
Transistor Sizing

Jonathan Pincus

Report No. UCB/CSD 86/285

February 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Transistor Sizing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Several methods of choosing appropriate sizes for transistors in a VLSI schematic to meet a specified delay
criteria are considered. Simulated annealing and heuristic techniques are investigated. MOST is a Prolog
program which makes use of information provided by the PTA timing analyzer to implement these various
approaches. Both MOST and PTA are written entirely in (interpreted) Prolog; nonetheless, performance
gains of over 50% as compared to an unsized circuit can be realized in a few minutes of CPU time. Using a
simple RC timing model, heuristics are found to be more efficient than simulated annealing.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

102

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Author l:c r~ (1 ~ \r\o ('. -p· --~J~L~--~----~~~0~(=;-~J~~------------------

Title ____ \ _(--=-2_r_, c_~,__~_. _-+_;;c;_' ;_r __ LJ__;;__~""2-=-. t'-, f_o-+----------

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, in
partial satisfaction of the requirements for the degree of
Master of Science, Plan II.

Approval for the Report and Examination:

3~tr'~lff~ Date

f-1_

Date

Transistor Sizing

Jonathan Pincus

ABSTRACT

Several methods of choosing appropriate sizes for transistors in a VLSI schematic to meet a

specified delay criteria are considered. Simulated annealing and heuristic techniques are investi­

gated. MOST is a Pro log program which makes use of information provided by the PTA timing

analyzer to implement these various approaches. Both MOST and PTA are written entirely in

(interpreted) Prolog; nonetheless, performance gains of over 50% as compared to an unsized cir­

cuit can be realized in a few minutes of CPU time. Using a simple RC timing model, heuristics

are found to be more efficient than simulated annealing.

Part of this research was sponsored by Defense Advance Research Projects Agency (DoD)

Arpa Order No. 4871 Monitored by Naval Electronics Systems under Contract No. N00039-84-

C-0089

Chapter 1

Introduction

!'t1e designer of a VLSI circuit must consider not only functional correctness

but timing behavior. Usually, there is some specification of how quickly the

circuit must produce its output. Once a schematic, transistor-level description of

the circuit is produced, it must be forced to meet the delay constraint. This is

done by assigning sizes to the transistors.

Note that this is a different problem than the ratioing of transistor sizes

necessary in n~10S and some CMOS methodologies. Those considerations involve

waveform shape and may affect the circuit's correctness; this paper only deals

with the spe-ed of the circuit.

Increasing the size of transistors in a VLSI circuit tends to decrease the delay

through the circuit, but at the cost of increasing its area. \Vhile transistor area is

usually only a small component of total chip area, that is only because transistor

sizes are usually "reasonable." Minimizing delay can result in huge transistors;

beyond a certain point, however, larger transistors actually increase delay.

Actual minimization of the circuit's delay is usually not required. Instead, the

delay must be reduced to meet the specified constraint. Given a delay model,

some expression for maximum delay through the circuit can be derived. It is thus

possible to new the problem as one of constrained minimization:

1) minimize: total transistor area

subject to: actual delay < delay constraint

Truly minimizing transistor area is not vital, however; in fact, any "reasonable"

solution which reduces the delay below the constraint will be acceptable. Thus

the problem can also be cast as

1

2) minimize: excess delay above constraint

subject to: reasonable total transistor area.

2

Note that only excess delay is being minimized; no reward is given for reducing

delay below the constraint.

Standard non-linear optimization techniques are not well suited to these

problems. In problem 1, the objective function is quite simple, but the constraint

is both highly non-linear and expensive to compute - even finding a feasible

solution is very difficult. In problem 2, it is the objective function which is

extremely complex and difficult to deal with. The major difficulty is that circuit

delay is the maximum path delay, and there are a combinatoric number of paths

through the circuit; furthermore, path delay itself is an extremely complex

function. Previous work, frequently involving simplified delay models, is covered

in Chapter 2.

Human designers avoid considering all these paths by usmg intuition and

heuristics. After some initial configuration is chosen, simulations and timing

analyses are run on the circuit to find its critical paths - the paths through the

circuit whose delay exceeds the constraints - and the designer reduces their delay

sufficiently. Now some other paths may be critical, so the process iterates until

the maximum delay through the circuit is satisfactory. No formal attention is

paid to transistor area; presumably, by only dealing with critical paths,

unimportant transistors will be left at minimum size. Such critical-path

heuristics are one of the subjects of Chapter 3; simpler heuristics, involving

modifying the sizes of individual transistors, are also dealt with.

In a large circuit, however, there may be many paths each reqmnng more

time than permissible; if an iteration of the critical-path heuristic is required for

each such path, the total computation required may be immense. One solution is

to consider more than one critical path at once; this unfortunately leads to

3

extremely complicated decisions, involving simultaneous minimization of se>eral

equations. Another approach is to work with the entire circuit at once by using a

probablistic hill-climbing technique- such as simulated annealing- in the hope

that the cost function can be chosen so that the process will reduce the delay on

many paths simultaneously. This alternate tactic is considered in Chapter 4.

MOST (Method for Ordering and Sizing Transistors) is a Prolog program

which makes use of the information supplied by PTA (the Prolog Timing

Analyzer) in conjunction with either heuristics or a simulated annealing algorithm

to assign sizes to the transistors. In contrast to most previous work, it sizes

transistors "\\ithout guidance from the designer; there is no need to specify l'"hich

paths to examine, for example. The two programs together are approxim.ately

1500 lines long, or 350 clauses; the source code is included as an appendix.

MOST's design and implementation are described in Chapter 5.

The current version of PTA uses a simple lumped RC delay model to find the

maximum delay at and critical path to each signal within a circuit. An

interesting feature of PTA is its ability to provide symbolic equations for the

resistance and capacitance (and hence delay) at each node. The details of PTA

and its implementation are presented in Chapter 6.

Throughout the paper, fragments of Prolog code are included to illustrate

some of the algorithms being described. This code is almost invariably an

oversimplification, but much clearer than the complete implementation. In

particular, questions of efficiency - either of storage or computation - are

ignored.

Detailed results for the various approaches are presented in chapter 7, but

Table 0 provides a short summary. All CPU times throughout the paper are for a

VAX 785 running interpreted Cprolog.

4

Terminology

The usual statement of a problem is "Assign sizes to the components of

circuit X so that all its outputs are produced by time T" T is called the

maximum delay or constraint, and the entire process is called sizing the circuit.

The actual delay through the circuit is the delay given a particular assignment of

sizes to its components, while the size or area of a circuit is the sum of the

component areas.

A circuit is described hierarchically in terms of cells; the particular data

structure use-d is called a constrained hierarchical schematic, and so the turns

cell anJ CHS ar~ used iutcrchange~bly. A cell is either a primitive cell, or it is

made up of sulcells. Tra.;sistors are usually regarded as being the primitive

elements, but most techniques apply equally well if logic gates or even macro cells

are taken as primitives.

Since the components of the circuit may be cells, rather than transistors,

sizing a circuit may involve sizing the cells. This is a rather unfortunate choice of

phrasing: sizing a cell does not mean deriving its maximum bounding box, but

rather assigning siL:ES to the primitives in its substructure.

A related problem is that of minimizing delay through the circuit. In this

case, there is no explicit delay constraint; the goal is to make the circuit run as

fast as possible. Additionally, there may be an area constraint, or some

maximum permissible transistor area.

Computing the delay through the circuit is the job of the timing analyzer.

Essentially, what needs to be done is find each path by which an input to the

circuit can affect an output, and then take the maximum of all these path thlays.

The path with the longest delay is referred to as the critical path.

A path will be made up of several stages. A stage (the term is borrowed

from Ousterhout [14]) is a chain of transistors from a driving source (usually an

5

input to the chip) to a use of the signal - either as an output of the chip, or as a

gate to another transistor. A stage usually corresponds to a path through a logic

gate and its associated pass transistors.

All three of the boxed area.<- in the diagram below are stages.

H ~ .. I :

I :

I

I

Hi!
I :

I :

I

I
I j;--

1 i :
I j : ____ ----~
•-l--

I
i
I

~ I

l
I

-H
I
I

G1VD

' ± i
. .

- ~ I

--+---1 I

: j I

! I
l I
j I

l
~--

r·
t

: i
: l
: ... i ..

i

---T-------
- ------

6

-·~

I I

out

Chapter 2

Path Sizing and Previous Work

A more restricted form of the problem only considers a single path instead of

the entire c-ircuit. Techniques for path-sizing do not generalize well, for two

related rea._c;ons: the larger size of an entire circuit, and the additional complexity

caused by the possibility of multiple paths through the circuit. Much previous

work h3s been done on this problem, however, and it makes a good introduction

to the more g('neral case. Moreover, it can be an useful component of a general

solution, f'specially in conjunction with critical-path heuristics.

Path Sizing

In mos~ pr~vious work, the path is viewed as being made up of logic gates,

rather than individual transistors. Furthermore, most authors assume that signals

generated by gates in the path are not used anywhere but their successor, and

that inputs similarly do not come from outside the path. These very restrictive

assumptions allow a variety of approaches - summarized nicely by Matson [10]

- to be succc-;sful.

Comparing these results is difficult, largely because of the paucity of statistics

provided by the various authors. Table 1 at the end of this section summarizes as

well as possible, leaving question marks for figures not provided.

The most obvious approach is simply to use an already-existing general

purpose optimization package along with a highly accurate timing analyzer such

as SPICE. This turns out to be impractical: too much time is spent in simulation.

A particular problem is that symbolic derivatives are not available, and so must

be computed numerically at great expense. Matson gave results for using the

DELIGHT package along with SPICE in [10], but only as a contrast to the

efficiency of his work.

7

8

One w&y of avoiding the high computational cost of such an approach is to

use a simplifif>d model for transistors. At some cost in accuracy, this saves greatly

in computabon, especially if symbolic derivative information can be calculated.

'\"hen using the simple RC model, it is possible to derive the equatioii.S for

delay in terms of the transistor sizes, and then solve these by a quasi-l'ewton

method. Consider the critical path as made up of n stages, each of which in tur:1

drives tLe nert stage, and let Di be the delay of stage i. Then

and, due to the lumped RC moiie!

D·=R*G
I I I

(*)

Now let T be ~ l: the transist.urs making up stage i; if Rother and Cother capture the

interconnect and output resistances and capacitances, then

Ri= L:Rt+Rother
t.<T

Ci= I:Ct+Cother
t.<T

The resistance of a transistor is inversely proportional to its s1ze St: the

capacitance. din,ctly. Using this fact, equation (*)can be rewritten as

k
Di=(_E i-+ Rot.ber)*(_Ekz *St +Cother)

t!T t ttT

All the Di·s can be summed to give an equation for the total delay, and this

equation can be minimized or set to a particular value. This task is greatly

simplified by the ease of computing the partial derivatives.

One fat"t not immediately obvious in the above description is that the Cot.ber

of one stag-e may involve the sizes of transistors in the next stage. One

component of cother is the load capacitance, which includes the gate capacitance

of whatever gate in the next stage being driven by the current stage. This means

that the problem is not truly separable: stages cannot be treated independently.

g

It is not clear how easy it is to perform optimization even given the simplified

model: it depends on how many variables (or transistors) are involved in the

equations. Individual stages are likely to be short - Ousterhout [14] claims that

most are only two or three transistors in length - but the critical path may

consist of a large number of stages. In a 32-bit processor, for example, the critical

path is likely to be the carry chain through the ALU, which will have at least 32

stages.

SevPral authors use variations on this approach. Glasser and Hoyte [31 model

the delay on a path as the sum of the gate delays. This model ignores the shape

of the input waveforms, but Glasser and Hoyte argue that its estimates are

accurate within 30S'"c. Each gate is modeled as a capacitor and a resistor, and

their program minimizes the equation for maximum delay using rela:xation

techniques in order to find the proper "scale factor" for each gate.

Hedlund's EO I5J (for Electrical Optimizer) can either minimize delay or

minimize power consumption with bounds on delay. It deals with several paths

simultaneously, as well as both polarities of input on a single path, by minimizing

(over the set or assignments to transistors) the maximum (over the paths and

polarities) delay. In other words, if Dp(S) is the delay for assignmentS on path P,

EO computes

min(maxDp(S))
p

The maximum is approximated by the continuous function smax (for "smoothed

maximum"; see Ruehli et. al. [IQ]), where

smax(x · · · x)= ~ln(e>.x1+ · · · +e>.xa)
1, ' 0 ~

The minimization is done by a quasi-newton non-linear optimization method.

Another way of potentially lessening computation is to use heuristics instead

of non-linear optimization techniques. Since the problem is rather structured, and

10

the optimal solution (in this case, the absolutely minimum transistor size) is not

required, it may be possible to capitalize on this structure via heuristics as a

human designer does. Note these are heuristics for sizing a single path, as distinct

from critical-path heuristics for sizing the entire circuit.

Kao, Fathi, and Lee (7] use an extremely simple heuristic: at each step, the

gate contributing the most to delay relative to its current area is increased in size.

This "scapegoat heuristic" makes no attempt to capture the complex interactions

of all the g,_tes within the path, but they claim that performance is satisfactory

even for relativr!y large circuits.

Trimberger's Andy [21] uses the "ramped-driver" heuristic. Each gate is

divided into several stages which increase in size by a fixed fan-out factor in

order to drive the (presumably) large capacitive load at the output of the gate.

for each gate, the capacitive load is computed, and then an equation for the

proper number of stages for the gate is solved. The capacitances are computed

starting at the end of the circuit, and then the program works backwards, sizing

each gate as it goes (this is done because the output capacitance on gate i depends

on the input capacitance of gate i+l}.

Trim berger claims that the ramped-driver heuristic, although it does not

minimize delay, is desirable because in general it requires less power and smaller

area. Additionally, he says, it is closer to how human designers attack the

problem.

Lee and Soukup (Q] take a similar approach, first solving for the optimal

number of stages, then optimizing the stage sizes (as opposed to Trimberger's

fixed fan-out factor). They also discuss the minimization of area: given a

constraint on the delay, they use Lagrange multipliers to solve the optimization

problem. However, they quote no statistics on the efficiency of their program.

11

Matson (10] argues that heuristics are in general less efficient than non-linear

optimization methods, particularly when the delay constraint is near the

minimum delay achievable by the circuit. Additionally, be claims, the accuracy of

the timing models is insufficient for high-performance VLSI design. On the other

hrtnd, a general non-linear optimizer fails t.o take advantage of the structure of

the problc1n. As a result, be uses a special-purpose optimizer in conjunction with

a timing model!ll) of intermediate complexity.

The particular optimiz~tion problem Matson attacks is minimizing power

subject to a con::traint on maximum delay, but the technique applies equally well

to minimizing trnnsistor area. In both cases, the objective function is separable: it

is the sum of <:ontributions from each of the individual components (either

macrocells, gates, or transistors) along the path. If the delay is also regarded as

the sum of individual contributions then it too is separable. This is not strictly

true, due to tht> effects of waveform shape and the interactions between input and

output capacitances, but is a useful assumption.

Using the method of duality, a variation on Lagrange multipliers, Matson

takes advant2~': of the nr;:..r-sep:uability of area and delay by dividing the

minimization iLto <1 rr.inimization of each cell in succession. Instead of one

minimization m·er a very large vector space, many minimizations over small

vector spaces are performed instead, and since the cost of non-linear minimization

grows combinatorically, the divide-and-conquer method greatly speeds up the

process.

12

Table 1

Path sizing: comparison of previoU! work

A.lf:Nithm Circuit Size Rt-duction Machine CPU time

DEUGHT /SPICE poj Inverter Chain 6 ! VAX 11/750 3151.7

Rela:n':ion (3) ln.,.erter Chain 500 ! DEC 20/60 f>O

Quasi-~wt.on (5J Control Logic g 63% VAX 11/750 0.1

20 52% 2.3

Scape-r;o1t (7J 1-bit adder 13 ! XEROX 1108 20

Ramped Dri't'er (21] PLA ! 40% DEC 20/60 !

----·-·
Dui\liLy (10] ln't'erter Chain 6 ! DEC 20/60 16.3

4-bit adder 76 ! 522.3

Generali:.!~ticn

Mo~t o' ~~c;:.e techniques consider only a chain of gates, rather than a p&th at

the transistcr l('vel, and ignore the possibility of outside influences. The presence

of pass transistors complicates the issue. It is not sufficient to size the transistor

whose output is the gate of the the next transistor in line; other transistors

connected to that transistor may need to be sized as well. Heuristics will have

more difficulty in this situation, especially since a single transistor may be

connected L s<>Ycral different tr:m~istors in the critical path.

Most auth:Jr::; ;1!::;o glo~::> ov~r the question of minimum widths of transi:--tors.

Heuristics which only increase the size of transistors cause no difficulty here, of

course, but all non-linear minimizations must actually be constrained

minimizations. Strictly speaking, the transistor widths must also be integers (or

integer multiples of some fixed lambda); most techniques simply round of in a

post-proce55ing phase to deal with this difficulty.

·with such modifications, these approaches can be used for path sizing in

critical-path heuristics. The ramped-driver heuristic does not really apply to this

case, however, since it is not desirable to add new stages.

An important question is how well these techniques generalize to the ca.se of

13

an entire cin-uit. The next chapter considers expanding the "scapegoat heu.rEtic"

to the entire circuit. Matson's duality technique, however, does not genera.be as

nicely. The divide-and-conquer nature of the technique would male it

particul~rly appropriate for large circuits, so it is worth examining just how it

breaks down.

The key to being able to divide the optimization problem is to be able to

sepa1 ate the total path delay into individual cell delay~. Circuit delay can mdeed

be broken down into the individual cells on the critical path, but as transistors are

sized, the critical path changes. In other words, the decomposition is different at

different times in the process. Matson only deals with specific paths, .-hich

remain the same throughout the analysis.

Fishburn and Dunlop have recently published some impressive work. They

have shown that, given an RC delay model, circuit delay is a convex functi:m of

transistor sizes (so far, they have been unable to generalize their result to slope

delay models). The pertinent feature of convex functions is that any local

mmtmum 15 m fact a global minimum. This in turn implies that simcia.ted

annealing or multiple initial configurations are not required to avoid local mirima.

The approach used by their TILOS program, however, is in fact a slight

variation on a scapegoat heuristic described below. The primary value of their

result appears to be in the confirmation that heuristics are in general "pod,"

rather than providing any algorithmic method for solving the problem.

Simulated annealing is still a potentially viable technique. As w:l be

discussed in chapter 4, the cost function is not necessarily the maximum delay

through the circuit. A more complex cost function - for example, the smoJthed

maximum of all the path delays - may not have the convex property, but may

still be a more accurate measure of how close to a solution the configuration 15. In

addition, simulated annealing techniques will still apply in the case of non-com·ex

14

delay functions, which may arise from a more accurate delay model.

Chapter 3

Heuristic approaches

In the absence of an algorithmic solution, it is natural to search for viable

heuristics - all the more so since this is how human designers currently attack

the problem. The usual course of such heuristics is to perform an analysis of the

circuit, giving such information as the maximum delay through the circuit and the

critical p:1th. and then use this information to guide the next resizing step.

size (Circuit, Consti·aint) :­
analyze(Circuit,Delay.Info),
res::e_if_nec~8~&ry(Circuit,Delay,Constraint,Info).

resizt_if_necessary(Circuit,Delay,Constraint,Info) ·­
Delay <= Constraint. I done!

resize_if_necessary(Circuit,Delay,Constraint,Info) ·­
Delay > Constraint,
apply_heuristic(...),
size(Circuit,Constraint).

Two criteria can be applied to heuristics: efficiency and optimality. Optimality is

simply a meG-o:;ure of how close to the optimum performance circuit the heuristic

can come. Although the absolutely optimum circuit is not required, if a heuristic

can not even approach it with consistency, it is not particularly usefuL

Assuming a heuristic does give reasonable results, efficiency measures how

quickly it does. Some heuristics may be extremely efficient for reducing delay up

to, say, 40s;:, but extremely inefficient beyond that. A major factor in efficiency is

the number of timing analyses required, so many of the different approaches are

attempts to reduce this number. Potentially, however, the amount of work done

to avoid reanalysis may actually become the dominant factor.

Heuristics fall into two major categories: transistor-level and critical-path.

Transistor-level heuristics work with one transistor at a time. A timing analysis is

performed, and then one transistor is resized. The advantage of this scheme is its

15

16

simplicity; in general, no complicated equations need to be solved, and

interactions between critical paths do not need to be considered. The

corresponding disadvantage is the lack of efficiency, particularly if a full timing

analysis needs to be performed after sizing each transistor. Compromise schemes

involving sizing several transistors before performing another analysis avoid this

problem, but only at the cost of increasing complexity.

Critil'al-path heuristics mirror human designers' strategies. The critical path

through the circuit is found, and then sized so that it meets the delay constraint.

The pro('e~s is repeated until all p~th delays have been reduced sufficiently. This

reduc.'s the nur:ber of analy~c:3 of the circuit, but problems now arise due to the

potential ir; ~ Pr 3(tion of crili~~al paths: if a transistor is on two different paths,

what should its ~ize be~

To redl:ce the number of analyses even further, more than one critical path

can be s1:::-d before re-2.naly:zi!l~. Either all the paths are considered

simultaneously, or some form of iteration is performed without reanalysis. This

approach ~ompounds the diilicultics of interaction, and potentially increases the

complexity of the pflth-sizing problem. On the other hand, it can drastically

reduce the nura~.er of analyses, particularly when many paths are critical

simultaneously.

Mixed approaches, combining the above heuristics, are also possible. For

example, a critical-path heuristic may be combined with a transistor-level
.

heuristic for transistors not on the critical path. Alternatively, one heuristic may

follow another: a heuristic considering multiple critical-paths may be used

initially, and once the number of critical paths is reduced sufficiently, a standard

critical-path heuristic may take over. Currently, very little work bas been done

in this promising area.

17

Transistor-level Heuristics

The two important questions at this level are what transistor to resize and

how to do the resizing. There are several ways to choose what transistor (or

transistors) to resize.

Most obvious is random choice. This is extremely simple, and fast to

compute, but results in an unacceptably large number of timing analyses.

As simple generalization of the "scapegoat heuristic" in which the transistor

cuntribu1 ing the most delay is resized is quite simple to implement.

apply_Leuristic(Transistors,Equations) :­
cl0~Be_acapegoat(Sizes,Equations,Culprit)

,

C'-dj ust_ size (Culp.ri t).

Once again, this computation is not too expensive; on the other hand, it is difficult

to say just what "contributing the most dela.y" means. In the final configuration,

some transistors will still contribute more delay than others, and eventuaLly the

point of diminishing returns is reached for an individual transistor: even though it

contributes much of the delay, it is better to leave it that way and resize a.nother

transistor instead.

One way of avoiding this problem is by instead exammmg the change in

delay resulting from resizing each transistor. In essence, this approach works with

the derivatiYes rather than the delay function itself. The derivatives C&D be

computed symbolically, or some numeric approximation may be used instead. A

simple and useful approximation to the derivative is the change in cost giYen a

unit change in the size of the transistor.

Of course, there is no need to restrict these techniques to a single transistor.

More than one transistor can be resized in each pass. The above approaches can

all be generalized in very straightforward ways to consider multiple transb-tors.

18

This leads to methods in which every transistor contributing more than a specified

amount of delay is increased in size, or where every transistor whose resizing

would decrease delay is resized.

De:1ling with multiple transistors simultaneously IS almost always

advantageous. Very little additional work needs to be done, since the effect of

each change needs to be computed in order to find the best change, and the

number of an:.~lyses is almost always reduced. The one way in which this decision

can be harmful is if the interrelationships between transistors are too great. and

resizing one transistor affects the decisions about whether to resize others. This

can lead to oscillation.

There are several ways to decide how much to adjust the size or the

transistors. Simplest, and surprisingly efficient, is simply increasing the size of the

transistor by one unit. The fact that other transistor sizes will continue to change

reduces the advantage of more complicated schemes, such as solving for the

optimal size given the current size assignments to other transistors.

Critical-path Heuristics

The basic idea of finding the critical path and then res1zmg it IS simp1e

enough to implement.

apply_heuristic(Circuit.Crit_path.Constraint.Delay) ·­

resize(Critical_path.Constraint.Delay).

One question is how to do the path sizing. Three of the approaches discussed in

chapter 2 are worth considering:

1) Individual transistor heuristic, in which a single transistor at a time is

increased in size.

2) Numeric solution of the path delay equations for optimal sizes.

lQ

3) A simplifh,d numenc solution, given some assumptions about the

eventual sizes.

Each of these methods is more complicated and time-consuming than the

ways of sizing individual transistors discussed above. From an efficiency

standpoint, then, the question is whether the additional computation done here is

compensated by a corresponding decrease in the number of timing analyses

required.

The real difficulty in critical-path heuristics is the interaction between

different paths. \Vhat is to be done if a transistor has had a size assigned to it in

the course of sizing a path, and then is a component of another critical path

considered later.

There are two possible strategies for dealing with this situation. One is to

allow each transistor to be sized only once; once it has a size assigned to it, it is

fixed. This is quite simple to implement, but may not be sufficient. Consider the

following circuit:

large capacitive load

X
long inverter chain 0 --{::»-

In the case of a chain of identical dates, the ramped-driver heuristic provides

optimal solutions. The proper size assignment, though, depends on the length of

the path. Assume both paths exceed the delay constraint, and further assume

that the lower (longer) path is the most critical. \\,hen it is sized, inverter X will

have some relatively small size assigned to it. Now the upper path is still critical;

to reduce its delay, inverter X will have to be increased in size.

20

The other method allows transistors to be resized as inany times as necessary.

However, res~zing a transistor affects the delays along paths which have preriously

been sized, potentially requiring once again sizing those paths. This in turn

creates the JX)Ssibility of a loop between two paths, where sizing one undoes the

effect of sizing the other. In terms of the above example, when the size of

transistor X is increased to reduce the delay on the upper path, the lower path's

delay will be increased.

It migl.t seem that Prolog's backtracking mechanism offers an elegant

solution to this problem: assign a set of sizes to a path, and if no global

assignmC'nt c~n be reached satisfying the delay constraints, simply backtrack and

size the pat!:. differently. Th1s is undeniably theoretically possible, but in practice

extremely inefficient. Backtracking throws away all the information gained, and

so there is D:J way to know what caused the failure or bow next to size the path.

Although ~'!2-{"rt could be used to keep the information, so much would need to

be asserted that the Cprolog interpreter, at any rate, would not allow it.

It is possible to set up relationships among transistor sizes along a path so

that resizing one of the transistors implicitly causes the resizing of all the others.

Techniques from the AI community such as access demons might be used for this

problem: whenever one transistor's size is modified, the demon could change other

sizes as necessary. Once again, however, there is the potential for loops in ""hich

two transistors' sizes mutually depend on each other. This would seem to require

a rather general symbolic mathematics package for solving simultaneous non­

linear equations at each step.

Multiple critical paths can be considered simultaneously. As more and more

paths are c-onsidered, the improvements made at each stage are potentially

greater, but the amount of computation that needs to be done also increases.

The basic algorithm

Chapter 4

Simulated Annealing

Simulated annealing [8J is a probablistic hill-climbing algorithm. It differs

from standard hill-climbing in that a new configuration may be accepted even if it

increases the cost; the chance of this occurring is controlled by a parameter called

the temperature, which steadily decreases. This prevents getting trapped in a

loeal mir:i,num due to an unfortunate choice of initial configuration.

Th<' algorithm divides into an outer loop, which gradually decreases the

tei11per::. t ure. and an inner loop, which performs a number of iterations at each

temperature. At each iteration, a new configuration is generated, its cost is

evaluated, and then the acceptance function determines whether or not the

configuration is accepted. Any configuration decreasing the cost will of course be

accepted; different acceptance functions give different chances of accepting

configurations which increase the cost. The usual acceptance function, used

throughout tLis p:!per, is

A cost
acceptance chance = exp(- T .)

The algorithm can terminate in two ways: it succeeds if delay is reduced

below the desired goal (although this success may be postponed briefly in order to

minimize the sizes of the transistors), and it fails if some failure criterion is met.

A standard failure criterion is no change in the configuration after a certain

number of times through the main loop.

21

anneal(Circuit,Constraint) :­
initialize(Configuration,Delay,Temperature),

outer_loop(Configuration,Constraint,Temperature).

outer_loop(Configuration,Delay,Constraint,T) ·-

Delay =< Constraint. I success

outer_loop(Config.Delay,Constraint,T) :-

Delay > Constraint,
iterations_at_temperature(T,N),
inner_loop(N,Config,Cost,T.New_config,New_delay),

update_temperature(T,New_t),
outer_loop(Ne•_config,New_delay,Constraint,New_t).

inlier_loop(O, ...) .
inner_loop(N,Config,Cost,T,Ne•_config,New_delay) ·­

gcnerate(Config.Test_config),
cost(Test_config,Test_cost).
acc.Qpt(Test_~ost,Cost,T),

~1 is N-1,
innar_loop(Nl,Test_config.Test_cost,T,

New_config,New_delay).

in~~r_lo~p(N,Config,Cost,T,New
_config,New_delay) ·-

li1 is N - 1,
inner_loop(N1,Config,Cost,T,New_config,New_delay).

22

In terms of the particular problem being attacked, a configuration is simply

an assignment of sizes to the transistors. New configurations are generated by

random perturbations of each size; by restricting these perturbations to be

integers, we assure that the final transistor size is also integral. The cost of a

configuration includes a penalty for exceeding the specified delay, and another

term relating to the total size of the transistors (in order to keep the circuit from

growing too large).

Computing the cost involYes computing the actual delay through the circuit.

The PTA timing analyzer takes a given configuration and finds the delays of all

the nodes. A large amount of additional information is supplied as well: the

transistor causing the maximum delay for each node, allowing critical paths to be

recreated, and symbolic equations for the resistance and capacitance of each

transistor. PTA uses a depth-first search algorithm, ensuring that nodes v;ill not

23

be reprocesse-d, and a simple RC model for simplicity and speed. Despite this, it

consumes the bulk of the program's time; for a 100-transistor circuit, for example,

timing analysis requires over 10 cpu seconds.

:Many parameters can be varied in a.n attempt to improve performance.

Among these are the initial temperature a.nd configuration, the rate at which the

temperature decreases, the proper number of iterations a.t a given temperature,

the acceptance chance, a.nd the generation procedure. .Much theoretical research

has been done in this area, but so far none of these results have been incorporated

into this ~·ork.

Cost functions

A major determining factor in the performance of the algorithm is the cost

function. Several different functions have been tried, a.ll revolving around the

idea of charging a penalty for a delay exceeding the constraint. If the desire were

simply to reduce circuit delay to a minimum, then the penalty could just be the

delay; since the problem is only to meet a specified criteria, though, no bonus is

given for reducing delay below this bound.

Penalty = max(Delay-Constraint,O)

Initially, this was the entire cost function. Since it ignored transistor sizes, it led

to very large circuits.

The first cost function still weighted the maximum delay through the circuit

much more heavily than the total size:

Cost = 10*Penalty+ TotalSize (1

The process essentially divides into two steps: first the sizes of the transistors

increased a.s delay is reduced to the constraint, a.nd then the total size component

of the cost takes over, a.nd the sizes are gradually reduced. A satisfactory solution

is usually reAched, but rather slowly, since essentially only one critical path is

being considered.

24

Since one of the justifications for usmg simulated annealing was the

possibility of dealing with multiple paths simultaneously, the next impro,·ement

was to consider all critical paths in the cost function.

Cost = 5•Penalty max+5* E Penaltyi+2*Tota1Size
icnodes

(2

The most critical path is weighted more heavily than others, since it is still the

primary limitation on the circuit.

The third cost function weights the sizes more heavily.

Cost= 2*Penaltymax+ E Penaltyi+Total Size
icnodes

(3

For each of these three cost functions, maximum permutation sizes of 1, 2, and 4

were tried in turn. Results are summarized in Table 2.

Table 2

Cost function performance

(average of two runs, 48-transi5t.or circuit)

c~t maxJIDUID reduction cpu time SIZe

function perturbation requested achieYed {seconds) Increase

1 1 35% 38~ 441 114%

2 35% 38% 153 129%

4 35% 38% 153 204%

1 50% *44% 824 150%

2 50% 50% 537 276%

4 50% *47% 637 415%

2 1 35% 38%, 29i 114%

2 35% 39% 155 188%

4 35% 39% 396 282%

1 50% 50% 972 203%

2 50% 50% 485 227%

4 50% *45% 845 351%

3 1 35% 35% 254 150%

2 35% 35% 596 210%

4 35% 38% 155 321%

1 50% 50% 791 240%

2 50% 50% 595 304%

4 50% *25% 204 152%

* -failure

The only clear result is that a maximum permutation of 2 is the best choice; no

obvious indication as to the most desirable cost function is apparent. Once delay

reductions beyond 50% are requested, however, cost functions weighting delay

25

much more heavily than size are required to obtain solutions.

Obviously, the major bottleneck of the program is the time required to

ann.lyze the ~ircuit. As described above, the algorithm requires an analysis for

each configuration, and then discards all the information except the delays. Using

this extra information to avoid some analyses can result in large performance

gams.

Near the solution, most new configurations will be rejected; in fact, most •are

"cbviously v.-ro.:.1g" in that they increase the critical path delay sharply. The goal

is to screen ttie "obviously wrong" configurations by using approximate timing

analysis and avoid fully analyzing them. This idea is similar to the one suggested

by Greene and Supowit [4J.

Consider the delay along the critical path. If the new configuration increases

the delay on the critical path, it will certainly increase the maximum delay

through the circuit as a whole. Conversely, if a configuration decreases the

critical path delay, it will probably decrease the delay through the circuit as a

whole. Thu.:=. afialysis of the effect of a change on the critical path is "almost" as

useful as analysis of the circuit as a whole, and - since only one path needs to be

considered - much quicker.

Since PTA provides symbolic equations for delay at each node, all that needs

to be done is evaluate these equations with the new gate sizes included. This is

substantially faster than performing a complete timing analysis (see table Y).

Instead of just computing the path delay, the cost of the new configuration

given the previous delay equations is calculated. This computation is still

substantially quicker than reanalyzing the circuit.

26

'------
Table 3

Circuit Analysis vs Equation Evaluation

circuit ~valuation evaluation

SIZe analvsis (delav equation) (cost equations) ratio

6 0.95 0.02 0.07 13.6

8 1.38 0.02 0.08 17.3

24 2.15 0.02 0.07 30.7

48 4.70 0.03 0.15 30.1

96 10.60 0.07 0.48 22.1

A standard acceptance test is performed on this estimated cost; if it passes, then full

analysis and another acceptance test occur. To avoid biasing the algorithm a.orainst

t:uuligurations which increa.'le the cost (since they now must pass two tests) the same

random nurG h~r is used for both acceptance tests.

Gret:ne and Supowit view the screening process as biasing the generation

function; I prefer to consider it as a simple preliminary cost function. In either

case, the effe-c·t is the same. II a new configuration cannot pass this test, it can be

rejected without doing a complete analysis of it. Table g in Chapter 7 presents a

comparison of the same cost function with and without screening.

Note th2.t this prediction function is not perfectly accurate. This differs from

the situatior. c:oasidered by Greene and Supowit: a confi~ration may pas5 the

screening test ouly to be rejected. However, a configuration's actual marimum

delay can only be greater than the screening function predicts, so no potentially

acceptable configurations are ever eliminated in the preliminary stage. A.s a

result, the theoretical properties of the algorithm are unaffected.

Combining Heuristics and Simulated Annealing

One promising areas of exploration is the integration of simulated annealing

with other heuristics for sizing. A major problem with heuristic approaches is

that it is dif5cult to say ahead of time which solution is desirable for a critical

path - it may be important to size some transistors larger than they would

otherwise need to be due to their effect on other paths. II simulated annealing is

27

combined Yith a critical-path SIZing heuristic, the heuristic can generate an

acceptable ~olution and then rely on simulated annealing to find the proper

solution.

One ob¥ious way of combining the two approaches is to alternate them: allow

the annealir:.g algorithm to run for a time, reduce the critical path delay using a

heuristic, and repeat the process. Another potential method is to use a heuristic

in the generation function of the annealing algorithm, with some random

perturbatior:.~ thrown in. More simply, a heuristic may be used to give a starting

configurat io::.. Finally, a post-processing heuristic may be used to improve the

solution geL:~ratcd by annealing.

One p~ticular area in which such a post-processing heuristic might be U..'€ful

IS in reduci.!lg transistor sizes. Since area minimization is less important than

reducing thE delay to the constraint, transistors not on the critical path tend to be

larger than they need to be. Detecting and then examining these transisto~ is

certainly more efficient than allowing the annealing algorithm to continue.

Chapter 5

MOST

The MOST program allows the various approaches to transistor sizing to be

tested. It consists of PTA (the Prolog Timing Analyzer), various front ends

corresponding to different heuristics, and a simulated annealing interface. MOST

is not only a test program for these methods, but is a CAD tool in its own right.

MOST is designed as a component of the ASP (Advanced Silicon Compiler in

Prolog) proje-ct. Compatibility with ASP is an absolute requirement; this

determines the implementation language and interface conventions for MOST.

Furthermore, MOST is tuned to its use within ASP.

ASP

The goal of the ASP Project is to produce a high-performance silicon

compiler tune-d to the development of a logic processor. For a fuller description of

ASP, see :McGeer et. al. (12]. From the viewpoint of MOST, the salient feature of

ASP is that it defines a single interface for all its component programs: the

constrained hierarchical schematic (CHS). MOST takes its input in this format,

and simply attaches additional constraints to the schematic.

A CHS contains a listing of inputs and outputs, as well as additional

constraints not important within our framework. Functionally, a CHS may be

either a primitive (a transistor, for example) and its associated structure (in this

case, the source, gate, and drain signals, as well as the gate size) or a collection of

subcells, each of which in turn is a CHS. The hierarchical nature of the CHS

allows a building-block approach to silicon compilations, and the notion of

constraints interacts well with the Prolog language.

'Within ASP, MOST is meant to be run before layout takes place. This

implies that the exact lengths of the interconnections are not known, and so some

28

29

estimates have to be made on the parasitic resistances and capacitances.

Although not a restriction on the program - if exact values are available they

can be used - this is the normal situation, and so algorithms are designed with it

in mind. In particular, the timing analyzer currently uses the computationally

simple but less accurate lumped RC model for delay. The justification for this is

that since the uncertainty of the parasitics limits the accuracy of any delay

computations, there is no point in spending extra effort to arrive at similarly

inaccurate results.

The choice of Pro]og as the implementation language (necessary for

compatibility with the rest of ASP) strongly influences the design of MOST. The

implementation of the simulated annealing algorithm makes great use of the

delayed binding and backtracking provided by Prolog. In effect, implicit pointers

throughout the data structures allow many variables to be equated, and then

binding one sets all the values simultaneously. ·when a procedure fails, however,

any assignments are undone.

These two features are used for substituting the next configuration into the

CHS. The \'arinbles in the CHS are collected in a pre-processing stage, a.nd then

at each iteration this list of variables is unified with the list of sizes making up the

next configuration.

Instead of using delayed binding, the configuration could be substituted into

the CHS simply by traversing the entire structure. The cost of this traversal is

small compared to the cost of timing analysis, but it can still be substantial; a

straightforward implementation, done for comparison's sake, required over .8 cpu

seconds for a circuit of Q6 transistors. For the same circuit, the unification takes

less than .1 cpu second.

30

Implementation

The algorithms used by MOST have already been described. The two major

ways in which MOST differs from the pseud~code provided above are in

attention to storage management and efficiency.

The thorniest implementation problem was that of iteration. Both simulated

annealing and the heuristics fall nicely into the paradigm of

iter&~e(Circuit.Configuration) :­
evaluate(Circuit.Configuration).
adjust(Configuration.New_configuration).

iterate(Circuit.New_configruation).

The questioL is how to do this gracefully within the framework of a language that

has no destructive assignment. The evaluation step consists of binding the

transistor sizes to the current configuration and then performing a circuit analysis.

\\·hen it cooes time to evaluate the next configuration: however, the transistor

sizes are no bnger unbound variables!

Short or using a technique such a.s difference lists (which mimics destru~tive

assignment substantially less efficiently) the only alternative is to make use once

again of Probg's backtracking.

iter•te(Circuit.Configuration) :-
repeat.
evaluate(Circuit.Current_configuration).

adjust(Configuration.New_configuration).

fail.

The f&il unbinds the variables, so that they can be rebound for the next.

evaluation.

The difficulty m this approach is made clear in the call to evaluate: just

what configuration is being evaluated? The backtracking also throws away the

31

binding of New_ eonfiguration. The only way to retain this necessary

information is to assert it.

iterate(Circuit,Configuration) :­
assert(Scurrent(Configuration)),
repeat,
retract($current(Current_configuration)),

evaluate(Circuit,Current_configuration),

&djust(Current_configuration,New_configuration),

assert($current(New_configuration)),
fail.

Althoug-h any use of assert violates Prolog's logical paradigm, this method is

fairly reasc~ablc:. &.<;sert is not being used to communicate between procedures,

only to retain information over backtracking within a single clause. From an

efficiency st3.Ddpoint, relatively little - less than 1% -of the program's time is

spent in this assertion and retraction, despite the fact that somewhat more

information than just the configuration needs to be retained: both the heuristics

and the screening function of simulated annealing need the critical path equations

from the preYious configuration.

The S}Ln~o!ic matLrp.1:1tic pcrt.ion of MOST can evaluate, simplify, and take

derivatives of ~qu:1ti<:•ns. The simplifier is rather mediocre; it does not deal with

the distributive law, for example. Its main purpose is to remove zeroes, and the

main requirement is that it be fast, so adding in more complicated laws would be

counter-productive.

Similarly, the equation evaluator needs to be fast. The equations being

evaluated esn include unbound variables, which default to zero, so the standard

prolog is function cannot be used. Analysis showed that the is is a factor of 10

faster than a symbolic evaluator, primarily due to the necessity for unifying and

setting up a new environment at each level of the expression tree; since evaluation

costs are a significant factor in the overall time, this penalty is unacceptable.

32

Table 4

is t'8. evaluation

circuit equation eYaluation is

SIZe sae time time ratio

6 37 0.06 0.02 3.0

8 109 0.17 0.02 8.5

24 119 0.21 0.02 10.5

48 263 0.42 0.03 14.0

Q6 551 0.90 0.06 15.0

\Vhat really needs to be done 15 to define an additional operator, say

default, suc-h that

default(X) = 0 if X is unbound

default(X) =X otherwise.

Then is ca.:: be used freely simply by applying default to all the pontentially

unbound ,-a:iables. However, Cprolog does not permit the definition or new

arithmetic operators.

The eventual solution was to prepare a modified version of the interpreter in

which unbc.~nd variables default to 0. This is a hideous hack, bet the

performancE gains are well worthwhile. The program will still run in standard

Prologs, ho-,.·evcr, due to the use of macro definitions of the relevant procedures.

The modiDcd interpreter asserts the fact $fast_ interpreter m its

environrnen:, and so programs are able to test to see which version of the

interpreter is in use. Using the expand_ term preprocessor, the changes un be

implemented in a completely transparent manner. \Vhen a program is being read

in, expand_ term is applied to each clause (this is also how grammar rules are

implemented}. If no expand_ term succeeds, then the clause is simply asserted as

is; otherw~, the second argument of the appropriate expand_ term is asserted.

I if Condition is true, assert the Then clause

expand_term(ifdef(Condition,Then,Else).Tben) ·­

Condition. ! .
I otherwise. the Else clause
expand_term(ifdef(Condition,Tben.Else).Else) ·­

+ Condition. ! .

ifdef($fast_interpreter.
(dum::y(...) :-

X is Eq
- ..).

I otl:!enrise
(du..tn=y (. ..) :-

evaluate(Eq.X) •
. . .)) .

ThE> modification to the interpreter greatly increases MOST's speed. Table

10 in chapter 7 contains the statistics; the gain is always at least a factor of two.

Chapter 6

PTA

PTA is a vital component of MOST; it provides information for both the

heuristic and the simulated annealing top ends. Although it is scarcely an

advanre on the state of the art - it is both slower and somewhat less accurate

than Crystal. for example - it has several interesting features. In particular, it is

tuned to repeated use as part of a sizing program, and thus preprocesses as much

of its input as possible; it orders series transistors if their order is initially

unknown; it provides symbolic equations for delay at the various nodes; and it

capitalizes or: the hierarchical structure of the input schematic.

It is possible to modify PTA to use a more accurate delay model, so the lack

of accuracy is not inherent. PTA also bas the ability to treat higher lenls of

abstractions - logic gates or even macro cells - as primitives if the proper delay

model is provided. Currently, however, MOST does not take advantage of this

capability.

An obnous question is the necessity of designing a new timing analyzer.

\\·by not just use Crystal, for example, with (if necessary) a few modifications~

One objection, of course, is that Crystal (or any other timing analyzer) is not

written in Pro log; however, the aesthetic desire for a system written entirely in

Prolog is not sufficient justification for reinventing the wheel.

In order to understand the reasons for writing PTA from scratch. it is

necessary to understand its functions. The justification will thus be postponed

until after a description of PTA and its implementation.

Implementation

PTA takes a CHS as its input. The output of PTA is the same CHS, with

additional timing information attached; the information is sufficient to reconstruct

34

35

the critical path to any node within the circuit. In addition, any initially

unordered series transistors will have orders attached.

If the CHS has subcells, then each subcell is analyzed in turn. The delay at

an output of the CHS is simply the maximum of the delays of that output in the

subcclls. This process is repeated recursively until a primitive element is reached.

In the standard version of PTA, a primitive is a collection of transistors

connecting a single input to a single output.

In order to process a primitive element, the delays of all its inputs must first

be known. This may involve first processing other CHSs whose outputs are inputs

to the current CHS; since the information is retained, this does not cause any

additional work, just reorders the schedule. Each path to each input will thus be

considered. Once the input delays are known, a delay modeler for the primitive

element is called on to calculate the output delays.

analyze_ chs (CHS) :­
is_primitive(CHS).
known_input_delays(CHS).
pro:ess_primitive(CHS).

ana.lyze_chs(CHS) :-
~ is_priwitiv3(CHS).
subcells(CHS.Cells).
apply_to_each(analyze_chs.Cells).

This scheme has several benefits. In the first place, it permits any level to be

viewed as a primitive, as long as the required delay modeler is supplied. For

example, rather than going down to the transistor leYel, logic gates might be

considered primitive. Secondly, it capitalizes on the hierarchical structure, v;hich

limits the number of paths through any one cell. Finally, it eases the burden on

the delay modeler, which is able to assume that all the input delays are knO'wn.

The delay model currently used for transistors is the lumped RC model,

which views the entire resistance and capacitance of a stage as concentrated at

36

the end of the stage. Clearly, this model is pessimistic; however, it is reasonably

accurate, and C'omputationally fast.

Each transistor in turn is considered as the trigger transistor, or the last

transisto;· to c-hange. The delay on the stage given this choice of trigger transistor

is then computed, and the maximum of these delays is taken as the output delay.

The trigger transistor is also recorded, allowing later reconstruction of the critical

path.
VDD

XI~ 11~ A

j_ j_
I:\

X y

B

Transistors X and Y are the possible choices for trigger transistor.

If the stage consists of the set of transistors X, each with its associated

resistance and capacitance; interconnections I; and drives capacitive load Cout•

then the del::.)· with t as trigger is

Dt=Input delay t+(:ERx+ :ERi+Rin)*(:E Cx+ :E Ci+Cout)

nX id x>t i>t

where ">" means "follows in the path." In terms of the above diagram, and

neglecting interconnect resistance for simplicity,

Cout=CA+Ca

Dx=lnput delayXI!'.~(Rin+R>..-t-Ry)*(Cx+~+Cout)

~-=Input delayyJN+(Rin+Rx+Ry)*(~+Cout
)

37

If the primitive element contains unordered senes transistors, they are

ordered before this computation takes place. Having known input delays allows

this orderin~: otherwise, the final order of the transistors is not know when their

delay is calculated, and some assumption must be made. The only safe

assumption is the worst-case one for each transistor, but this leads to \\ildly

pessimistic results.

Deterrnining the input resistance and output capacitance of a primitive

element will involve tracing a path through the circuit. The path must come

from an input to the circuit to the input of the CHS being considered; in the case

of a transistor, the path goes to the source. Finding paths is a classic prolog

pseudo-breadth-first search problem; the simplistic implementation is quite

straightforward:

path(X,X,f]). I path from X

pathCX,Y, connection(X,Z) IP]) :­
connection(X,Z),
path(Z,Y,P2).

to X

The use of connection is meant to bide the exact structure of CHSs; X andY are

connected if there is a primitive CHS with X as an input and Y as an output. In

practice, however, this simple algorithm is not sufficient, since some additional

checking needs to be done.

A cycle among CHSs implies a memory node or a latch. In this case, the

cyclic path is ignored. This check is potentially rather time-consuming, if paths

are long, since it uses an order N2 algorithm. In practice, however, it is relatively

inexpensive.

In order to avoid considering paths which are blocked by non-overlapping

signals, the list of signals influencing each path is retained. Only signals which

have been specified as potentially non-overlapping are included in this list. All

38

values are kept for each set of signals.

In effect, this mechanism trades the space for storing all the different

combinations for the time required to do recomputation if each case is considered

separately a.s it is in a traditional timing analyzer. Potentially, storage can

increase combinatorially with the number of non-overlapping signals. Most paths,

however, do not involve more than one or two such signals, so the price is not too

great. Furthermore, it is exactly these paths where the values computed can be

used for multiple cases.

\\'ith these additions, the path algorithm is somewhat more complex:

path(X,X,Signals,Path,Path).
path(X,Y,Signals,Path_so_far,Path) ·­

connection(X,Z).
I check for circularities
+ member(connection(X,Y),Path_so_far),

I check for overlapping signals
signals(connection(X,Y),S),
overlap(S,Signals),
add_signals(S,Signals,New_signals),
path(Z,Y,New_signals,!connection(X,Y) I Path_so_far],Path).

PTA is tuned to its mode of use within MOST: repeated analyses of the same

schematic with additional sizes attached. As a result, before t.he first analysis of a

given circuit, it does as much preprocessing as possible, since preprocessing costs

only need to be paid once. All the paths within each individual CHS are

computed and stored {the use of hierarchies keeps this space requirement from

growing exponentially), as are symbolic formulas for each node's output

capacitance. For a 100-transistor circuit, preprocessing requires 8 cpu seconds; by

comparison, the rest of the analysis only takes 13 seconds. The same algorithm

with the preprocessing removed requires 27 cpu seconds, substantially more than

the sum of the two times.

39

Justification

The strongest argument in favor of a completely new timing analyzer ~ the

absence of any Prolog timing analyzer. This is not just an aesthetic argument.

Due to the nature of the interpreter, interfacing problems are particularly

daunting. l1 is relatively easy to make use of a C procedure which returns a

numeric val"lle simply by adding a hook to the interpreter allowing function calls,

but returnmg a structure is far more difficult.

In the ilrst place, Prolog procedures do not return values, but rather uniiy

them with their arguments. This problem requires only "syntactic sugar" to

avoid, but the two languages represent structures differently; Prolog structures

need to be c-onverted into C's format when the procedure is called, then the C

structures must be massaged to convert them into the proper Cprolog format.

Finally, Prooog variables are fundamentally different than C variables (there is no

Prolog an:!.Jog to assignment, for example, and pointers are implicitly

dereferencec): it is not at all clear how to remedy this difficulty.

Beyond these language issues, we reach the question of how much an existing

timing anal! zer would need to be modified to fill its role as part of MOST. For

concretenes5. Crystal is considered. At least four areas need to be dealt with:

1) MOST requires symbolic delay equations from the timing analyzer. It is

possible to add these to Crystal in much the same way they have been

implemented in the current version of PTA; to correspond to unbound

va:iables in the Prolog version, pointers to unfilled memory locations

co"llld be used in C.

2} PTA must order series transistors in the cases where the order is not

fix.pd ahead of time. No facility for unordered lists is present in Crystal,

an :1 even if this were added there would still be major difficulties. PTA

onJy considers a CHS once all its input delays are known; given this

40

information, it is possible to decide on an ordering for the transistors.

Cf)·stal does not make such a stipulation, so the ordering information

may not be known or - even worse - may change as the circuit is

being analyzed.

3} In the ASP environment, transistor sizing takes place before layout.

This implies that the exact interconnect capacitances are not known,

and some estimates must be made. This would be rather simple to do

within the framework of Crystal.

4) Crystal cannot deal with non-overlapping signals. A human designer

can do case analysis by fixing on each possibility in turn; this results in

significant recomputation, however. Once again, this capability could be

added into Crystal in the same way it has been implemented in PTA

Most of these features, then, could be added into the existing framework of

Crystal. On the other hand, these areas consumed the bulk of time implementing

PTA, and it seems fair to assume that as much time would have been required to

modify Crystal. The final decision on whether to use Crystal was that the

implementation difficulties, unordered transistors, and the all-Prolog aesthetic

argument outweighed the already existing speed and accuracy of Crystal.

In retrospect, substantially more time than expected was spent implementing

PTA; however, almost all of this time was spent in the areas which would have

had to be added to Crystal as well. PTA is substantially slower than Crystal, and

because of its choice of the lumped RC timing model, somewhat less accurate.

Despite this, I believe the decision was a good one.

PTA's accuracy can be improved by incorporating th(' distributed RC model

and taking v•aveform shape into account. These gains will, of course, be limited

by the fact that interconnect lengths are only estimates, but should make PTA's

accuracy competitive to other timing analyzers. Furthermore, from a

41

development standpoint, therE> was a great advantage in being able to work with

the relatively simple equations of the lumped RC model. The extra accuracy of

the slopE> m~del in particular is accompanied by a dramatic increase in complexity

of thl' equations.

Admittedly, PTA is at least an order of magnitude slower than Crystal, and

for some choices of algorithms this is the limiting factor for the MOST program.

On the other hand, this difference is simply due to the fact that Cprolog is

interpreted Estimates for the performance of the PLM machine [1], in

conjunction with the Berkeley Prolog compiler I18J, predict a 200-fold increase in

speed.

Chapter 7

Results

Five alborithms have been evaluated.

SIMPLE

- a simple scapegoat heuristic: the size of the "most useful" transistor

(the transistor whose modification does the most good) is increased by

one

MS -the size of the most useful transistor is increased by a varying amount

MT - the size of any transistor whose increase would reduce delay IS

in ~reased by one

CP - a critical path heuristic which uses partial derivative information for

the path sizing

- simulated annealing using screening and the cost function

Cost = 5 *Penalty max+5 * L: Penaltyi+ TotaiSize
imodes

Due to the random nature of this algorithm, there is a fair amount of

uncertainty in the results quoted for A..~NEAL, most of which are based

on only a few runs.

The first question to be considered is how well the various algorithms

perform on two mid-sized circuits. A one-bit full adder consisting of 24 transistors

is a small enough circuit that all the algorithms perform reasonably well.

42

43

Table 5
Algorithm performance - 1-bit adder

-{24 transistors)

delay reduction sue timing cpu time
akorithm requt"5t.ed achieved mcrease analvs<'s Jseconds)

SIMPLE 30(c 31 c;o 13c;o 7 18.7
50~ 51% 63% 31 80.3
60r:c 60% 131% 64 163.0

MS 30~ 44% 67% 6 16.4
50% 50% 152% 13 34.4
60% 63% 298% 24 63.1

MT 30~ 31% I9c;(3 8.7
50% 50% 77% 11 29.4
60% 60% 148% 20 52.8

CP 30~ 33% 25% 3 15.3
50% 51% 94% 9 47.2
60C:C 60% 127% 15 80.7

A:\:\EAL 30SC 42% I52SC 6 23.3
50% 52% 218% 11 40.3
60C'(60% 194 c;c 84 230.9

Doubling the size of the circuit to two bits and 48 transistors causes problems

for the STh1PLE heuristic and the simulated annealing algorithm. The results

reported by Fishburn and Dunlop are included for comparison; the time is for a

68000-ba.sed workstation running C code.

Table 6
Algorithm performance- 2-bit adder

-{48 transistors)

delay reduction site timing cpu time
algorithm requf'5ted achieved increase analYses (seconds)

SIMPLE 30~c 31% 15Sc 15 93.0
50% 50% 74% 72 430.0

MS 30% 40% 35% 8 51.4
50% 52% 272% 34 207.5
60% 60% 275% 50 301.4

MT 30% 38% 29% 5 32.5
50% 50% 90% 15 92.4
60% 61% 261% 48 285.0

CP 30~ 32% 35% 3 48.3
50% 52% 173% 11 192.9
60% 61% 355% 22 373.5

Ai\i\EAL 30% 32% 123% 9 79.4
50% 51% 318% 75 553.0

TILOS 43% 32% 6

44

Note that although it requires more cpu time, SLMPLE is the most effective

m limiting transistor size increase. In general, cleverer algorithms tend to

overestimate the sizes of transistors not on the eventual critical path. MS is

particularly prone to this problem because of the difficulty of deciding on the

proper size for a transistor before surrounding transistors have bad their final size

determined.

PTA is currently limited to circuits of approximately 100 transistors. As a

result, it is difficult to say bow well various algorithms scale to larger circuits.

The available data makes it seem that they are roughly quadratic in the size of

the circuit.

Table 7
Algorithm performance vs. circuit size

Circuit Size
Algorithm Reduction 8 24 48 96

SIMPLE 30% 8.0 18.7 93.0 451.2
50% 11.5 80.3 430.0 •

MS 30% 6.7 16.4 51.4 239.0
50% 6.7 34.4 207.5 1095.8

MT 30% 8.2 8.7 32.5 84.9
50% 11.9 29.4 92.4 331.2

CP 30% 11.0 15.3 48.3 137.6
50% 11.0 47.2 192.9 !

AN~EAL 30% 4.5 23.3 79.4 !
soc:;: 16.1 40.3 553.0 '

" - failed to satisfy request
! - data not yet available

A£ the circuit gets larger, time for symbolic derivatives increases

dramatically. For even the 48-transistor circuit, over 50% of the computation

time is spent taking derivatives; for Q6 transistors, the percentage increases to

above 70%. A faster derivative procedure should make this method more

competitive with the others.

The somewhat arbitrary example of a chain of four inverters driving a fairly

large output capacitcance makes a good test of how the algorithms perform '\\"'bile

45

driving the ciucuit as close as possible to its optimum size. Although this is rather

impractical - reducing the delay by 85% increases the circuit's size by a factor of

15 - it is nonetheless a measure of the capabilities of the algorithms.

Table 8
Performance near optimum configuration

Chain of 4 inverters - 8 transistors
(figures are cpu times to attain reductions)

requested Algorithm
delav SIMPLE MS MT CP ANNEAL

30% 8.0 6.7 8.2 11.0 4.5
40% 8.0 6.7 8.2 11.0 6.4
50% 11.5 6.7 11.9 11.0 16.4
60% 18.5 6.7 15.4 11.0 20.0
70% 38.9 11.9 26.0 19.6 29.5
80ST 126.9 30.3 51.7 47.8 116.0
85% 317.6 55.5 102.7 114.5 416.5
90Sf • 394.1 * * *

• -failed to satisfy request

The screening procedure in the simulated annealing algorithm does indeed

boost efficiency substantially. The savings increase with the size of the circuit (as

timing analysis becomes more expensive) and with the percentage reduction

requested (as more configurations become "obviously wrong'').

The same cost function was used both with and without screenmg. One

method of seeing the increase in efficiency is to calculate the "success rate·· -

how often an evaluation results in an acceptance.

Table 9
Advantages of screening

(averages of 10 runs)

Circuit Delay Evaluation Success Cpu
Size Reduction Screen~ Percentage Percentage Time

24 30?o I\0 100% 58S:c 23.0
YES 70% 74% 19.7

24 50% NO 100% 40% 74.4
YES 57% 77% 54.6

48 30% NO 100% 37% 122.6
YES 47% 68% 80.9

48 50%* NO 100% 15% 1100.1
YES 40% 37% 631.7

• - only one run due to cpu time

46

Finally. it is worth investigating bow useful the modification tv the

interpreter actually was. Table 10 incJudes the ratio of the time to evaluate an

expression to the time required by is. Simply multiplying this ratio by the time

spent in evaluating equations using the fast interpreter will give a fairly good

estimate of the time required to evaluate the equations in the standard

interpreter. Different algorithms do different amounts of evaluation, so the e:Iact

benefit they obtain differs, but it is invariably large.

Table 10 !
!

Performance gains due t.o modified interpreter ' ~

Modified Interpreter Standard Interpreter
I

Circuit (measured) (projected) j

R . l
Algorit 'b.m Si2e Is time Total EYal Time Total atw ·

MS 8 1.4 6.7 11.9 17.2 2.6 J

24 9.1 24.4 95.5 110.8 4.5 j
48 65.7 207.5 919.8 1061.6 5.1 l 96 383.7 585.3 5755.5 5957.1 10.2

MT 8 2.9 11.9 24.6 33.6 2.8

f 24 7.4 29.4 77.7 99.7 3.4
48 27.8 92.4 389.2 453.8 4.9 I

96 138.2 331.2 2073.0 2266.0 6.8 I

'
CP 8 0.4 1.1 3.4 4.1 3.7 I

24 5.1 47.2 53.5 95.6 2.0 I 48 14.0 192.0 196.0 374.0 1.9

AT\ NEAL 8 2.9 20.6 24.6 42.3 2.1
24 5.6 40.3 58.8 93.5 2.3
48 182.5 553.0 2555.0 2925.5 5.3

Summary of results

Chapter 8

Conclusion

Both simulated annealing and heuristic methods can reduce delay through a

circuit by 50% in· a few minutes of CPU time using a simple delay model.

Heuristics are tend to be more efficient and produce smaller final circuits; even

simple heuristics give surprisingly good results. Although no guarantees can be

provided, several of these approaches almost invariably succeeds in satisfying

reduction requests up to 60CC.

Using symbolic equations ts a key to improved performance both for

heuristics and simulated annealing. Using a more accurate delay model might

cause the complexity of these equations to increase dramatically, and so it is not

clear how this would affect the program's speed.

The limitations on circuit size are largely a function of the Prolog

implementation in use, particularly its failure to perform tail-recursion

optimization. Other than this, performance scales fairly well with size.

Future work

Many promising areas for research are still almost untouched. Several have

been mentioned in passing above; this final discusses them in somewhat greater

detail.

The most attractive possibility is taking advantage of the circuits hierarchical

structure. As mentioned, PTA is able to view different levels of abstraction as

primitive; this feature was added primarily for the benefit of MOST, but no use

has been made of it so far. Instead of sizing the entire circuit simultaneously, it

should be more efficient to assign delay goals to cells and then size the cells

recursively.

47

48

Annealing and heuristics should certainly be combined, as should heuristics of

different types. For different circuits, different approaches are desirable; some

way of determining what method is right for a given circuit would be extremely

useful.

PTA is easily modifiable to include a more accurate delay model. The

Penfield-Rubenstein-Horowitz distributed RC model is only slightly more complex

than the lumped RC model, and current sizing techniques should continue to

perform much the same. Models taking the waveform's slope into account cause

more cifuculty, but provide potentially large rewards. or course, from the

standpoint of MOST's usage within ASP, the increased accuracy will do little

good, due to the estimates of interconnect length, but they are important for use

as a stand-alone tool.

From an aesthetic standpoint, usmg heuristics is rather unsatisfactory.

Fishburn and Dunlop's work [2] points the way towards a sounder theoretical

basis, but is currently restricted to the distributed RC model. This result needs to

be extended towards a more general model. Additionally, decomposition

techniques such as Matson's - much like the hierarchical decomposition described

above- show great promise.

Acknowledgments

First of all, my parents and my brother Greg deserve all the thanks in the

world ... but they know that already. Blood is thicker than water, so others will

have to be content with the second paragraph.

My ASP project colleagues Rick McGeer and Bill Bush spent vast amounts of

time discussing the issues with me, and later gave incisive comments on the rough

drafts of this paper. Paul Chang's PC was indispensible, and he also had to live

with my traumas and occasional bad moods all semester long. AJ Despain, my

4Q

advisor, w&.." also incredibly helpful.

The list goes on Andrew Kahng provided useful feedback. Ubli Mitra gave

me inrenti>e, and her Macintosh bailed me out of a jam. Jordan Hayes chipped

in with some needed typesetting help. Colleagues on the Aquarius project were

kind enough to listen to me, and I should really thank Paul again for putting up

with me this semester. Mike Clancy, however, failed to give me any cheesecake,

t.espite repeated subtle hints.

BIBLIOGRAPHY

1. Dobry, T ..•. _,. Prolog Machine Architecture," VCB/ CSD Technical /\'ott, 1984.

2. Fishburn, J. P. and A. E. Dunlop, "TIL OS: a Posynomial Programming Approach to Transistor Siz­

ing." Proc. ICCAD, pp. 326-8, 1985.

3. Glasser, L. and L. Hoyte, "Delay and Power Optimization in VLSI Circuits," Proc. fl1f DAC, 1984.

4. Greene, J. W. and K. J. Supowit, "Simulated Annealing without Rejected Moves," Proc. JCCD.

1984.

5. Hedlund, K Models and Algorithms for Transistor Sizing iu NMOS Circuits," lntl. C•nf. en CAD,

1984.

6. Jouppi, N. P., "TV: an nMOS Timing Analyzer," Proc. 9rd Caltecla Conf. on \'LSI, 198-5.

7. Kao, W. H .. K Fathi, and C.-H. Lee, "Algorithms for Automatic Transistor Sizing in CMOS Digital

Circuits," Froc. £2nd DAC, 1985.

8. Kirkpatrick S., C. Gelatt, and M. Vecchi, "Optimization by simulated annealing," lB.\! Yorktou·r.

Heightt Teci. Report, 198~.

9. Lee, C. M. and H. Soukup, "An Algorithm for CMOS Timing and Area Optimization,·· IEEE Jour­

nal of Solid State Circuits, vol. SC-19, 1984.

10. Matson, M D., "Optimization of Digital MOS VLSI Circuits," Proc. Chapel Hill Cor.f. on "'LSI.

1985.

11. Matson, M.D., "Macromodeling or Digital VLSI Circuits," Proc. ttnd DAC, pp. 144-51, 1985.

1~. McGeer, R .. B. Bush, A. Despain, and J. Pincus, The ASP Silicon Compiler, (submiaed to) 23rd

DAC, 1986.

13. Mead, T.-!-.f Lin and C. and C. Mead, "Timing Simulation or Digital Integrated Circuits," Proc

Conf on Ad:. Research in \'LSI, pp. 93-99, 1984.

14. Ousterbout. J., "Switch-Level Models for Digital MOS \'LSI," Proc. £1st DAC, 1984.

15. Penfield, P. Jr. and J. Rubenstein, "Signal Delay in RC Tree Networks," Proc. £nd Catecla Conf on

\'LSI, pp. Xg...84, 1981.

16. Pereira, L., Cprolog Veers' Manual, p. Edinburgh University, 1982.

1i. Pincus, J. a~~d A. Despain, Tranmtor Sizing Veing Simulated Annealing, (submitted to) 23rd DAC,

1986.

18 Roy, P. Van. "A Prolog Compiler for the PLM," UCB/CSD Tech. Report, 1984.

19. Ruehli, A. E., P. K. Wolff, and G. Gortzed, "Analytic Power/Timing Optimization Techniques for

Digital Sys~ms," Proc. J,fth DAC, 1977.

20. Secben, C. and A. Sangiovanni-Vincentelli, "The TimberWolf Placement and Routin~ Package,"

IEEE J. of Solid-Statf Circuits, vol. SC-20, 1985.

21. Trimberger. S. M., "Automated Performance optimzation of Custom ICs," Proc. lntern&tional SJJm­

posium on Circuits and SJJstems, pp. 194-7, 1983.

~-

AP-pendix
Source Coae of MOST

I this is the top-level file which causes the others to be loaded in

:-([-"UTILS/macros•.
- • anneal'.
-"heuristic'.
-"PTVpta•.
-"PTA/ppp•.
-"PTA/order •.
-"PTA/primitive•.
- 'PTA/cri tpath •.
-'PTA/delay •.
-'UTILE 'utils •.
-·UT~LS/symbolic',

-"UTILS/structs•.
- "UT:i:LS/print •.
-"UTILS/makechs'.
- "UTILS/ra.ndom •.
-"UTILS/minimize']).

I this has to be first so it applies to the others

Dec 9 21:47 1985 UTILS/macros Page 1

% ifdef macros. In order to have precedence over the other macros,

%these need to be applied first, and so must be 'asserta'ed.

·- asserta((expand_term(ifdef(Condition,Clause1,Clause2),Clause2) ·-)) .

·- asserta((expand_term(ifdef(Condition,Clause1,Clause2),Clause1) ·­

Condition, !)) .

Dec 9 21:24 1985 anneal Page 1

% prolog code to do simulated annealing

measure (Delay) :-
N is cputime,
pp (Chs),
make_sizes(Chs,Vars),
initialize(Chs,Delay,Vars,Initial},
anneal(Delay,Chs,Vars,Final,Cost,Actual),
Nl is c;:>utime,
Pet is Actual/Initial,
pri~~('Delay reduced from '),print(Initial), print(' to '),

prir.t(Actnal) ,print(' (') ,print(Pct) ,print('%)') ,nl,
print(':otal transistor size '),total_size(Final,Tsize),print(Tsize) ,nl

print('cpu time required is '),Diff is Nl- N,
print(Diff) ,print(' seconds'),nl.

measure(_) :­
print('Failure') ,nl,
! ,
fail.

initialize (L, Delay, Vars, Ini t_delay) ·­
length(Vars,Number),
print('There are '),print(Number),print(' transistors to size') ,nl,

init_configuration(Vars,Init),
cost(L,Delay,Vars,Init,Init_cost,Init_delay,Init_eq,

In~t_other),

init_stopinfo(Init_cost,Stopinfo),
init_temperature(Delay,Init_delay,T),
note_va lues (Ini t, :lni t_cost, Ini t_delay, Ini t_eq, Ini t_othe;-) ,

fail.
initialize (L, Delay, Vars, Init_delay) ·­

$current_delay(Init_delay),
! .

anneal(Delay,Chs,Vars,X,Xc,Xd) :-

% or

% or

repeat,
get_temperature(T),
get_stopinfo(Stopinfo),
iterations_at_temp(T,N),
inner_loop(N,T,Delay,Chs,Vars,X,Xc,Xd),
update_stopinfo(Stopinfo,Xc,New_si),
((stop(Delay,Xd,New_si); %success

give_up(New_si));

update_temperature(T,New_t),
fai 1) .

% failure

% keep going
% the fail retu;-ns to the repea

% inner loop goes through N iterations at the specified temperature

inner_loop(N,T,Delay,Chs,Vars,J,Cost,Actual) :-

Dec 9 21:24 1985 anneal Page 2

range (1, I ,N),
get_values(X,Xcost,Xdelay,Xdeq,Xoeq),

generate(X),
screen(X,Xdeq,Xoeq,Xcost,Delay,T,R),
make_real_configuration(X,J),
cost(Ch~,Delay,Vars,J,Cost,Actual,De

q,Oeq),

accept(Xcost,Cost,T,R),
replace_values(J,Cost,Actual,Deq,Oeq),

Actual <Delay, % succeed only if done

% otherwise, fail and the retry goes back to 'range'
I

inner _loop\ __ ,_,_, __ ,_, X, Xcost, Xdelay) :­
get_values(X,Xcost,Xdelay,Xdeq,Xoeq),
I

% the screer.ing function -- throw out "obviously wrong" confi;-.1rations

screen(Config,Deq,Oeq,Old_cost,Delay,T,R)
size_cost(Config,Sizc_cost),
Diff is Deq - Delay,
max(O,Diff,Delay_cost),
map(other_penalty,Delay,Oeq,Penalties),

sum(Penalties,Other_cost),
make_cost(Delay_cost,O,Size_cost,Test_cost),

randc~(R),
I
- '
accept(Old_cost,Test_cost,T,R),
! .

other_penalty(Dclay,Eq,Penalty) ·­
A~tual is F.q - Delay,
max(O,Actual,Penalty).

accept(Xcost,Jcost,T,R) :­
Del_c is Jcost - Xcost,
f(Del_c,T,Y),
R < Y.

f(Del_c,_,1) :­
Del_c < 0,

f (Del_c, T, Y) :-
Y is exp(-Del_cfT),
! .

% annealing utility functions, including intializing and updating

%parameters. most of these are very sketchy, and lots of use:ul

% work could no doubt be done here

init_temperature(Delay,Init_delay,T) ·­
T is (Init_delay - Delay)/4,

Dec 9 21:24 1985 anneal Page 3

asserta($current_temp(T)),
I

init_stopinfc(Init, [Init,O,l,2]) :- %as long as they're different, it's cool

asserta($current_info([Init,O,l,2])),
I

%currently, iterations_at_temp doesn't depend on the tempera~re. clearly

%it should for better performance. sorry.
iterations_at_ternp(Temp,25) :- !.

% this should also be somewhat more complex

update_ternoerature(T,Newt) :-
Newt is 0.8*T,
asser~a($current_temp(Newt)),

I

get_temperc---::~-e (T) :-
retra~t (~curTent_temp (T)),
I

update_stopin~o ([Xl,X2,X3,_] ,X, [X,Xl,X2,X3]) ·­
asser~a($current_info([X,Xl,X2,X3])),

I

get_stopinfo (.Stopinfo) :­
retra=t($current_info(Stopinfo)),
I

stop(Delay,Xdelay,Stopinfo) :­
Xdelay <Delay.

% give up if no change (in cost) in three iterations

give_up([X,X,X,X]).

% try to make the asserts and retracts as transparent as poss:ble

note_values(X.Xc,Xd,Xdeq,Xoeq) :­
asser~a($current_config(X,Xdeq,Xoeq)),

asserta($current_cost(Xc)),
asserta($current_delay(Xd)),
I

get_values(X,Xc,Xd,Xdeq,Xoeq) :­
$current_config(X,Xdeq,Xoeq),
$current_cost(Xc),
$current_delay(Xd),
I

replace_values(X,Xc,Xd,Xdeq,Xoeq) ·­
retra=t($current_config(_,_,_)),

Dec 9 21:24 1985 anneal Page 4

retra=t($current_cost(_)),
retra=t($current_delay(_)),
note_values(X,Xc,Xd,Xdeq,Xoeq),

! .

% interface t-~e simulated annealing algorithm with the timing analyzyer

% cost takes t~e variables as its third argument, and the actual configuration

% as its four~. This binds them, and thus sets the sizes in the Chs itself

cost(Chs,Dela,·,Config~Config,Cost,Actu
al_delay,Oelay_eq~Other_eq) :­

proces3_chs([]~Chs),

find_critical_path(Chs,Cp),
max_celay_cost(Chs~Cp~Delay,Actual_de

lay~Delay_cost,Delay_eq) I

other_delay_cost(Chs,Cp~Delay,Other_c
ost~Other_eq),

size_cost(Config~Size_cost),

make_cost(Delay_cost,Other_cost,Size_c
ost~Cost),

I

max_delay_cos~(Chs~Cp~Delay~Actual_de
lay,Cost,Eq) ·­

delay_equation(Cp~Eq),

delay{Cp,Actual_delay),
Diff ~s Actual_delay - Delay,

max(~~ff,O~Cost).

other_delay_c~st(Chs,Cp~Delay,Total_o
ver,Eq) ·­

all_d€lays_over(Chs,Delay~Total_over
,Eq).

size_cost(Co~!ig,Size) :­
tota:_size(Config,Size).

all_delays_ove~(Chs~Delay,Total,Eqs)
·­

signa:s(Chs,Signals)~

map(delay_equation,Signals~Eqs),

mapU>enalty,Delay,Signals,Penalties),

sum(Fenalties,Total).

penalty(Delay.Entry,Penalty) :­
delay(Entry,This_delay),
Diff is This_delay - Delay,
max(D~ff,O,Penalty).

total_size(Cc~fig~Size) :­
map(g=te_size,Config~Combined) I

sum(Cotibined,Size).

% generate mc~ifies the old configuration, which is in the form Size+Change

Dec 9 21:24 1985 anneal Page 5

% by binding Change to some number

generate {Old) ·­
minim~_gate_size(Min)

,

apply_to_each{perturb,Min,Old),
I

perturb(_,Size+Change) :­
number (Change) ,
I

perturb(Min,Size+Change) ·­
var (Olange) ,
pertt'.rbat:i.on (Change),
Si~c + l~ange >= Min,

! .

perturb {f-Hn, ~ize+O) :­

! .

perturb(_,Size) ·­
nu.r.:.:oer(Size),
I

perturbatior._size(2). % maximum perturbation

perturbation(Chc.nge) :­
perturbation_size(Max_change),

Mmc is -Max_change,
Maxc is Max_change+l,

rancom_int(Mmc,Maxc,Change),
I

% the initial configuration is simply with all gates at the ~nimum size

init_config-J:ation(Vars,Init) :­

map(init_gate_size,Vars,Init).

init_gate_size(X,Y+_) :-
var (X),
minimum_gate_size(Y).

% unless, of course, they happen to have a size already fixed

init_gate_size(X,X) :-
nwnber (X).

make_cost{Delay_cost,
Other_cost,Size_cost~

Cost) ·­

max_weight {Kl) ,
all_weight (K2) I

size_weight(K3) I

Dec 9 21:2~ 1985 anneal Page 6

Cost is Kl * Delay_cost + K2 * Other_cost + K3 * Size_cost.

max_weight(S).
all_wejght(S).
size_weight(l).

make_real_co~figuration(Config.Trial)

map(free,Config,Trial).

•

% free changes from the form Size+Change (with both bound) to the form

% Newsize+_, where Newsize = Size+Change

free(S,Result+_) ·-
gate_size (S,Resu) ·;.:).

..

Dec 9 21:26 1985 heuristic Page 1

% try a heuristic
try_neuristic(Delay) ·-

clear _globs,
N is cputime,
pp(L),
make_sizes(L,Vars),
init_configuration(Vars,Init),

asse~ta($current_configuration(Init)).

heuristic_iterate(L,Vars,Delay),

print('final configuration is '),print(Vars),nl,

total_size(Vars,Size),print('final size is '),print(Size),nl,

print('time required is '),Time is cputime- N,print(Time),nl.

heuristic_iterate(Chs,Vars,DBlay) :-
repeat,
curre~t_configuration(Config),

cost(~hs,Delay,Vars,Config,_,Actual,Dela
y_eq,_),

(Actual·~< Delay -> print('whee! ') ,nl;
m~ke_next_config(Config,Delay,Delay_eq),

fail) .

make_next_cor.fig(Config,Cost,Eq) :­
collect_vars(Eq, [],Vars),
partials(Eq,Vars,Derivs),
map(zero,Vars,Constraints), %oversimplification; they might

% already have values, in which case

% they could decrease

minic~ze(Eq,Cost,Vars,Constraints,Derivs,N
ew_cost),

make_real_configuration(Config,New),

retract($current_configuration(_)).

asse~ta($current_configuration(New)).

! .

current_configuration(X) :­
$current_configuration(X).
! .

% MS heuristic -- increase size of transistor by more than 1

clear_globs :­
abolish(best,2).
abolish(this,l),
abolish(bump,l).

choose-Pest(Config,Cost,Eq,Actual) ·­
asse~ta(best(O,Cost)).

try_each(l,Config,Eq,Cost),
retract(best(_,Actual)).

try_each(_, []._,_).
ifdef($fast_interpreter, (

Dec 9 21:26 1985 heuristic Page 2

% hacked interpreter
try_each(N, [1 I Config],Eq,Cost) ·-

This_one is Eq,
replace_if_necessary(N,This_one,Cost),

fail),
% normal interpreter
(try_each{N, [1 I Config],Eq,Cost) :­

evaluate(Eq,This_one),
replace_if_necessary(N,This_one,Cost),

fail)) .
try_each(N, ~od I Config],Eq,Cost) :­

Nl is N+l,
t1 y _each (Nl, Confi':;·, Fq, C0'St),
choose_size(Mod,Eq,Best,N).

choose_s:.ze(~od,Eq,P,est,N) :­
is_best(N),
I . '
chocse_individ,.lal_sizt: (~·1od, Eq, Best) .

choose_size(O,_,_,_).

replace_if_necessary{N,Current,Cost) ·­
best(_,Best),
Cu·rrc-Jt < Best,
retract(~est(_,_)},

asse,ta(best(N,Current)),
! .

isJ:>est (N) : -
best (N, _),
! .

choose_individual_size(Mod,Eq,Best)
best(_,One),
try_sizes(Mod,2,Eq,One,Best,l,Choice),

asse,ta(best_size(Best,Choice)),

fail.
choose_individual_size(Mod,Eq,Best) :­

retract{best_size(Best,Mod)),
! .

try_sizes(Mod,Mod,Eq,Best,Best,Choice,Choice)

max_c~ange(K),

Mod > K,
! .

ifdef($fast_interpreter, (
try_sizes(Mod,Mod,Eq,Best,Best,Choice,Choice) ·­

This is Eq,

Dec 9 21:26 1985 heuristic Page 3

asse;ta(this(This)),
This > Best,
!) '

% usual inte~preter
(try_sizes (~..od, Mod, Eq, Best, Best, Choice, Choice) ·­

eval~ate(Eq,This),

asse~ta(this(This)),

This > Best,
!)) .

try_sizes(Mc~,Cu~rent,Eq,_,Best,_
,Choice) ·­

retract(this(Bsf)),
r-:~xt- is 2 *Current,
! '
try_sizes(Mod,Next,Eq,Bsf,Best,Current,Choice).

max_change (E, .

Dec 9 21:26 1985 PTA/pta Page 1

process_chs(L~v.Chs) :­
is_processed(Chs),
I

%don't want to reprocess

process_chs(E~v.Chs) :­
is_primitive(Chs),
process_primitive(Chs,Env),
I

process_chs(L~v,Chs) :­
subce~ls(Chs,cells(Subcells)),

apply_to_each(process_chs, [Chs!Env],Subcells),

all_:-__ :~_delays (Chs, SubC"ells) .

is_primitive(~s) :- is_net{Chs).

%processing only one signal in a chs means that we don't need to

%process *a:l* the subcells, just the ones in which the signal is

% an output.
process_signa:_in_chs(Env,Sig,Chs,Signal_entry) :-

subce:ls(Chs,cells(Subcells)),

relevant_cells(Subcells,Sig,Relevant),

apply_to_each(process_chs, [ChsjEnv],Relevant),

find_signal_entry(Sig,Chs,Signal_entry),

max_d~lay(Relevant,Signal_entry).

get_signal_e~~ry(Sig,Chs,Entry) :­
signa:s(Chs,Signals),
assoc(Sig,Signals,Entry).

relevant_cells([],_, []).
relevant_cells([CjCs] ,Sig, [CjNewcs]) ·­

is_ou~put(Sig,C),
I
• I

relevant_cells(Cs,Sig,Newcs).

relevant_cells([CICs],Sig,Newcs) :­
relevant_cells(Cs,Sig,Newcs).

% the subcells are done, and so each output will have a delay for several

%of the subcells. find the max.

all~ax_delays(Chs,Subcells) :-
signals(Chs,Signals),
apply_to_each(one_max_delay,Subcells,Signals).

% for a particular signal, collect 'em all

one_max_delay(Subcells,Signal_entry) :­

max_delay(Subcells,Signal_entry).

max_delay(Subcells,Signal_entry) :-

Dec 9 21:2E 1985 PTA/pta Page 2

si~.al_name(Signal_entry,Sig),

finc_max_delay(Subcells,Sig~Signal_entry).

set_signal_celay(sig(_,D1_) ,D).

make_dummy_si~al_entry(sig(_,O,_)) :- ! .

find_max_de:ay([J~-~Dummy) :- make_dummy_signal_entry(Dummy).

find_max_delay ([Celli Cells], Sig, Entry) :-
finc_signal_entry(Sig,Cell~EO)~% this will fail if Sig isn't in Cell

I
• I

fin'~ _.,--~x_delay (::"oll s, Sig I El} I

bigger_rielay(EO~El~Entry).

find_r.;ax_de :::_ ~i' ([:ell! Ce 1 h=J, Siry, Entry} ·­
fir_i _,...,ax_delay(Cc:1s~Sig~Entry).

bigger _delay (Dl, D2 1 Dl) :­
delay(Dl~Delayl),

delay(D2,Delay2) I

Dela::·l > Delay2,
! .

bigger_delay(Dl,J2~D2).

delay (Signa:* Delay) :- arg (2, Signal, Delay) .

delay_in_cel1(Chs1Sig,Delay,Info) :­
make_si;nal_entry(Sig~Delay,Info~Entry) I

finc_sisnal_entry(Sig,Chs,Entry).

make_signal_e:;,;::--y (Sig I Delay I Info I sig (Sig I Delay, Info)) .

process_pri~tive(Chs,Env) :­
set_~nput_delays(Chs,Env)~

atta~h_orders(Chs)~

outpwt_signals(Chs,O)~

apply_tc_each (pr imi tive_delay I [Chs 1 Env] I 0) .

set_input_de:ays(Chs,Env) :-
inpu~s (Chsl I),
apply_to_each (check_input, Env I I) .

check_input(_,I) :­
kno~._input_delay(I)~
I

check_input(Env~I) :-
signal_name(I,Name)~

delay_in_env(Env,Name,Delay_entry} I

Dec 9 21:26 1985 PTA/pta Page 3

set_input_delay(I,Delay_entry).

known_input_delay(in(_,Delay,_)) :­
nu.rrber (Delay) .

set_input_delay(in(_,Delay,Info),sig(_,Delay,Info)).

% delay in env -- make sure a given signal has a known delay
delay_in_env([ChsiEnv],Sig,Delay) :-

known_delay(Chs,Sig,Delay), %it does already
! .

de 1 ;_:.y _in_f L-.. ([Chs 1 Env] , Sis, L·-:- 1 <>y) :-
is_input(Sig,Chs,Delay), % it doesn't but it's outside our current chs
delay_in_env(Env,Sig.Delay).

delay _in_C!iV ([Chs I Env], Sig, I);:- lay) :­
process_signal_in __ c 'hs (J·::w, Sig, Chs, Delay) .

known_delay (Chs, Signal, Ent.ry) :­
find_signal_entry(Si~1al,Chs,Entry},

kno•~l_signal_delay(Entry).

known_sigr.a.l_delay (sig (_,Delay,_)) ·-
\ + va.. · (D·;lay) .

find_signal_entry(Name,Chs,Entry) ·­
sigi.als(Chs,Signals),
as soc (N8:ne, Signa 1 s, Entry) .

is_processed (Chs) :-
sig;,als(Chs,Signals),
app~)'_to_each(known_signal_delay,Signals).

Dec 9 21:29 1985 PTA/ppp Page 1

% path pre-processing

% make_si~als collects all the signal names and puts in slots in the outputs

% for the delays

make_signals (Chs, [OJ) ·­
is_net (Chs),
I . ,
inp:.:.ts(Chs,I),
add_delays_to_inputs(I,Newi),
outp·:t_signals (Chs, [OJ) ,
ad.:_c'r· 1 ~ys_to_ot..: tputs ([OJ , [NewOJ) ,
si~.als(Chs, [NewOjNewlJ).

make_signal::,. {Cbs, 0) :­
sub~~lls(Chs,cells(Cs)),

map {::::kc._signa ls, Cs, Subcell_outputs) ,
fla:::ten (Subcell_outputs, Temp),
re~=ve_dupes(Temp, [J,O),
inp:.:.ts{Chs,I),
add_delays_to_inputs(I,Newi),
add_delays_to_outputs(O,NewO),
append(Newi,NewO,Sigs),
sic;:-: a ls (Chs, Sigs) .

make_outputs(Env,Chs) :-

% only one output for a net

outp~ts(Chs,Outputs),

app:y_to_each{symbolic_terminal_capacitance,Env,Outputs),

(is_primitive(Chs) ->true;
subcells(Chs,cells{Sub)),
apply_to_each(make_outputs, [ChsjEnv],Sub)).

add_delays_to_inputs([], []).
add_delays_to_inputs ([in (Name, Delay. Info) I Is], [sig (Name, Delay, Info) 1 Xs]) ·­

add_delays_to_inputs(Is,Xs).
add_delays_to_inputs([in(Name) lis], [sig(Name,_,_) IXs])

add_cielays_to_inputs(Is,Xs).

add_delays_to_outputs([], [J).
add_delays_~o_outputs ([0 1 Os], [sig (0, _, _) 1 Xs]) ·­

add_delays_to_outputs(Os,Xs).

make_struct~~e(chs(Name,Inputs,Outputs,Subcells)
,C) ·­

map(make_structure,Subcells,Newsubs),
C = .. [chs,Name,Inputs,Ouputs,Newsubs,_,_],
make_signals(C,_),
patr~_in_env(C,_).

Dec 9 21:29 1985 PTA/ppp Page 2

make_J)aths (C. [P]) ·­
is_net(C),
I . ,
subcells(C,Net),
sou::--ce(C,S),
drain(C,D),
P =-. [path,S,D, [[Net]]],
paths {C, [P]) .

make_J)aths(C.P) :­
subcells(C,cells(Subcells)),
len~h{Subcells,L),

map~-c-kc_paths,Subcells,Subpaths),

fla~t~n(Subpaths,P1),

make_all~aths(L,Pl,P2),

inp~~_signals(C,I),

sele::t __ input (P2, I, 1:'3),

patr.s (C, P3) ,
outp:..:t __ stgnals (C,O),
sele-:::t_c~'-ltput (P3,0,P).

select_inpu~([),_, []).
select_input ([PIPs], I, [P !Rest)) ·­

P =-. [path,X,_,_],
meTrer(X,I),
I . ,
sele::t_input(Ps,I,Rest).

select_input ([PIPs), I ,Rest) :­
sele::t_input(Ps,I,Rest).

select_outp~~([],_, []).
se lect_ou tp:.i~ ([P IPs] , 0, [P I Rest]) · -

P = .. [path,_,Y,_],
member (Y, 0) ,
I . ,
sele::t_output(Ps,O,Rest).

select_outpt.:~ ([PIPs] ,O,Rest) :­
sele::t_output(Ps,O,Rest).

% make_all_paths(Length ,Short paths, all paths)

make_all_J)a~s(O,Paths,Paths) :- ! .

make_all_paL~s(N,Short_J)aths,Paths) :-
cross(Short_paths,Short_paths,Somewhat_longer_paths),

Nl is N I I 2,
make_all_paths(N1,Somewhat_longer_paths,Paths).

cross([],Shc::--t,Short) _
cross ([Pe I Pes] , List, X) :-

Dec 9 21:29 1985 PTA/ppp Page 3

dot (Pe, List,Pll),
cross(Pes,List,Pl2),
cocbine_path_lists(Pl1,Pl2,X).

combine_path_lists([],P,P).
combine_pa~_lists([path(X,Y,P) IPs],Plist,Newp) ·­

add_new_path(X,Y,P,Plist,Temp),
combine_path_lists(Ps,Temp,Newp).

dot (_, [] , []) .
dot(path(X,Y,Paths), [path(Y,Z,P2) 1 Pes], Result) ·­

diddle(raths,P2,Longer),
d.., t. ~~'.t:i~ (X, Y, Path.~) , Pt: ~ _ l.'Jore),
add_new_--..nath (X, Z, Longer, More,Resul t) .

dot (path (X, Y. Paths) , [path (Z, _, _ _) I Pes] , Result) ·­
y \= Z,
dot(p~'...:h(X,Y,Paths) ,Pes,Result).

% add_new_p:! ~h (f, T, Path, Pe1thl :i ~:>t,Resul t)
add_new_path (F, T, P, [] , [path (F, T, P)]) .
add_new_patt:(F,I.',P, [path(F,T,P) IX], [path(F,T,P) IX]) :- ! .

add_new_path (F, T, P, [path (I:', T, P1) 1 X], [path (F, T, Newp) I X]) ·-
put_paths_together(P,P1,Newp),
I

add_new_pa~ .. --:(!.._T,P, [XIXs], [XIYJ) :­
add_new_path(F,T,P,Xs,Y).

put_paths_tc;ether([],P,P).
put_paths_tcgether([XIXs],P,Newp)

me~r (X.P),
I
• I

put_paths_togeL~lor (Xs,P ,Newp).
put_paths_together([XiXs],P,Newp) :­

put_paths_together(Xs, [XIP],Newp).

diddle ([] , _, []) .
diddle ([PIPs] , Plist ,Result) :­

add_to_each(P,Plist,R1),
diddle(Ps,Plist,R2),
appe~d(R1,R2,Result).

add_to_each (?, [] , []) .
add_to_each (?, [L I Ls] , [R IRs]) :­

appe~d (P ,L,R),
add_to_each(P,Ls,Rs).

Dec 9 21:30 1985 PTA/order Page 1

% attach_oroers -- once all the inputs have known delays, the

% gates can be ordered nicely. I do this by sorting the inputs,

% and then attaching the correct positions to each qate •;

attach_orde~s(Chs) :-
inp'..:.ts (Cbs, I) ,
sort_inputs(I,Sorted),
gates (O~s, Glist),
attach_to_glist(Sorted,Glist,_).

%since I d~dn't feel like writing a sort routine, I just massaged things

% so that I could use keysort, the prepackagged routine.

sort_inputs(I,Sorted) :-
make_~v.-Lo.ble_inputs(I,Sort),

keysort(3ort,Ugly),
bea..:.tify(Ugly,Sorted,1).

% keysort-co..TJ~~s 5 1:s inputs in the form "Key-Value"
make_sortab:e_ir._,.)uts ([], []) .
make_sortab:e_ir.::-uts ([In 1 Ins], [Key- In 1 Keys]) ·-

inp~t_dclay(In,Key),

make_sortable_inputs(Ins,Keys).

input_delay(in(_,D,_),D).

beautify ([]. [] ,_).
beautify ([_-In 1 Ins] , [(Sig, Pos) !Rest], Pos) ·­

si~_al_name(In,Sig),

P1 is Pes + 1,
bea~tify(Ins,Rest,P1).

attach_to_g:ist(t::crted,G,Order) ·­
is_gate (G) ,
si~al_narne(G,Sig),

lookJp_order(Sig,Sorted,Order).

attach_to_g:ist (Sorted, series (Gs) ,Order) ·­
map(order_gate,Sorted,Gs,Orders),
max(Drders,Order).

attach_to_g:ist(Sorted,parallel(Gs) ,Order) ·­
map{attach_to_glist,Sorted,Gs,Orders),
max(Drders,Order).

% this puts the order in the right field, as well as returning it

order_gate(Sorted, (G,Order),Order) :­
attach_to_glist(Sorted,G,Order).

lookup_orde~(Sig,List,Order) :­
ass~c(Sig,List, (Sig,Order)).

Dec 9 21:30 1985 PTA/order Page 2

order_list(Gs,Newgs) :­
make_sortable_gates(Gs,L),
l<eysort(L,Newl),
make_sortable_gates(Newgs,Newl).

make_sortable_gates([], []).
make_sortable_gates([G!Gs), [Key-G!Keys]) ·­

gat~_order(G,Key),

make_sortable_gates(Gs,Keys).

gate_order((_,O),O).

/* try_each_gate will go through a series gate to see where the source

of the maximum de1ay is. By now, the proper orders have been

put on the gates, and they're sorted, so I just try each one in

tur~ as the trigg~r. */

/* syntax:

*I

try_e?ch_gate(Chs,Newgs,Rin, [],Rlist,
Cout,Clist,
_,Rnet_sym,
_,Cnet_sym,
O,D,
_,Trig) .

try_each_gate(_, [],_,_,_,_,_,
Rsf,Rsf,
Csf, Csf,
Dsf,Dsf,
T~ f, Ts f) · - 1

ifdef($fast_interpreter, (
% hacked interpreter
try _each_gate (Chs, [(Gate,_ ..) I Gates] , Rin, Rprev, Rg+R_int+R_rest,

Cout,Cg+C_int+C_rest,
Rsf ,R_sym,
Csf,C_sym,
Dsf ,D,
Tsf, T) ·-

Rtot is Rin - Rg,
Ctot is Cout -. Cg,
% recursive call takes care of nested structures

net_delay(Chs,Gate,Rtot,Rg_sym,Ctot,Cg_sym,Delay,Trig),

Delay > Dsf,
Cout_rest is Ctot - C_int,
I . ,
try_each_gate(Chs,Gates,Rin,Rprev + Rg + R_int, R_rest,

Cout_rest,C_rest,
Rprev + Rg_sym + R_int + R_rest, R_s~,
Cg_sym + C_int + C_rest, C_sym,

Dec 9 21:3~ 1985 PTA/order Page 3

Delay,D,
Trig, T)),

% normal interpter
(try_each_g=.te (Chs, [(Gate,_) !Gates] ,Rin,Rprev ,Rg+R_int+R_rest,

Cout,Cg+C_int+C_rest,
Rsf,R_sym,
Csf,C_sym,
Dsf,D,
Tsf, T) :-

evaluate(Rg, R_correction),
evaluate(Cg, C_correction),
Rtct is Rin - R_correction,
Ct::t is Cout - C_correction,
% recursive call takes care of nested structures

net_delay(Chs,Gate,Rtot,Rg_sym,Ctot,Cg_sym,Delay,Trig),

De:ay > Dsf,
Cot.:t_rest is Ctot - C_int,
I . ,
tr:·_each_gate(Chs,C3tes,Rin,Rprev + Rg + R_int, R_rest,

Cout_rest,C_rest,
Rprev + Rg_sym + R_int + R_rest, R_syc,
Cg_sym + C_int + C_rest, C_sym,
Delay,D,
Tr-ig, T))) .

try_each_gate(Chs, [(Gate,_) !Gates],Rin,Rprev,Rg+R_int+R_rest,
Cout,Cg+C_int+C_rest,
Rs f ,R_sym,
Csf,C_sym,
Dsf,D,
Tsf, T) :-

try_each_gate(Chs,Gates,Rin,Rprev + Rg + R_int,R_rest,
Cout,C_rest,
Rsf ,R_sym,
Csf,C_sym,
Dsf,D,
Tsf,T).

/* syntax:

*I

do~ar_gates(Chs,Gs,Rin,Cout,
Rs f, Rnet_sym,
Csf,Cnet_sym,
Dsf,D,
Tsf,Trig).

do_par_gates(_, [],_,_,Rsf,Rsf,Ctot,Ctot,Dsf,Dsf,Trig,Trig).

do_par_gates(Chs, [G!Gs],Rin,Cout,Rsf,Rtot,Csf,Ctot,Dsf,D,Tsf,T) ·-

net_delay(Chs,G,Rin,Rnew,Cout,Cnew,Delay,Trig),

Delay > Dsf,
I . ,

Dec 9 21:30 1985 PTA/order Page 4

do_par_gates(Chs,Gs,Rin,Cout,Rnew,Rtot,Cnew,Ctot,Delay,D,Trig,T).

do_par_gates(Chs, [GIGs],Rin,Cout,Rsf,Rtot,Csf,Ctot,Dsf,D,Tsf,T) :­

do_par_gates(Chs,Gs,Rin,Cout,Rsf,Rtot,Csf,Ctot,Dsf,D,Tsf,T).

Dec 9 21:31 19b5 PTA/primitive Page 1

% individual net delay in a hierarchical environment.

primitive_delay([Chs!Env],Sig) :-
is_net (r'hs) , % only case we handle so far

sub=ells(Chs,t(S,G,D)),
paths_from_input(Env,S,Paths),
ter~inal_capacitance(Chs,D,Cout_sym,Cout_

num),

max_delay_in_net(Chs,Paths,G,Cout_num,O, [],Delay,Trig},

make_info_rec(Trig,Cout_sym,Chs,Info),
delay_in_cell(Chs,Sig,Delay,Info).

make_info_rec(info(T,R,C),Cout_sym,Chs,info(T,R,C+Cout_sym,Chs)).

max_delay_in_net(_, [],_,_,Delay,Info,Delay,Info}.

max_delay_in_net(Chs, [PIPs],G,Ct,Dsf,Isf,Delay,Info) :-

resistance(P,Rin_sym,Rin_num),
net_df~L1y (Chs, G, Rin_num, Rnet_sym, Ct, C_sym, D, Trig) ,

D > Dsf,

' I= .. [info,Trig,Rin_sym+Rnet_sym,C_sym],

max_del3y_in_net(Chs,Ps,G,Ct,D,I,Delay,Info).

max_delay_in_net(Chs, [PIPs],G,Ct,Dsf,Isf,Delay,Info) :­

max_delay_in_net(Chs,Ps,G,Ct,Dsf,Isf,Delay,Info).

gl ist_resistance (G, R) :­
corbine(gate_resistance,G,R).

ne~_delay(Cr.s,G,Rin,Rnet_sym,Cout,Cnet_s
ym,D,G) ·-

is_gate(G), %note that the gate resistance is in Rin

% (for now)
gate_capacitance(G,Cnet_sym,Cnet_num),
gate_resistance(G,Rnet_sym,Rnet_num),
si~al_name(G,Sig),

find_signal_delay(Chs,Sig,Trigger_delay),

Dis Trigger_delay + (Rin + Rnet_num) * (Cout + Cnet_r~).

net_delay(Chs,series(Gs),Rin,Rnet_sym,Cout,Cnet_sym,D,Trig) .

orde:_list(Gs,Newgs),
co~ine(gate_resistance,series(Newgs),Rlist

,R_num),

% simplify(Rlist,Simp_rlist),
Rtot is Rin + R_num,
combine(gate_capacitance,series(Newgs) ,Clist,C_num),

% simplify(Clist,Simp_clist),
Ctot is Cout + C_num,
try_each_gate(Chs,Newgs,Rtot,O,Rlist,

Ctot,Clist,
_,Rnet_sym,
_,Cnet_sym,

Dec 9 21:3: 1985 PTA/primitive Page 2

O,D,
_,Trig) .

net_delay(~s.parallel(Gs),Rin,Rnet_sym,Cou
t,Cnet_sym,D,Trig) ·-

do_par_£ates(Chs,Gs,Rin,Cout,
_,Rnet_sym,
_,Cnet_sym,
O,D,
_,Trig).

find_signal_delay(Chs,Sig,Delay) :­
finc_signal_entry(Sig,Chs,Entry),
delay(Entry,Delay).

is_gate (gt (__. _, _)) .
gate_signals(gt(X,_,_), [X]).
gate_signals (Gl i.st, []) :-

G l is t = . . [F , []] .
gate_signals (Gl ist, Sigs) :­

Glist = .. [F, [GIGs]],
gate_signals(G,X),
New:;l ist =. . [F, Gs] ,
gate_signals(Newglist,Y),
app~~d(X,Y,Sigs).

path_in_glist(Gate,Signals,Prev,Gate,Gate) ·­
Gate= .. [gt,Prev,Type,Size],
\+ ~crr~er(Prev,Signals).

path_in_glist (series ([(G, Order) I Gs]) , Signals, Prev, series ([(Ne•·q, Order) 1 Gs]) , G

paL~_in_glist(G,Signals,Prev,Newg,Gate).

path_in_gl ist (series ([GIGs]) , Signals, Prev, series ([G I Newgs]) , Gate) :­

patr._in_glist(series(Gs),Signals,Prev,series(Newgs),Gate).

path_in_glist(parallel([GIGs]),Signals,Prev,P,Gate)

patr._in_glist(G,Signals,Prev,P,Gate).

path_in_glist(parallel([GIGs]),Signals,Prev,P,Gate) ·­

patr._in_glist(parallel(Gs),Signals,Prev,P,Gate).

paths_from_input([Chs!Env],Sig,Paths) ·­
paL~s_to(Sig,Chs,P2),

continuation(Env,P2,Paths}.

paths_to (Sig, Chs, [[]]) :­
is_input(Sig,Chs),
! .

Dec 9 21:3: 1985 PTA/primitive Page 3

paths_to(Sig,Chs~Flatp) :­
paths(Chs~Path_list)~

chocse_paths_to(Sig~Path_list,P)~

fla~ten(P~Flatp).

choose_paths_to(_, []~ []).
choose_paths_to(Sig, [PathreciPs]~ [PIRest]) ·­

is~ath_to(Sig,Pathrec)~
I
• I

s~~ip(Pathrec~P),
cnoose_paths_to(Sig,Ps,Rest).

choose_paths_to(Sig, [PIPs]~Rest) :­
choose_paths_to(Sig,Ps~Rest).

strip(path(__,_,P) ,P).

% continuatj -:·n · •. akes the existing path list and moves up the e:wironment

% stack unti: it finally makes it to an input to the whole ki~en kaboodle

continuatio~([],Faths~Paths).

continuatio:1 ([Cf-siEnv] ,Psf,Paths) ·-
prin-.:('u.ade it') lnll
map(extend,Chs,Psf~Temp) I

fla~ten(Temp,Newpsf)~
con~in11at:ion (Env, Newps f, Paths) .

%extend takes a path, which doesn't yet terminate at the inp~~s of the chs,

% and extends it so that it does terminate at an input
extend(Chs,Path, [Path]) :-

inp~t_teiminal_of_path(Path,S),

is_input(S~Chs),
I

extend(Chs,Path,Path_list) ·­
input_terminal_of_path(Path,S),
paths_to(S,Chs,P),
map(add_to_end~Path,P~Path_list).

% bleah, bu~ this is due to the restrictions of map
add_to_end(path(_,Y~Plist1)~path(X,_,Plist2) ,path(X,Y,Plist3)) ·­

diddle(Plist1,Plist2,Plist3).

input_terminal_of_path(path(X,_,_)~X).

is_path_to(Sig,path(_,Sig,_)).

Dec 9 21:3: 1985 PTA/critpath Page 1

% take a chs with the signals filled in, and find a critical path

find_critical_path(Chs,Cp) :­
si~als(Chs,Signals),

max_output_delay(Signals,Cp).

max_output_delay([],Entry) :­
make_dummy_signal_entry(Entry).

max_output_delay([Sig!Sigs],Entry) :­
max_output_delay(Sigs,E1),
bigger_delay(Sig,E1,Entry).

% find a si~als predecessor in the critical path
prev_cp_ent-:-)' (Info I Next) :-

tri~gcr(Info,Trig)~

tr ic;_chs (Info, Chs) I

sigr.al _n.a.me (TriCJ, Sig) I

finc_sjgnal_entry(Sig~ChsiNext).

prev _cp_entry (Sig I Next) :­
in fc (Sig, Info) ,
prev _cp_entry (Info I Next) .

% find the delay equations on a path

delay_equation(Cp~Input_delay) ·­
no_p~edecessor(Cp) I

' . ,
delay(Cp,Input_delay).

delay_equation(Cp,R * C +Rest) ·­
info (Cp, Info),
symb~lic_r(Info,R),

symb:>lic_c (Info, C),
prev_cp_entry(Info,Next)~

delay_equation(Next~Rest).

symbolic_r (LR) :­
arg(2,I,R).

symbolic_c (I. C) :­
arg (3, I, C) .

Dec 9 21:32 1985 PTA/delay Page 1

% this is the electrical model, measuring resistance and capacitance

% for a gate or path of gates
resistance([],O,O).
resistance([t(_,Glist,_) 1Ts],Rl_sym+R2_sym,R) ·­

resistance(Ts,Rl_sym,Rl_num),
co~ine(gate_resistance,Glist,R2_sym,R2_nurn),

R is R1_num+R2_num,
! .

capacitance([],O,O).
capacitance([t(_,Glist,_) 1Ts],Cl_sym+C2_sym,C) ·­

capacitance(Ts,Cl_sym,Cl_num),
co~ine(gate_capacitance,Glist,C2_sym,C2_num),

C is Cl_num+C2_num.

ifdef($fast_interpreter, (
gate_resista~ce(gt(_,T,S),Rg I S,Rnum)

gate_resistance(T,Rg),
Rnw= is Rg/S) ,

% otherwise
(gate_resistance(gt(_,T,S) ,Rg / S,Rnum) ·­

gate_resistance(T,Rg),
evaluate(Rg/S,Rnum))).

ifdef($fast_interpreter, (
% hacked interpreter
gate_capacitance(gt(_,Type,S),S • Ctot,Cnum)

gate_channel_cap(Type,C1),
gate_drain_cap(Type,C2),
Ctot is Cl + 2*C2,
Cn~ isS • Ctot),

%usual interpreter
(gate_capacitance(gt(_,Type,S),S • Ctot,Cnum)

gate_channel_cap(Type,Cl),
gate_drain_cap(Type,C2),
Ctot is Cl + 2*C2,
evaluate(S * Ctot,Cnum))).

% these are just reasonable constants
gate_resistance(n,8).
gate_resistance (p, 10).
gate_resistance(interconnect,O).

gate_capacitance(interconnect,1).
gate_channel_cap(n,4).
gate_channel_cap (p, 4).
gate_drain_cap(n,2.5).
gate_drain_cap(p,2.5).

interconnect_resistance(O).

Dec 9 21:32 1985 PTA/delay Page 2

interconnect_capacitance(l).

% preprocess: get the output capacitance symbolicly at the begi.t1rd ng

ifdef($fast_interpreter, (
%hacked inte~preter
terminal_capacitance(Chs,Sig,C_sym,C_num) ·-

outp~ts (Chs,O),
assoc(Sig,O,Entry),
syrrholic_cap(Entry,C_sym),
C_r,'.U:l is C_sym) ,

% lit:ll ;:1es.l ~n t.c~ pre Ler
(terminal_capacjtance(Chs,Sig,C_sym,C_num) ·­

outp~ts (Chs,O),
assc~(Sjg,O,Entry),

syrr;:-: o 1 ic __ c;:;,.p (Entry, C_sy -n) ,
eva:"Ji1tc(C_sym,C_nttr.1))).

symbolic_te~minal_capacitancc([],Output) ·­
nume~ic_output_cap(Output,C),

symbolic_cap(Output,C).

symbolic_terr.inal_capacitance([Envi_],Output) ·­
siy:-:.il_name (Output, Sig) ,
outp~t_capacitance(Env,Sig,Ocap),

subcells(Env,cells(Cellist)),
sum_gate_capacitance(Sig,Cellist,Gcap),
si~?lify(Ocap+Gcap,Cap),

SYffibolic_cap(Output,Cap).

output_capacitance(Env,Sig,C) :­
outp~ts(Env,Os),
assoc(Sig,Os,Output),
nume~ic_output_cap(Output,C),
I

output_capacitance(_,_,O). %because we don't want to fail if it's not an output

sum_gate_capacitance(_, [],0).
sum_gate_capacitance(Sig, [Sc!Scs],Cl + C2) ·­

subcell_capacitance(Sig,Sc,Cl),
sum_gate_capacitance(Sig,Scs,C2).

subcell_capaci tance (Sig, Chs, C) ·­
is_input(Sig,Chs),
is_net(Chs), %only case we handle so far
I . '
gates (Chs,G),
signal_gates_cap(Sig,G,C).

subcell_capacitance(_,_,O). %if it's not an input of that cell

Dec 9 21:32 1985 PTA/delay Page 3

signal_gates_cap(Sig, (G,_),C) :­
signal_gates_cap(Sig,G,C),!.

% ugliness for series xsistors

signal_gates_cap(Sig,gt(Sig,Type,Size),Cl + C2) :­
symbolic_gate_channel_cap(gt(Sig,Type,Size) ,Cl),
gate_capacitance(interconnect,C2).

signal __ gates_cap {Sig, gt (Other,_,_) , 0) ·­
Sig \=Other.

signal_gates_cap(Sig,Glist,O) ·-
Gli~t = .. [X,[]].

signal_gates_cap(Sig,Glist,Cl + C2) ·­
Gli&t = .. [X, [GIGs]],
si<:~:..l_gates_cap(Sig,G,Cl),

Ncwgl ist =. . [X, Gs] ,
signa l__gates_cap (: i g, NP.vglist, C2) .

symbolic_gate_channel_cap~gt(_,T,S) ,C * S)
gate_channel_cap(T,C).

% combine(Functor,Glist,Symbolic,Numeric) -- used to sum or take max
% of resistar,-=e or capar.it.~nce. the combining rules are the same

combine(Functor,gt(Sig,Type,Size) ,Rsym,Rnum) :-
p = .. [Functor,gt(Sig,Type,Size),Rsym,Rnum],
call (P) .

combine(_,seri~s(f]),O,O).

combine(Functor,~erics([(G,_) 1Gs)),Rl_sym+R_int+R2_sym,Rnum) ·­
combine(Functor,G,Rl_sym,Rl_num),
combine(Functor,series(Gs) ,R2_sym,R2_num),
P = .. [Functor,interconnect,R_int],
call (P),
Rnum is Rl_num+R2_num+R_int.

combine(_,parallel([]),O,O).

combine(Functor,parallel([GIGs)),Rmax_sym,Rnum) ·­
combine(Functor,G,Rl_sym,Rl_num),
combine(Functor,parallel(Gs),R2_sym,R2_num),
(Rl_num > R2_num - >

Rmax_sym = Rl_sym,
Rnum is Rl_num;
Rmax_sym = R2_sym,
Rnum is R2_num) .

Dec 9 21:34 1985 UTILS/utils Page 1

% utils -- various (non-problem-dependent) utilities

% assoc(X,Y,Z) : Z is the member of Y with X as its first element

assoc (X, [Y j_), Y) :- arg (1, Y, X) .
assoc(X,[_jYs],Z) :- assoc(X,Ys,Z).

member (X, [X j_)) .
mernber(X, [_IL)) :- member(X,L).

% var_mernber can't use unify, which would bind the variables by mistake

var _member (Var, [Varll_]) ·- Var = Varl, ! .

var _member (Var, [_jVars]) ·- var _member (Var, Vars),!.

max (A, B,A)
max (A, B, B)
min(A,B,A)
min (A, B, B)

·- A >= B.
·- B >A.
- A =< B.

·- B <A.

cpu :-
N is cputime,
print('cpu time is '),
print(N),
nL
I

pr int_l ist ([j) .
print_list ([L l Ls]) ·­

print(L),
nl,
print_list(Ls).

sum ([], 0) .
ifdef(Sfast_interpreter,
(sum([XjXs],Tot) :-

sum (Xs, Sub) ,
Tot is X+ Sub),

% otherwise
(sum([XjXs],Tot) :­

(number (X) ,
sum (Xs, Sub) ,
Tot is X + Sub;
var(X),
sum(Xs,Sub),
Tot is Sub))) .

max ([] ,0) .
max ([X I Xs] , Max) : -

max (Xs ,M),
max(X,M,Max).

Dec 9 21:34 1985 UTILS/utils Page 2

map<-~ [] 1 []) •

map (Functor, [L I Ls], [Newll Newls]) ·­
P = .. [Functor,L,Newl],
call(P),

' • I

map(Functor,Ls,Newls).

map(_,_, [] , []) .
map(Functor,Args, [LILs], [NewliNewls]) ·­

p = .. [Functor,Args,L,Newl],
call(P),

' • I

map(Functor~Args~Ls,Newls).

range (Lo I Lo, _) .
range(Lo~N,Hi) ·­

New is Lo+l,
New =< Hi,

' . , range(New,N,Hi).

%another thing that should be an operator, by the way

abs (X I X) : - X > 0, ! .
abs (X, Y) :- Y is -X, ! .

%flatten a list (i.e., put sublists into the main list)

flatten ([], []) .
flatten ([X I Xs] , Res) ·­

flatten(Xs,Temp),
append(X,Temp,Res).

% a particularly ugly n-squared algorithm for removing duplica~es from the list

remove_dupes([],L,L).
remove_dupes([XIXs]~L~Result) :-

member (X, L),

' • I

remove_dupes(Xs,L,Result).

remove_dupes([XIXs],L,Result) :­
remove_dupes(Xsl [XIL]~Result).

append([],Result~Result).

append ([X I Xs] I Y, [X I Temp]) : -
append(Xs,YITemp).

apply_to_each(F~ []).
apply_to_each(F, [LILs]) ·-

p =. . [F, L] I

call(P),

Dec 9 21:34 1985 UTILS/utils Page 3

apply_to_each(F~Ls).

apply_to_each(F~Arg, []).
apply_to_each(F~Arg, [LILs]) :-

p =.. [F,Argl L] I

call (P) 1

apply_to_each(F~Arg,Ls).

ff ·- put(12).

Dec 9 21:3~ 1985 UTILS/symbolic Page 1

/* symbolic ~athematics: evaluating, simplifying, and taking derivatives

of eq~ations. Also, collecting all the variables in a given equation *

%evaluate a symbolic equation.

evaluate(X,X) :­
numbe:- (X) ,
I

evaluate(X,K) ·­
var (X),

' . '
mini~~_gate_size{K).

evaluate(S+~od,Z) :-
(var {Mod) ->

evaluate(S,Z):
evaluate(S,Rl),
evaluate(Mod,R2),
Z is Rl+R2) ,

evaluate(X,Result) :-
X= .. [Op,Argl,Arg2],
evaluate(Argl,Rl),
evaluate(Arg2,R2),
Y =.. [Op,Rl,R2],
Result is Y,
I

%equation simplifier. Doesn't even worry about the distributive law:

%speed is the key. The main purpose of simplify is to get rid of zeros

%being added in.

simplify (Exp, Exp) :­
number (Exp),
! .

simplify (Exp, Exp) ·­
var (E.xp) ,
! .

simplify(Exp.Res) ·-
Exp =-. [Op,Argl,Arg2],
simplify(Argl,Newl),
simplify(Arg2,New2),
combine_simplified_terms(Op,Newl,New2,Res).

% combine_si~lifiedd_terms is where the zeroes (and other cons~ants) are

Dec 9 21:34 1985 UTILS/symbolic Page 2

% removed if possible

combine_simplified_terms(Op,Identity,Res,Res) ·­

left_identity(Op,Id),
Id = Identity,
! .

combine_simplified_terms(Op,Res,Identity,Res) ·­

right_identity(Op,Id),
Id = Identity,
! .

combine_simplified_terms('*',Argl,Arg2,0) ·-

(Argl = 0 ; % could be more ggeneral, with a "nullity" like

Arg2 = 0) , % "identity", but why bother?

! .
combine_simplified_terms('/',Arg1,_,0) :­

Argl = 0,

combine_simplified_terms(Op,Arg1,Arg2,Res) ·­

numbe-:- (Arg1) ,
number (Arg2) ,
I
• I

p =.. [Op,Argl.Arg2],
Res is P.

combine_simplified_terms(Op,Arg1,Arg2,Res) ·­

Res =. . [Op, Arg1, Arg2] .

le ft_identi ty ('+' , 0) .
left_identity('*',l).
r ight_identi ty ('+' , 0) .
right_identity('-',0).
right_identity('*',l).
right_identity('/',1).

% symbolic deriviatives. This could be data-directed, storing the

%proper information for each operator, but that wouldn't help --

% an attempt would still need to be made to unify with each. This is

%very slow and special-purpose right now; however, the equations will

% not have any weird operators in them

% some attempt is made to avoid what the symbolic math people call

%"intermediate expression swell" by being somewhat intelligent. That's

%why all the independence checks. However, with a large equation, these

% checks wind up taking a lot of time

deriv(Eq,Var,l) :- Eq == Var,!.
der iv (Eq, _, 0) :- number (Eq), ! .

deriv(Eq,Var,O) :- var(Eq),Eq \== Var, !.

deriv(U+V,X,Dv) :-
independent (U, X) ,

Dec 9 21:34 1985 UTILS/symbolic Page 3

deriv(V,X,Dv),
! .

deriv(U+V,X,Du+Dv) :­
deriv(U,X,Du),
deriv(V,X,Dv),
! .

deriv(U*V,X,Res) :-
deriv(V,X,Dv),
(independent(U,X) ->

! .

Res = U * Dv;
deriv(U,X,Du),
Res= Du*V + Dv*U),

deriv(UjV,X,Res) :-
independent(V,X),
(nurrber(U) ->Res= 0;

deriv(U,X,Du),
Res = DujV),

deriv(UjV,X,MinU*Dv/(V*V)) ·­
number (U),
MinU is -U,
deriv(V,X,Dv),
! .

deriv(UjV,X, (V*Du-U*Dv)/(V*V)) ·­
deriv(U,X,Du),
der i v (V, X, Dv) ,
! .

deriv(U-V,X,Du-Dv) :­
deriv(U,X,Du),
deriv(V,X,Dv),
! .

% take all the partial derivatives of the equation

partials (Eq, Vars, Partials) :-
map (partial, Eq, Vars, Partials) .

% should be
% map(deriv,Eq,Vars,Big_partials),
% map(simplify,Big_partials,Partials).
%but since there's no TRO it won't work like that.

partial(Eq,Var,Partial) :-
deriv(Eq,Var,Temp),
simplify(Temp,Temp_partial),
% keep the variables right
asserta(~this_partial(Eq,Var,Temp_partial)),

fail.
partial(Eq,Var,Partial) :­

retract(~this_partial(_,_,Partial)),

Dec 9 21:~ 1985 UTILS/symbolic Page 4

! .

%check if a~ equation is independent of a variable-- i.e., if that variable

% does NOT appear in the equation

independent(~xp,Var) ·­
number (Exp),

'
independent(Exp,Var) ·-

var (Exp),
Exp \= Var,

'
independent(~xp,Var) ·­

\ + var (Exp),
Exp = .. [_,Argl,Arg2),
inde?endent(Argl,Var),
ind~~n0cnt(Arg2,Var),

! .

% collect all the variables of an equation

collect_vars(Eq,Vsf,Vsf) :- number(Eq),!.

collect_vars(Eq,Vsf,Vsf) :- var(Eq) ,var_member(Eq,Vsf),!.

collect_vars (Eq, Vsf, [Eq !Vsf]) :- var (Eq),!.

collect_vars (Eq, Vsf, Vars) :-
Eq =. . [_,Argl,Arg2],
collect_vars(Argl,Vsf,Vl),
collect_vars(Arg2,Vl,Vars),
! .

Dec 9 21:43 1985 UTILS/structs Page 1

/* S1~UCTS: data structure access functions
of course, these should be macros, but you can't do that in cprolog

There are two kinds of chs's: the initial 4-field chs, and the

local 6-field chs. the 4-field chs looks like

chs (
Name
inputs([Inputlist])
outputs([Outputlist])
Subcells)

where s~.bcells is either

cells([Subcelllist])
or t(Sourcc,Gatelist,Drain)

the 6- field cl•s i~ a slight extension of that

chs (
Name
inputs([Inputlist])
outputs([Outputlist])
Subcells
[Pathlist)
[Signal_list])

chs_name{Chs,N) :­
arg(l,Chs,N).

inputs (Chs, X) :­
arg(2,Chs,inputs(X)).

outputs(Chs,X) :­
arg(3,Chs,outputs(X)).

subcells (Chs, X) :­
arg(t£,Chs,X).

paths (Env, P) :­
arg(S,Env,P).

signals (Chs, Sigs) :­
arg(6,Chs,Sigs).

/* "is" procedures are used both to test and generate ...

*I

Dec 9 21:43 1985 UTILS/structs Page 2

is_input(X,Chs) will instantiate X in turn to each input of the chs

or. if X is instantiated, fail if it is not an input */

is_input(X,Chs) :­
inputs(Chs,I),
asso~ (X, I,_) .

is_output(X,Chs) :­
outputs(Chs,O),
assoc(X,O,_).

is_subcell(t(S,G,D),Chs) ·­
su'~-;·-ells(Chs,t(S,G,D)).

is_subcell (C. Chs) :­
subcells(Chs,c~lls(Cs)).

mer.i::-2r(C,Cs).

is_signal(cr~.X) :-
signals (Cns, Sigs),
member(X,Sigs).

is_net (Chs) :­
subcells(Chs,t(_,_,_)).

/* outputs a~e of the form
out(Signal,Cap,Symbolic_capacitance)

inputs a~e
in(Signal,Delay) */

signal_name(O,Sig) :­
arg (1. 0, Sig) .

output_signals (Chs,X) ·­
outp-.1ts(Chs,Y),
map(signal_name,Y,X).

input_signals(Chs,X) :­
inputs(Chs,Y),
map(signal_name,Y,X).

input_delay(Input,Delay) :-
arg(2.Input,Delay).

numeric_outp~t_cap(Output,C) :- arg(2,0utput,C).

symbolic_cap(Output,Eq) :- arg(3,0utput,Eq).

% find the input delay of a signal in a Chs

input_delay(Signal,Chs,Delay) ·­
inputs(Chs,I),

Dec 9 21:43 1985 UTILS/structs Page 3

assoc(Signal,I,Temp),
inp~t_delay(Temp,Delay).

source (Chs, S) : -
subcells (Chs, t (S, __ , _)) .

drain (Chs ,D) :­
subcells(Chs,t(_,_,D)).

gates (Chs, G) :­
subcells(Chs,t(_,G,_)).

% a delay entry looks like
% dclay_entry(Signal,Delay,Prev,Path)

delay (Signal, Delays, D) :-
delay_entry(Delays,Signal,D,_,_).

delay_entry(2elays,Signal,Delay,Prev,Path) ·­
asso~(Signal,Delays,delay_entry(Signa

l,Delay,Prev,Path)).

in_gate (X, T) :­
in_gate (X, T, _) ,
I

in_gate(X,t(S,Glist,D),G)
Glis~ =. . (_, L],
in_g:ist(X,L,G).

in_glist(X, [gt(X,Y,Z) j_],gt(X,Y,Z)) ·- 1

in_glist (X, [Glist 1-J, G) :-
Glis~ = .. (_,L], %note that this won't match gt(Sig,Type)

in_glist(X,L,G),
! .

in_glist(X,[YIYs],G) :­
in_glist(X,Ys,G).

gate_size(S,S) :­
number(S).

gate_size(S,K) :­
var(S),
I . '
min~~_gate_size(K).

gate_size (S+Mod, X) ·­
var (Mod),

% handle both integers and reals

Dec 9 21:43 1985 UTILS/structs Page 4

gate_size(S~X).

gate_size(S~Mod~X) :­
nun:..\;er (Mod) I

gate_size(S~Size)~

X is Size+Mod.

minimum_gate_size(2).

info (sig <-~~Info) I Info) .

trigger(Info_rec~Trigger)
:- arg(l~Info_rec~Trigger).

trig_chs(Info_rec,Chs) :- arg{4,Info_rec,Chs}.

sig_delay(si9(_,Delay~_)~
Delay).

Dec 9 21:4~ 1985 UTILS/print Page 1

% user print functions

portray (chs (N, I, 0, cells {C))) ·-
print('chs '),print(N),nl,
prin~('inputs = '),print(I),nl,

prin~('outputs = '),print(O),nl,

prin~('subcells are '),print_list(C).

portray (chs (N, I, 0, t (S, G,D)}} ·­
prin~(t(S,G,D)).

% the six-field local chs also needs a portray function

portray (chs ~,I, 0, cells (C), P, S)} :-
prir.~('chs '),print(N},nl,
prin~('inputs = '),print(I),nl,

prir.~('outputs = '),print(O),nl,

(var{P) -> true;print('paths are '),print_list(P)),

(var(S) -> true;print('signals are '),nl,print_list(S)),

print('subcells are '),print_list(C).

portray(chs(N,I,O,t(S,G,D) ,_,_)) :­
prir.t('net '),print(N),nl,
print('inputs = '),print(I),nl,

prir.~('outputs= '),print(O) ,nl,

print (t (S,G,D)).

print_cp(En~y) :-
print ('Node '),
sigr.al_name(Entry,Name),
print (Name),
print(' is driven at '),
sig_delay(Entry,Delay),
prir.~(Delay),

(info(Entry, []} -> nl;
info(Entry,Info),
trigger(Info,Trig),
print(' via '),print(Trig),print(' after '),nl,

prev_cp_entry(Info,Next),
print_cp(Next)) .

Dec 9 21:44 1985 UTILS/makechs Page 1

% make
%

chs: take a standard every-day chs, and make it into a local

%
%

data structure with all the appropriate fields. Essentially,

what needs to be done is to add the fields for paths and signals,

and the extra delay and info fields in the inputs */

make_lds(Chs,Lds) :­
make_struct(Lds),
chs_name(Chs,Name),
chs_name(Lds,Name),
inputs(Chs,Inputs),
map (adct __ input_fields, Inputs,Newin),
inputs(Lds,Newin),
outputs(Chs,Outputs),
map(add_output_fields,Outputs,Newouts),
outputs(Lds,Newouts),
(is4'r ln-·i t:i ve (Chs) ->

(subcclls (Chs, Net) ,
subcells(Lds,Net));

% otherwise
subcells(Chs,cells(Cells)),
map(make_lds,Cells,Newsubs),
subcells(Lds,cells(Newsubs))),

make_struct(chs(_,_,_,_,_,_)).

% who knows how many fields there will be there to begin with?

% It could be 1, 2, or 3. Make it 3 in the lds.

add_input_fields(in(Name,Delay,Info),in(Name,Delay,Info)).

% if it has a delay there, that can only mean it's an input to the

% whole circuit.
add_input_fields(in(Name,Delay),in(Name,Delay, [])).

add_input_fields(in(Name),in(Name,_,_)).

add_output_fields(out(Name,Cap),out(Name,Cap,_)).
add_output_fields(out(Name) ,out(Name,_,_)).

pp (L) :-
chs(C),
make_lds (C, L) ,
make_signals(L,_),
make_paths(L,_),
make_outputs([],L).

chs (C) :- C = .. [chs,~,_,_,_] ,call (C).

% the badly-named "make_sizes" collects the sizes of all the primitives

% and crams them into a vector

Dec 9 21:4~ 1985 UTILS/makechs Page 2

make_sizes(L.S) :­
is_p:-imitive(L),
I . ,
pri~itive_sizes(L,S).

make_sizes (L, S) :­
sUbcells(L,cells(C)),
map(~ak~_sizes,C,NestedS),

flatten(NestedS,S),
asse:-t(sizes_to_try(S)).

primitive_sizes(L,S) :­
is_i.e;;; (L) ,
net_gli.st(L,G),
glis~_sizes(G,S).

net_gl ist (C. C) : -­
subcells(C,t(_,G,_)).

% remember L~at a glist may be a series or parallel connection of gts

glist_sizes(gt(_,_,S),[S]) :- !.

glist_sizes (Glist, S) :-
Glist = .. [_,Gates],
map(glist_sizes,Gates,Sizes),
flattL:;~ (Sizes, S) .

% this handles the case of series gates with orders attached

glist_sizes ((G,_) ,S) :- glist_sizes (G,S).

no_predecessor(Cp) :­
info (Cp, []),
! .

Dec 9 21:45 1985 UTILSjrandom Page 1

% random n~er generation: I stole this.

File
Author
Updated:

jusr/lib/prolog/random
R.A.O'Keefe
27 October 83

%
%
%
% Purpose: to provide a decent random number generator in C-Prolog.

% This is algorithm AS 183 from Applied Statistics. I also have a C

% version. It is really very good. It is straightforward to make a

% version which yields 15-bit random integers using only integer

% arithmetic.

'erstate' (27134, 9213, 17773).

getrand('$rstate'(X,Y,Z))
'$rstate' (X,Y,Z).

setrand ('$rstate' (X, Y, Z)) ·­
integer(X), X> 0, X< 30269,

integer(Y), Y > 0, Y < 30307,

integer(Z), Z > 0, Z < 30323,
retract('~rstate' (_,_,_)),

asserta('~rstate' (X,Y,Z)), !.

% initial state

% return current state

% random(R) binds R to a new random number in [0.0,1.0)

random (R) :-
retract('~rstate' (AO,BO,CO)),

Al is (A0*171) mod 30259,
Bl is (BO*l72) mod 30307,
Cl is (C0*170) mod 30323,
asseita('~rstate' (Al,Bl,Cl)),

Tis (Al/30269.0) + (Bl/30307.0) + (Cl/30323.0),

R is T-floor (T), ! .

% random_int(L, U, R) binds R to a random integer in [L,U)

% when Land U are integers (note that U will~~ be generated),

random_int(L, U, R) :­
integer(L), integer(U),
random (X) , ! ,
R is L+floor((U-L)*X).

% random(L, U, R) binds R to a random real in [L,U)

% when Land U are numbers (note that U will NEVER be generated),

random(L, U, R) :-

Dec 9 21:45 ~985 UTILS/random Page 2

number(L), number(U),
ranC.:>m (X) , ! ,
R is L+((U-L)*X).

Dec 9 21:46 1985 UTILS/minimize Page 1

% minimize ~~ equation -- set it below a given delay

% minLmize(Eq,Delay,Vars,Constraints,Derivs)

% a va~iable is not allowed to be less than the corresponding constraint

minimize(Eq.Delay,Vars,Constraints,Derivs,Result) ·­

len~h(Vars,Length),

min_init_configuration(Vars),
repeat,

get_configuration(Vars),
Result is Eq,
print ('result is ') ,print (Result) , nl,
(Result < Delay ->

true;
min_new_configuration{Length,Vars,Constraints,Derivs),

fail) .

min_init_cor.figuration(Vars) :­
map(zero,Vars,New),
asse~ta($min_config(New)),

! .

zero(_,O).

get_configuration(Vars) ·­
retract($min_config(Vars)),
prin~('New config is '),print(Vars) ,nl,
I

min_new_configuration(Length,Vars,Constraints,Derivs) ·­

build_new_config(Length,Vars,Constraints,Derivs,New),

asse~ta($min_config(New)),

'

build_ne~_co~fig(Length,Vars,Constraints,De
rivs,New)

evaluate_derivs(Derivs,Num_derivs,O,Sum),

Avg is Sum/Length,
nor~lize(Avg,Vars,Derivs,Constraints,New).

evaluate_derivs([], [],Sum,Sum).
evaluate_derivs ([D IDs], [N INs], Ssf, Sum) ·­

N is D,
Temp is -N,
max(O,Temp,Est),
New_sum is Est + Ssf,
I . ,
evaluate_derivs(Ds,Ns,New_sum,Sum).

Dec 9 21:46 1985 UTILS/minimize Page 2

normalize(S:..x.m, [], [], [], []).

normalize(Avg, [VIVs], [DIDs], [CICs], [NINs]) ·­

Desired is V - D/Avg,
(Desired < C ->

N is C;
N is Desired) ,

I . '
normalize(Avg,Vs,Ds,Cs,Ns).

