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Joint Sparse Representation for Robust Multimodal
Biometrics Recognition

Sumit Shekhar,Student Member, IEEE,Vishal M. Patel,Member, IEEE,Nasser M. Nasrabadi,Fellow, IEEE,
and Rama Chellappa,Fellow, IEEE

.

Abstract—Traditional biometric recognition systems rely on a
single biometric signature for authentication. While the advan-
tage of using multiple sources of information for establishing the
identity has been widely recognized, computational modelsfor
multimodal biometrics recognition have only recently received at-
tention. We propose a multimodal sparse representation method,
which represents the test data by a sparse linear combination of
training data, while constraining the observations from different
modalities of the test subject to share their sparse representations.
Thus, we simultaneously take into account correlations as well as
coupling information among biometric modalities. We modify our
model so that it is robust to noise and occlusion. A multimodal
quality measure is also proposed to weigh each modality as itgets
fused. Furthermore, we also kernelize the algorithm to handle
non-linearity in data. The optimization problem is solved using an
efficient alternative direction method. Various experiments show
that our method compares favorably with competing fusion-based
methods.

Index Terms—Multimodal biometrics, feature fusion, sparse
representation.

I. I NTRODUCTION

Unimodal biometric systems rely on a single source of
information such as a single iris or fingerprint or face for
authentication [1]. Unfortunately these systems have to deal
with some of the following inevitable problems [2]: (a) Noisy
data: poor lighting on a user’s face or occlusion are examples
of noisy data. (b) Non-universality: the biometric system
based on a single source of evidence may not be able to
capture meaningful data from some users. For instance, an
iris biometric system may extract incorrect texture patterns
from the iris of certain users due to the presence of contact
lenses. (c) Intra-class variations: in the case of fingerprint
recognition, presence of wrinkles due to wetness [3] can
cause these variations. These types of variations often occur
when a user incorrectly interacts with the sensor. (d) Spoof
attack: hand signature forgery is an example of this type of
attack. It has been observed that some of the limitations of
unimodal biometric systems can be addressed by deploying
multimodal biometric systems that essentially integrate the
evidence presented by multiple sources of information such
as iris, fingerprints and face. Such systems are less vulnerable
to spoof attacks as it would be difficult for an imposter to

Sumit Shekhar, Vishal M. Patel and R. Chellappa are with the Department
of Electrical and Computer Engineering and the Center for Automation
Research, UMIACS, University of Maryland, College Park, MD20742 USA
(e-mail: {sshekha,pvishalm,rama}@umiacs.umd.edu)

Nasser M. Nasrabadi is with the U.S. Army Research Lab, Adelphi, MD
20783 USA (e-mail: nasser.m.nasrabadi@us.army.mil).

simultaneously spoof multiple biometric traits of a genuine
user. Due to sufficient population coverage, these systems are
able to address the problem of non-universality.

Classification in multibiometric systems is done by fus-
ing information from different biometric modalities. The
information fusion can be done at different levels, which
can be broadly divided into feature level, score level and
rank/decision level fusion. Due to preservation of raw in-
formation, feature level fusion can be more discriminative
than score or decision level fusion [4]. But, there have been
very few efforts in exploring feature level fusion in the
biometric community. This is because of the differences in
features extracted from different sensors in terms of type and
dimensions. Often the features have large dimensions, and
fusion becomes difficult at the feature level. The prevalent
method is feature concatenation, which has been used for
different multibiometric settings [5]–[7]. However, for high-
dimensional feature vectors, simple feature concatenation may
be inefficient and non-robust. A related work in the machine
learning literature is of Multiple Kernel Learning (MKL),
which aims to integrate information from different features
by learning a weighted combination of respective kernels. A
detailed survey of the methods for MKL can be found in
[8]. However, for multimodal systems, weight determination
during testing is important, based on the quality of different
modalities. Such a framework is not feasible in MKL setting.
Methods like [9], [10] try to exploit information from labeled
and unlabeled data from a different view to improve classifier
performance. Similarly, SVM-2k [11] jointly learns SVM for
two views. But, these methods are difficult to generalize to
multimodal setting, as common in biometric fusion. A Fisher
discriminant analysis based method has also been proposed for
integrating multiple views [12], but it is also similar to MKL
with kernel Fisher discriminant analysis as the base learner
[13].

In recent years, theories of Sparse Representation (SR) and
Compressed Sensing (CS) have emerged as powerful tools
for efficient processing of data in non-traditional ways [14].
This has led to a resurgence in interest in the principles
of SR and CS for biometrics recognition [15]. Wrightet
al. [16] proposed the seminal sparse representation-based
classification (SRC) algorithm for face recognition. It was
shown that by exploiting the inherent sparsity of data, one
can obtain improved recognition performance over traditional
methods especially when the data is contaminated by various
artifacts such as illumination variations, disguise, occlusion
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Fig. 1: Overview of our algorithm.

and random pixel corruption. Pillaiet al. extended this work
for robust cancelable iris recognition in [17]. Nagesh and Li
[18] presented an expression-invariant face recognition method
using distributed CS and joint sparsity models. Patelet al. [19]
proposed a dictionary-based method for face recognition under
varying pose and illumination. A discriminative dictionary
learning method for face recognition was also proposed by
Zhang and Li [20]. For a survey of applications of SR and CS
algorithms to biometric recognition, see [14], [15], [21],[22]
and the references therein.

Motivated by the success of SR in unimodal biomet-
ric recognition, we propose a joint sparsity-based algorithm
for multimodal biometrics recognition. Figure 1 presents an
overview of our framework. It is based on the well known
regularized regression method, multi-task multi-variateLasso
[23], [24]. Our method imposes common sparsities both within
each biometric modality and across different modalities. Note
that our method is different from some of the previously pro-
posed classification algorithms based on joint sparse represen-
tation. For example, Yuan and Yan [25] proposed a multi-task
sparse linear regression model for image classification. This
method uses group sparsity to combine different features of
an object for classification. Zhanget al. [26] proposed a joint
dynamic sparse representation model for object recognition.
Their essential goal was to recognize the same object viewed
from multiple observations i.e., different poses. Our method
is more general in that it can deal with both multi-modal as
well as multi-variate sparse representations.

This paper makes the following contributions:

• We present a robust feature level fusion algorithm for
multibiometric recognition. Through the proposed joint
sparse framework, we can easily handle different dimen-

sions of different modalities by forcing different features
to interact through their sparse coefficients. Furthermore,
the proposed algorithm can efficiently handle large di-
mensional feature vectors.

• We make the classification robust to occlusion and noise
by introducing an error term into the optimization frame-
work.

• The algorithm is easily generalizable to handle multiple
test inputs from a modality.

• We introduce a quality measure for multimodal fusion
based on the joint sparse representation.

• Lastly, we kernelize the algorithm to handle non-linearity
in the data samples.

A preliminary version of this work appeared in [27], which
describes just the linear version of the algorithm, robust
to noise and occlusion. Furthermore, extensive experimental
evaluations are presented here.

A. Paper Organization

The paper is organized as follows. In section II, we describe
the proposed sparsity-based multimodal recognition algorithm
which is kernelized in section IV. The quality measure is
described in III. Experimental evaluations on a comprehensive
multimodal dataset and a face database are described in
section V. Finally, in section VI, we discuss the computational
complexity of the method. Concluding remarks are presented
in section VII.

II. JOINT SPARSITY-BASED MULTIMODAL BIOMETRICS

RECOGNITION

Consider a multimodalC-class classification problem with
D different biometric traits. Suppose there arepi training
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samples in each biometric trait. For each biometric trait
i = 1, . . . , D, we denote

Xi = [Xi
1,X

i
2, . . . ,X

i
C ]

as anni × pi dictionary of training samples consisting ofC
sub-dictionariesXi

k ’s corresponding toC different classes.
Each sub-dictionary

Xi
j = [xi

j,1,x
i
j,2, . . . ,x

i
j,pj

] ∈ R
n×pj

represents a set of training data from theith modality labeled
with thejth class. Note thatni is the feature dimension of each
sample and there arepj number of training samples in classj.
Hence, there are a total ofp =

∑C

j=1 pj many samples in the
dictionaryXi

C . Elements of the dictionary are often referred
to as atoms. In multimodal biometrics recognition problem,
given a test samples (matrix)Y, which consists ofD different
modalities{Y1,Y2, . . . ,YD} where each sampleYi consists
of di observationsYi = [yi

1,y
i
2, . . . ,y

i
d] ∈ R

n×di , the objec-
tive is to identify the class to which a test sampleY belongs
to. In what follows, we present a multimodal multivariate
sparse representation-based algorithm for this problem [23],
[24], [28].

A. Multimodal multivariate sparse representation

We want to exploit the joint sparsity of coefficients from
different biometric modalities to make a joint decision. To
simplify this model, let us consider a bi-modal classification
problem where the test sampleY = [Y1,Y2] consists of two
different modalities such as iris and face. Suppose thatY1

belongs to thejth class. Then, it can be reconstructed by a
linear combination of the atoms in the sub-dictionaryX1

j . That
is, Y1 = X1Γ1 +N1, whereΓ1 is a sparse matrix with only
pj nonzero rows associated with thejth class andN1 is the
noise matrix. Similarly, sinceY2 represents the same subject,
it belongs to the same class and can be represented by training
samples inX2

j with different set of coefficientsΓ2
j . Thus, we

can writeY2 = X2Γ2+N2, whereΓ2 is a sparse matrix that
has the same sparsity pattern asΓ1. If we let Γ = [Γ1,Γ2],
thenΓ is a sparse matrix with onlypj non-zero rows.

In the more general case where we haveD modalities,
if we denote {Yi}Di=1 as a set ofD observations each
consisting ofdi samples from each modality and letΓ =
[Γ1,Γ2, . . . ,ΓD] ∈ R

p×d be the matrix formed by concate-
nating the coefficient matrices withd =

∑D
i=1 di, then we

can seek for the row-sparse matrixΓ by solving the following
ℓ1/ℓq-regularized least square problem

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Yi −XiΓi‖2F + λ‖Γ‖1,q (1)

whereλ is a positive parameter andq is set greater than1 to
make the optimization problem convex. Here,‖Γ‖1,q is a norm
defined as‖Γ‖1,q =

∑p

k=1 ‖γ
k‖q where γk ’s are the row

vectors ofΓ and‖Y‖F is the Frobenius norm of the matrix

Y defined as‖Y‖F =
√

∑

i,j Y
2
i,j . OnceΓ̂ is obtained, the

class label associated with an observed vector is then declared
as the one that produces the smallest approximation error.

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδij(Γ
i)‖2F , (2)

whereδij is the matrix indicator function defined by keeping
rows corresponding to thejth class and setting all other rows
equal to zero. Note that the optimization problem (1) reduces
to the conventional Lasso [29] whenD = 1 and d = 1. In
the case, whenD = 1 (1) is referred to as multivariate Lasso
[23].

B. Robust multimodal multivariate sparse representation

In this section, we consider a more general problem where
the data is contaminated by noise. In this case, the observation
model can be modeled as

Yi = XiΓi + Zi +Ni, i = 1, . . . D, (3)

whereNi is a small dense additive noise andZi ∈ R
n×di

is a matrix of background noise (occlusion) with arbitrarily
large magnitude. One can assume that eachZi is sparsely
represented in some basisBi ∈ R

n×mi

. That is,Zi = BiΛi

for some sparse matricesΛi ∈ R
mi×di . Hence, (3) can be

rewritten as

Yi = XiΓi +BiΛi +Ni, i = 1, . . .D, (4)

With this model, one can simultaneously recover the coef-
ficientsΓi andΛi by taking advantage of the fact thatΛi are
sparse

Γ̂, Λ̂ = argmin
Γ,Λ

1

2

D
∑

i=1

‖Yi −XiΓi −BiΛi‖2F +

λ1‖Γ‖1,q + λ2‖Λ‖1, (5)

where λ1 and λ2 are positive parameters andΛ =
[Λ1,Λ2, . . . ,ΛD] is the sparse coefficient matrix correspond-
ing to occlusion. Theℓ1-norm of matrix Λ is defined as
‖Λ‖1 =

∑

i,j |Λi,j |. Note that the idea of exploiting the
sparsity of occlusion term has been studied by Wrightet al.
[16] and Candeset al. [30].

OnceΓ,Λ are computed, the effect of occlusion can be
removed by setting̃Yi = Yi − BiΛi. One can then declare
the class label associated to an observed vector as

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδi
j(Γ

i)−BiΛi‖2F . (6)

C. Optimization algorithm

Optimization problem (5) is convex but difficult to solve due
to the joint sparsity constraint. In this section, we present an
approach based on the classical alternating direction method
of multipliers (ADMM) [31], [32]. Note that the optimization
problem (1) can be solved by settingλ2 equal to zero. Let

C(Γ,Λ) =
1

2

D
∑

i=1

‖Yi −XiΓi −BiΛi‖2F .
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Then, our goal is to solve the following optimization problem

min
Γ,Λ

C(Γ,Λ) + λ1‖Γ‖1,q + λ2‖Λ‖1. (7)

In ADMM the idea is to decoupleC(Γ,Λ), ‖Γ‖1,q and‖Λ‖1
by introducing auxiliary variables to reformulate the problem
into a constrained optimization problem

min
Γ,Λ,U,V

C(Γ,Λ) + λ1‖V‖1,q + λ2‖U‖1 s. t.

Γ = V,Λ = U. (8)

Since, (8) is an equally constrained problem, the Augmented
Lagrangian method (ALM) [31] can be used to solve the
problem. This can be done by minimizing the augmented
Lagrangian functionfαΓ,αΛ

(Γ,Λ,V,U;AΛ,AΓ) defined as

C(Γ,Λ) + λ2‖U‖1 + 〈AΛ,Λ−U〉+
αΛ

2
‖Λ−U‖2F+

λ1‖V‖1,q + 〈AΓ,Γ−V〉+
αΓ

2
‖Γ−V‖2F , (9)

where AΛ and AΓ are the multipliers of the two linear
constraints, andαΛ, αΓ are the positive penalty parameters.
The ALM algorithm solvesfαΓ,αΛ

(Γ,Λ,V,U;AΛ,AΓ) with
respect toΓ,Λ,U andV jointly, keepingAΓ andAΛ fixed
and then updatingAΓ andAΛ keeping the remaining variables
fixed. Due to the separable structure of the objective function
fαΓ,αΛ

, one can further simplify the problem by minimizing
fαΓ,αΛ

with respect to variablesΓ,Λ,U andV, separately.
Different steps of the algorithm are given in Algorithm 1.
In what follows, we describe each of the sub-optimization
problems in detail.

Algorithm 1: Alternating Direction Method of Multipliers
(ADMM).

Initialize: Γ0,U0,V0,AΛ,0,AΓ,0, αΓ, αΛ

While not converged do
1. Γt+1 = argminΓ fαΓ,αΛ

(Γ,Λt,Ut,Vt;AΓ,t,AΛ,t)
2. Λt+1 = argminΛ fαΓ,αΛ

(Γt+1,Λ,Ut,Vt;AΓ,t,AΛ,t)
3. Ut+1 = argminU fαΓ,αΛ

(Γt+1,Λt+1,U,Vt;AΓ,t,AΛ,t)
4. Vt+1 = argminV fαΓ,αΛ

(Γt+1,Λt+1,Ut+1,V;AΓ,t,AΛ,t)
5. AΓ,t+1

.
= AΓ,t + αΛ(Γt+1 −Ut+1)

6. AΛ,t+1
.
= AΛ,t + αΓ(Γt+1 −Vt+1)

1) Update step forΓ: The first sub-optimization problem
involves the minimization offαΓ,αΛ

(Γ,Λ,V,U;AΛ,AΓ)
with respect toΓ. It has the quadratic structure, which is easy
to solve by setting the first-order derivative equal to zero.
Furthermore, the loss functionC(Γ,Λ) is a sum of convex
functions associated with sub-matricesΓi, one can seek for
Γi
t+1, i = 1, . . . , D, which has the following solution

Γi
t+1 = (XiT Xi + αΓI)

−1(XiT (Yi −Λi
t) + αΓV

i
t +Ai

V,t),

where I is p × p identity matrix andΛi
t,V

i
t and Ai

V,t are
sub-matrices ofΛt,Vt andAV,t, respectively.

2) Update step forΛ: The second sub-optimization prob-
lem is similar in nature, whose solution is given below

Λi
t+1 = (1 + αΛ)

−1(Yi −XiΓi
t+1 + αΛU

i
t −Ai

Λ,t),

whereUi
t andAi

Λ,t are sub-matrices ofUt andAΛ,t, respec-
tively.

3) Update step forU: The third sub-optimization problem
is with respect toU, which is the standardℓ1 minimization
problem which can be recast as

min
U

1

2
‖Λt+1 + α−1

Λ AΛ,t −U‖2F +
λ2

αΛ
‖U‖1. (10)

Equation (10) is the well-known shrinkage problem whose
solution is given by

Ut+1 = S

(

Λt+1 + α−1
Λ AΛ,t,

λ2

αΛ

)

,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero
otherwise.

4) Update step forV: The final suboptimization problem
is with respect toV which can be reformulated as

min
V

1

2
‖Γt+1 + α−1

Γ AΓ,t −V‖2F +
λ1

αΓ
‖V‖1,q. (11)

Due to the separable structure of (11), it can be solved by
minimizing with respect to each row ofV separately. Let
γi,t+1, aΓ,i,t andvi,t+1 be rows of matricesΓt+1,AΓ,t and
Vt+1, respectively. Then for eachi = 1, . . . , p we solve the
following sub-problem

vi,t+1 = argmin
v

1

2
‖z− v‖22 + η‖v‖q, (12)

wherez = γi,t+1−aΓ,i,tα
−1
Γ andη = λ1

λ2
. One can derive the

solution for (12) for anyq. In this paper, we only focus on
the case whenq = 2. The solution of (12) has the following
form

vi,t+1 =

(

1−
η

‖z‖2

)

+

z,

where (v)+ is a vector with entries receiving values
max(vi, 0).

Our proposed Sparse Multimodal Biometrics Recognition
(SMBR) method is summarized in Algorithm 2. We refer to
the robust method taking sparse error into account as SMBR-E
(SMBR with error), and the initial case where it is not taken
account as SMBR-WE (SMBR without error).

Algorithm 2: Sparse Multimodal Biometrics Recognition
(SMBR).

Input: Training samples{Xi}
D
i=1, test sample{Yi}

D
i=1, Occlusion

basis{B}Di=1

Procedure: Obtain Γ̂ and Λ̂ by solving

Γ̂, Λ̂ = argmin
Γ,Λ

1

2

D
∑

i=1

‖Yi−X
i
Γ
i−B

i
Λ

i‖2F+λ1‖Γ‖1,q+λ2‖Λ‖1,

Output:
identity(Y) = argminj

∑D
i=1 ‖Y

i −Xiδ
i
j(Γ̂

i
)−BiΛ̂

i‖2
F
.

III. QUALITY BASED FUSION

Ideally a fusion mechanism should give more weights to
the more reliable modalities. Hence, the concept of quality
is important in multimodal fusion. A quality measure based
on sparse representation was introduced for faces in [16]. To
decide whether a given test sample has good quality or not,
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its Sparsity Concentration Index (SCI) was calculated. Given
a coefficient vectorγ ∈ R

p, the SCI is given as:

SCI(γ) =

C.maxi∈{1,··· ,C}‖δi(γ)‖1

‖γ‖1
− 1

C − 1

where, δi is the indicator function keeping the coefficients
corresponding to theith class and setting others to zero. SCI
values close to 1 correspond to the case where the test sample
can be represented well using the samples of a single class,
hence is of high quality. On the other hand, samples with SCI
close to 0 are not similar to any of the classes, and hence are
of poor quality. This can be easily extended to the multimodal
case using the joint sparse representation matrixΓ̂. In this
case, we can define the quality,qij for sampleyi

j as:

qij = SCI(Γ̂
i

j)

where,Γ̂i
j is thejth column ofΓ̂

i
. Given this quality measure,

the classification rule (2) can be modified to include the quality
measure.

ĵ = argmin
j

D
∑

i=1

di
∑

k=1

qik‖y
i
k −Xiδj(Γ

i
k)‖

2
F , (13)

where,δj is the indicator function retaining the coefficients
corresponding tojth class.

IV. K ERNEL SPACE MULTIMODAL BIOMETRICS

RECOGNITION

The class identities in the multibiometric dataset may not
be linearly separable. Hence, we also extend the sparse multi-
modal fusion framework to kernel space. The kernel function,
κ : Rn × R

n, is defined as the inner product

κ(xi,xj) = 〈φ(xi), φ(xj)〉

where,φ is an implicit mapping projecting the vectorx into
a higher dimensional space.

A. Multivariate kernel sparse representation

Considering the general case ofD modalities with{Yi}Di=1

as a set ofdi observations, the feature space representation can
be written as:

Φ(Yi) = [φ(yi
1), φ(y

i
2), ..., φ(y

i
d)]

Similarly, the dictionary of training samples for modalityi =
1, · · · , D can be represented in feature space as

Φ(Xi) = [φ(Xi
1), φ(X

i
2), · · · , φ(X

i
C)]

As in joint linear space representation, we have:

Φ(Yi) = Φ(Xi)Γi

where,Γi is the coefficient matrix associated with modality
i. Incorporating information from all the sensors, we seek to
solve the following optimization problem similar to the linear
case:

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Φ(Yi)−Φ(Xi)Γi‖2F + λ‖Γ‖1,q (14)

where,Γ = [Γ1,Γ2, · · · ,ΓD]. It is clear that the information
from all modalities are integrated via the shared sparsity
pattern of the matrices{Γi}Di=1. This can be reformulated in
terms of kernel matrices as:

Γ̂ = argmin
Γ

1

2

D
∑

i=1

(

trace(ΓiT KXi,Xi
Γi)

−2trace(KXi,Yi
Γi)

)

+ λ‖Γ‖1,q (15)

where, the kernel matrixKA,B is defined as:

KA,B(i, j) = 〈φ(ai), φ(bj)〉 (16)

ai andbj beingith andjth columns ofA andB respectively.

B. Optimization Algorithm

Similar to the linear fusion method, we apply the alternating
direction method to efficiently solve the problem for kernel
fusion. The method splits the variableΓ such that the new
problem has two convex functions. This is done by introducing
a new variableV and reformulating the problems (15) and (??)
as:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,qs.t.Γ = V (17)

where, NK is the number of kernels in (15) and (??).
Rewriting the problem using the Lagrangian multiplier, the
optimization problem becomes:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,q + 〈B,Γ−V〉+
βW

2

∥

∥Γ−V
∥

∥

2

F
(18)

which upon re-arranging reduces to:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,q +
βW

2

∥

∥Γ−V +
1

βW

B
∥

∥

2

F
(19)

The optimization method is summarized in Algorithm 3. It
should be pointed out that each step has a simple closed-form
expression.

Algorithm 3: Alternating Direction Method of Multipliers
(ADMM) in kernel space.

Initialize: Γ0,V0,B0, βW

While not converged do
1. Γt+1 = argminΓ

1
2

∑NK
i=1

(

trace(ΓiT
K

Xi,XiΓ
i)−

2trace(K
Xi,YiΓ

i)
)

+ λ‖Vt‖1,q + βW

2

∥

∥Γ−Vt +
1

βW
Bt

∥

∥

2

F

2. Vt+1 = argminV λ‖V‖1,q + βW
2

∥

∥Γt+1 −Vt + 1
βW

Bt

∥

∥

2

F

3. Bt+1 = Bt + βW (Γt+1 −Vt+1)

1) Update steps forΓt: Γt+1 is obtained by updating each
sub-matrixΓi

t, i = 1, · · · , NK as:

Γi
t = (KXi,Xi + βW I)−1(KXi,Yi + βWVi

t −Bi
t) (20)

where,I is an identity matrix andVi
t, B

i
t are sub-matrices

of Vt andBt respectively.
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2) Update steps forVt: The update equation forVt is
same as in the linear fusion case using (11) and (12), replacing
AΓ,t andαΓ with Bt andβW respectively.

C. Classification

OnceΓ is obtained, classification can be done by assigning
the class label as:

ĵ = argmin
j

NK
∑

i=1

‖Φ(Y
i
)−Φ(X

i

j)Γ̂
i
j‖

2
F

or in terms of kernel matrices as:

ĵ = argmin
j

NK
∑

i=1

(

trace(KYY)− 2trace(Γ̂iT

j K
Xi

j
Y
Γ̂i
j)

+ trace(Γ̂iT

j KXi
j
Xi

j
Γ̂i
j)) (21)

Here,Xi
j is the sub-dictionary associated withjth class and

Γ̂i
j is the coefficient matrix associated with this class.
The classification rule can be further extended to include

the quality measure as in (13). But, we skip this step here,
as we wish to study the effect of kernel representation and
quality separately.

Multivariate Kernel Sparse Recognition (kerSMBR) algo-
rithm is summarized in Algorithm 4:

Algorithm 4: Kernel Sparse Multimodal Biometrics Recogni-
tion (kerSMBR).

Input: Training samples{Xi}
D
i=1, test sample{Yi}

D
i=1

Procedure: Obtain Γ̂ by solving

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Φ(Yi)−Φ(Xi)Γi‖2F + λ‖Γ‖1,q (22)

Output: identity(Y) = argminj
∑D

i=1

(

trace(KYY)−

2trace(Γ̂iT

j K
X

i
j
Y
Γ̂
i
j) + trace(Γ̂iT

j K
X

i
j
X

i
j
Γ̂
i
j))

V. EXPERIMENTS

We evaluated our algorithm on two publicly available
datasets - the WVU Multimodal dataset [33] and the AR face
dataset [34]. In the first experiment, we tested on the WVU
dataset, which is one of the few publicly available datasets
which allows fusion at image level. It is a challenging dataset
consisting of samples from different biometric modalitiesfor
each subject.

In the second experiment, we show the applicability of our
method to fusing information fromweakbiometrics extracted
from face images. In particular, the periocular region has
been shown to be a useful biometric [35]. Similarly, the nose
region has also been explored as a biometric [36]. Sinhaet al
[37] have demonstrated that eyebrows are important for face
recognition. However, each of these sub-regions may not be
as discriminative as the whole face. The challenge for fusion
algorithms is to be able to combine these weak modalities
with a strong modality based on the whole face [38]. We
demonstrate how our framework can be extended to address
this problem. Further, we also show the effects of noise and

occlusion on the performance of different algorithms. In all the
experimentsBi was set to be identity for convenience,i.e., we
assume background noise to be sparse in image domain.

A. WVU Multimodal Dataset

The WVU multimodal dataset is a comprehensive collection
of different biometric modalities such as fingerprint, iris,
palmprint, hand geometry and voice from subjects of different
age, gender and ethnicity as described in Table I. It is a
challenging dataset as many of these samples are corrupted
with blur, occlusion and sensor noise as shown in Figure 2. Out
of these, we chose iris and fingerprint modalities for testing the
proposed algorithms. In total, there are2 iris (right and left iris)
and4 fingerprint modalities. Also, the evaluation was done on
a subset of219 subjects having samples in both modalities.

Fig. 2: Examples of challenging images from the WVU
Multimodal dataset. The images shown above suffer from
various artifacts such as sensor noise, blur and occlusion.

Biometric Modality # of subjects # of samples
Iris 244 3099

Fingerprint 272 7219
Palm 263 683
Hand 217 3062
Voice 274 714

TABLE I: WVU Biometric Data

1) Preprocessing:Robust pre-processing of images was
done before feature extraction. Iris images were segmented
using the method proposed in [39]. Following the segmen-
tation step,25 × 240 iris templates were generated by re-
sampling using the publicly available code of Maseket al.
[40]. Fingerprint images were enhanced using the filtering
methods described in [41], and then the core point was
detected from the enhanced images [42]. Features were then
extracted around the detected core point.

2) Feature Extraction:Gabor features were extracted from
the processed images as they have been shown to give good
performance on both fingerprints [42] and iris [43]. For
fingerprint samples, the processed images were convolved with
Gabor filters at8 different orientations. Circular tessellations
were extracted around the core point for all the filtered images
similar to [42]. The tessellation consisted of15 concentric
bands, each of width5 pixels and divided into30 sectors. The
mean values for each sector were concatenated to form the
feature vector of size3600× 1. Features for iris images were
formed by convolving the templates with a log-Gabor filter at
a single scale, and vectorizing the template to give a6000× 1
dimensional feature.
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Fig. 3: CMCs (Cumulative Match Curve) for individual modalities using (a) SMBR-E, (b) SMBR-WE, (c) SLR and (d) SVM
methods.
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Fig. 4: CMCs for multimodal fusion using (a) four fingerprints, (b) two irises and (c) all modalities.
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Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2
SMBR-WE 68.1± 1.1 88.4± 1.2 69.2± 1.5 87.5± 1.5 60.0± 1.5 62.1± 0.4
SMBR-E 67.1± 1.0 87.9± 0.8 67.4± 1.9 86.9± 1.5 62.5± 1.2 64.3± 1.0

SLR 67.4± 1.9 87.9± 1.3 66.0± 2.2 87.5± 1.3 57.1± 3.0 57.9± 2.7
SVM 41.1± 5.0 75.5± 2.2 49.2± 1.6 67.0± 8.3 44.3± 1.2 45.0± 2.9

TABLE II: Rank one recognition performance for individual modalities.

SMBR-WE SMBR-E SLR-Sum SLR-Major SVM-Sum SVM-Major MKLFusion
4 Fingerprints 97.9± 0.4 97.6± 0.6 96.3± 0.8 74.2± 0.7 90.0 ± 2.2 73.0± 1.5 86.2± 1.2

2 Irises 76.5± 1.6 78.2± 1.2 72.7± 4.0 64.2± 2.7 62.8 ± 2.6 49.3± 2.0 76.8± 2.5
All modalities 98.7± 0.2 98.6± 0.5 97.6± 0.4 84.4± 0.9 94.9 ± 1.5 81.3± 1.7 89.8± 0.9

TABLE III: Rank one recognition performance for the WVU Multimodal dataset.

SMBR-WE SMBR-E SLR-Sum SLR-Major SVM-Sum SVM-Major
4 Fingerprints 98.2± 0.5 98.1± 0.5 97.5± 0.5 86.3± 0.6 93.6 ± 1.6 85.5± 0.9

2 Irises 76.9± 1.2 78.8± 1.7 74.1± 1.0 67.2± 2.4 64.3 ± 3.3 51.6± 2.0
All modalities 98.8± 0.4 98.6± 0.3 98.2± 0.2 93.8± 0.9 95.5 ± 1.5 93.3± 1.2

TABLE IV: Rank one recognition performance using the proposed quality measure.

3) Experimental Set-up:The dataset was randomly divided
into 4 training samples per class (1 sample here is 1 data
sample each from6 modalities) and the remaining519 samples
were used for testing. The recognition result was averaged over
5 runs. The proposed methods were compared with state-of-
the-art classification methods such as sparse logistic regression
(SLR) [44] and SVM [45]. As these methods cannot handle
multiple modalities, we explored score-level and decision-
level fusion methods for combining the results of individual
modalities. For score-level fusion, the probability outputs for
test sample of each modality,{yi}

6
i=1 were added together

to give the final score vector. Classification was based upon
the final score values. For decision-level fusion, the subject
chosen by the maximum number of modalities was taken
to be from the correct class. We further compared with the
efficient multiclass implementation of MKL algorithm [46].
The proposed linear and kernel fusion techniques were tested
separately and compared them with the linear and kernel
versions of SLR, SVM and MKL algorithms. We denote the
score-level fusion of these methods as SLR-Sum and SVM-
Sum, and the decision-level fusion as SLR-Major and SVM-
Major. MKL based method is denoted as MKLFusion. We
report mean and standard deviation of rank one recognition
rates for all the methods. We also show Cumulative Match
Curves (CMCs) for all the classifiers. CMC is a performance
measure for biometric recognition systems and has been shown
to be equivalent to ROC of the system [47].

a) Linear Fusion: The recognition performances of
SMBR-WE and SMBR-E was compared with linear SVM and
linear SLR classification methods. The parametersλ1 andλ2

were set to0.01.

• Comparsion of Methods:Figure 3 and Table II show the
performance on individual modalities. All the classifiers
show a similar trend. The performance for all of them are
lower on iris images and fingers1 and3. The proposed
method show superior performance on all the modalities.
Figure 4 and Table III show the recognition perfor-
mance for different fusion settings. The proposed SMBR
approach outperforms existing classification techniques.

Both SMBR-E and SMBR-WE have similar performance,
though the latter seems to give a slightly better perfor-
mance. This may be due to the penalty on the sparse error,
though the error may not be sparse in the image domain.
Further, sum-based fusion shows a superior performance
over voting-based methods. MKL based method shows
good performance for iris fusion, but the performance
drops for other two settings. This may be because by
weighing kernels during training, it loses flexibility while
testing when number of modalities increase.

• Fusion with quality: Clearly, different modalities have
different levels of performance. Hence, we studied the ef-
fect of the proposed quality measure on the performance
of different methods. For a consistent comparison, the
quality values produced by SMBR-E method was used
for all the algorithms. Table IV shows the performance
for the three fusion settings. The effect of including
the quality measure can be studied by comparing with
Table III. Clearly, the recognition rate increases for all
the methods across the fusion settings. Again SMBR-E
and SMBR-WE give the best performances among all the
methods.

• Effect of joint sparsity:We also studied the effect of joint
sparsity constraint on the recognition performance. For
this, SMBR-WE algorithm was run for different values
of λ1. Figure 5 shows the rank one recognition variation
acrossλ1 values for different fusion settings. All the
curves show a sharp increase in performance around
λ1 = 0. Further, the increase is more for iris fusion,
which shows around5% improvement atλ1 = 0.005
over λ1 = 0. This shows that imposing joint sparsity
constraint is important for fusion. Moreover, it helps in
regulating fusion performance, when the reconstruction
error alone is not sufficient to distinguish between dif-
ferent classes. The performance is then stable acrossλ1

values, and starts decreasing slowly after reaching the
optimum performance.

• Variation with number of training samples:We varied
the number of training samples and studied the effect
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on the top four algorithms. Figure 6 shows the vari-
ation for fusion of all the modalities. It can be seen
that SMBR-WE and SMBR-E are stable across number
of training samples, whereas the performance of SLR
and MKLFusion based methods fall sharply. The fall in
performance of SLR and MKLFusion can be attributed to
the discriminative approaches of these methods, as well
as score-based fusion, as the fusion further reduces the
recognition performance when individual classifiers are
not good.
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Fig. 6: Variation of recognition performance with number of
training samples.

• Comparison with other score-based fusion methods:Al-
though sum-based fusion is a popular technique for score
fusion, some other techniques have also been proposed.
We evaluated the performance of likelihood-based fusion
method proposed in [48]. The results are shown in Table
V. The method does not show good performance as it
models score distribution as Gaussian Mixture Model.
However, it is difficult to model score distribution due
to large variations in data samples. The method is also
affected by the curse of dimensionality.

2 irises 4 fingerprints All modalities
SLR-Likelihood 66.6 83.5 75.1
SVM-Likelihood 50.7 31.9 31.0

TABLE V: Fusion performance with likelihood-based method
[48].

b) Kernel Fusion: We further compared the perfor-
mances of proposed kerSMBR with kernel SVM, kernel SLR
and MKLFusion methods. In the experiments, we used Radial
Basis Function (RBF) as the kernel, given as:

κ(xi,xj) = exp

(

−
‖xi − xj‖

2
2

σ2

)

,

σ being a parameter to control the width of the RBF. For
MKLFusion, we gave linear, polynomial and RBF kernels as
the base kernels for learning.

• Hyperparameter tuning:To fix the value of hyper-
parameter,σ, we iterated over different values ofσ,
{2−3, 2−2, · · · , 23} for one set of training and test split
of the data. The value ofσ giving the maximum perfor-
mance was fixed for each modality, and the performance
was averaged over a few iterations. The weights{αij}
were set to1 for composite kernel.λ andβW were set
to 0.01 and0.01 respectively.

• Comparison of methods:Figure 7 shows the perfor-
mance of different methods on individual modalities,
and Figure 8 and Table VII on different fusion settings.
Comparison of performance with linear fusion shows
that the proposed kerSMBR significantly improves the
performance on individual iris modalities as well as iris
fusion. The performance on fingerprint modalities are
similar, however the fusion of all6 modalities (2 iris + 4
fingerprints) shows an improvement of0.4%. kerSMBR
also achieves the best accuracy among all the methods
for different fusion settings. kerSLR scores better than
kerSVM in all the cases, and it’s accuracy is close to
kerSMBR. The performance of kerSLR is better than the
linear counterpart, however kerSVM does not show much
improvement.

Fig. 9: Face mask used to crop out different modalities.

B. AR Face Dataset

The AR face dataset consists of faces with varying illumi-
nation, expression and occlusion conditions, captured in two
sessions. We evaluated our algorithms on a set of100 users.
Images from the first session,7 for each subject were used
as training and the images from the second session, again
7 per subject, were used for testing. For testing the fusion
algorithms, four weak modalities were extracted from the face
images: left and right periocular, mouth and nose regions. This
was done by applying rectangular masks as shown in Figure 9,
and cropping out the respective regions. These, along with the
whole face, were taken for fusion. Simple intensity values were
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Fig. 7: CMCs for individual modalities using (a) kernel SVM,(b) kernel SLR and (c) kerSMBR.
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Fig. 8: CMCs for different fusion methods for (a) four fingerprints, (b) two irises and (c) all modalities. Results for composite
kernels using different techniques is shown in figure (d).

Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2
kerSMBR 66.3± 1.7 87.1± 1.0 69.1± 2.1 86.4 ± 1.5 70.3± 1.8 71.0± 1.6
kerSLR 65.8± 1.8 86.9 ± 1.7 68.3± 2.0 89.5± 1.6 65.1± 1.7 66.8 ± 1.1
kerSVM 48.4± 5.4 76.7 ± 2.3 50.2± 1.9 68.4 ± 7.4 43.9± 1.1 44.6 ± 3.0

TABLE VI: Rank one recognition performance for individual modalities using kernel methods.
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kerSMBR kerSLR-Sum kerSLR-Major kerSVM-Sum kerSVM-Major MKLFusion
4 Fingerprints 97.9± 0.3 96.8± 0.7 75.2 ± 0.7 93.2± 1.2 71.4± 1.3 88.7± 0.9

2 Irises 84.7± 1.7 83.7± 1.8 75.2 ± 1.2 62.2± 2.8 47.82.4 76.9± 2.4
All modalities 99.1± 0.2 98.9± 0.1 87.9 ± 0.6 96.3± 0.8 79.5± 1.6 91.2± 1.0

TABLE VII: Rank one recognition performance for different fusion settings using kernel methods.

used as features for all of them. The experimental set-up was
similar to the previous section. The parameter values,λ1 and
λ2 were set to0.003 and0.002 respectively. Furthermore, we
also studied the effect of noise and occlusion on recognition
performance.

• Comparison of methods:Table VIII shows the perfor-
mance of different algorithms on the face dataset. Here,
SR (sparse representation) shows the classification result
using just the whole face. Block Sparse Method is a
recent block sparsity based face recognition algorithm
[50] and FDDL [49] is a state-of-the-art discrimina-
tive dictionaries based technique, but using only single
modality. Clearly, the SMBR approach achieves about
4 % improvement over other techniques. Thus, robust
classification using multiple modalities results in a signif-
icant improvement over the current benchmark. Further,
a comparison with discriminative methods such as SLR
and SVM shows that they perform poorly compared to
the proposed method. This is because weak modalities are
hard to discriminate, hence score-level fusion with strong
modality does not improve performance. On the other
hand, by appropriately weighing different modalities,
MKLFusion achieves better result. However, by impos-
ing reconstruction and joint sparsity simultaneously, the
proposed method is able to achieve superior performance.

• Effect of noise:In this experiment, test images were cor-
rupted with white Gaussian noise of increasing variance,
σ2. Comparisons are shown in Figure 10. It can be seen
that both SMBR, SR and Block Sparse methods are stable
with noise. The performance of other algorithms degrade
sharply with noise level. This also highlights the problem
with MKLFusion, as it is not robust to degradation during
testing.

• Effect of occlusion:In this experiment, a randomly cho-
sen block of the test image was occluded. The recognition
performance was studied with increasing block size.
Figure 11 shows the performance of various algorithms
with block size. SMBR-E is the most stable among all
the methods due to robust handling of error. Recognition
rates for other methods fall sharply with increasing block
size.

• Recognition in spite of disguise:We also performed
experiment on the rest of the AR face dataset, occluded by
sun-glass and scarves. Similar to the above experiment,
7 frontal non-occluded images per subject, from the first
session, were used for training, and12 occluded images
per person, from both the sessions were used for testing.
Again the proposed SMBR-WE and SMBR-E methods
outperformed the other methods. SMBR-E method gave
the best performance, improving by17.7% over the Block
Sparse method.

Method Scarves Sun-glass Overall
SMBR-WE 86.2 36.0 61.1
SMBR-E 80.0 75.0 77.5

SR 45.3 52.3 48.8
Block Sparse [50] 65.8 53.8 59.8

SLR-Sum 72.2 39.6 55.9
SVM-Sum 13.8 42.5 28.1

MKLFusion 47.7 13.0 30.3

TABLE IX: Rank one performance comparison of the pro-
posed method.

• Quality based fusion:Quality determination is an impor-
tant parameter in fusion here, as a strong modality is be-
ing combined with weak modalities. We studied the effect
of quality measure introduced in Section III. However, in
this case we fix the quality for strong modality,viz.whole
face to be1, while for the weak modalities, the SCI values
were taken. The recognition performance for SMBR-
E and SMBR-WE across different noise and occlusion
levels was studied. Figure 12 show the performance
comparison with the unweighted methods. Using quality,
the recognition performance for SMBR-WE goes up to
97.4 % from96.9 %, whereas for SMBR-WE it increases
to 97 % from 96 %. Similarly, results improve across
different noise levels for both methods. However, SMBR-
WE with quality shows worse performance as block size
is increased. This may be because it does not handle
sparse error, hence the quality values are not robust.

VI. COMPUTATIONAL COMPLEXITY

The proposed algorithms are computationally efficient. The
main steps of the algorithms are the update steps forΓ, Λ,
U and V. For linear fusion, the update step forΓ involves
computing(XiT Xi+αΓI)

−1 and four matrix multiplications.
The first term is constant across iterations and can be pre-
computed. Matrix multiplication for two matrices of sizes
m × n and n × p can be done inO(mnp) time. Hence,
for a given training and test data, the computations are
linear in feature dimension. Hence, large feature dimensions
can be efficiently handled. Similarly, update step forΛ in-
volves matrix multiplicationXiΓi. Update steps forU and
V involves only scalar matrix computations and are very
fast. Similarly in the kernel fusion, update forΓ involves
calculating(KXi,Xi + βW I)−1, which can be pre-computed.
Other steps are similar to linear fusion. Classification step
involves calculating the residual error for each class, andis
efficient.

VII. C ONCLUSION

We have proposed a novel joint sparsity-based feature level
fusion algorithm for multimodal biometrics recognition. The
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Fig. 10: Effect of noise on recognition performance.
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Fig. 11: Effect of occlusion on recognition performance.

Method Recognition Rate (%) Method Recognition Rate (%)
SMBR-WE 96.9 SVM-Sum 86.7
SMBR-E 96 SLR-Sum 77.9

SR 91 FDDL [49] 91.9
Block Sparse [50] 92.2 MKLFusion 89.7

TABLE VIII: Rank one performance comparison of the proposedmethod.

algorithm is robust as it explicitly includes both noise and
occlusion terms. An efficient algorithm based on alternative di-
rection was proposed for solving the optimization problem.We
also proposed a multimodal quality measure based on sparse
representation. Further, the algorithm was extended to handle
non-linear variations through kernel. Various experiments have
shown that our method is robust and significantly improves the
overall recognition accuracy.
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