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Jonathan Pincus

ABSTRACT

Several methods of choosing appropriate sizes for transistors in a VLSI schematic to meet a
specified delay criteria are considered. Simulated annealing and heuristic techniques are investi-
gated. MOST is a Prolog program which makes use of information provided by the PTA timing
analyzer to implement these various approaches. Both MOST and PTA are written entirely in
(interpreted) Prolog; nonetheless, performance gains of over 50% as compared to an unsized cir-
cuit can be realized in a few minutes of CPU time. Using a simple RC timing model, heuristics
are found to be more efficient than simulated annealing.
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Chapter 1

Introduction

7he desigper of a VLSI circuit must consider not only functional correctness
but timing behavior. Usually, there is some specification of how quickly the
circuit must produce its output. Once a schematic, transistor-level description of
the circuit is produced, it must be forced to meet the delay constraint. This is

done by assigning sizes to the transistors.

Note that this is a different problem than the ratioing of transistor sizes
pecessary in nMOS and some CMOS methodologies. Those considerations involve
waveform shape and may affect the circuit’s correctness; this paper only deals
with the speed of the circuit.

Increasing the size of transistors in a VLSI circuit tends to decrease the delay
through the circuit, but at the cost of increasing its area. While transistor area is
usually only a small component of total chip area, that is only because transistor
sizes are usually “reasonable.”” Minimizing delay can result in huge transistors;
bevond a certain point, however, larger transistors actually increase delay.

Actual minimization of the circuit’s delay is usually not required. Instead, the
delay must be reduced to meet the specified constraint. Given a delay model,
some expression for maximum delay through the circuit can be derived. It is thus

possible to view the problem as one of constrained minimization:
1) minimize: total transistor area
subject to: actual delay < delay constraint

Truly minimizing transistor area is not vital, however; in fact, any “reasonable”

solution which reduces the delay below the constraint will be acceptable. Thus

the problem can also be cast as



9) minimize: excess delay above constraint

subject to: reasonable total transistor area.

Note that only excess delay is being minimized; no reward is given for reducing

delay below the constraint.

Standard npon-linear optimization techniques are not well suited to these
problems. In problem 1, the objective function is quite simple, but the constraint
is both highly non-linear and expensive to compute — even finding a feasible
solution is very difficult. In problem 2, it is the objective function which is
extremely complex and difficult to deal with. The major difficulty is that circuit
delay is the maximum path delay, and there are a combinatoric number of paths
through the circuit; furthermore, path delay itself is an extremely complex
function. Previous work, frequently involving simplified delay models, is covered
in Chapter 2.

Human designers avoid considering all these paths by using intuition and
heuristics. After some initial configuration is chosen, simulations and timing
analyses are run on the circuit to find its critical paths — the paths through the
circuit whose delay exceeds the constraints — and the designer reduces their delay
sufficiently. Now some other paths may be critical, so the process iterates until
the maximum delay through the circuit is satisfactory. No formal attention 1s
paid to transistor area; presumably, by only dealing with critical paths,
unimportant transistors will be left at minimum size. Such eritical-path
heuristics are one of the subjects of Chapter 3; simpler heuristics, involving

modifying the sizes of individual transistors, are also dealt with.

In a large circuit, however, there may be many paths each requiring more
time than permissible; if an iteration of the critical-path heuristic is required for
each such path, the total computation required may be immense. One solution is

to consider more than onme critical path at once; this unfortunately leads to



extremely complicated decisions, involving simultaneous minimization of several
equations. Another approach is to work with the entire circuit at once by using a
probablistic hill-climbing technique — such as simulated annealing — in the hope
that the cost function can be chosen so that the process will reduce the delay on

many paths simultaneously. This alternate tactic is considered in Chapter 4.

MOST (Method for Ordering and Sizing Transistors) is a Prolog program
which makes use of the information supplied by PTA (the Prolog Timing
Analyzer) in conjunction with either heuristics or a simulated annealing algorithm
to assign sizes to the transistors. In contrast to most previous work, it sizes
transistors without guidance from the designer; there is no need to specify which
paths to examine, for example. The two programs together are approximately
1500 lines long, or 350 clauses; the source code is included as an appendix.
MOST's design and implementation are described in Chapter 5.

The current version of PTA uses a simple lumped RC delay model to find the
maximum delay at and eritical path to each signal within a circuit. An
interesting feature of PTA is its ability to provide symbolic equations for the
resistance and capacitance (and hence delay) at each node. The details of PTA
and its implementation are presented in Chapter 6.

Throughout the paper, fragments of Prolog code are included to illustrate
some of the algorithms being described. This code is almost invariably an
oversimplification, but much clearer than the complete implementation. In
particular, questions of efficiency — either of storage or computation — are
ignored.

Detailed results for the various approaches are presented in chapter 7, but
Table 0 provides a short summary. All CPU times throughout the paper are for a

VAX 785 running interpreted Cprolog.



Terminology

The usual statement of a problem is “Assign sizes to the components of
circuit X so that all its outputs are produced by time T.” T is called the
mazimum delay or constraint, and the entire process is called sizing the circuit.
The actual delay through the circuit is the delay given a particular assignment of
sizes to its components, while the size or area of a circuit is the sum of the
component areas.

A circuit is described hierarchically in terms of cells; the particular data
structure used is called a constrained hierarchical schematic, and so the terms
cell and CHS are used interchangeably. A cell is either a primitive cell, or it Is
made up of sulcells. Trausistors are usually regarded as being the primitive
elements, but most techniques apply equally well if logic gates or even macro cells
are taken as primitives.

Since the components of the circuit may be cells, rather than transistors,
sizing a circuit may involve sizing the cells. This is a rather unfortunate choice of
phrasing: sizing a cell does not mean deriving its maximum bounding box, but

rather assigning sizes to the primitives in its substructure.

A related problem is that of minimizing delay through the circuit. In this
case, there is no explicit delay constraint; the goal is to make the circuit run as
fast as possible. Additionally, there may be an area constraint, or some

maximum permissible transistor area.

Computing the delay through the circuit is the job of the timing analyzer.
Essentially, what needs to be done is find each path by which an input to the
circuit can zfect an output, and then take the maximum of all these path delays.

The path with the longest delay is referred to as the critical path.

A path will be made up of several stages. A stage (the term is borrowed

from Ousterbout [14]) is a chain of transistors from a driving source (usually an



input to the chip) to a use of the signal — either as an output of the chip, oras a
gate to another transistor. A stage usually corresponds to a path through a logic

gate and its associated pass transistors.

All three of the boxed areas in the diagram below are stages.
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Chapter 2
Path Sizing and Previous Work

A more restricted form of the problem only considers 8 single path instead of
the entire circuit. Techniques for path-sizing do not generalize well, for two
related reasons: the larger size of an entire circuit, and the additional complexity
caused by the possibility of multiple paths through the circuit. Much previous
work has been done on this problem, however, and it makes a good introduction
to the rnore grneral case. Moreover, it can be an useful component of a general

solution, especially in conjunction with critical-path heuristics.

Path Sizing

In most previous work, the path is viewed as being made up of logic gates,
rather than individual transistors. Furthermore, most authors assume that signals
generated by gates in the path are not used anywhere but their successor, and
that inputs similarly do not come from outside the path. These very restrictive
assumptions allow a variety of approaches — summarized nicely by Matson {10]
— to be successful.

Comparing these results is difficult, largely because of the paucity of statistics
provided by the various authors. Table 1 at the end of this section summarizes as

well as possible, leaving question marks for figures not provided.

The most obvious approach is simply to use an already-existing general
purpose optimization package along with a highly accurate timing analyzer such
as SPICE. This turns out to be impractical: too much time is spent in simulation.
A particular problem is that symbolic derivatives are not available, and so must
be computed numerically at great expense. Matson gave results for using the
DELIGHT package along with SPICE in [10], but only as a contrast to the

efficiency of his work.



One warx of avoiding the high computational cost of such an approach is to
use a simplifed model for transistors. At some cost in accuracy, this saves greatly

in computation, especially if symbolic derivative information can be calculated.

When using the simple RC model, it is possible to derive the equations for
delay in terms of the transistor sizes, and then solve these by a quasi-Newton
method. Consider the critical path as made up of n stages, each of which in turn

drives the next stage, and let D; be the delay of stage i. Then

Dt«ot:ZDi
1
and, due to the lumped RC mode!
Di=R;*C; *)
Now let T be =l the transistors making up stage i; if Rygper 8Dd Cooner capture the

interconnect and output resistances and capacitances, then

Ri= ERt""Rother
teT

Ci=ECt+Cother
tT

The resistance of a tranmsistor is inversely proportional to its size S the
capacitance. directly. Using this fact, equation (*) can be rewritten as
ky * *
Di=(2_+RoLber) (Ek2 St+Cother)

teT Sl teT

All the D;'s can be summed to give an equation for the total delay, and this
equation can be minimized or set to a particular value. This task is greatly
simplified by the ease of computing the partial derivatives.

One fact not immediately obvious in the above description is that the Cgye;
of one stage may involve the sizes of transistors in the next stage. One
component of C, is the load capacitance, which includes the gate capacitance
of whatever gate in the next stage being driven by the current stage. This means

that the problem is not truly separable: stages cannot be treated independently.



It is not clear how easy it is to perform optimization even given the simplified
model: it depends on how many variables (or transistors) are involved in the
equations. Individual stages are likely to be short — Ousterhout [14] claims that
most are only two or three transistors in length — but the critical path may
consist of a large number of stages. In a 32-bit processor, for example, the critical
path is likely to be the carry chain through the ALU, which will have at least 32
stages.

Several authors use variations on this approach. Glasser and Hoyte [3] model
the delay on a path as the sum of the gate delays. This model ignores the shape
of the input waveforms, but Glasser and Hoyte argue that its estimates are
accurate within 30%. Each gate is modeled as a capacitor and a resistor, and
their program minimizes the equation for maximum delay using relaxation

techniques in order to find the proper “scale factor” for each gate.

Hedlund's EO [5] (for Electrical Optimizer) can either minimize delay or
minimize power consumption with bounds on delay. It deals with several paths
simultaneously, as well as both polarities of input on a single path, by minimizing
(over the set of assignments to transistors) the maximum (over the paths and
polarities) delay. In other words, if Dp(S) is the delay for assignment S on path P,
EO computes

min(m}sxxDp(S))
The maximum is approximated by the continuous function smax (for ‘‘smoothed

maximum'’; see Ruehli ef. al. [19]), where

Axy

smax(x; * * Xp)= :‘—ln(e + - +e)‘x")

The minimization is done by a quasi-newton non-linear optimization method.
Another way of potentially lessening computation is to use heuristics instead

of non-linear optimization techniques. Since the problem is rather structured, and
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the optimal solution (in this case, the absolutely minimum transistor size) is not
required, it may be possible to capitalize on this structure via heuristics as a
human designer does. Note these are heuristics for sizing a single path, as distinct

from critical-path heuristics for sizing the entire circuit.

Kao, Fathi, and Lee [7] use an extremely simple heuristic: at each step, the
gate contributing the most to delay relative to its current area is increased in size.
This “‘scapegoat heuristic’” makes no attempt to capture the complex interactions
of all the gates within the path, but they claim that performance is satisfactory

even for relatively large circuits.

Trimberger's Andy [21] uses the “ramped-driver” heuristic. Each gate 1s
divided into several sfages which increase in size by a fixed fan-out factor in
order to drive the (presumably) large capacitive load at the output of the gate.
For each gate, the capacitive load is computed, and then an equation for the
proper number of stages for the gate is solved. The capacitances are computed
starting at the end of the circuit, and then the program works backwards, sizing
each gate as it goes (this is done because the output capacitance on gate i depeads
on the input capacilance of gate i+1).

Trimberger claims that the ramped-driver heuristic, although it does not
minimize delay, is desirable because in general it requires less power and smaller
area. Additionally, he says, it is closer to how human designers attack the
problem.

Lee and Soukup [9] take a similar approach, first solving for the optimal
number of stages, then optimizing the stage sizes (as opposed to Trimberger's
fixed fan-out factor). They also discuss the minimization of area: given a
constraint on the delay, they use Lagrange multipliers to solve the optimization

problem. However, they quote no statistics on the efficiency of their program.
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Matson [10] argues that heuristics are in general less efficient than pop-linear
optimization methods, particularly when the delay constraint is near the
minimum delay achievable by the circuit. Additionally, be claims, the accuracy of
the timing models is insufficient for high-performance VLSI design. On the other
hand, a general non-linear optimizer fails to take advantage of the structare of
the problein. As a result, be uses a special-purpose optimizer in conjunction with
a timing model [11] of intermediate complexity.

The particular optimization problem Matson attacks is minimizing power
subject to a constraint on maximum delay, but the technique applies equally well
to minimizing transistor arca. In both cases, the objective function is separable: it
is the sum of contributions from each of the individual components (either
macrocells, gates, or transistors) along the path. If the delay is also regarded as
the sum of individual contributions then it too is separable. This is not strictly
true, due to the effects of waveform shape and the interactions between inptt and

output capacitances, but is a useful assumption.

Using the method of duality, a variation on Lagrange multipliers, Matson
takes advaniage of the near-separability of area and delay by dividing the
minimization icto z minimization of each cell in succession. Instead of one
minimization over a very large vector space, many minimizations over small
vector spaces are performed instead, and since the cost of non-linear minimization
grows combinatorically, the divide-and-conquer method greatly speeds up the

process.
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Table 1
Path sizing: comparison of previous work
Algorithm Circuit Size | Reduction Machine CPU time

DELIGHT/SPICE (10] | Inverter Chain 6 ! VAX 11/750 3151.7

Relaxssion [3} Inverter Chain | 500 ! DEC 20/60 50
Quasi- Newton [5] Control Logic ) 63% VAX 11/750 0.1
20 52% 23

Scapegoat [7) 1-bit adder 13 ! XEROX 1108 20

Ramped Driver [21] PLA ? 0% DEC 20/60 '
Dualior [10] Inverter Chain | 6 ! DEC 20/80 16.3
4-bit =dder 76 ? 5223

Generalizaticn

Most of *heoe technigucs consider only a chain of gates, rather than a path at
the transistcr level, and ignore the possibility of outside influences. The presence
of pass transistors complicates the issue. Tt is not sufficient to size the tramsistor
whose output is the gate of the the next transistor in line; other transistors
connected to that transistor may need to be sized as well. Heuristics wili have
more difficulty in this situation, especially since a single transistor msay be
connec‘wd t; several different transistors in the critical path.

Most authors also gloss over the question of minimum widths of transitors.
Heuristics which only increase the size of transistors cause no difficulty here, of
course, but all non-linear minimizations must actually be constrained
minimizations. Strictly speaking, the transistor widths must also be integers {or
integer multiples of some fixed lambda); most techniques simply round of in a
post-processing phase to deal with this difficulty.

With such modifications, these approaches can be used for path sizing in
critical-path heuristics. The ramped-driver heuristic does not really apply to this

case, however, since it is not desirable to add new stages.

An important question is how well these techniques generalize to the case of
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an entire cireuit. The next chapter considers expanding the “‘scapegoat heurstic”
to the entire circuit. Matson's duality technique, however, does not generakze as
picely. The divide-and-conquer nature of the technique would make it
particularly appropriate for large circuits, so it is worth examining just bow it
breaks down.

The key to being able to divide the optimization problem is to be abtle to
separate the total path delay into individual cell delays. Circuit delay can irdeed
be broken down into the individual cells on the critical path, but as transistors are
sized, the critical path changes. In other words, the decomposition is different at
different times in the process. Matson only deals with specific paths, which

remain the same throughout the analysis.

Fishburn and Dunlop have recently published some impressive work. They
have shown that, given an RC delay model, circuit delay is a conver function of
transistor sizes (so far, they have been unable to generalize their result to slope
delay models). The pertinent feature of convex functions is that any local
minimum is in fact a global minimum. This in turn implies that simtlated

annealing or multiple initial configurations are not required to avoid local mirima.

The approach used by their TILOS program, however, is in fact a slight
variation on a scapegoat heuristic described below. The primary value of their
result appears to be in the confirmation that heuristics are in general “‘good,”

rather than providing any algorithmic method for solving the problem.

Simulated annpealing is still a potentially viable technique. As wI be
discussed in chapter 4, the cost function is pot necessarily the maximum delay
through the circuit. A more complex cost function — for example, the smoothed
maximum of all the path delays — may pot have the convex property, but may
still be a more accurate measure of how close to a solution the configuration 5. In

addition, simulated annealing techniques will still apply in the case of non-convex



delay functions, which may arise from a more accurate delay model.
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Chapter 3

Heuristic approaches

In the absence of an algorithmic solution, it is natural to search for viable
heuristics — all the more so since this is how human designers currently attack
the problem. The usual course of such heuristics is to perform an analysis of the
circuit, giving such information as the maximum delay through the circuit and the

critical path. and then use this information to guide the next resizing step.

gize (Circuit,Constraint) :-
- analyze(Circuit,Delay,Info),
res:-e_if_necessary(Circuit,Delay, Constraint,Info).

resize_ if_necessary(Circuit,Delay,Constraint,Info) i
Dzlay <= Cecnstraint. X% done!

resize_if_necossary(Circuit,Delay,Constraint,Info) -
Delay > Comnstraint,

apply_ heuristic(...),
gize (Circuit,Constraint).

Two criteria can be applied to beuristics: efficiency and optimality. Optimality is
simply a mezsure of how close to the optimum performance circuit the heuristic
can come. Although the absolutely optimum circuit is not required, if a heuristic

can not even approach it with consistency, it is not particularly useful.

Assuming a heuristic does give reasonable results, efficiency measures how
quickly it does. Some heuristics may be extremely efficient for reducing delay up
to, say, 40¢, but extremely inefficient beyond that. A major factor in efficiency is
the number of timing analyses required, so many of the different approaches are
attempts to reduce this pumber. Potentially, however, the amount of work done

to avoid reanalysis may actually become the dominant factor.

Heuristics fall into two major categories: transistor-level and critical-path.
Transistor-level heuristics work with one transistor at a time. A timing analysis is

performed, and then one transistor is resized. The advantage of this scheme is its

15
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simplicity; in general, no complicated equations peed to be solved, and
interactions between critical paths do not need to be considered. The
corresponding disadvantage is the lack of efficiency, particularly if a full timing
analysis needs to be performed after sizing each transistor. Compromise schemes
involving sizing several transistors before performing another analysis avoid this

problem, but only at the cost of increasing complexity.

Critical-path heuristics mirror human designers’ strategies. The critical path
through the circuit is found, and then sized so that it meets the delay constraint.
The process is repeated until all path delays have been reduced sufficiently. This
reduces the murber of analyscs of the circuit, but problems now arise due to the
potential inreraction of critical paths: if a transistor is on two different paths,
what should its size be?

To reduce the number of analyses even further, more than one critical path
can be sized before re-znalyzing. Either all the paths are considered
simultaneously, or some form of iteration is performed without reanalysis. This
approach compounds the diiliculties of interaction, and potentially increases the
complexity of the path-sizing problem. On the other hand, it can drastically
reduce the pumber of analyses, particularly when many paths are critical

simultaneously.

Mixed approaches, combining the above heuristics, are also possible. For
example, a critical-path heuristic may be combined with a transistor-level
heuristic for transistors not on the critical pa.th. Alternatively, one heuristic may
follow another: a heuristic considering multiple critical-paths may be used
initially, and once the number of critical paths is reduced sufficiently, a standard
critical-path heuristic may take over. Currently, very little work has been done

in this promising area.
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Transistor-level Heuristics

The two important questions at this level are what transistor to resize and
how to do the resizing. There are several ways to choose what transistor (or
transistors) to resize.

Most obvious is random choice. This is extremely simple, and fast to

compute, but results in an unacceptably large number of timing analyses.

As simple generalization of the ‘“scapegoat heuristic** in which the transistor

contributing the most delay is resized is quite simple to implement.

apply.lLeuristic (Transistors,Equations) :-
ctoose_scapegoat (Sizes Equations ,Culprit),
adjust_size(Culprit).

Once again, this computation is not too expensive; on the other hand, it is difficult
to say just what “contributing the most delay” means. In the final configuration,
some transistors will still contribute more delay than others, and eventually the
point of diminishing returns is reached for an individual transistor: even thotgh it
contributes much of the delay, it is better to leave it that way and resize another
transistor instead. .

One way of avoiding this problem is by instead examining the change in
delay resulting from resizing each transistor. In essence, this approach works with
the derivatives rather than the delay function itself. The derivatives can be
computed symbolically, or some numeric approximation may be used instead. A
simple and useful approximation to the derivative is the change in cost given a

unit change in the size of the transistor.

Of course, there is no need to restrict these techniques to a single transsstor.
More than one transistor can be resized in each pass. The above approaches can

all be generalized in very straightforward ways to consider multiple transistors.
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This leads to methods in which every transistor contributing more than a specified
amount of delay is increased in size, or where every transistor whose resizing
would decrease delay is resized.

Dealing with multiple transistors simultaneously is almost always
advantageous. Very little additional work needs to be done, since the effect of
each change needs to be computed in order to find the best change, and the
pumber of analyses is almost always reduced. The one way in which this decision
can be harmful is if the interrelationships between transistors are too great. and
resizing one transistor affects the decisions about whether to resize others. This
can lead to oscillation.

There are several ways to decide how much to adjust the size of the
transistors. Simplest, and surprisingly efficient, is simply increasing the size of the
trapsistor by one unit. The fact that other transistor sizes will continue to change
reduces the advantage of more complicated schemes, such as solving for the

optimal size given the current size assignments to other transistors.

Critical-path Heuristies

The basic idea of finding the critical path and then resizing it is simple
enough to implement.

apply. heuristic(Circuit,Crit. path,Constraint,Delay) -
resize(Critical_ path,Conatraint,Delay) .

One question is how to do the path sizing. Three of the approaches discussed in
chapter 2 are worth considering:

1) Individual transistor beuristic, in which a single transistor at a time 1s

increased in size.

2) Numeric solution of the path delay equations for optimal sizes.
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3) A simplified pumeric solution, given some assumptions about the

eventual sizes.

Each of these methods is more complicated and time-consuming than the
ways of sizing individual transistors discussed above. From an efficiency
standpoint, then, the question is whether the additional computation done here is
compensated by a corresponding decrease in the number of timing analyses
required.

The real difficulty in critical-path heuristics is the interaction between
different paths. What is to be done if a transistor has had a size assigned to it in
the course of sizing a path, and then is a component of another critical path
considered later.

There are two possible strategies for dealing with this situation. One is to
allow each transistor to be sized only once; once it has a size assigned to it, it is
fixed. This is quite simple to implement, but may not be sufficient. Consider the

following circuit:

large capacitive load

o

il

o

A
)I( {>$ long inverter chain o %

In the case of a chain of identical dates, the ramped-driver heuristic provides

Y

optimal solutions. The proper size assignment, though, depends on the length of
the path. Assume both paths exceed the delay constraint, and further assume
that the lower (longer) path is the most critical. When it is sized, inverter X will
have some relatively small size assigned to it. Now the upper path is still eritical;

to reduce its delay, inverter X will have to be increased in size.
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The other method allows transistors to be resized as many times as necessary.
However, resizing a transistor affects the delays along paths which have previously
been sized, potentially requiring once again sizing those paths. This in turp
creates the possibility of a loop between two paths, where sizing one undoes the
effect of sizing the other. In terms of the above example, when the size of
transistor X is increased to reduce the delay on the upper path, the lower path’s
delay will be increased.

It migkt seem that Prolog’s backtracking mechanism offers an elegant
solution to this problem: assign a set of sizes to a path, and if no global
assicnment can be reached satisflying the delay constraints, simply backtrack and
size the patk differently. This is undeniably theoretically possible, but in practice
extremely inefficient. Backtracking throws away all the information gained, and
so there is no way to know what caused the failure or how next to size the path.
Although =szert could be used to keep the information, so much would need to

be ascerted that the Cprolog interpreter, at any rate, would not allow it.

It is possible to set up relationships among transistor sizes along a path so
that resizing one of the transistors implicitly causes the resizing of all the others.
Techniques from the Al community such as access demons might be used for this
problem: whenever one transistor’s size is modified, the demon could change other
sizes as necessary. Once again, however, there is the potential for loops in which
two transistors’ sizes mutually depend on each other. This would seem to require
a rather general symbolic mathematics package for solving simultaneous non-
linear equations at each step.

Multiple critical paths can be considered simultaneously. As more and more
paths are considered, the improvements made at each stage are potentially

greater, but the amount of computation that needs to be done also increases.



Chapter 4
Simulated Annealing

The basic algorithm

Simulated annealing [8] is a probablistic hill-climbing algorithm. It differs
from standard hill-climbing in that a new configuration may be accepted even if it
increases the cost; the chance of this occurring is controlled by a parameter called
the temperature, which steadily decreases. This prevents getting trapped in a

local mirimum due to an unfortunate choice of initial configuration.

The algorithm divides into an outer loop, which gradually decreases the
teiuperzture. and an inncer loop, which performs a number of iterations at each
temperature. At each iteration, a Dew configuration is generated, its cost is
evaluated, and then the acceptance function determines whether or not the
configuration is accepted. Any configuration decreasing the cost will of course be
accepted; different acceptance functions give different chances of accepting
configurations which increase the cost. The usual acceptance function, used
throughout this paper, is

Acost )
T

The algorithm can terminate in two ways: it succeeds if delay is reduced

acceptance chance = exp(—

below the desired goal (although this success may be postponed briefly in order to
minimize the sizes of the transistors), and it fails if some failure criterion is met.
A standard failure criterion is no change in the configuration after a certain

number of times through the main loop.
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anpeal (Circuit,Constraint) :-
initialize (Configuration,Delay,Tomperature) .
outer_loop(Configuration, Constraint, Temperature) .

outer_loop(Configuration, Delay,Constraint, T -
Delay =< Constraint. % success
outer_loop(Config.Delay. Constraint,T) :-
Delay > Conmstraint,
iterations_at_temperature (T.N),
inner_loop(N,Config, Cost,T.New_config,. New, delay),
update_temperature (T,New_t),
outer_loop(New_ config, New_delay, Constraint,New_t).

inuer_loop(0,...).

inner_loop(N,Config,Cost,T,NeI_config,Nev_delay) -
gcnerate(Config,Teet_config),
cost(Test_config,Test_cost),
accopt(Test_cost,Cost,T),
11 is N-1,
innar_loop(Nl,Test_config,Test_cost,T,

New,config,New_delay).

inncr_lcup(N,Config,Cost,T,Nev_config.ﬂew_delay) -
N1 is N - 1,
inner,loop(Nl,Config.Cost,T,Nev_config,Nev_delay).

In terms of the particular problem being attacked, a configuration is simply

an assignment of sizes to the transistors. New configurations are generated by

random perturbations of each size; by restricting these perturbations to be

integers, we assure that the final transistor size is also integral. The cost of a

configuration includes a penalty for exceeding the specified delay, and another

term relating to the total size of the transistors (in order to keep the circuit from

growing too large).

Computing the cost involves computing the actual delay through the circuit.

The PTA timing analyzer takes a given configuration and finds the delays of all

the nodes. A large amount of additional information is supplied as well: the

transistor causing the maximum delay for each node, allowing critical paths to be

recreated, and symbolic equations for the resistance and capacitance of each

transistor. PTA uses a depth-first search algorithm, ensuring that nodes will not
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be reprocessed, and a simple RC model for simplicity and speed. Despite this, it
consumes the bulk of the program’s time; for a 100-transistor circuit, for example,

timing analysis requires over 10 cpu seconds.

Many parameters can be varied in an attempt to improve performance.
Among these are the initial temperature and configuration, the rate at which the
temperature decreases, the proper number of iterations at a given temperature,
the acceptance chance, and the generation procedure. Much theoretical research

has been done in this area, but so far none of these results have been incorporated

into this work.

Cost functions

A major determining factor in the performance of the algorithm is the cost
function. Several different functions bave been tried, all revolving around the
idea of charging a penalty for a delay exceeding the constraint. If the desire were
simply to reduce circuit delay to a minimum, then the penalty could just be the
delay; since the problem is only to meet a specified criteria, though, no bonus is

given for reducing delay below this bound.

Penalty = max(Delay—Constraint,0)
Initially, this was the entire cost function. Since it ignored transistor sizes, it led

to very large circuits.
The first cost function still weighted the maximum delay through the circuit

much more heavily than the total size:

Cost = 10*Penalty+TotalSize (1
The process essentially divides into two steps: first the sizes of the transistors

increased as delay is reduced to the constraint, and then the total size component
of the cost takes over, and the sizes are gradually reduced. A satisfactory solution
is usually reached, but rather slowly, since essentially only one critical path is

being considered.
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Since onme of the justifications for using simulated annealing was the
possibility of dealing with multiple paths simultaneously, the next improvement

was to consider all critical paths in the cost function.

Cost = 5*Penalty ,,+5* ¥ Penalty+2*TotalSize (2

ienodes

The most critical path is weighted more heavily than others, since it is still the
primary limitation on the circuit.

The third cost function weights the sizes more heavily.

Cost = 2*Penalty ..+ 3, Penalty;+Total Size (3

ienodes

For each of these three cost functions, maximum permutation sizes of 1,2, and 4

were tried in turn. Results are summarized in Table 2.

Table 2
Cost function performance
(average of two runs, 48-transistor circuit)
co=t maximum reduction cpu time size
function | perturbation | requested achieved | (seconds) | inmcrease
1 1 35% 38% 441 114%
2 35% 38% 153 129%
4 35% 38% 153 204%
1 50% *44% 824 150%
2 50% 50% 537 276%
4 50%¢ 7% 637 415%
2 1 35% 38% 297 114%
2 35% 39% 155 188%%
4 35% 39% 396 282%
1 50% 50%¢ 972 203%
2 50% 50% 485 227%
4 50% *45% 845 351%
3 1 35% 35% 254 150%
2 35% 35% 596 210%
4 35% 38% 155 321%
1 50% 50% 791 240%
2 50% 50% 595 304%
4 50%¢ *25% 204 152%
* . failure

The only clear result is that a maximum permutation of 2 is the best choice; no
obvious indication as to the most desirable cost function is apparent. Once delay

reductions beyond 5095 are requested, however, cost functions weighting delay
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much more beavily than size are required to obtain solutions.

Obviously, the major bottleneck of the program is the time required to
analyze the circuit. As described above, the algorithm requires an analysis for
each configuration, and then discards all the information except the delays. Using
this extra information to avoid some analyses can result in large performance
gains.

Near the solution, most new configurations will be rejected; in fact, most-are
“‘cbviously wreag” in that they increase the critical path delay sharply. The goal
is to screen the “‘obviously wrong” configurations by using ‘approximate timing
analyvsis and avoid fully analyzing them. This idea 1s similar to the one suggested
by Greene and Supowit [4].

Consider the delay along the critical path. If the new configuration increases
the delay on the critical path, it will certainly increase the maximum delay
through the circuit as a whole. Conversely, if a configuration decreases the
critical path delay, it will probably decrease the delay through the circuit as a
whole. Thuz. asalysis of the effect of a change on the critical path is ““almost’’ as
useful as analysis of the circuit as a whole, and — since only one path needs to be
considered — much quicker.

Since PTA provides symbolic equations for delay at each node, all that needs
to be done is evaluate these equations with the new gate sizes included. This is

substantially faster than performing a complete timing analysis (see table Y).

Instead of just computing the path delay, the cost of the new configuration

given the previous delay equations is calculated. This computation is still

substantially quicker than reanalyzing the circuit.
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. Table 3

Circuit Analysis vs Equation Evaluation

circuit evaluation evaluation
size | analvsis | (delay equation) (cost equations) | ratio
6 0.95 0.02 0.07 13.6
8 1.38 0.02 0.08 17.3
24 2.15 0.02 0.07 30.7
48 4.70 0.03 0.15 30.1
98 10.60 0.07 0.48 22.1

A standard acceptance test is performed on this estimated cost; if it passes, then full
analysis and apother acceptance test occur. To avoid biasing the algorithm against
configurations which increase the cost (since they now must pass two tests) the same

random nurat=r is used for both acceptance tests.

Greene and Supowit view the screening process as biasing the generation
function; 1 prefer to consider it as a simple preliminary cost function. In either
case, the effect is the same. If a new configuration cannot pass this test, it can be
rejected without doing a complete analysis of it. Table 9 in Chapter 7 preseats a

comparison of the same cost function with and without screening.

Note that this prediction function is not perfectly accurate. This differs from
the situatior considered by Greene and Supowit: a configuration may pass the
screening test ouly to be rejected. However, a configuration’s actual maximum
delay can only be greater than the screening function predicts, so no potertially
acceptable configurations are ever eliminated in the preliminary stage. As a

result, the theoretical properties of the algorithm are unaffected.

Combining Heuristics and Simulated Annealing

One promising areas of exploration is the integration of simulated annealing
with other heuristics for sizing. A major problem with heuristic approaches is
that it is difScult to say ahead of time which solution is desirable for a critical
path — it may be important to size some transistors larger than they would

otherwise need to be due to their effect on other paths. If simulated annealing is
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combined with & critical-path sizing heuristic, the heuristic can generate an
acceptable solution and then rely on simulated annealing to find the proper

solution.

One obvious way of combining the two approaches is to alternate them: allow
the annealirg algorithm to run for a time, reduce the critical path delay usizg a
beuristic, and repeat the process. Another potential method is to use a heuristic
in the generation function of the annealing algorithm, with some random
perturbatiozs thrown in. More simply, a heuristic may be used to give a starting
configuraticz. Finally, a post-processing heuristic may be used to improve the
solution ger=rated by annealing.

One pe-ticular area in which such a post-processing heuristic might be useful
is in reducing transistor sizes. Since area minimization is less important than
reducing ths delay to the constraint, transistors not on the critical path tend to be
larger thar they need to be. Detecting and then examining these transistors 1s

certainly more efficient than allowing the annealing algorithm to continue.



Chapter 5
MOST

The MOST program allows the various approaches to transistor sizing to be
tested. It consists of PTA (the Prolog Timing Analyzer), various front ends
corresponding to different heuristics, and a simulated annealing interface. MOST

is not only a test program for these methods, but is a CAD tool in its own right.

MOST is designed as a component of the ASP (Advanced Silicon Compiler 1o
Prolog) project. Compatibility with ASP is an absolute requirement; this
determincs the implementation language and interface conventions for MOST.

Furthermore. MOST is tuned to its use within ASP.

ASP

The goa! of the ASP Project is to produce a high-performance silicon
compiler tuned to the development of a logic processor. For a fuller description of
ASP, see McGeer et. al. [12]. From the viewpoint of MOST, the salient feature of
ASP is that it defines a single interface for all its component programs: the
constrained hierarchical schematic (CHS). MOST takes its input in this format,

and simply attaches additional constraints to the schematic.

A CHS contains a listing of inputs and outputs, as well as additional
constraints not important within our framework. Functionally, a CHS may be
either a primitive (a transistor, for example) and its associated structure (in this
case, the source, gate, and drain signals, as well as the gate size) or a collection of
subcells, each of which in turn is a CHS. The hierarchical nature of the CHS
allows a building-block approach to silicon compilations, and the potion of

constraints interacts well with the Prolog language.

Within ASP, MOST is meant to be run before lavout takes place. This

implies that the exact lengths of the interconnections are not known, and so some

28



29

estimates have to be made on the parasitic resistances and capacitances.
Although pot & restriction on the program — if exact values are available they
can be used — this is the normal situation, and so algorithms are designed with it
in mind. In particular, the timing analyzer currently uses the computationally
simple but less accurate lumped RC model for delay. The justification for this is
that since the uncertainty of the parasitics limits the accuracy of any delay
computations, there is no point in spending extra effort to arrive at similarly

inaccurate results.

The choice of Prolog as the implementation language (necessary for
compatibility with the rest of ASP) strongly influences the design of MOST. The
implementation of the simulated annealing algorithm makes great use of the
delayed binding and backtracking provided by Prolog. In effect, implicit pointers
throughout the data structures allow many variables to be equated, and then
binding one sets all the values simultaneously. When a procedure fails, however,

any assignments are undone.

These two features are used for substituting the next configuration into the
CHS. The variables in the CHS are collected in a pre-processing stage, and then
at each iteration this list of variables is unified with the list of sizes making up the
next configuration.

Instead of using delayed binding, the configuration could be substituted into
the CHS simply by traversing the entire structure. The cost of this traversal is
small compared to the cost of timing analysis, but it can still be substantial; 2
straightforward implementation, done for comparison’s sake, required over .8 cpu
seconds for a circuit of 96 transistors. For the same circuit, the unification takes

less than .1 cpu second.
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Implementation

The algorithms used by MOST have already been described. The two major
ways in which MOST differs from the pseudo-code provided above are in
attention to storage management and efficiency.

The thornicst implementation problem was that of iteration. Both simulated

annealing and the heuristics fall nicely into the paradigm of

jterate (Circuit,Configuration) :-
evaluate (Circuit,Configuration),
adjust(Configuration, New_ configuration),
sterate (Circuit,New_configruation).

The questior is how to do this gracefully within the framework of a language that
has no destructive assignment. The evaluation step consists of binding the
transistor sizes to the current configuration and then performing a circuit analysis.
When it comes time to evaluate the next configuration, however, the transistor
sizes are no konger unbound variables!

Short of using a technique such as difference lists (which mimics destructive
assignment substantially less efficiently) the only alternative is to make use once

again of Prolog’s backtracking.

jterate (Circuit,Configuration) :-
repeat,
evaluate (Circuit,Current_configuration),
adjust(Configuration, New. configuration).
fail.

The fzil unbinds the variables, so that they can be rebound for the next

evaluation.

The diffculty in this approach is made clear in the call to evaluate: just

what configuration is being evaluated? The backtracking also throws away the
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binding of New_configuration. The only way to retain this necessary

information is to assert it.

jterate (Circuit,Configuration) :-
assert($current(Configuration)),
repeat,
retract(scurrent(Current_configuration)).
evaluate(Circuit.Current_configuration).
adjust(Current,configuration,!ew_configuration).
sssert(Scurrent(New_configuration)).
fail.

Although apy use of assert violates Prolog's logical paradigm, this method 1s
fairly reasosable. assert is not being used to communicate between procedures,
only to retain information over backtracking within a single clause. From an
efficiency standpoint, relatively little — Jess than 19 — of the program’s time is
spent in this assertion and retraction, despite the fact that somewhat more
information than just the configuration needs to be retained: both the heuristics
and the sereening function of simulated annealing need the critical path equations
from the previous configuration.

The symbolic mathematic pertion of MOST can evaluate, simplify, and take
derivatives of equations. The simplifier is rather mediocre; it does not deal with
the distributive law, for example. Its main purpose is to remove zeroes, and the
main requirement is that it be fast, so adding in more complicated laws would be
counter-productive.

Similarly, the equation evaluator needs to be fast. The equations being
evaluated czn include unbound variables, which default to zero, so the standard
prolog is function cannot be used. Analysis showed that the is is a factor of 10
faster than a symbolic evaluator, primarily due to the necessity for unifying and
setting up 2 new environment at each level of the expression tree; since evaluation

costs are a significant factor in the overall time, this penalty is unacceptable.



Table 4
is vs. evaluation
circuit | equation evaluation is
size size time time | ratio
8 37 0.06 0.02 3.0
8 109 0.17 0.02 8.5
24 119 0.21 0.02 10.5
48 263 0.42 0.03 | 140
96 551 0.90 008 | 150

What really needs to be done is to define an additional operator, say
default, such that
default(X) =01if X is unbound
default(X) = X otherwise.
Then is caz be used freely simply by applying default to all the pontentially
unbound variables. However, Cprolog does not permit the definition of new
arithmetic operators.
The eventual solution was to prepare a modified version of the interpreter in
which unbcund variables default to 0. This 1s a hideous hack, but the
performance gains are well worthwhile. The program will still run in standard

Prologs, however, due to the use of macro definitions of the relevant procedures.

The modified interpreter asserts the fact $fast_interpreter in its
environmen:, and so programs Aare able to test to see which version of the
interpreter ¥ in use. Using the expand_term preprocessor, the changes can be
implemented 1n a completely transparent manner. When a program is being read
in, expand_term is applied to each clause (this is also how grammar rules are
implemented). If no expand_term succeeds, then the clause is simply asserted as

is; otherwise, the second argument of the appropriate expand_term is asserted.



X if Condition is true, assert the Then clause

expand,term(ifdet(Condition.Then,Else),Then) -
Condition,!.

% otherwise, the Else clause

expand_term(ifdef(Condition,Then,Elae),Else) -
+ Condition,!.

ifdef ($fast_interpreter,
(dum=y(...) :-

i.is Eq
% otterwise
(dumsy(...) :-

evaluate (Eq.X) .
D D

The modification to the interpreter greatly increases MOST's speed. Table

10 in chapter 7 contains the statistics; the gain is always at least a factor of two.



Chapter 6
PTA

PTA is & vital component of MOST; it provides information for both the
heuristic and the simulated anpealing top ends. Although it is scarcely an
advance on the state of the art — it is both slower and somewhat less accurate
than Crystal. for example — it has several interesting features. In particular, it is
tuned to repeated use as part of a sizing program, and thus preprocesses as much
of its input as possible; it orders series transistors if their order is initially
unknown; it provides symbolic equations for delay at the various> nodes; and it
capitalizes ox the hierarchical structure of the input schematic.

It is possible to modify PTA to use a more accurate delay model, so the lack
of accuracy i pot inherent. PTA also has the ability to treat higher levels of
abstractions — logic gates or even macro cells — as primitives if the proper delay
model is provided. Currently, however, MOST does not take advantage of this
capability.

An obvious question is the necessity of designing a new timing analyzer.
Why not just use Crystal, for example, with (if necessary) a few modifications’
One objection, of course, is that Crystal (or any other timing analyzer) is not
written in Prolog; however, the aesthetic desire for a system written entirely in
Prolog is not sufficient justification for reinventing the wheel.

In order to understand the reasoms for writing PTA from scratch, it is
pecessary to understand its functions. The justification will thus be postponed

until after a description of PTA and its implementation.

Implementation

PTA takes a CHS as its input. The output of PTA is the same CHS, with

additional timing information attached; the information is sufficient to reconstruct

34
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the critical path to any node within the circuit. In addition, apy initially

unordered series transistors will have orders attached.

If the CHS has subcells, then each subcell is analyzed in turn. The delay at
an output of the CHS is simply the maximum of the delays of that output in the
subcells. This process is repeated recursively until a primitive element is reached.
In the standard version of PTA, s primitive is a collection of transistors

connecting a single input to a single output.

In order to process a primitive element, the delays of all its inputs must first
be known. This may involve first processing other CHSs whose outputs are inputs
to the current CHS; since the information is retained, this does not cause any
additional work, just reorders the schedule. Each path to each input will thus be
considered. Once the input delays are known, a delay modeler for the primitive

element is called on to calculate the output delays.

analyze_chs(CHS) 1=
is_primitive (CHS),
known,input_delays(CHS),
pro:eas_primitive(CHS).
apalyze_che(CHS) :-
+ is_primitive(CHS),
gubcells (CHS,Cells),
apply_to_each(analyze,chs,Cells).

This scheme has several benefits. In the first place, it permits any level to be
viewed as a primitive, as long as the required delay modeler is supplied. For
example, rather than going down to the transistor level, logic gates might be
considered primitive. Secondly, it capitalizes on the hierarchical structure, which
limits the number of paths through any one cell. Finally, it eases the burden on

the delay modeler, which is able to assume that all the input delays are known.

The delay mode! currently used for transistors is the lumped RC model,

which views the entire resistance and capacitance of a stage as concentrated at
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the end of the stage. Clearly, this model is pessimistic; however, it is reasonably

accurate, and computationally fast.

Each transistor in turn is considered as the frigger transistor, or the last
transisto; to change. The delay on the stage given this choice of trigger transistor
is then computed, and the maximum of these delays is taken as the output delay.
The trigger transistor is also recorded, allowing later reconstruction of the critical

path.
VDD

XIN | YIN A
1T 1L [+
HE 1
X Y

—iL =

GND
Transistors X and Y are the possible choices for trigger transistor.
If the stage consists of the set of transistors X, each with its associated
resistance and capacitance; interconnections I, and drives capacitive load Gy,

then the delzy with t as trigger is

D,=Input delay 4+ LR+ L Ri+R)*( T C+ Y Ci+Cou)
xeX iel >t i>t
where “>" means “follows in the path.” In terms of the above diagram, and

neglecting interconnect resistance for simplicity,
Cout=CA+CB

Dx=Input delayygn+(Rin+Rx+Ry)*(Oxt+Cy+Couy
Dy=Input delayyi+(Rin+RxtRy)* (Gy+Couw)
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If the primitive element contains unordered series transistors, they are
ordered before this computation takes place. Having known input delays allows
this ordering: otherwise, the final order of the transistors is not know when their
delay 1is calculated, and some assumption must be made. The only safe
assumption is the worst-case one for each tranmsistor, but this leads to wildly
pessimistic results.

Determining the input resistance and output capacitance of a primitive
element will involve tracing a path through the circuit. The path must come
from an input to the circuit to the input of the CHS being considered; in the case
of a transistor, the path goes to the source. Finding paths is 2 classic prolog
pseudo-breadth-first search problem; the simplistic implementation is quite

straightforward:

path (XX, [ - % path from X to X
path (X.Y, connection(X,Z) IP])) :-
connection(X,2),
path(Z,Y,P2).

The use of eonnection is meant to hide the exact structure of CHSs; X and Y are
connected if there is a primitive CHS with X as an input and Y as an output. In
practice, however, this simple algorithm is not sufficient, since some additional
checking needs to be done.

A cycle among CHSs implies a memory node or a latch. In this case, the
cyclic path 1s ignored. This check is potentially rather time-consuming, if paths
are long, since it uses an order N? algorithm. In practice, however, it is relatively
inexpensive.

In order to avoid considering paths which are blocked by nop-overlapping
signals, the list of signals influencing each path is retained. Only signals which

have been specified as potentially non-overlapping are included in this list. All
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values are kept for each set of signals.

In effect, this mechanism trades the space for storing all the different
combinations for the time required to do recomputation if each case is considered
separately as it is in a traditional timing analyzer. Potentially, storage can
increase combinatorially with the number of non-overlapping signals. Most paths,
however, do not involve more than one or two such signals, so the price is not too
great. Furthermore, it is exactly these paths where the values computed can be

used for multiple cases.

With these additions, the path algorithm is somewhat more complex:

path(X,X,Signals,Path,Path).
path(x.Y,Signala,Path_so-far,Path) -
connection(X,Z),
% check for circularities
+ member(connection(X,Y),Path_so_tar),
% check for overlapping signals
signals(connection(X,Y).5).
overlap(S,Signals),
add,aignals(S,Signala,Ne'_aignals),
path(Z,Y,New_signals,[connection(X,Y) | Path_so_far],Path).

PTA is tuned to its mode of use within MOST: repeated analyses of the same
schematic with additional sizes attached. Asa result, before the first analysis of a
given circuit, it does as much preprocessing as possible, since preprocessing costs
only need to be paid once. All the paths within each individual CHS are
computed and stored (the use of hierarchies keeps this space requirement from
growing exponentially), as are symbolic formulas for each node’s output
capacitance. For a 100-transistor circuit, preprocessing requires 8 cpu seconds; by
comparison, the rest of the analysis only takes 13 seconds. The same algorithm
with the preprocessing removed requires 27 cpu seconds, substantially more than

the sum of the two times.
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Justification

The strongest argument in favor of a completely new timing analyzer is the
absence of any Prolog timing analyzer. This is not just an aesthetic argument.
Due to the nature of the interpreter, interfacing problems are particularly
daunting. ki is relatively easy to make use of a C procedure which returns a
numeric value simply by adding a hook to the interpreter allowing function calls,

but returning a structure is far more difficult.

In the first place, Prolog procedures do not return values, but rather unify
them with their arguments. This problem requires only “syntactic sugar’ to
avoid, but the two languages represent structures differently; Prolog structures
need to be converted into C’s format when the procedure is called, then the C
structures rmust be massaged to convert them into the proper Cprolog format.
Finally, Profiog variables are fundamentally different than C variables (there is no
Prolog anzlog to assignment, for example, and pointers are implicitly
dereferencec }: it is not at all clear how to remedy this difficulty.

Bevond these language issues, we reach the question of how much an existing
timing anal¥zer would need to be modified to fill its role as part of MOST. For

concreteness, Crystal is considered. At Jeast four areas need to be dealt with:

1) MOST requires symbolic delay equations from the timing analyzer. It is
possible to add these to Crystal in much the same way they have been
implemented in the current version of PTA; to correspond to unbound
va-iables in the Prolog version, pointers to unfilled memory locations

could be used in C.

92) PTA must order series transistors in the cases where the order i not
fixad ahead of time. No facility for unordered lists is present in Crystal,
and even if this were added there would still be major difficulties. PTA

only considers a CHS once all its input delays are known; given this
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information, it is possible to decide on an ordering for the transistors.
Crvstal does not make such a stipulation, so the ordering information
may not be known or — even worse — Inay change as the circuit is
being analyzed.

3) In the ASP environment, transistor sizing takes place before layout.
This implies that the exact interconnect capacitances are not known,
and some estimates must be made. This would be rather simple to do

within the framework of Crystal.

4) Crystal cannot deal with non-overlapping signals. A human designer
car do case analysis by fixing on each possibility in turn; this results 1n
sicnificant recomputation, however. Once again, this capability could be

added into Crystal in the same way it has been implemented in PTA.

Most of these features, then, could be added into the existing framework of
Crystal. On the other hand, these areas consumed the bulk of time implementing
PTA, and it seems fair to assume that as much time would have been required to
modify Crystal. The final decision on whether to use Crystal was that the
implementation difficulties, unordered transistors, and the all-Prolog aesthetic

argument outweighed the already existing speed and accuracy of Crystal.

In retrospect, substantially more time than expected was spent implementing
PTA; however, almost all of this time was spent in the areas which would have
had to be added to Crystal as well. PTA is substantially slower than Crystal, and
because of its choice of the lumped RC timing model, somewhat less accurate.

Despite this. I believe the decision was a good one.

PTA’s accuracy can be improved by incorporating the distributed RC model
and taking waveform shape into account. These gains will, of course, be limited
by the fact that interconnect lengths are only estimates, but should make PTA’s

accuracy competitive to other timing analyzers. Furthermore, from a
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development standpoint, there was 8 great advantage in being able to work with
the relativelv simple equations of the lumped RC model. The extra accuracy of
the slope model in particular is accompanied by a dramatic increase in complexity

of the equations.

Admittedly, PTA is at least an order of magnitude slower than Crystal, and
for some choices of algorithms this is the limiting factor for the MOST program.
On the other hand, this difference is simply due to the fact that Cprolog is
interpreted  Estimates for the performance of the PLM machine [1], in
conjunction with the Berkeley Prolog compiler {18], predict a 200-fold increase in

speed.



Chapter 7
Results

Five algorithms have been evaluated.

SIMPLE
— a simple scapegoat heuristic: the size of the “most useful” transistor
(the transistor whose modification does the most good) is increased by
one

MS — the size of the most useful transistor is increased by a varying amount

MT — the size of any transistor “'hoge increase would reduce delay is
increased by one

CP — a critical path heuristic which uses partial derivative information for
the path sizing

ANNEAL

— simulated annealing using screening and the cost function

Cost = 5*Penalty,,+5* . Penalty;+TotalSize

ienodes

Due to the random nature of this algorithm, there is a fair amount of

uncertainty in the results quoted for ANNEAL, most of which are based
on only a few runs.

The first question to be considered is how well the various algorithms
perform on two mid-sized circuits. A one-bit full adder consisting of 24 transistors

is a small enough circuit that all the algorithms perform reasonably well.
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Table 5
Algorithm performance — 1-bit adder
(24 transistors)

delay reduction size timing cpu time
aleorithm | requested | achieved | increase | analyses | (seconds
SIMPLE 30%¢ 31% 13% 7 18.7

50%¢ 51% 63% 31 80.3

60°¢ 60% 131% 64 163.0
MS 30% 44% 67% 6 16.4

50%¢ 50% 152% 13 34.4

60% 63% 298% 24 63.1
MT 30% 31% 19% 3 8.7

50 50% 7% 11 29.4

60% 60% 148% 20 52.8
Ccp 30% 33% 25% 3 15.3

50%¢ 51% 94% 9 47.2

60°¢ 60% 127% 15 80.7
ANNEAL 30°¢ 42% 152% 6 23.3

50%¢ 52% 218% 11 40.3

60°¢ 80% 194%¢ 84 230.9

Doubling the size of the circuit to two bits and 48 transistors causes problems
for the SIMPLE heuristic and the simulated annealing algorithm. The results
reported by Fishburn and Dunlop are included for comparison; the time is for a

68000-based workstation running C code.

Table 6
Algorithm performance — 2-bit adder
(48 transistors)
delay reduction size timing cpu time
algorithm requested | achieved | increase | analyses | (seconds)
[ SIMPLE 30% 31% 15% | 15 83.0
50%¢ 50% 74% 72 430.0
MS 30% 40% 35% 8 51.4
50%% 52% 272% 34 207.5
60%¢ 60% 275% 50 301.4
MT 30% 38% 29% S 32.5
50%¢ 50% 90% 15 92.4
60% 61% 261% 48 285.0
CP 30% 32% 35% 3 48.3
50% 52% 173% 11 192.9
60 61% 355% 22 373.5
ANNEAL 30% 32% 123% 9 79.4
50% 51% 318% 75 553.0
TILOS 43% 32% 6
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Note that although it requires more cpu time, SIMPLE is the most effective
in limiting transistor size increase. In general, cleverer algorithms tend to
overestimate the sizes of transistors not on the eventual critical path. MS is
particularly prone to this problem because of the difficulty of deciding on the
proper size for a transistor before surrounding transistors have had their final size
determined.

PTA is currently limited to circuits of approximately 100 transistors. As a
result, it is difficult to say how well various algorithms scale to larger circuits.
The available data makes it seem that they are roughly quadratic in the size of

the circuit.

Table 7
Algorithm performance vs. circuit size
Circuit Size
Algorithm  Reduction 8 24 48 96
' SIMPLE 30% 80 | 187 93.0 451.2
50% 11.5 | 80.3 | 430.0 *
MS 30% 6.7 | 16.4 514 239.0
50% 6.7 | 34.4 | 207.5 | 1095.8
MT 30% 8.2 8.7 32.5 84.9
50% 119 {204 | 924 | 331.2
CP 30% 11.0 | 1563 48.3 137.6
50% 11.0 | 47.2 | 192.9 ?
ANNEAL 30% 4.5 | 233 79.4 !
50 16.1 | 40.3 | 553.0 !
¥ _ failed to satisfy request
! — data not yet available

As the circuit gets larger, time for symbolic derivatives increases
dramatically. For even the 48-tranmsistor circuit, over 50%% of the computation
time is spent taking derivatives; for 96 transistors, the percentage increases to
above 70%%. A faster derivative procedure should make this method more

competitive with the others.

The somewhat arbitrary example of a chain of four inverters driving a fairly

large output capacitcance makes a good test of how the algorithms perform while
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driving the ciucuit as close as possible to its optimum size. Although this is rather
impractical — reducing the delay by 85% increases the circuit’s size by a factor of

15 — it is nponetheless a measure of the capabilities of the algorithms.

Table 8
Performance near optimum configuration
Chain of 4 inverters — 8 transistors
(figures are cpu times to attain reductions)
requested Algorithm
delay SIMPLE | MS MT CP | ANNEAL
30% 8.0 6.7 8.2 11.0 4.5
40%% 8.0 6.7 8.2 11.0 6.4
50% 11.5 6.7 11.9 11.0 16.4
60% 18.5 6.7 154 11.0 20.0
70% 38.9 11.9 26.0 19.8 29.5
80%%¢ 126.9 30.3 51.7 47.8 116.0
85% 317.6 55.5 | 102.7 | 114.5 416.5
90% y 394.1 * * *
* — failed to satisly request

The screening procedure in the simulated annealing algorithm does indeed
boost efficiency substantially. The savings increase with the size of the circuit (as
timing analysis becomes more expensive) and with the percentage reduction
requested (as more configurations become “obviously wrong"').

The same cost function was used both with and without screening. One
method of seeing the increase in efficiency is to calculate the “success rate’” —

how often an evaluation results in an acceptance.

Table 9
Advantages of screening
(averages of 10 runs)
Circuit Delay Evaluation Success Cpu

Size Reduction | Screen? | Percentage | Percentage | Time
24 30% NO 10070 58%¢ 23.0

YES 70% 74% 19.7
24 50% NO 100% 40% 74.4

YES 57% 77% 54.6
48 30% NO 100% 37% 122.8

YES 47% 68%% 80.9
48 50%* NO 100% 15% 1100.1

YES 40% 7% 631.7

* _ only one run due to cpu time
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Finally. it is worth investigating how useful the modification to the
interpreter actually was. Table 10 includes the ratio of the time to evaluate an
expression to the time required by is. Simply multiplying this ratio by the time
spent in evaluating equations using the fast interpreter will give a fairly good
estimate of the time required to evaluate the equations in the standard
interpreter. Different algorithms do different amounts of evaluation, so the exact

benefit they obtain differs, but it is invariably large.

Table 10 ;
Performance gains due to modified interpreter !
Modified Interpreter | Standard Interpreter
Circuit (measured) (projected)
Algorithm Size Is time Total Eval Time  Total Ratio ¢
Ms 8 1.4 6.7 11.9 17.2 2.6 ;
24 9.1 24.4 95.5 1108 | 4.5 |
48 65.7 207.5 919.8 1061.6 5.1 |
96 383.7 585.3 5755.5 5957.1 10.2
MT 8 2.9 11.9 24.6 33.6 2.8
24 7.4 29.4 71.7 99.7 3.4
48 27.8 92.4 389.2 453.8 49
96 138.2 331.2 2073.0 2266.0 6.8
CP 8 04 1.1 34 4.1 3.7
24 5.1 47.2 53.5 95.6 2.0
48 14.0 192.0 198.0 374.0 1.9
ANNEAL 8 2.9 20.6 24.6 42.3 2.1
24 5.6 40.3 58.8 93.5 2.3
48 182.5 553.0 2555.0 2925.5 5.3




Chapter 8

Conclusion

Summary of results

Both simulated annealing and heuristic methods can reduce delay through a
circuit by 50% in a few minutes of CPU time using a simple delay model.
Heuristics are tend to be more efficient and produce smaller final circuits; even
simple heuristics give surprisingly good results. Although no guarantees can be
provided, several of these approaches almost invariably succeeds in satisfying
reduction requesis up to 60c.

Using svmbolic equations is a key to improved performance both for
heuristics and simulated annealing. Using a more accurate delay model might
cause the complexity of these equations to increase dramatically, and so it is not
clear how this would affect the program’s speed.

The limitations on eircuit size are largely a function of the Prolog
implementation in use, particularly its failure to perform tail-recursion

optimization. Other than this, performance scales fairly well with size.

Future work

Many promising areas for research are still almost untouched. Several have
been mentioned in passing above; this final discusses them in somewhat greater
detail.

The most attractive possibility is taking advantage of the circuits hierarchical
structure. As mentioned, PTA is able to view different levels of abstraction as
primitive; this feature was added primarily for the benefit of MOST, but no use
has been made of it so far. Instead of sizing the entire circuit simultaneously, it
should be more efficient to assign delay goals to cells and then size the cells

recursively.
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Annealing and beuristics should certainly be combined, as should heuristics of
different types. For different circuits, different approaches are desirable; some
way of determining what method is right for a given circuit would be extremely
useful.

PTA is easily modifiable to include a more accurate delay model. The
Penfield-Rubenstein-Horowitz distributed RC model is only slightly more complex
than the lumped RC model, and current sizing techniques should continue to
perform much the same. Models taking the waveform's slope into account cause
more Cificulty, but provide potentially large rewards. Of course, from the
standpoint of MOST’s usage within ASP, the increased accuracy will do little
good, due to the estimates of interconnect length, but they are important for use
as a stand-alone tool.

From an aesthetic standpoint, using heuristics is rather unsatisfactory.
Fishburn and Dunlop’s work [2] points the way towards a sounder theoretical
basis, but is currently restricted to the distributed RC model. This result needs to
be extended towards a more general model. Additionally, decomposition
techniques such as Matson’s — much like the hierarchical decomposition described

above — show great promise.
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Source

% this is the top-level

:=([-*UTILS/macros’,
-’anneal’,
-’heuristic’,
-*PT4/pta’,
-*PTA/ppPP’.
-*PTA/order’,
-*PTA/primitive’,
-*PTA/critpath’,
-'PTA/delay’,
-*UTILE/utils’,
-*UTiLS/symbolic’,
-*UTILS/etructs’,
-*UTILS/print’,
-*UTILS/makechs’,
-?*UTILS/random’,
-’UTILS/minimize’]) .

Appendix
(30ﬁggtaf]NlC)SfF

file which causes the others to be loaded in

§ this has to be first so it applies to the others
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In order to have precedence over the other macros,

9 ifdef macros.
be applied first, and so must be 'asserta'ed.

9 these need to

- asserta((expand_term(ifdef(Condition,Clausel,ClauseZ),Clause2) - 1))
- asserta((expand_term(ifdef(Condition,Clausel,ClauseZ),Clausel) 1=

Condition, !)).
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9% prolog code to do simulated annealing

measure (Delay) :-
N is cputime,
pp (Cks) .
make_sizes (Chs,Vars),
initialize (Chs,Delay,Vars,Initial),
anneal(Delay,Chs,Vars,Final,Cost,Actual),
N1l is cputime,
Pct is Actual/Initial,
prirt('Delay reduced from ‘) .print (Initial), print(' to '),
print (Actual) ,print(’ (').print(Pct) ,print('%) ') .nl,
print ('Total transistor size '),total_size(Final,Tsize),print(Tsize),nl
print ('cpu time required is ').Diff is N1 - N,
print (Diff) ,print (' seconds') .nl.

measure(_) :-
print ('Failure'),nl,
!
fail.

initialize(L,Delay,Vars,Init_delay) -
length (Vars,Number) ,
print ('There are ') ,print (Number) ,print(' transistors to size') ,nl,
init_configuration(Vars,K Init),
cost(L,Delay,Vars,Init,Init,cost,Init_delay,Init_eq,Init_other),
init_stopinfo(Init_cost,Stopinfo),
init_temperature(Delay,Init_delay,T),
note_yalues(Init,Init_cost,Init_delay,Init_eq,Init_other),
fail.

initialize (L,Delay,Vars,bInit_delay) :-

$current_delay (Init_delay),
1.

anneal (Delay,Chs,Vars,X,Xc,Xd) :-
repeat,
get_temperature (T) .,
get_stopinfo (Stopinfo),
iterations_at_temp(T,N),.
inner_loop (N, T,Delay,Chs,Vars,X,Xc,Xd),
update_stopinfo(Stopinfo,Xc,New_si),

((stop (Delay,Xd,New_si): % success
% or )
give_up (New_si)): % failure
% or
update_temperature (T ,New_t), % keep going
fail) . 9 the fail returns to the repea

9 inner loop goes through N iterations at the specified temperature
inner_loop(N,T,Delay,Chs,Vars,J,Cost,Actual) 1=
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range (1,I,N),
get_values(X,Xcost,Xdelay,Xdeq,Xoeq),
generate (X) .,
screen(X,Xdeq,Xoeq,Xcost,Delay,T,R),
make_real_configuration(X.,J).
cost(Chs,Delay,Vars,J,Cost,Actual,Deq,Oeq),
accept (Xcost,Cost,T,R),
replace_yalues(J,Cost,Actual,Deq,Oeq),

Actual < Delay, 9 succeed only if done

9% otherwise, fail and the retry goes back to 'range'

inner_lo0p{ ., _._...._.X,Xcost, Xdelay) :-

get_yalues(X,Xcost,Xdelay,Xdeq,Xoeq),

% the screening function -- throw out "obviously wrong" conficurations
screen(Config,Deq,Oeq,Old_cost,Delay,T,R) 1=

size_cost (Config,Size_cost),

Diff is Deg - Delay,

max (0,Diff,Delay_cost),
map(other_penalty,Delay,Oeq,Penalties),
sum(Penalties,Other_cost),
make_cost(Delay_cost,O,Size_cost,Test_cost),
randcm (R) ,

!

accept(Old_cost,Test_cost,T,R),

!

other_penalty(Delay,Eq,Penalty) 1=

Actual is Eq - Delay,
max(O,Actual,Penalty).

accept (Xcost,Jcost,T,R) :-

Del_c is Jcost - Xcost,
f(Del_c,T,Y),
R <Y.

f(Del_c,_,1) :-

Del_c < O,

£(Del_c,T.Y) :-

Y is exp(-Del_c/T).
!

9% annealing utility functions, including intializing and updating
9% parameters. most of these are very sketchy, and lots of useful
9% work could no doubt be done here

init_temperature(Delay,Init_delay,T) i-

T is (Init_delay - Delay) /4.
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asserta (Scurrent_temp (T)).
1

init_stopinfc(lnit,[Init,O,l,Z]) :- % as long as they're different, it's cocl

asserta(scurrent_info([Init,O,l,Z])),
',

9 currently, iterations_at_temp doesn't depend on the temperature. clearly
9 it should for better per formance. sSOTTY.
iterations_at_temp (Temp, 25) :- !.

% this should also be somewhat more complex
update,temoerature(T,Newt) -

Newt is 0.8*T,

asserza (Scurrent_temp (Newt)),

!

get_temperzture(T) :-
retract (Scurrent_temp (T)),
I

update_stopinfo([Xl,XZ,X3,_],X,[X,Xl,XZ,X3]) i-
asserta($current_info([X,Xl,XZ,XS])),
r.

get_stopinfo (Stopinfo) :-
retract ($current_info (Stopinfo)},
LI

stop(Delay,Xdelay,Stopinfo) i-
Xdelay < Delay.

9 give up if no change (in cost) in three iterations
give_up ([X.X.X,X]) .

9 try to make the asserts and retracts as transparent as possible
note_values (X.Xc,Xd, Xdeq, Xoeq) :-
asserta($current_config(X,Xdeq,Xoeq)),
asserta (Scurrent_cost (Xc)) .

asserta (Scurrent_delay (Xd)) .
LI

get_yalues(X,Xc,Xd,Xdeq,Xoeq) 1=
scurrent_config (X, Xdeq, Xoeq) .
$current_cost (Xc) .
$scurrent_delay (Xd) .,
!

replace_values(X,Xc,Xd,Xdeq,Xoeq) -
retra:t($current_config(_,_,_)),
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retract (Scurrent_cost(_)).
retra:t($current_delay(_)),
note_values (X, Xc,Xd, Xdeq, Xoeq) ,
t

9 inter face the simulated annealing algorithm with the timing analyzyer

9 cost takes the variables as its third argument, and the actual configuration
9% as its fourth. This binds them, and thus sets the sizes in the Chs itself

cost(Chs,Delay,Config,Config,Cost,Actual_delay,Delay_eq,Other_eq) 1=
process_chs ([].Chs),
find_critical_path(Chs.Cp).
max_delay_cost(Chs,Cp,Delay,Actual_delay,Delay_cost,Delay_eq),
other_delay_cost(Chs,Cp,Delay,Other_cost,Other_eq),
size_cost (Config,Size_cost),
make_cost(Delay_cost,Other_cost,Size_cost,Cost),
!

max_delay_cos:(Chs,Cp,Delay,Actual_delay,Cost,Eq) 1=
delay_equation(Cp,Eq).
delay {Cp,Actual_delay).
Diff :is Actual_delay - Delay,
max (C2£ff,0,Cost) .

other_delay_c:st(Chs,Cp,Delay,Total_over,Eq) T
all_delays_over(Chs,Delay,Total_over,Eq).

size_cost (Corfig,Size) :-
total_size(Config,Size).

all_delays_over(Chs,Delay,Total,Eqs) t-
signals (Chs,Signals),
map(delay_equation,Signals,Eqs),
map(penalty,Delay,Signals,Penalties),
sum (Fenalties, Total) .

penalty(Delay,Entry,Penalty) 1=
delay(Entry,This_delay),
Diff is This_delay - Delay,
max (C2ff,0,Penalty) .

total_size (Ccnfig,Size) :-
map(gate_size,Config,Combined),
sum (Combined, Size) .

9 generate mciifies the old configuration, which is in the form Size+Change



Dec 9 21:24 1985 anneal Page 5

9% by binding Change to some number

generate(Old) 1=
minimum_gate_size(Min),
apply_ﬁo_each(perturb,Min,Old),
!

perturb(_,Size+Change) t-
number (Change) .
1

perturb(Min,Size+Change) 1=
var (Change) ,
perturbation(Change),
Size + Caange >= Min,
!

perturb(Min,Size+O) -
1

perturb(_,Size) 1=
nuroer (Size) .
!

perturbation_size(Z). % maximum perturbation

perturbation(Change) 1=
perturbation_size(Max_change),
Mmc is -Max_change,
Maxc is Max_change+l,
random_int(Mmc,Maxc,Change),
!

9% the jnitial configuration is simply with all gates at the cinimum size

init_configuration(Vars,Init) 1=
map(init_gate_size,Vars,Init).

init_gate_size(X,Y+_) 1=
var (X) .
minimum_gate_size (Y) -

9 unless, of course, they happen to have a size already fixed
init_gate.size(X,X) 1=
number (X) .

make_cost(Delay_cost,Other_cost,Size_cost,Cost) 1=
max_weight (K1),
all_weight (K2),
size_weight (K3).
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Cost is K1 * Delay_cost + K2 * Other_cost ¢ K3 * Size_cost.

max_weight (5) . 4
all_weight(5) .
size_weight (1) .

make_real_configuration(Config,Trial) i-
map (free,Config,Trial) .

9 free changes from the form Size+Change (with both bound) to the form
9 Newsize+_, where Newsize = Size+Change
free (S.Result+_) :-

gate_size(S,Result).
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9 try a heuristic
try_heuristic (Delay) :-
clear_globs,
N is cputime,
pp (L) .
make_sizes(L,Vars),
init_configuration(Vars,Init),
asserta($current_configuration(Init)),
heuristic_iterate (L,Vars,Delay),
print('final configuration is ') ,print(Vars) ,nl,
total_size(Vars,Size) ,print('final size is ') ,print (Size).nl,
print('time required is ') ,Time is cputime - N,print (Time) ,nl.

heuristic_iterate (Chs,Vars, Delay) :-
repcat,
current_configuration (Config),
cost(?hs,Delay,Vars,Config,_,Actual,Delay_eq,_),
(Actuzl =< Delay -> print('whee!’) . .nl;
make_next_config(Config,Delay,Delay_eq),
fail) .

make_next_cor.fig(Config,Cost, Eq) :-

collect_vars(Eq, [].Vars),

partials(Eq,Vars,Derivs),

map(zero,Vars,Constraints), 9 oversimplification; they might
9 already have values, in which case
9 they could decrease

minimize(Eq,Cost,Vars,Constraints,Derivs,New_cost),

make _real_configuration(Config,New),

retract($current_configuration(_)),

asserta($current_configuration(New)),
1

current_configuration(X) :-
$scurrent_configuration (X).
L)

9 MS heuristic -- increase size of transistor by more than 1

clear_globs :-
abolish (best,2),
abolish(this.1),
abolish (bump,1l) .

choose_best(Config,Cost,Eq,Actual) i-
asserta (best (0,Cost)) .,
try_each(l,Config,Eq,Cost),
retract (best (_.,Actual)) .

try_each(_. [J.—.-)-
ifdef($fast_interpreter,(
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9 hacked interpreter

try_each(N, [1 | Cconfig],Eq,Cost) :-
This_one is Eq.
replace_if_necessary(N,This_one,Cost),
fail) .

9 normal interpreter

(try_each(N, [1 | Config].Eq.Cost) :-
evaluate (Eq.This_one),
replace_if_necessary(N,This_pne,Cost),
fail)) .

try_each(N, [Mod | Config].Eq,Cost) :-
N1 is N+1,
t\y_each(Nl,Config,Eq,Cost),
choose_size (Mod,Eq, Best,N).

choose_size (Mod, Eq.Best N) :-
is_best(N),
]

chocse_individual,size(Mod,Eq,Best).
chocse_size(C._,_._) -

replace_if_necessary(N,Current,Cost) 1=
best (_,Best),
Curr<nt < Best,
retract (vest(_..)).

asserta (best (N,Current)),
!

is_best(N) :-
best (N._).
1

choose_individual_size(Mod,Eq,Best) -
best (_.One) .
try_sizes(Mod,Z,Eq,One,Best,l,Choice),
asserta(best_size(Best,Choice)),
fail.
choose_individual_size(Mod,Eq,Best) i
retract(best_size(Best,Mod)),
t

try_sizes(Mod,Mod,Eq,Best,Best,Choice,Choice)
max_change (K) .
Mod > K,

ifdef(Sfast_interpreter,(
try_sizes(Mod,Mod,Eq,Best,Best,Choice,Choice)
This is Eq.
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asserta (this (This)),

This > Best,

Y.,
9 usual interpreter
(try_sizes(Mod,Mod,Eq,Best,Best,Choice,Choice) 1=

evaluate (Eq, This),

asserta (this (This)).

This > Best,

).

try_sizes(Mci,Current,Eq,_,Best,_,Choice) 1=
retract {this (Bsf)).
Next+ is 2*Current,
!

try_sizes(Mod,Next,Eq,Bsf,Best,Current,Choice).

max_change (€ .
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process_chs (Env,Chs) :-
is_processed (Chs) . % don't want to reprocess
!

process_chs (Env,Chs) :-
is_primitive (Chs),
process_primitive(Chs,Env),
1

process_chs (Eav,Chs) :-
subceils (Chs,cells (Subcells)),
apply_ro_each(process_chs,[Chs!Env],Subcells),
all_- _:_delays (Chs, Subcells) .

is_primitive(Chs) :- is_net{Chs).

9 processing only one signal in a chs means that we don't need to
9 process *a’i* the subcells, just the ones in which the signal is
% an output.
process_signal_in_chs(Env,Sig,Chs,Signal_entry) 1=
subcells (Chs,cells (Subcells)),
relevant_cells (Subcells,Sig,Relevant) .
apply_ro_each(process_chs,[Chlenv],Relevant),
find_signal_entry(Sig,Chs,Signal_entry),
max_delay(Relevant,Signal_entry).

get_signal_en:ry(Sig,chs’gntry) .
signals (Chs,Signals),
assoc (Sig,Signals, Entry).

relevant_cells ([]._.[]) -

relevant_cells ([C|Cs],Sig, [C|Newcs]) :-
is_ouzput (Sig.C),
{

rélevant_cells(Cs,Sig,Newcs).
relevant_cells ([C|Cs],Sig,Newcs) :-
relevant_cells (Cs,Sig,Newcs) .

9 the subcells are done, and so each output will have a delay for several
9 of the subcells. find the max.
all_max_delays (Chs, Subcells) :-
signais (Chs,Signals),
apply_to_each(one_max_delay,Subcells,Signals).
9 for a particular signal, collect 'em all
one_max_delay(Subcells,Signal_entry) -
max_delay (Subcells,Signal_entry) .

max_delay(Subcells,Signal_entry) :-



Dec 9 21:2¢€ 1985 PTA/pta Page 2

sig:al_name(Signal_entry,Sig),
find_max_delay(Subcells,Sig,Signal_entry).

set_signal_celay(sig(_,D._).D) -

make_dummy_signal_entry(sig(_,O,_)) - Y.

find_max_delay ([]._,Dummy) :- make_dummy_signal_entry (Dummy) .
find_max_delay([CelllCells],Sig,Entry) -
finé_signal_entry(Sig.Cell EOQ). % this will fail if Sig isn't in Cell
!
fini —~<x_delay (Telis, Sig,El),
bigoer_delay (EO,E1,Entry) .

find_max_delay([Cell|Ce115],Sig,Entry) i-
fir< max_delay(Cclls,Sig,Entry).

bigger_delay {D1,D2,D1) :-
delzy (D1,Delayl),
delav {D2,Delay2),
Delavl > Delay2,
1

bigger_deiay(Dl,DZ,DZ).
delay(Signal.Delay) :- arg(2,Signal,Delay) .

delay_in_cell(Chs,Sig,Delay,Info) 1=
make_signal_gntry(Sig,Delay,Info,Entry),
find_signal_entry(Sig,Chs,Entry).

make_signal_entry(Sig,Delay,Info,sig(Sig,Delay,Info)).

process_primitive(Chs,Env) 1=
set_input_delays (Chs,Env),
attach_orders (Chs),
output_signals (Chs,O),
apply_;c_each(primitive_delay,[Chlenv],O).

set_input_delays (Chs, Env) :-
inpuzs (Chs,I),
apply_ro_each(check_input,Env,I).

check_input(_.I) :-
know—._input_delay (I).
'

check_input (Env,I) :-
signal_name (I,Name),
delay_in_env(Env,Name,Delay_entry),
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set_input_delay(I,Delay_entry).

known_input_delay (in(_,Delay._)) :-
number (Delay) .

set_input_delay (in(_,Delay, Info),sig(_,Delay,Info)).

% delay in env -- make sure a given signal has a known delay
delay_in_env([Chs|Env],6Sig,Delay) :-

known_delay (Chs,Sig,Delay), % it does already
' -

delay_in_eiy ([Chs|Env], Sig,L2Yay) :-
is_input(Sig,Chs,Delay), ¥ it doesn't but it's outside our current chs
delay_in_env (Env,Sig.Delay) .

delay_in_cnv ([Chs|Env], Sig,D2lay) :-
process_signal_in_chs(Env,Sig, Chs, Delay) .

known_delay (Chs,Signal,Entry) :-
find_signal_entry(Signal,Chs,Entry),
known_signal_delay (Entry) .

known_signz1l_delay(sig(_.,Delay,_)) :-
\*+ va. (D:lay).

find_signal_entry (Name, Chs, Entry) :-
sigrnals(Chs,Signals),
asscc (Name, Signals, Entry) .

is_processed (Chs) :-
signals (Chs,Signals),
apply_to_each (known_signal_delay,Signals).
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9 path pre-processing

9 make_signals collects all the signal names and puts in slots in the outputs

% for the celays

make_signals (Chs, [0]) :-
is_net (Chs),
!

inputs(Chs.I),

add_delays_to_inputs (I,NewI),

outp:t_signals (Chs, [0]), 9% only one output for a net
adi_-“~lzys_to_outputs ([0]. [NewO]),

signals (Chs, [NawO|Newl]) .

make_signals (Chs,0) :-
subcells (Chs,cells(Cs)),
map m?kc_signals,Cs,Subcell_outputs),
fla=ten (Subcell_outputs, Temp) .,
rerave_dupes (Temp, [1.0).
inputs(Chs,I),
add_delays_to_inputs (I,NewI),
add_delays_to_outputs (0, NewO) ,
append (Newl ,NewO,Sigs),
signals (Chs,Sigs) .

make_outputs (Env,Chs) :-
outputs (Chs,Outputs),
apply_ro_each(symbolic_xerminal_capacitance,Env,Outputs),
(is_primitive (Chs) -> true;
subcells (Chs,cells (Sub)).
apply_to_each(make_outputs,[Chs[Env],Sub)).

add_delays_to_inputs([]. []) .

add_delays_to_inputs([in(Name,Delay,Info)|Is),[sig(Name,Delay,Info)le]) i
add_delays_to_inputs (Is,Xs) .

add_delays_ro_inputs([in(Name)|Is],[sig(Name,_,_)|Xs]) i-
add_delays_to_inputs(Is,Xs) .

add_delays_to_outputs ([]. []) -
add_delays_to_outputs([OlOs},[sig(O,_,_)|Xs]) 1=
add_delays_to_outputs (Os,Xs) .

make_structure(chs(Name,Inputs,Outputs,Subcells),C) 1=
map(make_structure,Subcells,Newsubs), '
C =.. [chs,Name,Inputs,Ouputs,Newsubs,_,_],
make_signals(C,_).
paths_in_env (C,_) .
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make_paths (C. [P]) :-
is_net (C),
]

subcells (C,Net),
source(C.,S),

drain(C,D).

P =.. [path,S,D, [[Net]]].
patks(C, [P]) -

make_paths (C.P) :-
subcells (C,cells (Subcells)),
length(Subcells.,L),
map ‘—akc _paths, Subcells, Subpaths),
fla<ttcn (Subpaths,Pl),
make_ali_paths(L,P1,P2),
inpot_signals(C, 1),
select_ input(P2,1,P3),
patrs(C,P3).
output signals(C,0),
select_cutput (P3,0,P).

select_inpu= ([]._.[]) -
select_input {[P|Ps].I, [P|Rest]) :-
P =.. [path.X,_._].
merrer (¥,I),
!

séle:t_input(Ps,I,Rest).
select_input ([P|Ps],I ,Rest) :-
select_input (Ps,I Rest).

select_output ([]._. [])-
select_output ([P|Ps].O, [P|Rest]) :-
P =-. . [pathl—IYl—]’
member (Y,0) .,
'

ééle:t_output(Ps,O,Rest).
select_output ([P|Ps].O,Rest) :-
select_output (Ps,O,Rest) .

9 make_all_paths(Length ,Short paths, all paths)

make_all_paths (0,Paths,Paths) :- !.

make_all_paths (N, Short_paths,Paths) :-
cross(Short_paths,Short_paths,Somewhat_longer_paths),
N1 is N // 2,
make_all_paths(Nl,Somewhat_longer_paths,Paths).

cross([].Shcrt,Short) .
cross ([Pe|Pes] . List X) :-
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dot (Pe,List,P1l1),
cress (Pes,List,P12),
corine_path_lists (P11,P12.X).

combine_path_lists([].P.P).

combine_path_lists ([path(X,Y, P) |Ps] ,Plist, Newp) :-
add_new_path(X,Y.P,Plist, Temp),
corbine path_lists (Ps, Temp, Newp) .

dot(_.(].[]) -

dot (path (X,Y.Paths), [path(Y,Z,P2) | Pes]. Result) :-
diddle (Faths,P2,Longer),
dot {puti{X,Y,Path:) ,Pes More),
add_new_path(X,Z,Longer More Result).

dot (path (X,Y.Paths), [path(Z, _,.) | Pes], Result) :-
Y .

’

dot (zoih(X,Y,Paths) ,Pes,Result).

% add_new_pa:th(f,
add_new_path (F,T,
add_new_path (F.7,
add_new_path (F, T,

T,Path,Pathlist,Result)

P,[]. [path(F.T.P)]).

P, [path(F.T.P) |X]. [path(F.T,P) |X]) :-
P, [path(F.T.P1) |X]. [path(F,T.Newp) |X])

put_paths_together (P,P1,Newp),
\

add_new_paca{-.T,

P, [X|Xs]. [XIY]) :-

add_new_path (F.T,P.Xs.Y).

put_paths_tcgether ([],P.P) .
put_paths_together ([X|Xs] ,P,Newp) :-

merxber (X,
1

P),

;S(xt_paths_toge ther (Xs,P,Newp) .
put_paths_together ([X|Xs] ,P.Newp) :-
put_paths_together (Xs, [X|P] ,Newp) .

diddle([]._.[J) -

diddle([P|Ps].Plist, Result) :-
add_to_each(P,Plist,R1),
diddie(Ps,Plist,R2),
append (R1,R2,Result) .

add_to_each(Z. [].
add_to_each (. [L]
append (P,

1) -
Ls], [R|Rs]) :-
L.R),

add_to_each(P,Ls.Rs) .
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9 attach_orders -- once all the inputs have known delays, the
% gates can be ordered nicely. I do this by sorting the inputs,
% and then attaching the correct positions to each gate */

attach_orders (Chs) :-
inputs (Chs,I),
sorz_inputs (I, Sorted),
gates (Chs,Glist).,
attach_to_glist(Sorted,Glist,_ ).

9 since I didn't feel like writing a sort routine, I just massaged things
9% so that I could use keysort, the prepackagged routine.
sort_inputs {I,Sorted) :-

make_cou, Lable_inputs (I, Sort),

keysort (Sort,Ugly),

bea-tify (Ugly,Sorted, 1) .

% keysort wznts its inputs in the form "Key-Value"

make_sortable_irputs ({1, []) -

make_sortable_irnuts ([In]Ins], [Key-In|Keys]}) :-
input_delay (In,Key),
make_sortable_inputs (Ins, Keys) .

input_delay (in(_.D,_).D).

beautify ([]. [].-)-

beautify ([_-In|Ins]. [(Sig.Pos) |Rest] Pos) :-
sigral_name (In,Sig).
Pl is Pcs + 1,
bea:tify(Ins,Rest, Pl).

attach_to_g.ist(%crted,G,Order) :-
is_cate(0),
signal_name (G, Siqg),
lookup_order (Sig, Sorted,Order) .

attach_to_glist (Sorted,series(Gs), Order) :-
map(order_gate,Sorted,Gs,Orders),
max {Orders,Order) .

attach_to_glist (Sorted,parallel(Gs) Order) :-
map(attach_to_glist,Sorted,Gs,Orders),
max {(Orders,Order) .

9% this puts the order in the right field, as well as returning it
order_gate(Sorted,(G,Order),OTder) -
attach_to_glist(Sorted,G, Order).

1ookup_order(Sig,List,Order) 1=
assoc (Sig.List, (Sig,Order)) .
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order_list (Gs,Newgs) :-
make_sortable_gates (Gs,L),
keysort (L,Newl),
make_sortable_gates (Newgs,Newl) .

make_sortable_gates ([J. []) -

make_sortable_gates([Gle],[Key-GlKeys]) 1=
gate_order (G,Key),
make_sortable_gates (Gs,Keys) .

gate_order ((_.0).0) .
/* try_each_gate will go through a series gate to see where the source

of the maximum delay is. By now, the proper orders have been
put on the gates, and they're sorted, so I just try each one in

turn as the trigger. v/
/* syntax:
try_each_gate(Chs,Newgs,Rin,[],Rlist,
Cout,Clist,
_,Rnet_sym,
_,Cnet_sym,
0.D,
_.Trig).
*
try_each_gate(_. []..—.—. . .
Rsf ,Rsf,
Csf.Csft,
Dsf,Dsf,
Tsf,Tsf) - !.

ifdef ($fast_interpreter, (
9 hacked interpreter
try_each_gate(Chs,[(Gate,“)[Gates],Rin,Rprev,Rg+R_int+R_rest,
Cout,Cg+C_int+C_rest,
Rsf,R_sym,
Csf,C_sym,
Dsf.D,
Tsf.T) :-
Rtot is Rin - Rg,
Ctot is Cout -- Cg,
9 recursive call takes care of nested structures
net_delay(Chs,Gate,Rtot,Rg_sym,Ctot,Cg_sym,Delay,Trig),
Delay > Dsf,
Cout_rest is Ctot - C_int,
|
try_each_gate(Chs,Gates,Rin,Rprev + Rg + R_int, R_rest,
Cout_rest,C_rest,
Rprev + Rg_sym + R_int + R_rest, R_sym,
Cg_sym + C_int + C_rest, C_sym,
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Delay.D,
Trig.T})).

% normal interpter
(try_each_gate(Chs,[(Cate,_)[Gates],Rin,Rprev,Rg+R_int+R_rest,

Cout,Cg+C_int+C_rest,
Rsf,R_sym,
Csf,C_sym,
Dsf.,D,
Tsf,T) :-
evaluate (Rg, R_correction),
evaluate(Cg, C_correction),
Rtct is Rin - R_correction,
Ct=st is Cout - C_correction,
9 recursive call takes care of nested structures
ne:_delay(Chs,Gate,Rtot,Rg_sym,Ctot,Cg_sym,Delay,Trig),
De_ay > Dsf,
Couz_rest is Ctot - C_int,
!
try_each_gate(Chs,Cates,Rin,Rprev + Rg + R_int, R_restT,
Cout_rest,C_rest,
Rprev + Rg_sym + R_int + R_rest, R_syn,
Cg_sym + C_int + C_rest, C_sym,
Delay.D,
Trig,T))) -

try_each_ga:e(Chs,[(Gate,_)[Gates],Rin,Rprev,Rg+R_int+R_rest,

Cout,Cg+C_int+C_rest,

Rsf,R_sym,

Csf,C_sym,

Dsf.,D,

Tsf,T) :-

try_each_gate(Chs,Cates,Rin,Rprev + Rg + R_int R_rest,

Cout,C_rest,
Rsf ,R_sym,
Csf.C_sym,
Dsf,D,
Tsf,T) .

/* syntax:

do_par_gates (Chs,Gs ,Rin, Cout,
Rsf,Rnet_sym,
Csf,Cnet_sym,

Dsf,D,
Tsf, Trig) .
*/
do_par_gates(_,[],_,_,Rsf,Rsf,Ctot,Ctot,Dsf,Dsf,Trig,Trig).

do_par_gates(Chs,[GIGs],Rin,Cout,Rsf,Rtot,Csf,Ctot,Dsf,D,Tsf,T) 1=

net_delay(Chs,G,Rin,Rnew,Cout,Cnew,Delay,Trig),
Delay > Dsf,
!

s
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do_par_gates (Chs,G

do_par_gates (Chs, [G]
do _par_gates

Gs].Ri

s,Rin,Cout,Rnew,Rtot,Cnew,Ctot,Delay,D,Trig,T).
n,Cout,Rsf,Rtot,Csf, Ctot,Dsf,D,Tsf,T) :-

(Chs,Gs,Rin,Cout,Rsf,Rtot,Csf,Ctot,Dsf,D,Tsf,T).
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o jndividual net delay in a hierarchical environment.
o Y

primitive_delay([Chlenv],Sig) i-
is_net(Ths), % only case we handle so far
subcells(Chs,t(S,.G.D)).
paths_from_input(Env,S,Paths),
terminal_capacitance(Chs,D,Cout_sym,Cout_num),
max_delay_in_net(Chs,Paths,G,Cout_num,O,[],Delay,Trig),
make_info_rec(Trig,Cout_sym,Chs,Info),
delay_in,cell(Chs,Sig,Delay,Info).

make_info_rec(info(T,R,C),Cout_sym,Chs,info(T,R,C+Cout_sym,Chs)).

max_delay_in_net(_,[],_,_,Delay,Info,Delay,Info).
max_delay_in_net(Chs,[P|Ps],G,Ct,Dsf,Isf,Delay,Info) i-
resistance (P,Rin_sym, Rin_num),
net_delay(Chs,G,Rin_num,Rnet_sym,Ct,C_sym,D,Trig),
D > Dsft, )
t

I =.. [info,Trig,Rin_sym+Rnet_sym,C_sym],
max_delay_in_net(Chs,Ps,G,Ct,D,I,Delay,Info).

max_delay_in_net(Chs,[P|Ps],C,Ct,Dsf,Isf,Delay,Info) 1=
max_delay_in_net(Chs,Ps,G,Ct,Dsf,Isf,Delay,Info).

glist_resistance(G.R) :-
conbine(gate_resistance,G,R).

net_delay(Chs,C,Rin,Rnet_sym,Cout,Cnet_sym,D,G) 1=

is_gate (G) . 9 note that the gate resistance is in Rin
% (for now)

gate_capacitance(G,Cnet_sym,Cnet_num),
gate_resistance(G,Rnet_sym,Rnet_num),
signal_name (G,Sig).
find_signal_delay(Chs,Sig,Trigger_delay),
D is Trigger_delay + (Rin + Rnet_num) * (Cout + Cnet_rum) .

net_delay(Chs,series(Gs),Rin,Rnet_sym,Cout,Cnet_sym,D,Trig) -
order_list (Gs,Newgs),
combine(gate_resistance,series(Newgs),Rlist,R_num),
% simplify(Rlist,Simp_rlist),
Rtot is Rin + R_num,
combine(gate_capacitance,series(Newgs),Clist,C_num),
% simplify(Clist,Simp_clist),
Ctot is Cout + C_num,
try_each_gate(Chs,Newgs,Rtot,O,Rlist,
Ctot,Clist,
_,Rnet_sym,
_.,Cnet_sym,
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OIDI
_.Trig).

net_delay(Chs,parallel(Gs),Rin,Rnet_sym,Cout,Cnet_sym,D,Trig) -
do_par_gates (Chs,Gs,Rin, Cout,
_.Rnet_sym,
_,Cnet_sym,
0.,D,

find_signal_delay(Chs,Sig,Delay) 1=
finé_signal_entry(Sig,Chs,Entry),
delzy (Entry,Delay) .

is_gate(gt(_._..)) -
gate_signals(gt(x,_,_),[X]).
gate_signals(Glist,[]) i-
Glist =.. [F.[1].
gate_signals(Glist,Sigs) 1=
Glist =.. [F.[GI|Gs]].
gate_signals (G.X).
Newglist =.. [F.Gs],
gate_signals(Nevglist,Y),
append (X,Y,Sigs) .

path_in_glist(Gate,Signals,Prev,Gate,Gate) 1=
Gate =.. [gt.Prev, Type, Size],
\+ merber (Prev,Signals).

path_in_glist(series([(G,Order)|Gs]),Signals,Prev,series([(Nevg,Order)|Gs]),G
path_in_glist(G,Signals,Prev,Newg,Gate).

path_in_glist(series([GiGs]),Signals,Prev,series([GlNewgs]),Gate) 1=
path_in_glist(series(cs),Signals,Prev,series(Newgs),Gate).

path_in_glist(parallel([GIGs]),Signals,Prev,P,Gate) 1=
path_in_glist(G,Signals,Prev,P,Gate).

path_in_glist(parallel([G|Gs]),Signals,Prev,P,Gate) s
path_in_glist(parallel(Gs),Signals,Prev,P,Gate).

paths_from_input([Chs[Env],Sig,Paths) i-
paths_to(Sig,Chs,PZ),
continuation (Env,P2,Paths).

paths_to(Sig,Chs,[[]]) 1=
is_input(Sig,Chs),
'
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paths_to(Sig,Chs,Flatp) :-
paths (Chs,Path_list),
chocse_paths_to(Sig,Path_list,P),
flatten (P ,Flatp) .

choose_paths_to (_, [].[]) -
choose_paths_to (Sig, [Pathrec|Ps], [P|Rest]) :-
is_path_to(Sig,Pathrec),
!
strip(Pathrec,P),
choose_paths_to(Sig,Ps,Rest) .
choose_paths_to (Sig, [P|Ps] ,Rest) :-
choose_paths_to(Sig,Ps,Rest) .

strip(path(_._,P).P).

9 continuatj-n takes the existing path list and moves up the environment
¢ stack until it finally makes it tec an input to the whole kitten kaboodle
continuation ([].Faths, Paths).
continuation ([Chs|Env].Psf, Paths) :-
print ('wade it'),nl,
map (extend, Chs,Psf, Temp) ,
flatten (Temp, Newpsf),
continuation (Env,Newpsf, Paths) .

% extend takes a path, which doesn't yet terminate at the inputs of the chs,
9% and extends it so that it does terminate at an input
extend (Chs,Path, [Path]) :-

input_terminal_of_path(Path,S),

is_input (S,Chs),

1

extend (Chs,Path,Path_list) :-
input_terminal_of_path(Path,S),
paths_to (S,Chs,P),
map (add_to_end,Path, P, Path_list) .

9 bleah, but this is due to the restrictions of map
add_to_end (path(_.Y,Plistl),path(X,_,Plist2) ,path(X,Y, Plist3)) :-
diddle(Plistl,Plist2,Plist3).

input_terminal_of_path(path(X,_,_).X).
is_path_to(Sig.path(_.Sig._)) .
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% take a chs with the signals filled in, and find a critical path

find_critical_path(Chs.Cp) :-
signzls (Chs,Signals),
max_output_delay (Signals,Cp) .

max_output_delay ([].Entry) :-
make_dummy_signal_entry (Entry) .

max_output_delay ([Sig|Sigs].Entry) :-
max_output_delay(Sigs,E1l),
bigger_delay(Sig.El,Entry).

9 find a sicnals predecessor in the critical path
prev_cp_entry (Info, Next) .-
trigger (Info,Trig),
trig_chs (Info,Chs),
sigr.zl name(Trig,Sig),
find_signal_entry(Sig,Chs, Next) .

prev_cp_entry (Sig,Next) :-
infc (Sig, Info),
prev_cp_entry (Info,Next) .

9 find the delay equations on a path

delay_equation(Cp, Input_delay) :-
no_predecessor (Cp) .
'

éélay(Cp,Input_delay).

delay_equation(Cp,R * C + Rest) :-
info {Cp.Info),
symkolic_r (Info,R),
symkolic_c(Info,C),
prev_cp_entry (Info, Next),
delay_equation (Next Rest) .

symbolic_r (I.R) :-
arg(2.I,R).

symbolic_c(I.C) :-
arg(3.1,C).
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9 this is the electrical model, measuring resistance and capacitance
9 for a gate or path of gates
resistance([].0.0).
resistance({t(_,Glist,_)|Ts],R1_sym+R2_sym,R) -
resistance (Ts,R1_sym,R1_num),
corbine (gate_resistance,Glist,R2_sym ,R2_num),

R is R1_num+R2_num,
' .

capacitance([].0.0).

capacitance([t(_,Glist,_)|Ts],C1_sym+C2_sym,C) t-
capacitance (Ts,Cl_sym,Cl_num),
combine(gate_capacitance,Glist,C2_sym,C2_num),
C is Cl_num+C2_num.

ifdef (sfast_interpreter, (
gate_resistance(gt(_.T,S) .Rg / S.Rnum) :-
gate_resistance (T,Rg),
Rnur is Rg/S ).
% otherwise
(gate_resistance (gt (_.T.S) .Rg / S.Rnum) :-
gate_resistance(T,Rg).
evaluate (Rg/S.Rnum))) .

ifdef ($fast_interpreter, (
% hacked interpreter
gate_capacitance(gt(_.Type.S).S * Ctot,Cnum) :-
gate_channel_cap (Type,C1),
gate_drain_cap (Type.C2).
Ctot is C1 + 2*C2,
Cnur is S * Ctot),
%usual interpreter
(gate_capacitance(gt(_,Type,S),S * Ctot,Cnum) :-
gate_channel_cap (Type,Cl).
gate_drain_cap (Type.C2),
Ctet is Cl1 + 2*C2Z,
evaluate (S * Ctot,Cnum))).

9 these are just reasonable constants
gate_resistance(n,8) .
gate_resistance(p,10) .
gate_resistance(interconnect,O).

gate_capacitance(interconnect,l).
gate_channel_cap(n.4) .
gate_channel_cap (p.4) -
gate_drain_cap(n.2.5).
gate_drain_cap(p.,2.5) .

interconnect_resistance (0) .
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interconnect_capacitance (1) .

9% preprocess: get the output capacitance symbolicly at the beginring

ifdef ($fast_interpreter, (
Yhacked interpreter
terminal_capacitance(Chs,Sig,C_sym,C_num) t-
outputs (Chs,0),
assoc (Sig,0,Entry),
symbolic_cap (Entry,C_sym),
C_rum is C_sym),
% norimal interpreier
(terminal_capacjtance(Chs,Sig,C_sym,C_num) 1=
outputs (Chs,0),
asscc(Sig,O,Entry),
syr-olic_cap(Entry,C_symn),
evaiuate (C_sym,C_num))) .

symbolic_terminal_capacitance([],Output) i-
numeric_output_cap (Output,C),
symkclic_cap (Output,C) .

symbolic_terninal_capacitance([Env]_],Output) i-
siynal_name (Output,Sig),
output_capacitance (Env,Sig,Ocap) .,
subcells (Env,cells (Cellist)),
sum_gate_capacitance (Sig,Cellist, Gcap) .
sim=1ify (Ocap+Gcap,Cap).
symbclic_cap (Output,Cap) .

output_capacitance (Env,Sig,C) :-
outputs (Env,0s),
assoc (Sig,Os,Output),
numeric_output_cap (Output,C),
'
output_capacitance(_,_,0). Jbecause we don't want to fail if it's not an output

sum_gate_capacitance(_, [].0) .

sum_gate_capacitance(Sig, [Sc|Scs] ,Cl + c2) :-
subcell_capacitance(Sig,Sc,Cl1),
sum_gate_capacitance (Sig,Scs,C2) .

subcell_capacitance(Sig,Chs,C) :-
is_input(Sig,Chs),
is_net (Chs), % only case we handle so far
f
gates (Chs,G),
signal_gates_cap(Sig,G,C).
subcell_capacitance(_,_.0O). 9 if it's not an input of that cell
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signal_gates_cap(Sig, (G._).C) :- % ugliness for series xsistors
signal_gates_cap(Sig,G.C).,!.

signal_gates_cap(Sig, gt (Sig, Type,Size) ,C1 + C2) :-
symbolic_gate_channel_cap (gt (Sig, Type,Size) ,C1),
gate_capacitance (interconnect,C2) .

signal_gates_cap(Sig,gt(Other,_,_).0) :-
Sig \== Other.

signal_gates_cap(Sig,Glist,O) :-

Gliest =.. [X.[]]-
signal_gates_cap(Sig,Glist,Cl + C2) :-
Glist =.. [X, [GIGs]],
sia~1l_gates_cap(fig,G,C1),
Newgiist =.. [X, Gs],
signal_gates_cap(ig, Newglist,C2).

symbolic_gate_channel_capigt(_,T.S).C * S) :-
gate_channel_cap(T,C) .

9 combine (Functor,Glist,Symbolic,Numeric) -- used to sum or take max
9% of resistarce or capacitance. the combining rules are the same

combine (Functor, gt (Sig, Type,Size) ,Rsym,Rnum) :-
P =.. [Functor,gt(Sig,Type.,Size),Rsym Rnum],
call (P).

combine (_,series([]}),0,0).

combine (Functor, ceries ([ (G._) |Gs]) ,R1_sym+R_int+R2_sym, Rnum) :-
combine (Functor,G,R1_sym,R1_num),
combine (Functor,series(Gs) ,R2_sym,R2_num),
P =.. [Functor,interconnect, R_int],
call (P),
Rnum is R1_num+RZ_num+R_int.

combine (_,parallel([]).0.0).

combine (Functor,parallel ([G|Gs]) .Rmax_sym,Rnum) :-

combine (Functor,G,R1_sym,R1_num),
combine (Functor,parallel (Gs) ,R2_sym,R2_num),
(R1_num > R2_num ->

Rmax_sym = Rl_sym,

Rnumr is R1_num;

Rmax_sym = R2_sym,

Rnum is R2_num) .
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% utils -- various (non-problem-dependent) utilities

9 assoc(X,Y.Z) : Z is the member of Y with X as its first element

assoc (X, [Y|_].Y) :- arg(l.Y.X).
assoc(X, [_1¥s],Z) :- assoc(X,Ys,Z).

member (X, [X1_]) .
member (X, [_]L]) :- member (X.L).

o var_member can't use unify, which would bind the variables by mistake

var_member (Var, [Varl|_]}) :- Var == Varl, !.
var_member (Var, [_|Vars]) :- var_member (Var ,Vars) ,!.
max(A,B,A) :- A >= B.

max(A.B,B) :- B > A.

min(A,B,A) :- A =< B.

min(A,B,B) :- B < A.

cpu -

N is cputime,

print (‘cpu time is '),
print(N),

nl,

]

print_list([]) .
print_list([LlLs]) :-
print (L),
nl,
print_list(Ls) .

sum([].0).
ifdef(sfast_interpreter,
(sum([X|Xs].Tot) :-

sum (Xs, Sub) ,

Tot is X + Sub),
% otherwise
(sum([X|Xs],Tot) :-

(number (X) ,

sum (Xs, Sub) ,

Tot is X + Sub;

var (X) .,

sum (Xs, Sub) ,

Tot is Sub))) .

max ([].0) -

max ([X|Xs] . .Max) :-
max (Xs,M) .
max (X,M,Max) .
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map (_. [1, (1) -
map(Functor,[LlLs],[NewllNewls]) 1=
P =.. [Functor, L, Newl],

call(P).
!:

map (Functor,Ls,Newls) .

map(_.—. [J.03) .
map(Functor,Args,[L|Ls],[New1|Newls]) 1=
P =.. [Functor,Args.L Newl],

call(P).

map(Functor,Args,Ls,Newls).

range(Lo,Lo,_) .
range (Lo, N ,Hi) :-
New is Lo+l,
New =< Hi,
!

;énge(New,N,Hi).

9 another thing that should be an operator, by the way
abs (X,X) :- X > O,!.
abs (X,Y) :- Y is -X,!.

9 flatten a list (i.e., put sublists into the main list)

flatten([3. []) -

flatten ([X|Xs].Res) :-
flatten (Xs, Temp) ,
append (X, Temp,Res) .

9 a particularly ugly n-squared algorithm for removing duplicztes from the list
remove_dupes ([].L.L).
remove_dupes([XIXs],L,Result) e

member (X,L).

t

remove_dupes (Xs,L,Result) .

remove_dupes ( [X|Xs] ,L,Result) :-
remove_dupes (Xs, [X|L] .Result) .

append ([].Result, Result).

append ( [X|Xs].Y, [X|Temp]) :-
append (Xs .Y, Temp) .

apply_to_each(F, []) -
apply_to_each(F,[LlLs]) 1=
p=.. [F.L],
call (P),
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apply_to_each(F.Ls) .

apply_to_each(F Arg, []) -
apply_to_each(F.Arg, [L|Ls]) :-
P =.. [F.Arg,L].
call(P).
apply_to_each(F,Arg,Ls) .

ff :- put(12).
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/* symbolic mathematics: evaluating, simplifying, and taking derivatives
of eguations. Also, collecting all the variables in a given equation *

9 evaluate a symbolic equation.

evaluate (X, X} :-
number (X) ,
' -

evaluate (XK} :-
var (X) .,
1

minicum_gate_size (K) .

evaluate (S+Mcd,Z) :-

(var (Mod) ->
evaluate (S,Z);
evaluate (S,R1),
evaluate (Mod,R2),
Z is R1+4R2),

evaluate (X,Result) :-
X =.. [Op.Argl,Arg2],
evaluate (Argl,R1l),
evaluate (Arg2,R2),
Y =.. [Op.R1.,R2],
Result is Y,
1

% equation simplifier. Doesn't even worry about the distributive law:
9 speed is the key. The main purpose of simplify is to get rid of zeros
9% being added in.

simplify (Exp.Exp) :-
number (Exp) .,
!.

simplify (Exp.Exp) :-
var (xp) .
.

simplify (Exp.Res) :-
Exp =.. [Op.Argl, ArgZ],
simplify (Argl, Newl),
simplify (Arg2,New2),
combine_simplified_terms (Op,Newl, NewZ Res).

9 combine_sirplifiedd_terms is where the zeroes (and other constants) are
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% removed if possible

combine_simplified_terms(Op,Identity,Res,Res) -
left_identity (Op.Id),
I1d = ldentity,
' .
combine_simplified_terms(Op,Res,Identity,Res) t-
right_identity (Op.Id).
Id == Identity.
t.
combine_simplified_terms('*',Argl,ArgZ,O) -
(Argl == O ; % could be more ggeneral, with a "nullity" like
Arg2
!

0). % "identity", but why bother?

combine_éimplified_terms('/',Argl,_,O) -
Argl = O,
t

combine_simplified_terms(Op,Argl,ArgZ,Res) 1=
number (Argl).
number (Arg2) .,
]
P =.. [Op.Argl,Arg?],
Res is P.
combine_simplified_terms(Op,Argl,ArgZ,Res) :-
Res =.. [Op.Argl,Arg2Z].

left_identity ('+'.0).
left_identity ('*'.1).
right_identity ('+'.0) .
right_identity('-',0).
right_identity('*'.1).
right_identity('/'.1).

% symbolic deriviatives. This could be data-directed, storing the

9 proper information for each operator, but that wouldn't help --

9 an attempt would still need to be made to unify with each. This is
9 very slow and special-purpose right now; however, the equations will
9% not have any weird operators in them

9 some attempt is made to avoid what the symbolic math people call

¢ “intermediate expression swell" by being somewhat intelligent. That's
9 why all the independence checks. However, with a large equation, these
9 checks wind up taking a lot of time

deriv(Eq,Var.,1) :- Eq = Var,!.
deriv(Eq._.0) :- number (Eq) . !.
deriv(Eq,Var.,O) :- var (Eq) .Eq \== Var,!.
deriv(U+V,X,Dv) :-

independent (U, X) ,
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deriv(V.X,Dv),
1

deriv (U+V,X,Du+Dv) :-
deriv (U,X,Du),
deriv (V.X,Dv),
t
deriv (U*V,X, Res) :-
deriv (V.X,Dv),
(independent (U, X) ->
Res = U * Dv;
deriv (U,X.Du),
Res = Dut*V + Dv*U),
!
deriv(U/V,X Res) :-
independent (V,X) ,
(nurber (U) -> Res = O;
deriv (U,X,Du),

Res = Du/V).
!
deriv (U/V,X,MinU*Dv/(V*V)) :-
number (U),
MinU is -U,

deriv(V.X,Dv),
!

deriv (U/V.X, (V*Du-U*Dv) /(V*V)) :-
deriv(U,X,Du),
deriv(V.X,Dv),
]

deriv (U-V,X,Du-Dv) :-
deriv (U,X,Du),
deriv (V,X,Dv)
'

,

% take all the partial derivatives of the equation
partials (Eq,Vars, Partials) :-
map (partial,Eq,Vars,Partials).

% should be

% map(deriv,Eq,Vars,Big_partials),

% map(simplify,Big_partials,Partials).

% but since there's no TRO it won't work like that.

(4

partial (Eq,Var, Partial) :-
deriv (Eq,Var, Temp) ,
simplify (Temp, Temp_partial),
9% keep the variables right

asserta(sthis_partial(Eq,Var,Temp_partial)),

fail.
partial (Eq,Var, Partial) :-
retract ($this_partial(_,_.Partial)),
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% check if an equation is independen

9 does NOT appear in the equation

independent (Exp,Var) :-
number (Exp) .
1

independéﬁt(ixp,Var) t-
var (Exp) .
Exp \=— Var,
)

independent (Zxp,Var) :-
\+ var (Exp).
Exp =.. [_.Argl, Arg2],
indesendent (Argl,Var),
inde;endent(ArgZ,Var),
1

+ of a variable -- il.e., if that variable

9 collect all the variables of an equation

collect_vars(Eq,Vsf, Vsf) :- number (Eq) . !.
collect_vars{(Eq,Vsf,Vsf) :- var(Eq),var_member(Eq,st),!.
collect_vars (Eq,Vsf, [Eq|Vsf]) :- var (Eq).!.

collect_vars (Eq,Vsf, Vars) :-
Eq =.. [_.Argl,ArgZ],
collect_vars (Argl,Vsf, V1),

collect_vars (Arg2,Vl,Vars),
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/* STRUCTS: data structure access functions

of course, these should be macros,

but you can't do that in cprolog

There are two kKinds of chs's: the initial 4-field chs, and the
loczal 6-field chs. the 4-field chs looks like

chs (
Name
inputs ([Inputlist])
outputs ( [Outputlist])
Subcells)

where Sibcells is either

cells ([Subcelllist])

or t (Source,Gatelist,Drain)

the 6-ficld chs is a slight extension of that

chs (
Name
inputs ([Inputlist])
outputs ( [Outputlist])
Subcells
[Pathlist]
[Signal_list])

chs_name (Chs,N)} :-
arg(1.Chs.N).

inputs (Chs,X) :-
arg(2.Chs, inputs (X)) .

outputs (Chs,X) :-
arg(3,Chs,outputs (X)) .

subcells (Chs.X) :-
arg(4.Chs.X) .

paths (Env,P) :-
arg(5.Env.P).

signals (Chs,Sigs) :-
arg(€.Chs,Sigs) .

v/

/* "is" procedures are used both to test and generate
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is_input (X,Chs) will in

or,

is_input (X,

if X is instantiate

Chs) :-

inputs (Chs,I).
assoc (X.I,_).

is_output (X,Chs) :-
outputs (Chs,0),
assoc(X,0._) .

is_subcell (t(S.G,D).Chs) :-

sut-ells (Chs,t(S,G.D)) .

is_subcell (C.Chs) :-
subcells (Chs,cells (Cs)).
merser (C,Cs) .

is_signal(Chs.X) :-
signals {Chs,Sigs).
member (X,Sigs) .

is_net (Chs)

subcells (Chs,t(_,_..)) -

/* outputs

out (Signa

inputs

are of the form

are

in(Signal,Delay)

signal_name (0.Siqg) :-
arg(1.0,8iq).

output_signals (Chs.X) :-
outputs (Chs,Y),
map (signal_name,Y,X) .

input_signals (Chs,X) :-
inputs (Chs.,Y) .
map(signal_name,Y,X).

input_delay(Input,Delay) i
arg (2. Input,Delay) .

numeric_output_cap (Output,C) :-
symbolic_cap(Output,Eq) :- arg(

stantiate X in turn to each input of the chs
d, fail if it is not an input s/

1,Cap,Symbolic_capacitance)

*/

arg(2,0utput,C) .
3,0utput,Eq) .

¢ find the input delay of a signal in a Chs

input_delay(Signal,Chs,Delay)

inputs (Chs,I).



Dec 9 21:43 1985 UTILS/structs Page 3

assoc (Signal,I,Temp) .
input_delay (Temp,Delay) .

source (Chs,S) :-
subcells (Chs,t(S,....)) -

drain(Chs,D) :-
subcells(Chs,t(_._.D)).

gates (Chs.G) :-
subcells(Chs.t(_.G.)) .

9 a delay entry looks like
% delay_entry(Signal,Delay,Prev,Path)

delay (Signal.Delays.,D) :-
delay_entry(Delays,Signal,D,_,_).

delay_entry(Delays,Signal,Delay,Prev,Path) 1=
asso:(Signal,Delays,delay_entry(Signal,Delay,Prev,Path)).

in_gate(X,T) :-
in_gate (X.T,_),
]

in_gate(X,t(S,Glist,D),G) 1=
Glist =.. [_.L].
in_glist(X,L,C).

in_glist(X,[gt(X,Y,Z)l_],gt(X,Y,Z)) e

in_glist(X,[Glistl_],G) 1=
Glist =.. [_.L]. 9 note that this won't match gt (Sig,Type)
in_giist(X,L,G).
{

in_glist (X, [Y|Y¥s].G) :-
in_glist(X,¥s,0).

gate_size(S.S) :-
number (S) . 9 ! handle both integers and reals

gate_size(S.K) :-
var (S) .,
]

minirum_gate_size (K) .

gate_size(S+Mod X) :-
var (Mod) ,
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gate_size(S,X).

gate_size(S*Mod,X) 1=
numzer (Mod) ,
gate_size(S,Size),
X is Size+Mod.

minimum_gate_size(2) .

info(sig(_,_,lnfo),lnfo).
trigger(Info_rec,Trigger) 1= arg(l,Info_rec,Trigger).
trig_chs(lnfo_rec,Chs) :- arg(4,Info_rec,Chs).
sig_delay(sig(_,Delay,_),Delay).
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9 user print functions

portray(chs(N,I,O,cells(C))) 1=
print(‘'chs "y ,print(N).nl,
print('inputs = ") ,print(I).nl,
print ('outputs = ") ,print(0) .nl,
print ('subcells are ') .print_list(C) .
portray(chs(N,I,O,t(S,G,D))) 1=
print (t(5.G.D)) .

9 the six-field jocal chs also needs a portray function
portray(chs(N,I,O,cells(C),P,S)) 1=

print('chs ') .print(N).nl,

print ('inputs = ') ,print(I).nl,

print ('outputs = 'y,print (0) .nl,

(var (P) -> true;print('paths are ') .print_list(P)).

(var (S) -> true;print('signals are ') .nl,print_list(S)),

print ('subcells are ') .print_list(C) .

portray(chs(N,I,O,t(S,G,D),_J_)) -
print ('net ").print(N).nl,
print ('inputs = ") ,print(I).nl,
print ('outputs= ') ,print(0) .nl,
print(t(S,G,D)).

print_pp(Entry) 1=

print ('Node ').

signal_name(Entry,Name),

print (Name),

print (' is driven at '),

sig_delay(Entry,Delay),

print (Delay).

(info (Entry, []) -> nl;
info (Entry, Info),
trigger (Info,Trig).
print(' via '),print(Trig),print(' after ').nl,
prev_cp_entry(lnfo,Next),
print_cp (Next) ).
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9% make chs: take a standard every-day chs, and make it into a local

% data structure with all the appropriate fields. Essentially,

% what needs to be done is to add the fields for paths and signals,
% and the extra delay and info fields in the inputs v/

make_lds (Chs,Lds) :-
make_struct (Lds) ,
chs_name (Chs,Nane) ,
chs_name (Lds,Name) ,
inputs (Chs, Inputs),
map(add”input_fields,Inputs,Newin),
inputs (Lds,Newin) ,
outputs (Chs,Outputs) ,
map(add_output_fields,Outputs,Newouts),
outputs (Lds,Newouts) ,
(is_primitive(Chs) ->
(subcells (Chs,Net) ,
subcells (Lds,Net))
% otherwise
subcells (Chs.cells (Cells)),
map(make_lds,Cells,Nevsubs),
subcells (Lds,cells (Newsubs))).

make_struct(chs(_, . _,_.—.)) -

9 who knows how many fields there will be there to begin with?

% It could be 1, 2, or 3. Make it 3 in the lds.
add_input_fields(in(Name,Delay,Info),in(Name,Delay,Info)).

9 if it has a delay there, that can only mean it's an input to the
% whole circuit.
add_input_fields(in(Name,Delay),in(Name,Delay,[])).
add_input_fields(in(Name),in(Name,_,_)).

add_output_fields(out(Name,Cap),out(Name,Cap,_)).
add_output_fields(out(Name),out(Name,_,_)).

pp(L) :-
chs (C),
make_1ds (C,L) .
make_signals(L,_).
make_paths(L._).
make_outputs ([].L) .

chs(C) :- C =.. [chs,_,_._._].call(C).

9 the badly-named "make_sizes" collects the sizes of all the primitives
9 and crams them into a vector
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make_sizes(L.S) :-
is_primitive(L).
!

primitive_sizes(L,S).

make_sizes(L.S) :-
subcells(L,cells(C)).,
map(make_sizes,C,NestedS),
flatten (NestedS,S),
assert (sizes_to_try(S)) .

primitive_sizes(L,S) i-
is_rec (L),
net_glist(L,G),
glist_sizes(G.S) .

net_glist(C.C) :-
subcells(C,t(_.G.)) -

9 remember that a glist may be a series or parallel connection of gts
glist_sizes(gt(_,_,S),[S]) - .
glist_sizes(Glist,S) i-

Glist =.. [_.Gates],

map(glist_sizes,cates,Sizes),

flatten(Sizes,S) .
9 this handles the case of series gates with orders attached
glist_sizes((G..).S) :- glist_sizes (G.S) .

no_predecessor (Cp) :-
info (Cp. [1).
t.
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% random number generation: I stole this.

File : fusr/lib/prolog/random

Author : R.A.O'Keefe

Updated: 27 October 83

Purpose: to provide a decent random number generator in C-Prolog.

3e3e e

% This is algorithm AS 183 from Applied Statistics. I also have a C
9 version. It is really very good. It is straightforward to make a
©,

¢ version which yields 15-bit random integers using only integer
% arithmetic.

'srstate' (27134, 9213, 17773). 9% initial state
getrand('$rstate'(X,Y,Z)) 1= 9 return current state

'srstate' (X.Y.Z) .

)

setrand('Srstate' (X,Y,Z)) :-
integer (X), X > O, X < 30269,
integer (Y), Y > O, Y < 30307,
integer(Z), Z > O, Z < 30323,
retract('srstate' (_._._)).
asserta('érstate' (X.Y,2)), !.

YA
>
>

% randcm (R) binds R to a new random number in [0.0,1.0)

random(R) :-
retract ('srstate' (AO,BO,CO)) .
Al is (AO*171) mod 30259,
Bl is (BO*172) mod 30307,
Cl is (CO*170) mod 30323,
asserta('srstate’' (Al1,B1,Cl)),
T is (A1/30269.0) + (B1/30307.0) + (C1/30323.0) ,
R is T-floor (T)., !.

% random_int (L, U, R) binds R to a random integer in [L.U)
9 when L and U are integers (note that U will NEVER be generated) ,

random_int (L, U, R) :-
integer (L), integer (U).
random(X), !.
R is L+floor ((U-L)*X).

¢ random(L. U, R) binds R to a random real in [L,U)
9% when L and U are numbers (note that U will NEVER be generated) ,

random(L, U, R) :-
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numteer (L), number (U),
random(X)., !,
R is L+ ((U-L)*X).
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% minimize an equation -- set it below a given delay
% minimize(Eq,Delay,Vars,Constraints,Derivs)
% a va-iable is not allowed to be less than the corresponding constraint

minimize(Eq,Delay,Vars,Constraints,Derivs,Result) i-
length (Vars,Length),
min_init_configuration(Vars),
repeat,

get_configuration (Vars),

Result is Eq,

print('result is ') ,print (Result) ,nl,

(Result < Delay ->
true;
min_new_configuration(Length,Vars,Constraints,Derivs),
fail) .

min_init_configuration(Vars) :-
map (zero,Vars, New),

asserta(smin_config(New)),
1.

zero(_.0) .

get_configuration(Vars) :-
retract ($min_config(Vars)).
print ('New config is ') ,print(Vars).nl,
!

min_new_configuration(Length,Vars,Constraints,Derivs) 1=
build_new_config(Length,Vars,Constraints,Derivs,New),

asserta($min_config(New)),
t

build_new_config(Length,Vars,Constraints,Derivs,New) 1=
evaluate_derivs(Derivs,Num_derivs,O,Sum),
Avg is Sum/Length,
normalize(Avg,Vars,Derivs,Constraints,New).

evaluate_derivs([]. [].Sum, Sum).
evaluate derivs ([D|Ds]. [N|Ns],Ssf, Sum) :-
N is D,
Temp is -N,
max (O, Temp, Est) ,
New_sum is Est + Ssf,
!

evaluate_derivs (Ds,Ns,New_sum, Sum) .
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normalize (Sum, [J.[].[].0])-
normalize(Avg,[V|Vs],[D|Ds],[Cle],[Nle])
Desired is V - D/Avg,
(Desired < C ->
N is C;
N is Desired),
1
normalize(Avg,Vs,Ds,Cs, Ns).



