We introduce a quality measure for multimodal fusion
based on the joint sparse representation.

Lastly, we kernelize the algorithm to handle non-linearity
in the data samples.

overview of our framework. It is based on the well known A preliminary version of this work appeared in [27], which
regularized regression method, multi-task multi-varizésso describes just the linear version of the algorithm, robust
[23], [24]. Our method imposes common sparsities both withto noise and occlusion. Furthermore, extensive experiahent
each biometric modality and across different modalitiesteN evaluations are presented here.

that our method is different from some of the previously pro-

posed classification algorithms based on joint sparse sepre A. Paper Organization

tation. For example, Yuan and Yan [25] proposed a multi-task The paper is organized as follows. In section I, we describe
sparse linear regression model for image classifications Tlye proposed sparsity-based multimodal recognition #hyor
method uses group sparsity to combine different features\phich is kernelized in section IV. The quality measure is
an object for classification. Zhareg al. [26] proposed a joint gescribed in I1l. Experimental evaluations on a comprelvens

dynamic sparse representation model for object recognitiqnyltimodal dataset and a face database are described in
Their essential goal was to recognize the same object viewggttion V. Finally, in section VI, we discuss the computaio

from multiple observations i.e., different poses. Our meith complexity of the method. Concluding remarks are presented
is more general in that it can deal with both multi-modal &g, section ViII.

well as multi-variate sparse representations.
This paper makes the following contributions:
o We present a robust feature level fusion algorithm for
multibiometric recognition. Through the proposed joint Consider a multimodal’-class classification problem with
sparse framework, we can easily handle different dime® different biometric traits. Suppose there arg training

II. JOINT SPARSITY¥BASED MULTIMODAL BIOMETRICS
RECOGNITION



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 20XX 3

samples in each biometric trait. For each biometric trailass label associated with an observed vector is thenréecla

i=1,...,D, we denote as the one that produces the smallest approximation error.
T 7 ) ) N . . .
X=X X jmagmind Y -XE@)E @
as ann; x p; dictionary of training samples consisting 6f o=l
sub-dictionariesX}’s corresponding toC" different classes. whered’ is the matrix indicator function defined by keeping
Each sub-dictionary rows corresponding to thgth class and setting all other rows

equal to zero. Note that the optimization problem (1) reduce
to the conventional Lasso [29] whell = 1 andd = 1. In
the case, whe =1 (1) is referred to as multivariate Lasso
23].

K

X! =[x, ,X ... ,x;-ypj] € R™*Ps
represents a set of training data from titte modality labeled
with the jth class. Note that; is the feature dimension of eac
sample and there agg number of training samples in clags

Hence, there are a total pf= 27'0:1 p; many samples in the B. Robust multimodal multivariate sparse representation

dictionary X¢,. Elements of the dictionary are often referred |n this section, we consider a more general problem where
to as atoms. In multimodal biometrics recognition problenthe data is contaminated by noise. In this case, the obsemvat
given a test samples (matri¥), which consists oD different model can be modeled as
modalities{Y', Y2, ..., YP} where each sampl€* consists . i .
of d; observation&Y = [y, y4,...,y%] € R"*%, the objec- Y =XT'+Z'+N', i=1...D, ®3)
tive is to identify the class to which a test sampfebelongs \yhere N is a small dense additive noise af@d ¢ R”*d:
to. In what follows, we present a multimodal multivariatgs 5 matrix of background noise (occlusion) with arbitraril
sparse representation-based algorithm for this proble3h [zlarge magnitude. One can assume that e#&ths sparsely
[24], [28]. represented in some badd € R™*™'. That is,Z = BiA’

for some sparse matrices’ € R™*%. Hence, (3) can be

A. Multimodal multivariate sparse representation rewritten as

We want to exploit the joint sparsity of coefficients from Y' =XT'+B'A"+N', i=1,...D, (4)

different biometric modalities to make a joint decision. To \yith this model. one can simultaneously recover the coef-

simplify this model, let us consider a bi-modal classifieati ficientsT* and A’ by taking advantage of the fact thaf are
problem where the test samp¥e = [Y!, Y?| consists of two sparse

different modalities such as iris and face. Suppose Wt
belongs to thejth class. Then, it can be reconstructed by a . . 11L& i i PN
linear combination of the atoms in the sub-dictionry. That L, A =argmin o Z IY* = X' = B'A'|f5 +
is, Y! = X' + N', whereI'! is a sparse matrix with only =t T WA 5
p; nonzero rows associated with thith class andN' is the UTlq + A2l Ay, ()
noise matrix. Similarly, sinc&? represents the same subjectwhere \; and X\, are positive parameters and =
it belongs to the same class and can be represented by graiin', A%, ... A”] is the sparse coefficient matrix correspond-
samples inX3 with different set of coeﬁicientf?. Thus, we ing to occlusion. The/;-norm of matrix A is defined as
can writeY? = X°T'” + N?, whereT” is a sparse matrix that [[A|, = 37, .|A;;|. Note that the idea of exploiting the
has the same sparsity patternas If we let ' = [I'!,T'?], sparsity of occlusion term has been studied by Wrighsl.
thenT is a sparse matrix with only; non-zero rows. [16] and Candegt al. [30].

In the more general case where we havemodalities, OnceT', A are computed, the effect of occlusion can be
if we denote {Y?}”, as a set of D observations each removed by settingy’ = Y’ — B‘A’. One can then declare

consisting ofd; samples from each modality and €t = the class label associated to an observed vector as
!, 1%,...,TP] € RP*¢ be the matrix formed by concate- D

nating the coefficient matrices with = >~ d;, then we j=argmin» [[Y'—X'§)(I) - B'A'[7.  (6)
can seek for the row-sparse matfixby solving the following O '

¢4 /L,-regularized least square problem
b C. Optimization algorithm

I' = argmin 1 Z [Y? = XTI + AT 1.4 (1) Optimi_zation prpblem (5) i_s convex but difficult to solve due
r 2 to the joint sparsity constraint. In this section, we présen
approach based on the classical alternating direction adeth

whereA is a pogitiye parameter andis set greater thah to multipliers (ADMM) [31], [32]. Note that the optimizatio
ma!<e the optimization p;oblen;convex. He|£§‘,||17q IS anorm problem (1) can be solved by setting equal to zero. Let
defined as|T||1,, = > v 17"l Wwhere~"’s are the row

vectors ofI" and||Y||r is the Frobenius norm of the matrix

D
Y defined as|Y|» = /3, ;Y. OnceT is obtained, the CI,A) = 52 YY" = XT" = B'A’[[5.

i=1
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Then, our goal is to solve the following optimization prable  3) Update step folU: The third sub-optimization problem
is with respect toU, which is the standard; minimization

If%i,{lc(r’ A)+ ATl + Azl AL (7) problem which can be recast as
i i 1 A
In ADMM the |dea_|§ to degouplé’(I‘,A), [IT]l1,4 @and||All1 min = [Arsr + oy Apy — U[% + 221y, (10)
by introducing auxiliary variables to reformulate the pieoh U 2 oA
into a constrained optimization problem Equation (10) is the well-known shrinkage problem whose
min_ C(T,A) + [V + AUl st solution is given by
I AUV A2
'=V,A=TU. (8) Ui1=8 <At+1 + OéxlAA.,t, a_> )
A

Since, (8) is an equally constrained problem, the Augmentegl . S(a,b)
Lagrangian method (ALM) [31] can be used to solve th‘oatherwise.7

problem: This can be done by minimizing the gugmented4) Update step foiV: The final suboptimization problem
Lagrangian functionfara, (I’ A, V., U; Ax, Ar) defined as s yith respect tov which can be reformulated as

= sgn(a)(|la] — b) for |a] > b and zero

QA 2
C(T,A) + X||U Ay, A-TU —||A -=U 1 _ A
.4+ 2l Ul + (4, A =T+ 7IA ~ Ullet min 3T + ap Are = VIE+ S Vi QD)

ar 2
AlVilg +(Ar, D= V) + =0 = Ve ) 56 16 the separable structure of (11), it can be solved by
where Ay and Ar are the multipliers of the two linear minimizing with respect to each row oV separately. Let
constraints, andvy,ar are the positive penalty parametersY; ¢+1,ar,,c andv; 1 be rows of matriced’, 1, Ar,, and
The ALM algorithm solves,,. o, (T, A, V,U; A5, Ar) with V.11, respectively. Then for each=1,...,p we solve the
respect tol’, A, U and 'V jointly, keepingAr and A, fixed following sub-problem
and then updatind.r andA , keeping the remaining variables 1 )
fixed. Due to the separable structure of the objective foncti Vittl = argim o [z = vz +nl[vllg, 12)
far,as,» ONe can further simplify the problem by minimizing _ .
fa;ai with respect to variable¥, A, U and V, separately. WN€€Z = Vi1 —ar;;op ' andy = 5t. One can derive the
Different steps of the algorithm are given in Algorithm 1

solution for (12) for anyg. In this paper, we only focus on
In what follows, we describe each of the sub—optimizatioﬁ'e case wheq = 2. The solution of (12) has the following

problems in detail. orm "
Vit+1 = ( - m) )

Algorithm 1: Alternating Direction Method of Multipliers +

(ADMM). where (v)y is a vector with entries receiving values

Initialize: T'o, Ug, Vo, Aa0,Ar 0, ar,ap max(vi, 0)

WT'?“Ot ‘if";\iefgﬁi d? (T A, U, Vi Aps, Agg) Our proposed Sparse Multimodal Biometrics Recognition
Y At::l _ arggmini e (IJH?’AT’IJJ’\,“FK’F’;‘KA’” (SMBR) method is summarized in Algorithm 2. We refer to
3. Upqr = argminy fap,an (Teg1, Aegr1, U, Vi Ar g, Ay ) the robust method taking sparse error into account as SMBR-E
g- Xt+1 =frimin}rf£ar(igfx (Ft+11i At;hUtJrlvviAF,t,AA,t) (SMBR with error), and the initial case where it is not taken
6 An iy = Ans+ar(Tri — Viey) account as SMBR-WE (SMBR without error).

Algorithm 2: Sparse Multimodal Biometrics Recognitior]
1) Update step fol™: The first sub-optimization problem| (SMBR).

involves the minimization off.. a, (T, A, V,U; Ay, Ar) Input: Training sampleX;}2 |, test sample{'Y;}2 ,, Occlusion

with respect td'. It has the quadratic structure, which is easy basis{B}?; X X

to solve by setting the first-order derivative equal to zerp. Procedure: ObtainI" and A by solving

Furthermore, the loss functioi(T', A) is a sum of convex | 1l

functions associated with sub-matricES, one can seek for| A= argrg{ijggz Y =X'T! =B A | F 4 [|T|1,g +A2 | A1,

Iy,,, i=1,...,D, which has the following solution =t

Output:

i = (XX 4 arD) (X7 (Y = Al) + arVi+ Al,), | identity(¥)=argmin; T2, [[Y — X'65(E) — BIA'[3.
whereI is p x p identity matrix andA!, Vi and Ay, are
sub-matrices ofA;, V; and Ay, respectively.
2) Update step forA: The second sub-optimization prob- [1l. QUALITY BASED FUSION
lem is similar in nature, whose solution is given below Ideally a fusion mechanism should give more weights to
Ai+1 = (1+an) 1Y - Xirzt'ﬂ FapUi - Aﬁ\.,t) the more reliable modalities. Hence, the concept of quality

is important in multimodal fusion. A quality measure based
where Ut andAﬁ\_’t are sub-matrices diJ; and A, ., respec- on sparse representation was introduced for faces in [16]. T
tively. decide whether a given test sample has good quality or not,
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its Sparsity Concentration Index (SCI) was calculated.eGivwhere,I' = [I'!,T'2,...  T'P]. Itis clear that the information

a coefficient vectory € R?, the SCI is given as: from all modalities are integrated via the shared sparsity
pattern of the matrice§I"*}2 ,. This can be reformulated in
terms of kernel matrices as:

C. maxie{ly_.. ,c}||57:('y)H1 o 1

[RTIE
SCI(v) = o1 A y ) |
where, §; is the indicator function keeping the coefficients r= argﬂi,in§z (tracgT" Kx, x,T")
corresponding to thé” class and setting others to zero. SCI i=1 _
values close to 1 correspond to the case where the test sample —2trac€Kx, v,I")) + A|T||14 (15)

can be represented well using the samples of a single clasgere. the kernel matri¥ A is defined as:
hence is of high quality. On the other hand, samples with SCI ’ "

close to 0 are not similar to any of the classes, and hence are Kag(i,j) = (¢(ai), ¢(bj)) (16)
of poor quality. This can be easily extended to the multinhodg, andb; beingi®" andj*" columns ofA andB respectively.
case using the joint sparse representation mdtixn this '

case, we can define the qualiqg, for sampley;- as: B. Optimization Algorithm

Similar to the linear fusion method, we apply the altermatin
direction method to efficiently solve the problem for kernel
where I is the j*" column ofi*". Given this quality measure fusion. The method splits the variable such that the new

b J . L

the classification rule (2) can be modified to include the igial ProPlem has two convex functions. This is done by introdgcin
a new variablév and reformulating the problems (15) ark®(

q; = SCI(T))

measure. _
D 4 | as: N
j = argm_in q;c”ylc - Xlé](rlc)”%v (13) 1 S T i i
j ; ; arg mino ; (tracgI™ Kx: xiI") — 2tracdKx: v:I"))
where, d; is the indicator function retaining the coefficients V]St =V (17)

corresponding tg*" class.
where, Ni is the number of kernels in (15) and??.

V. KERNEL SPACE MULTIMODAL BIOMETRICS ReWriting the problem Using the Lagrangian multiplier, the
RECOGNITION optimization problem becomes:
Ng

The class identities in the multibiometric dataset may not ] T ; ;
be linearly separable. Hence, we also extend the sparsée mult®'8 45 Z (traceT™" Kx: x:I") — 2trac§Kx. v:I'"))
modal fusion framework to kernel space. The kernel fungtion =1

K : R™ x R™, is defined as the inner product + A V]1e+ BT -V)+ ﬁTWHI‘ - VH? (18)
K (Xi, X5) = (D(x:), d(x;)) which upon re-arranging reduces to:
where, ¢ is an implicit mapping projecting the vectar into 1 N . _ _
a higher dimensional space. arg min > (traceT" Kx: x:T") — 2tracdKx: y:I"))
’ i=1
A. Multivariate kernel sparse representation + A V]1,q + ﬁTWHI‘ -V + ﬂLBHQF (19)
w

ideri iti i iy D

Considering the general case bfmodalities with{Y" };, The optimization method is summarized in Algorithm 3. It
as a set ofl; observations, the feature space representation can . .
be written as: should be pointed out that each step has a simple closed-form

expression.

2(Y') = [o(y1): ¢(yh), -,y i)

o o o ] Algorithm 3: Alternating Direction Method of Multipliers

Similarly, the dictionary of training samples for modality= (ADMM) in kernel space.
1,---,D can be represented in feature space as Initialize: To, Vo, Bo, B

; ; ; ; While not converged do

T\ 2 2 7 . .

Q(X ) = [¢(X1)7 ¢(X2)a T 7¢(XC)] 1.T¢y1 = argminp % Zzlili (trace(I‘ZTnyz,xsz”) —
L . . i B 2
As in joint linear space representation, we have: 2traceKxi vil?)) + N[ Villiq J;TWHF — Vet ﬁBtHFQ
, o 2. Viy1 = argminy N[ V|l1,q + 2 ||Teg1 = Ve + 5-Be |
o(Y') = o(X")I* 3.Be1 = By + By (Tig1 — Visr) v

where,I'? is the coefficient matrix associated with modality
i. Incorporating information from all the sensors, we seek to 1) Update steps foF;: T, is obtained by updating each
solve the following optimization problem similar to thediar sub-matrixI';, i =1,--- , N as:

case. . T = (Kxixi + Bwl) " (Kxiy: + fwVi—Bi) (20)

I 1 i i i i i i i P _ ;
' = argmin = Z [®(Y") — ®(XHT2 + AT, (14) where,I is an |dent.|ty matrix andvy, B} are sub-matrices
r 2 of V; andB; respectively.
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2) Update steps foV,: The update equation foW, is occlusion on the performance of different algorithms. Iritee
same as in the linear fusion case using (11) and (12), reygacexperimentd; was set to be identity for convenience,, we
Ar, andar with B, and 5y, respectively. assume background noise to be sparse in image domain.

C. Classification )
. . L ._.A. WVU Multimodal Dataset
OnceT is obtained, classification can be done by assigning

the class label as: The WVU multimodal dataset is a comprehensive collection
Ni of different biometric modalities such as fingerprint, ,ris
j=arg minz |\<I>(Yi) _ ‘P(X;)f‘;H% palmprint, hand geometry and voice from subjects of difiere
Y age, gender and ethnicity as described in Table I. It is a
or in terms of kernel matrices as: challenging dataset as many of these samples are corrupted
Nk with blur, occlusion and sensor noise as shown in Figure 2. Ou
j = argmin Z (tracéKvyy) — 2trace{f‘j-T KX§YIA‘§-) of these, we ch_ose iris and flngerprlnt.modglmes for tw
= 3 proposed algorithms. In total, there &rgis (right and left iris)

2T & and4 fingerprint modalities. Also, the evaluation was done on
+tracel KxixiTj)) (1) a subset 0219 subjects having samples in both modalities.
Here,X;ﬂ is the sub-dictionary associated wijh* class and
f‘; is the coefficient matrix associated with this class.

The classification rule can be further extended to inclu
the quality measure as in (13). But, we skip this step he
as we wish to study the effect of kernel representation a _
quality separately. B

Multivariate Kernel Sparse Recognition (kerSMBR) aIgoFig_ 2: Examples of challenging images from the WVU
rithm is summarized in Algorithm  4: Multimodal dataset. The images shown above suffer from

various artifacts such as sensor noise, blur and occlusion.

Algorithm 4: Kernel Sparse Multimodal Biometrics Recogni
tion (kerSMBR).
Input: Training sampled X;}2 ., test sample{Y;}2

. Biometric Modalit; # of subjects | # of [
Procedure: ObtainT" by solving lome nlcris odalty 0 ;:418(: S 0 3%‘33‘) es
1 2 Fingerprint 272 7219
I' = argmin -~ B(Y?) - &(XHT|Z + AT, (22) Palm 263 683
i g 2 1900 ~ @O+ AT g paim 263 oot
\oice 274 714

Output: i dentity(Y) = argmin; 3.2, (racgKyy) — ) )
2trace(f§_TKxin§_) +tracdf§TKx!Xifx;'_)) TABLE |: WVU Biometric Data
J JJ

1) Preprocessing: Robust pre-processing of images was
done before feature extraction. Iris images were segmented
V. EXPERIMENTS using the method proposed in [39]. Following the segmen-
We evaluated our algorithm on two publicly availabldation step,25 x 240 iris templates were generated by re-
datasets - the WVU Multimodal dataset [33] and the AR fagg@mpling using the publicly available code of Masekal.
dataset [34]. In the first experiment, we tested on the WVI40]. Fingerprint images were enhanced using the filtering
dataset, which is one of the few publicly available datase®ethods described in [41], and then the core point was
which allows fusion at image level. It is a challenging datasdetected from the enhanced images [42]. Features were then
consisting of samples from different biometric modalities extracted around the detected core point.
each subject. 2) Feature Extraction:Gabor features were extracted from
In the second experiment, we show the applicability of odhe processed images as they have been shown to give good
method to fusing information frormeakbiometrics extracted performance on both fingerprints [42] and iris [43]. For
from face images. In particular, the periocular region hdmgerprint samples, the processed images were convolwbd wi
been shown to be a useful biometric [35]. Similarly, the noggabor filters at8 different orientations. Circular tessellations
region has also been explored as a biometric [36]. Settedl were extracted around the core point for all the filtered iesag
[37] have demonstrated that eyebrows are important for fasienilar to [42]. The tessellation consisted % concentric
recognition. However, each of these sub-regions may not bands, each of width pixels and divided int&0 sectors. The
as discriminative as the whole face. The challenge for fusimnean values for each sector were concatenated to form the
algorithms is to be able to combine these weak modalitiésature vector of siz8600 x 1. Features for iris images were
with a strong modality based on the whole face [38]. Wlrmed by convolving the templates with a log-Gabor filter at
demonstrate how our framework can be extended to addrassingle scale, and vectorizing the template to gid®@0) x 1
this problem. Further, we also show the effects of noise adiémensional feature.
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methods.
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Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2
SMBR-WE | 68.1+1.1 | 8.4+1.2 | 69.24+1.5 | 87.5+1.5 60.0 £ 1.5 62.1+0.4
SMBR-E 67.1£1.0 87.9£0.8 67.4+1.9 86.9+1.5 | 625+1.2 | 64.3+1.0
SLR 67.4£1.9 87.9£1.3 66.0 £+ 2.2 87.5+1.3 57.1£3.0 57.9 £2.7
SVM 41.1+5.0 75.5+2.2 49.2 +1.6 67.0+83 | 443+1.2 45.0 +£ 2.9

TABLE II: Rank one recognition performance for individuabdalities.

SMBR-WE SMBR-E SLR-Sum | SLR-Major [ SVM-Sum | SVM-Major | MKLFusion

4 Fingerprints | 97.9+ 0.4 97.6 £ 0.6 96.3+£0.8 | 74.24+0.7 | 90.0 £2.2 73.0+ 1.5 86.2 + 1.2
2 Irises 76.5+ 1.6 7824+1.2 | 72.74+4.0 | 64.2£2.7 | 62.8£2.6 49.3 £ 2.0 76.8 £ 2.5

All modalities | 98.7 + 0.2 98.6 £ 0.5 976 £0.4 | 84.44+09 | 949+1.5 81.3+ 1.7 89.8 +£0.9

TABLE llI: Rank one recognition performance for the WVU Minliodal dataset.

SMBR-WE SMBR-E SLR-Sum | SLR-Major [ SVM-Sum | SVM-Major

4 Fingerprints | 98.2+ 0.5 98.1 £0.5 97.5+0.5 | 86.34+0.6 | 93.6 £1.6 85.5+0.9
2 lrises 76.9 + 1.2 788 4+1.7 | 7414+1.0 | 67.2+24 | 64.3+£3.3 51.6 £2.0

All modalities | 98.8 + 0.4 98.6 £0.3 98.24+0.2 | 93.8+£0.9 | 955+t 1.5 93.3+1.2

TABLE IV: Rank one recognition performance using the pragbguality measure.

3) Experimental Set-upThe dataset was randomly divided

into 4 training samples per class (1 sample here is 1 data

sample each frori modalities) and the remainirig 9 samples
were used for testing. The recognition result was averaged o

5 runs. The proposed methods were compared with state-of-

the-art classification methods such as sparse logistiessgm

(SLR) [44] and SVM [45]. As these methods cannot handle

multiple modalities, we explored score-level and decision
level fusion methods for combining the results of indivilua

modalities. For score-level fusion, the probability outpfor
test sample of each modalityy;}%_, were added together

to give the final score vector. Classification was based upon

the final score values. For decision-level fusion, the sttbje

chosen by the maximum number of modalities was taken
to be from the correct class. We further compared with the

efficient multiclass implementation of MKL algorithm [46].

The proposed linear and kernel fusion techniques weredeste
separately and compared them with the linear and kernel

versions of SLR, SVM and MKL algorithms. We denote the

score-level fusion of these methods as SLR-Sum and SVM-
Sum, and the decision-level fusion as SLR-Major and SVM-

Major. MKL based method is denoted as MKLFusion. We

report mean and standard deviation of rank one recognitione
rates for all the methods. We also show Cumulative Match
Curves (CMCs) for all the classifiers. CMC is a performance
measure for biometric recognition systems and has beennshow

to be equivalent to ROC of the system [47].
a) Linear Fusion: The recognition performances of

SMBR-WE and SMBR-E was compared with linear SVM and

linear SLR classification methods. The parametgrand A,
were set ta).01.

o Comparsion of Methoddzigure 3 and Table Il show the

performance on individual modalities. All the classifiers

show a similar trend. The performance for all of them are

lower on iris images and fingefisand 3. The proposed

method show superior performance on all the modalities.

Figure 4 and Table Ill show the recognition perfor-

Both SMBR-E and SMBR-WE have similar performance,
though the latter seems to give a slightly better perfor-
mance. This may be due to the penalty on the sparse error,
though the error may not be sparse in the image domain.
Further, sum-based fusion shows a superior performance
over voting-based methods. MKL based method shows
good performance for iris fusion, but the performance
drops for other two settings. This may be because by
weighing kernels during training, it loses flexibility wail
testing when number of modalities increase.

Fusion with quality: Clearly, different modalities have
different levels of performance. Hence, we studied the ef-
fect of the proposed quality measure on the performance
of different methods. For a consistent comparison, the
quality values produced by SMBR-E method was used
for all the algorithms. Table IV shows the performance
for the three fusion settings. The effect of including
the quality measure can be studied by comparing with
Table lll. Clearly, the recognition rate increases for all
the methods across the fusion settings. Again SMBR-E
and SMBR-WE give the best performances among all the
methods.

Effect of joint sparsityWe also studied the effect of joint
sparsity constraint on the recognition performance. For
this, SMBR-WE algorithm was run for different values
of A\1. Figure 5 shows the rank one recognition variation
across)\; values for different fusion settings. All the
curves show a sharp increase in performance around
A1 = 0. Further, the increase is more for iris fusion,
which shows around% improvement at\; = 0.005
over A\; = 0. This shows that imposing joint sparsity
constraint is important for fusion. Moreover, it helps in
regulating fusion performance, when the reconstruction
error alone is not sufficient to distinguish between dif-
ferent classes. The performance is then stable acrpss
values, and starts decreasing slowly after reaching the
optimum performance.

o Variation with number of training samplesie varied

mance for different fusion settings. The proposed SMBR
approach outperforms existing classification techniques.

the number of training samples and studied the effect
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Fig. 5: Variation of recognition performance with diffeten
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on the top four algorithms. Figure 6 shows the vari-
ation for fusion of all the modalities. It can be seen
that SMBR-WE and SMBR-E are stable across number
of training samples, whereas the performance of SLR.
and MKLFusion based methods fall sharply. The fall in
performance of SLR and MKLFusion can be attributed to
the discriminative approaches of these methods, as well
as score-based fusion, as the fusion further reduces the
recognition performance when individual classifiers are
not good.

Rank one recognition across number of training samples
100 T T T T

95

90

85 —8— SMBR-WE

=—— SMBR-E
==@— SLR-Sum
=t MKLFusion

Recogntion Rate

80|

I
35 4

I
1 15

.
2 25 3
Number of training samples per class

Fig. 6: Variation of recognition performance with number of
training samples.

o Comparison with other score-based fusion metha¥ls:

b) Kernel Fusion: We further compared the perfor-

mances of proposed kerSMBR with kernel SVM, kernel SLR
and MKLFusion methods. In the experiments, we used Radial
Basis Function (RBF) as the kernel, given as:

x; — %3
Ii(xl,xj) = exp (_| - o2 J|2> )

o being a parameter to control the width of the RBF. For
MKLFusion, we gave linear, polynomial and RBF kernels as
the base kernels for learning.

Hyperparameter tuning:To fix the value of hyper-
parameter,c, we iterated over different values af,
{273 272 ... 23} for one set of training and test split
of the data. The value of giving the maximum perfor-
mance was fixed for each modality, and the performance
was averaged over a few iterations. The weights; }
were set tol for composite kernelA and Sy were set

to 0.01 and0.01 respectively.

Comparison of methodsFigure 7 shows the perfor-
mance of different methods on individual modalities,
and Figure 8 and Table VII on different fusion settings.
Comparison of performance with linear fusion shows
that the proposed kerSMBR significantly improves the
performance on individual iris modalities as well as iris
fusion. The performance on fingerprint modalities are
similar, however the fusion of all modalities @ iris + 4
fingerprints) shows an improvement @#4%. kerSMBR
also achieves the best accuracy among all the methods
for different fusion settings. kerSLR scores better than
kerSVM in all the cases, and it's accuracy is close to
kerSMBR. The performance of kerSLR is better than the
linear counterpart, however kerSVM does not show much
improvement.

though sum-based fusion is a popular technique for scorerig. 9: Face mask used to crop out different modalities.

fusion, some other techniques have also been proposed.
We evaluated the performance of likelihood-based fusion
method proposed in [48]. The results are shown in Table

V. The method does not show good performance asBt AR Face Dataset

models score distribution as Gaussian Mixture Model. The AR face dataset consists of faces with varying illumi-
However, it is difficult to model score distribution duenation, expression and occlusion conditions, captureavin t
to large variations in data samples. The method is alsessions. We evaluated our algorithms on a sett06fusers.

affected by the curse of dimensionality.

2 irises | 4 fingerprints | All modalities
SLR-Likelihood 66.6 83.5 75.1
SVM-Likelihood 50.7 31.9 31.0

Images from the first sessiof, for each subject were used
as training and the images from the second session, again
7 per subject, were used for testing. For testing the fusion
algorithms, four weak modalities were extracted from theefa
images: left and right periocular, mouth and nose regiohis T

TABLE V: Fusion performance with likelihood-based method, .5 qone by applying rectangular masks as shown in Figure 9,

[48].

and cropping out the respective regions. These, along Wwith t

whole face, were taken for fusion. Simple intensity valuesev
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Fig. 8: CMCs for different fusion methods for (a) four fingents, (b) two irises and (c) all modalities. Results for qusite
kernels using different techniques is shown in figure (d).

Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2
kerSMBR | 66.3+1.7 | 87.1+10 | 69.1+21 | 8.4+15 | 70.3+1.8 | 71.0+1.6
kerSLR 65.8+1.8 | 86.9+1.7 | 683+20 | 89.5+1.6 | 65.1+1.7 | 66.8+1.1
kerSVM 484+ 5.4 76.7 +2.3 50.2+ 1.9 68.4+74 | 439+1.1 44.6 £+ 3.0

TABLE VI: Rank one recognition performance for individuabdualities using kernel methods.
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kerSMBR kerSLR-Sum| kerSLR-Major | kerSVM-Sum | kerSVM-Major | MKLFusion

4 Fingerprints | 97.9+ 0.3 | 96.8+0.7 75.2 £0.7 93.2+1.2 71.4+1.3 88.7£0.9
2 Irises 84.7+1.7 | 83.7+18 75.2+£1.2 62.2 £ 2.8 47.82.4 76.9+24
All modalities | 99.1 +£0.2 | 98.9+0.1 87.9 £ 0.6 96.3 £ 0.8 79.5+ 1.6 91.2£1.0

TABLE VII: Rank one recognition performance for differentsfon settings using kernel methods.

used as features for all of them. The experimental set-up was
similar to the previous section. The parameter valugsand

Ao were set td).003 and0.002 respectively. Furthermore, we
also studied the effect of noise and occlusion on recognitio
performance.

o Comparison of methods:Table VIII shows the perfor-
mance of different algorithms on the face dataset. He
SR (sparse representation) shows the classification redift

Method Scarves| Sun-glass| Overall
SMBR-WE 86.2 36.0 61.1
SMBR-E 80.0 75.0 77.5
SR 453 52.3 48.8
Block Sparse [50]| 65.8 53.8 59.8
SLR-Sum 72.2 39.6 55.9
SVM-Sum 13.8 425 28.1
MKLFusion 47.7 13.0 30.3

11

r'&ABLE IX: Rank one performance comparison of the pro-
ysed method.

using just the whole face. Block Sparse Method is a
recent block sparsity based face recognition algorithm
[50] and FDDL [49] is a state-of-the-art discrimina- °
tive dictionaries based technique, but using only single
modality. Clearly, the SMBR approach achieves about
4 % improvement over other techniques. Thus, robust
classification using multiple modalities results in a signi
icant improvement over the current benchmark. Further,
a comparison with discriminative methods such as SLR
and SVM shows that they perform poorly compared to
the proposed method. This is because weak modalities are
hard to discriminate, hence score-level fusion with strong
modality does not improve performance. On the other
hand, by appropriately weighing different modalities,
MKLFusion achieves better result. However, by impos-
ing reconstruction and joint sparsity simultaneously, the
proposed method is able to achieve superior performance.
Effect of noise:In this experiment, test images were cor-
rupted with white Gaussian noise of increasing variance,
o2. Comparisons are shown in Figure 10. It can be seen
that both SMBR, SR and Block Sparse methods are stable

Quality based fusion:Quality determination is an impor-
tant parameter in fusion here, as a strong modality is be-
ing combined with weak modalities. We studied the effect
of quality measure introduced in Section Ill. However, in
this case we fix the quality for strong modalityz. whole
face to bel, while for the weak modalities, the SCI values
were taken. The recognition performance for SMBR-
E and SMBR-WE across different noise and occlusion
levels was studied. Figure 12 show the performance
comparison with the unweighted methods. Using quality,
the recognition performance for SMBR-WE goes up to
97.4 % from 96.9 %, whereas for SMBR-WE it increases
to 97 % from 96 %. Similarly, results improve across
different noise levels for both methods. However, SMBR-
WE with quality shows worse performance as block size
is increased. This may be because it does not handle
sparse error, hence the quality values are not robust.

VI. COMPUTATIONAL COMPLEXITY

with noise. The performance of other algorithms degradethe proposed algorithms are computationally efficient. The
sharply with noise level. This also highlights the problemg,ain steps of the algorithms are the update step<fo,
with MKLFusion, as it is not robust to degradation duringy 5nd V. For linear fusion. the update step fbrinvolves

testing.

computing(X¢" X'+ arI)~! and four matrix multiplications.

Effect of occlusion:In this experiment, a randomly cho-1he first term is constant across iterations and can be pre-
sen block of the test image was occluded. The recognitiQBmnyted. Matrix multiplication for two matrices of sizes

performance was studied with increasing block size, ., 2nd 5 x p can be done inO(

Figure 11 shows the performance of various algorithm

mnp) time. Hence,

Sr a given training and test data, the computations are

with block size. SMBR-E is the most stable among al|near in feature dimension. Hence, large feature dimenssio

the methods due to robust handling of error. Recognitiqn,

rates for other methods fall sharply with increasing blocl,ves matrix multiplicationX‘T".

size.

be efficiently handled. Similarly, update step forin-
Update steps folU and

o . N V involves only scalar matrix computations and are very
Recognition in spite of disguiséive also performed ¢ ¢

experiment on the rest of the AR face dataset, occluded E’é(lculating(Kxi
sun-glass and scarves. Similar to the above experimesiser steps ar

Similarly in the kernel fusion, update fdr involves
xi + BwI)™!, which can be pre-computed.
e similar to linear fusion. Classificatiorp ste

7 frontal non-occluded images per subject, from the firgto\ves calculating the residual error for each class, snd

session, were used for training, ah?l occluded images
per person, from both the sessions were used for testing.
Again the proposed SMBR-WE and SMBR-E methods
outperformed the other methods. SMBR-E method gave
the best performance, improving by.7% over the Block
Sparse method.

efficient.

VIl. CONCLUSION

We have proposed a novel joint sparsity-based feature level
fusion algorithm for multimodal biometrics recognitionhd
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Method Recognition Rate (%) Method Recognition Rate (%)
SMBR-WE 96.9 SVM-Sum 86.7
SMBR-E 96 SLR-Sum 77.9
SR 91 FDDL [49] 91.9
Block Sparse [50] 92.2 MKLFusion 89.7

TABLE VIII: Rank one performance comparison of the propossethod.

algorithm is robust as it explicitly includes both noise and4] A. Klausner, A. Tengg, and B. Rinner, “Vehicle classifioa on
occlusion terms. An efficient algorithm based on alterreadiis
rection was proposed for solving the optimization problgva.
also proposed a multimodal quality measure based on sparsg A. Rattani, D. Kisku, M. Bicego, and M. Tistarelli, “Faate level fusion
representation. Further, the algorithm was extended tallban
non-linear variations through kernel. Various experirsdrave

shown that our method is robust and significantly improves thig

overall recognition accuracy.
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