
A Knowledge-Based Approach to Language Prcxiuction

By

Paul Schafran Jacobs

A.B. (Harvard University) 1981
S.M. (Harvard University) 1981

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

Approved:

OOCTOR OF PHILOSOPHY

in

Canputer Science

in the

GRADUATE DIVISION

OF 'THE

UNIVERSITY OF CALIFORNIA, BERKELEY

.. ~, -~- .. 9.!!.1'!.5
' i Date

..... 0. ~ •.. fi.:. -~- f./..'(/ P.:'

.. ~ d-.l~ -~- ~. (:7.85

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
A Knowledge-Based Approach to Language Production

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The development of natural language interfaces to Artificial Intelligence systems is dependent on the
representation of knowledge. A major impediment to building such systems has been the difficulty in
adding sufficient linguistic and conceptual knowledge to extend and adapt their capabilities. This difficulty
has been apparent in systems which perform the task of language production, i. e. the generation of natural
language output to satisfy the communicative requirements of a system. The problem of extending and
adapting linguistic capabilities is rooted in the problem of integrating abstract and specialized knowledge
and applying this knowledge to the language processing task. Three aspects of a knowledge representation
system are highlighted by this problem: hierarchy, or the ability to represent relationships between
abstract and specific knowledge structures; explicit referential knowledge, or knowledge about
relationships among concepts used in referring to concepts; and uniformity, the use of a common
framework for linguistic and conceptual knowledge. The knowledge-based approach to language
production addresses the language generation task from within the broader context of the representation
and application of conceptual and linguistic knowledge. This knowledge-based approach has led to the
design and implementation of a knowledge representation framework, called Ace, geared towards
facilitating the interaction of linguistic and conceptual knowledge in language processing. Ace is a uniform,
hierarchical representation system, which facilitates the use of abstractions in the encoding of specialized
knowledge and the representation of the referential and metaphorical relationships among concepts. A
general-purpose natural language generator, KING (Knowledge INtensive Generator), has been
implemented to apply knowledge in the Ace form. The generator is designed for knowledge-intensivity and
incrementality, to exploit the power of the Ace knowledge in generation. The generator works by applying
structured associations, or mappings, from conceptual to linguistic structures, and combining these
structures into grammatical utterances. This has proven to be a simple but powerful mechanism, easy to
adapt and extend, and has provided strong support for the role of conceptual organization in language
generation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

192

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 11 -

A Knowledge-Based Approach to Language Production

Copyright c 1985

Paul Schafran Jacobs

- lll -

to lisa

• IV •

Acknowledgements

The ~~acknowledgements" section of a dissertation may be the most
pleasurable to write. It is certainly the most free-form, demanding the least
formality and technicality. But definitely not the easiest.

First, I must thank the generous sources who funded a starving gradu
ate student, paying for stipends, computer cycles, and conference trips. This
research was sponsored in part by the Office of Naval Research under con
tract N00014-80-C-0732, the National Science Foundation under grants
1ST -8007045 and 1ST -8208602, and the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 3041, Monitored by the Naval Electronic
Systems Command under contract N00039-82-C-0235.

The hard-won signature and much of the credit for this work belong to
Robert Wilensky, who served as my adviser and verbal sparring partner
throughout the preparation of this thesis. Much to my astonishment, he
really read the numerous drafts of numerous papers and chapters that I
dropped into his in-box for almost four years. His attention and insight
have made an indescribable contribution to this work.

The other members of my committee, Lotfi Zadeh and Charles Fillmore,
also provided instrumental comments and advice. George Lakoff, who
avoided reading the thesis by fleeing to Bali to study linguistics, made his
contribution to many of the linguistic ideas in this work by providing educa
tion, inspiration and innovation. Also indispensable in the preparation of
this thesis were contributions from discussions with the members of the
Berkeley Artificial Intelligence Research group, including (in order of
height) Lisa Rau, Nigel Ward, David Chin, Margaret Butler, Michael
Braverman, Yigal Arens, Joe Faletti, Jim Martin, Jim Mayfield, Rick Alter
man, Charley Cox, Marc Luria. and Peter Norvig.

A number of other individuals contributed to the thesis by providing
feedback on various aspects, including Stuart Shieber, Doug Appelt,
Johanna Moore, and Norm Sondheimer. Norm deserves a special thanks for
helping to work out many of the kinks in the earlier versions.

Now for the hard part: I can't possibly acknowledge all the people who
didn't contribute to this thesis in the least, but instead contributed to mak
ing life a lot more fun and interesting. These include the poker crowd, the
East Bay dinner group, the hump-night crew, the folks at San Ramon, the
Palo Alto people, and the friends and family back East.

The hardest part: When I started on this work it might have been the
most important thing to me. As I finish, it lags behind the bonds that I
have formed with people such as those mentioned above. Fortunately, the
most important one to me, Lisa Rau, who's also the best one at reminding
me what's really important, will be with me for long after I've forgotten
what I've written here. It's hard to separate one's personal life from one's
thesis, and Lisa has been a partner, mentor, and supporter in both.

- v-

Table of Contents

'"
1. Introduction 1

1.1. The Language Production Task 1
1.2. The Extensibility and Adaptability Problem 2
1.3. Representing Knowledge about Language 4
1.4. Characteristics of the Generation Process 7
1.5. The System 9
1.6. A KING Example 10
1. 7. The Thesis 20

2. Survey of Related Research 21
2.1. The Shaping of the Generation Task 21
2.2. Generation as Language Planning 24
2.3. Linguistic Representation 28
2.4. Applications of Generation Systems 33
2.5. Dialogue, Context and Memory 38

3. A Framework for Knowledge about Language 42
3.1. Specialization and Generalization 42
3.2. Views and Indirect Reference 45
3.3. Hierarchies 47
3.4. Restricting the Use of Views 49
3.5. Uniformity 50

4. Knowledge Representation Fundamentals 52
4.1. Basic Principles 52
4.2. Structured Associations in Ace 53
4.3. The Commercial Transaction Example 56
4.4. Actions as VIEWs of Events 61

5. Linguistic Representation 66
5.1. Principles of Linguistic Representation 66
5.2. Basic Grammatical Knowledge in Ace 71
5.3. Multiple Inheritance in the Ace Linguistic Hierarchy 79

6. Associating Language and Meaning 89
6.1. Basic Principles 89

... 6.2. Linking Linguistic and Conceptual Structures Using REF 90
6.3. Linking Linguistic Structures to Aspectuals Using REF 93
6.4. Knowledge About Specialized Constructs 96
6.5. Encoding New Knowledge in Ace 103

7. Processing Aspects of Generation 107
!~ 7.1. Mapping 108

7 .2. Pattern Selection 112
7.3. Restriction 115

8. Implementation of KING 119
8.1. Knowledge Manipulation Tools 119
8.2. What KING starts from 120
8.3. Mapping 121
8.4. Pattern Selection 125
8.5. Restriction 126

- Vl -

8.6. An Annotated Trace of KING 127
8.7. Analysis of KING 143

8.7.1. Successes 143
8.7.2. Limitations 145

9. Summary and Conclusion 147
9.1. Summary 147
9.2. Directions for Further Research 148
9.3. Conclusion 150

Appendix A: An Annotated Ace Grammar 151

Appendix B: Some Knowledge Representation Examples 171

References 176

A Knowledge-Based Approach to Language Production

Paul Schafran Jacobs

ABSTRACT

The development of natural language interfaces to Artificial Intelligence
systems is dependent on the representation of knowledge. A major impedi
ment to building such systems has been the difficulty in adding sufficient
linguistic and conceptual knowledge to extend and adapt their capabilities.
This difficulty has been apparent in systems which perform the task of
language production, i. e. the generation of natural language output to
satisfy the communicative requirements of a system.

The problem of extending and adapting linguistic capabilities is rooted
in the problem of integrating abstract and specialized knowledge and apply~
ing this knowledge to the language processing task. Three aspects of a
knowledge representation system are highlighted by this problem: hierar
chy, or the ability to represent relationships between abstract and specific
knowledge structures; explicit referential knowledge, or knowledge about
relationships among concepts used in referring to concepts; and uniformity,
the use of a common framework for linguistic and conceptual knowledge.
The knowledge-based approach to language production addresses the
language generation task from within the broader context of the representa
tion and application of conceptual and linguistic knowledge.

This knowledge-based approach has led to the design and implementa
tion of a knowledge representation framework, called Ace, geared towards
facilitating the interaction of linguistic and conceptual knowledge in
language processing. Ace is a uniform, hierarchical representation system,
which facilitates the use of abstractions in the encoding of specialized
knowledge and the representation of the referential and metaphorical rela
tionships among concepts.

A general-purpose natural language generator, KING (Knowledge
INtensive Generator), has been implemented to apply knowledge in the Ace
form. The generator is designed for knowledge-intensivity and incremental
ity, to exploit the power of the Ace knowledge in generation. The generator
works by applying structured associations, or mappings, from conceptual to
linguistic structures, and combining these structures into grammatical utter
ances. This has proven to be a simple but powerful mechanism, easy to
adapt and extend, and has provided strong support for the role of conceptual
organization in language generation.

....

...

1. Introduction

1.1. The Language Production Task

The use of natural language as an interface to computer systems
requires a capacity for language analysis, or understanding, and language
production, or generation. This thesis is concerned with the problem of
natural language generation, which may be characterized as follows:

The task of language production is to generate natural language utter
ances to satisfy the communicative requirements of a system.

One good reason to focus on this problem is that relatively little
research has directly addressed the task of language generation, and many
generation systems built thus far have been somewhat ad hoc. A plausible
explanation for the paucity of generation research is historical. There has
been little practical demand for sophisticated generation capabilities, as the
programs using these capabilities have been able to express their output
using "canned" or very constrained text. The need for powerful mechanisms
for linguistic expression comes about only as the programs themselves
become more powerful and have more to say.

A second reason to concentrate on language production is that it pro
vides a useful means of evaluating the results of a system. The language
produced is inextricably dependent, for example, on the knowledge used to
produce it; thus a good way of evaluating the knowledge representation is by
examining the natural language output. Even the skilled knowledge
engineer is a better judge of natural language than of coded knowledge;
language generation is therefore a facility for testing the power of a
knowledge base.

Historically, the task of language generation has developed from the
problem of constraining linguistic output (Yngve, 1962) to the problem of
translating conceptual representation into natural language (Goldman,
1974), and more recently to the broader problem of "planning" or "deciding"
what to say as well as how to say it (McDonald, 1980; Appelt, 1981;
McKeown, 1982). Ongoing research in the field has centered more on the
!!what to say" or '!strategic" aspects of generation and less on the "how to
say it" or "tactical" components.

None of the problems described above has been adequately solved. This
thesis is devoted to an approach to the diverse problems of generation
through a core issue: the organization and utilization of knowledge about
language. The work presented here includes a framework for linguistic
knowledge representation, called Ace, and an implemented language genera
tor called KING (Knowledge INtensive Generator), which makes use of this
framework.

Building a substantial language generation system !'from scratch" can
be a formidable task, yet there are relatively few techniques and tools avail
able to use as a foundation. While linguists and computer scientists have
succeeded in implementing grammars which approximate natural
languages, there are still a great many linguistic phenomena which fall out
side of the coverage of these grammars. Tools have also been developed
which facilitate the tactical component of generation, but the fundamental

- 2 -

problems of building linguistic structures, selecting words, and tailoring
linguistic output to a context all present difficulties for existing systems.
Furthermore, progress in these technical areas is hampered by the fact that
most systems seem inherently limited in their design; that is, they cannot be
easily modified to attain a broader or more powerful capacity to produce
language. One way of attacking the technical problems of generation, there~
fore, is to address the problem of building a system whose capacity may be
increased. This problem is described in the next section.

1.2. The Extensibility and Adaptability Problem

Increasing the capacity of a natural language system may be achieved
by two slightly different means: extensibility, which facilitates the addition
of new knowledge to the system, and adaptability, which allows the existing
knowledge of the system to be utilized in a new manner. The example
which follows illustrates how these two attributes come into play.

The UNIX Consultant Example

The work described in this thesis has stemmed from the project of build
ing adaptable natural language interfaces. The primary area of application
of this work is as a component of the UNIX+ Consultant (Wilensky, Arens,
and Chin, 1984), an on-line natural language help facility equipped with
knowledge about the UNIX operating system. The UNIX Consultant (UC)
is designed to answer questions, especially from naive users, about the com
puter system which they are using. While fairly constrained in terms of the
technical knowledge of the system, the UC application is extremely rich in
terms of the linguistic and world knowledge used in communicating within
the domain. This makes it a good proving ground for a general-purpose
language generator. Consider the following simple exchange, handled by
the current version of the UNIX Consultant:

User: I tried typing 'rm foo', but I got 'foo not removed'.
UC: You need write permission on the parent directory.

In addition to demonstrating some basic phenomena which provide seri
ous tests for a language understanding mechanism, this exchange illustrates
certain difficult aspects of the language generation task. The generator
expresses its message using a combination of technical and non-technical
language. In the technical knowledge of the system, this response refers to a
relationship between the user and a particular bit which can be set in a data
structure called an inode. In the linguistic output, this bit is referred to as
"write permission on the parent directory" and the verb used to suggest
changing the bit is "need". Much of the knowledge required to produce
such a response may be particular to the UNIX domain or to protection in
the UNIX domain. But certainly some of the knowledge about the use of
"need" and "on", for example, is not. If the generator is to be called upon to
produce a variety of similar responses, it should be able to take advantage of

7 U~1X is a trademark of Bell Laboratories

.....

- 3 -

this more abstract knowledge. The problem of extending and adapting the

generator, then, becomes intertwined with the problem of exploiting general

izations or abstractions. This problem is further detailed below.

Extending and Adapting a Generation System

Selecting terms such as "write permission" and "parent directory" and

building a linguistic structure with the verb ''need" entail equipping the

generator with knowledge pairing the linguistic structures with some

representation of their meaning. Such knowledge links "write permission"

and "parent directory" to the system's technical knowledge about protection

and directories, and links its knowledge about "needing write permission" to

its knowledge about preconditions for using the 'rm' command. The genera

tion process can then use these pairings to select linguistic components from

its technical representation, and can combine these components using basic

grammatical knowledge. This is a rough but essentially accurate description

of the way most generation systems go about producing this type of sen

tence.
The process described above is weak with respect to both extensibility

and adaptability. For example, as the system is extended, the generator is

called upon to produce output such as the following:

(1) 'Chmod' can be used to give you write permission.
(2) You don't have write permission on the directory.
(3) You can't get write permission on the directory.
(4) You need ethernet access.
(5) You don't have ethernet access.

The verbs used above are consistently those which refer to possession

and changes of possession. To treat the knowledge of each use of each verb

as independent of all other knowledge seems wasteful. Each new piece of

knowledge about language will be as difficult to add as the previous bit of

knowledge, although it seems that new knowledge should be able to take

advantage of existing knowledge. But each usage above still appears to

have a specialized interpretation in the UNIX world. Sentences 1-3 above,

for example, all involve the status of a UNIX inode. Sentences 4 and 5 may

refer to the physical configuration of machines. It would be an overgenerali

zation to suggest that sentences 2 and 5, for example, invoke exactly the

same interpretation of the verb "have". But it also seems inappropriate to

treat the two interpretations as completely independent. A prerequisite for

extensibility, then, is to facilitate the addition of new knowledge to the sys

tem by exploiting consistencies in the way language is used without over

generalizing.
The question of adaptability becomes important when the generator is

to be used for another application. Suppose that UC's generator is to be con

nected to a system which explains proprietary technical material. It is then

called upon to generate, "You need security clearance", or "You don't have

access to that information". If all its knowledge about "need" and "have" is

specific to the UNIX domain, then it would be necessary to give it new

knowledge about the components -of these sentences and their related mean

ings. The system should have knowledge about "need" and "have" which

- 4 -

applies to this new domain as well. Just as a novice UNIX user fits new

specific linguistic knowledge to what is already known, it is desirable for an

adaptable language interface to utilize general linguistic knowledge across

domains.
It seems that computationally practical and cognitively realistic

answers to both the adaptability and extensibility questions above hinge on

the representation of knowledge in a system. It is necessary also to have a

flexible mechanism for applying the knowledge so that this adaptation or

extension is not limited by the way in which the program is written. The

practical questions presented here are thus based in the theoretical issues of

the organization and application of knowledge. The next two sections

describe the foundations of a framework for language generation which pro

motes extensibility and adaptability.

1.3. Representing Knowledge about Language

The focus on extensibility and adaptability suggests certain features of

a theoretical framework for language generation. Principally, it suggests

that the representation of knowledge about language must be evaluated

with respect to ease of application, ease of acquiring new knowledge, and

ease of adaptation. These considerations highlight the following aspects of a

knowledge representation framework:

Hierarchy

The use of language is the product of the application of knowledge at

varying levels of specificity. Many examples, such as the use of the

terms "write permission" and "parent directory" in the dialogue here,

illustrate the use of specialized constructions and suggest that such con

structions are the product of the application of specialized associations

between linguistic terms and conceptual structures. Treating

knowledge about these constructs entirely as specialized knowledge,

however, ignores the relationships among such terms as "write permis

sion", "read permission", and ''dialup access". A hierarchical represen

tation takes advantage of common knowledge about such terms, thereby

achieving a more parsimonious representation of knowledge and also

facilitating the encoding of additional related linguistic knowledge.

Explicit Referential and Metaphorical Knowledge

The knowledge used in the production and analysis of language diverges

from the classical framework in which knowledge is considered as basi

cally factual, and pieces of knowledge are assertions about the world.

We may view the task of language generation as the instantiation of

new knowledge structures which are related to existing structures in

some referential capacity. Specifically, conceptual structures may be

only indirectly associated with linguistic structures; in these cases it is

difficult to treat the association as a factual relationship. In these

instances, it is useful to have a knowledge representation which expli

citly encodes relationships among knowledge structures which may be

used in analyzing or producing language. For example, in the dialogue

above, "You need write permission" is used to describe a lJNIX

- 5 -

relationship between the user and an inode structure. This relationship

is referred to using verbs of possession; thus ~~You must have write per

mission" and "You must be given write permission" may refer to the

same relationship. Factually it is difficult to assert anything about
whether one can actually have write permission. However, there may

be links in a system which specifically relate knowledge structures to

other structures which are used in referring to them. These links may

represent metaphorical relationships among concepts as well as rela

tionships between linguistic and conceptual structures.

Uniformity

It is often convenient to represent the knowledge of a system in a

variety of specialized forms. But knowledge of these various forms is

still knowledge, and may be related to other knowledge of different

types and encoded into a uniform hierarchical framework in spite of its

distinguishing characteristics. A uniform framework allows for the
same principles to be applied to the representation and manipulation of

a variety of knowledge forms.

The discussion which follows further describes the role of each of these

elements in facilitating extensibility and adaptability.

The Importance of Hierarchies

Hierarchical representations have been consistently exploited m

Artificial Intelligence systems, but underexploited in the representation of

linguistic knowledge. This has been due partially to the difficulty of

defining abstract linguistic entities in the upper levels of a hierarchy and

partially due to the continuing reliance on linguistic notations which do not

lend themselves to hierarchical encoding. The ability to utilize abstract

knowledge in the acquisition, retrieval, and application of specialized

knowledge seems fundamental to the way human beings use language. In

practice, however, natural language systems fail to exploit abstract

knowledge, particularly linguistic knowledge. A system which makes use of

a hierarchical organization of both conceptual and linguistic knowledge ulti

mately facilitates a more parsimonious knowledge representation as well as

the addition of new knowledge.

Chapters 4, 5, and 6 of this thesis show how linguistic and conceptual

knowledge can be organized into a hierarchy and how linguistic abstractions

are encoded in this hierarchy.

The Importance of Explicit Referential and Metaphorical Knowledge

The framework proposed here suggests explicitly encoding knowledge

about referential relationships between language and meaning. This

includes knowledge about relationships between words and concepts,

between linguistic structures and conceptual structures, and relationships

among conceptual structures which are used in reference. Such relation

ships between language and meaning may be used for both language

analysis and production, and these relationships may be triggered by the

- 6 -

instantiation of structures in the knowledge base. We may treat "An A
refers to a B" as a declarative piece of knowledge just as ~(An A is a B" is. It
will be shown that this explicit representation of referential relationships
facilitates the interaction of abstract and generalized knowledge and thereby
promotes extensibility.

In practice, virtually all generation systems have utilized knowledge
about language primarily either by matching templates attached to linguis~
tic structures or by applying queries attached to these structures. Such
implementations have also embodied a !!direct translation" relationship
between meaning and language, often applying knowledge which pairs
linguistic structure with denotation. A representation in which relationships
between language and meaning are explicitly encoded permits the applicae
tion of knowledge without special matching or queries.

One aspect of the way natural language is often used is that a concept
may be expressed by referring to other concepts which are related to it.
Such phenomena are often classified as metaphor or metonymy. Like
referential relationships between language and meaning, these conceptual
relationships are not so much factual knowledge as they are knowledge
about the way language is used. Chapter 4 describes the way in which
these relationships, called views, can be encoded. The use of views in gen
eration achieves extensibility by permitting a piece of linguistic knowledge
to be used in referring to a variety of related concepts.

The Importance of Uniformity

Arguments both for and against uniformity of representation have been
frequently voiced in the Artificial Intelligence community. On the one hand,
uniformity may be an asset in that it may help to explain the apparent ver
satility of human knowledge. On the other hand, different types of tasks
seem to require different organizations and distinct types of knowledge
structures. In theory, there are strong cases on both sides, depending on
how uniformity is defined. In practice, it is difficult to enforce strict unifor
mity, as the understanding of the cognitive processes is not sufficiently com
plete to allow for a completely uniform mechanism to perform them. U nifor
mity in this text is used to suggest having a common framework for the
representation of knowledge irrespective of the domain of the knowledge.
This type of uniformity can be of help in constructing a natural language
system, as it allows for the development of general mechanisms which aid in
the application of knowledge in many forms.

The use of a uniform representation system for linguistic and conceptual
knowledge is described in Chapters 4-6.

The theoretical knowledge representation framework to be presented in
Chapter 3 embodies the three main characteristics described here. This
framework allows the encoding of both linguistic and conceptual knowledge
in hierarchies, using a general knowledge structure called a structured asso
ciation to represent relationships among entities in the hierarchies. Special
structured associations are used to represent metaphorical or view relation
ships among concepts, as well as explicit referential relationships between
linguistic and conceptual structures. Because the'se structured associations
are used specifically to join conceptual structures to other knowledge struc
tures which may be used in referring, knowledge within this system

- 7 -

explicitly encodes the intricate relationships between language and meaning

which seem essential to the generation task. The same basic structured asso

ciations may be used for both the linguistic and conceptual hierarchies, thus

providing for uniformity of representation. The description of the means by

which knowledge is encoded and used within this framework constitutes the

body of this thesis.

The aspects of knowledge representation presented here are important

for extending and adapting linguistic capacity. The next section discusses a

framework for applying this knowledge to the generation task.

1.4. Characteristics of the Generation Process

As a rule, it is far more difficult to modify a program than it is to

modify the knowledge which the program manipulates. This suggests that a

processing framework for generation should exploit the power of a

knowledge representation using as simple a mechanism as possible. The fol

lowing are the two principal characteristics of this mechanism:

Knowledge-intensivity

Language generation is knowledge-intensive because knowledge about

language, about the speaker's intentions, about the hearer, and about

context all influence the language produced. The process of generation
is thus one in which knowledge at different levels and of different types

may interact, which may be characterized as a knowledge-intensive pro

cess. The result of the generation process is heavily dependent on the
knowledge being applied. This has the practical effect of making it pos

sible to change substantially the results of the generation program by

adapting its knowledge base, without changing the program itself.

Incrementality

In generation, lexical and structural knowledge is incrementally refined

until an utterance is produced. For example, the choice of a verb and

its object may be refined into a complete surface structure, rather than

choosing the structure and filling out its constituents. In a system in

which knowledge may be drawn from a variety of sources, incremental

ity is the result of combining knowledge structures derived from these
sources. The synthesis of a well-formed utterance is produced by incre

mentally combining linguistic structures.

This section presents a general description of the implications of

knowledge-intensivity and incrementality for a natural language generation

system. The details of this processing framework are considered in Chapter

7, and the implementation of a system which realizes this fra,mework is dis

cussed in Chapter 8.

- 8 -

The Importance of Knowledge-Intensivity

The distinction between knowledge-intensive mechanisms and process

intensive mechanisms can be a subtle one, as procedures are themselves a

form of knowledge. The problem with procedural knowledge representations

for generation is that it is often difficult to adapt these procedures, thus

often a new procedure is required to perform a task similar to that per~

formed by another. The practical goal of knowledge-intensivity here is to

minimize actual program size, with the effect of having the workings of the

program be especially sensitive to the nature of its knowledge. This is

intended to facilitate the use of the knowledge by different programs, for

example in a knowledge base shared by analyzer and generator, and to

allow for the extension and adaptation of a program by adding to its

knowledge base.

The Importance of Incrementality

Incrementality is an important processing characteristic which is

difficult to achieve. Time efficiency and simplicity often favor the use of

knowledge units rich in information rather than the synthesis of such units.

In generation, the common approach has been to select substantial chunks of

linguistic structure based on sets of linguistic and/or conceptual attributes.

For example, a generator might select a subject-verb-object linguistic struc

ture and build a sentence by instantiating this structure. Suppose that

knowledge about the relationship between subject and verb agreement is

attached to this sentence structure. The relationship between verb and

object, including the case of the object and the underlying conceptual role of

the object, may be specified also as particular to this sentence, thus the invo

cation of the subject-verb-object structure will carry with it the knowledge

necessary to select and use the complete structure. This tends to highlight

the top-down aspects of the generation process: Once a linguistic structure

is chosen, most the work of the generator becomes oriented towards filling

out the components of the structure.

The alternative proposed here is to minimize the effect of the selection

process and emphasize the use of more simple structural relationships to

synthesize a completed structure. The results of applying these structural

relationships may then be incrementally combined to produce an utterance.

Consider the example of the subject-verb-object sentence: The incremental

method is to utilize linguistic relationships independently of the linguistic

pattern: Subject-verb agreement, case, and the conceptual role of an object

are not dependent on surface structure. An incremental mechanism can

derive these relationships from the concept to be expressed and the con

straints to be satisfied, attaching minimal knowledge to the individual

linguistic patterns. Complete linguistic structures can be built from the

derived relations. Incrementality in this case is thus an effect of applying

more abstract knowledge about linguistic structure. The result is more com

plexity in the interaction of structural relationships, but less redundancy

and greater versatility of knowledge.

The processing framework for generation which will be discussed in

Chapter 7 proposes a simple mechanism to allow for both knowledge

intensivity and incrementality. The bulk of the work performed by this

- 9 -

mechanism results from the process of mapping, or utilizing referential and

metaphorical relationships to produce new linguistic structures. These

linguistic structures are then incrementally combined to form utterances.

Simple rules for applying structured associations and for selecting the gram

matical structures used for synthesizing utterances make the nature of the

generation process in this model largely dependent on the nature of the

knowledge used.

The theoretical framework sketched thus far has been implemented in a

knowledge representation system and a real-time generator, which will be

described in the next section.

1.5. The System

The output from the current version of the UNIX Consultant system

described earlier in this chapter is produced by a generator called KING

(Knowledge INtensive Generator). The theory of linguistic knowledge

representation outlined here is the basis for an implementation of a

knowledge representation framework called Ace (Jacobs and Rau, 1984),

which KING utilizes in producing utterances.

The development of Ace and KING stemmed largely from results of the

PHRED (PHRasal English Diction) system (Jacobs, 1983, 1985) used in an

earlier version of UC. Written as a general-purpose generator to share a

knowledge base with the PHRAN (PHRasal ANalyzer) language analyzer

(Wilensky and Arens, 1980), PHRED was easily adapted to produce UC out

put in English and Spanish. Like other similar programs, however, PHRED

was subject to the limitations of the knowledge representation from which it

operated. While it was not difficult to extend and adapt PHRED's

knowledge to new problems and domains, it was not possible to do so and

still take advantage of much of the knowledge that the system already had.

Ace and KING alleviate this problem by facilitating the representation and

utilization of abstractions in language generation.

Ace incorporates an implementation of a hierarchical knowledge

representation language called KODIAK (Wilensky, 1984), and includes

features designed to facilitate the association of language and meaning. The

particulars of this representation will be discussed in Chapter 4. The follow

ing sentences produced by KING illustrate the basic capabilities of the gen

erator:

John sold Mary the book.
Mary gave John a hug.
John was given a kiss on the cheek by Mary.
John's being kissed on the cheek bothered Mary.
With which enemy did John bury the hatchet?
Who from Mary's horne town does John think she will marry?

Applied to the domain of the UNIX Consultant, KING produces

responses such as the following:

You need write permission on the parent directory.
~chmod' can be used to get write permission on a directory.
You can give others in your group write permission on a file by

typing 'chmod g + w <filename>'.
To deny messages, type ~mesg n'.
To take back a job that has been sent to the line printer, use 'lprm'.

The Ace representation framework allows KING to make use of general
grammatical knowledge, knowledge about verbs such as ''need", <tgive", and
"take", and knowledge about linguistic structures used with these verbs.
This knowledge can be applied to the generation of specialized constructs
such as "giving a hug" and to technical references such as <tgiving write per
mission". Extending KING is thus a problem of relating new knowledge to
what the generator already knows, rather than of specifying completely the
information necessary to communicate about a particular topic or domain.

1.6. A KING Example

This section presents a modified trace of the KING generator producing
the sentence: HJohn was given a kiss on the cheek by Mary." A more
detailed explanation of this example is presented in the discussion of the
implementation of the generator in Chapter 8. The left column below con
tains the diagnostic output of KING, showing the processes applied and new
knowledge structures produced during each phase of the generation process.
The right column gives a brief explanation of each step in the production of
the complete sentence:

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Input to KING:
(kissing

(kisser maryl)
(kissee johnl)
(surface cheekl))

Applying related views

Explanation

Input concept expressed
in Lisp form. The manner
in which this type of
conceptual knowledge is
related to other knowledge in
the Ace hierarchy is discussed
in Chapters 4-6.

- 11 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

New concept produced:
(kiss-transfer

(source mary1)
(recipient john1)
(given-kiss (kissing (surface cheekl))))

Applying related views

New concept produced:
(kiss-giving

(kiss-giver mary1)
(recipient johnl)
(given-kiss (kissing (surface cheek1))))

Applying related views

New concept produced:
(pred (c-subj john1)

(c-pred
(recipient

(of (kiss-giving ...)))))

No related views found.
Applying referential relationships
Selecting linguistic pattern: S

Explanation

The kissing concept is
related to the kiss-transfer
concept by a VIEW, as will
be described in Chapter 4. The
kiss-transfer concept represents
a metaphorical view of kissing
as a transfer. The choice and
application of this VIEW is
part of the mapping phase
of generation described in
Chapter 7. This phase allows
new concepts to be used in
generating input concepts.

The kiss-giving concept is
related to the kiss-transfer
concept by a VIEW. This VIEW
is the same as that which
relates transfer-events to
giving actions in general.
Transfer-events are concepts
usually referred to using the
verbs ''give" or "take",
depending on whether the event is
viewed as giving or taking.
The distinction between events
and actions, as well as the
justification for this type of
VIEW, are presented in Chapters
4 and 6.

The application of another VIEW,
triggered by the knowledge that
sentences are formed using
predications, results in the
instantiation of this structure.
The role of predications is further
discussed in Chapter 6.

~ 12 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Pattern selected:
S->NPVP

Filling out selected pattern

Now generating from:
johnl
(case nominative)

Expanding token

Now generating from:
(person (name John))

No related views found.
Applying referential relationships
Selecting linguistic pattern: NP

Explanation

The basic sentence pattern is
typically chosen for expressing
predications. The representation
of this type of linguistic knowledge,
presented as a grammar rule here but
incorporating other knowledge in Ace
as well, is discussed in Chapter 4,
and the pattern selection process is
covered in Chapters 7 and 8.

Johnl is the concept which
corresponds to the noun phrase of the
basic sentence. The mechanism
which allows the generator to
relate johnl to the NP is called
restriction and is described in
Chapter 7. This mechanism also applies
knowledge about the basic sentence to
add the constraint that the subject
must have nominative case. Restriction
thus "fills out" the selected pattern,
and starts the generator working on the
first part of that pattern.

Johnl is a token in the system,
representing a unique object.
Expansion of this token, or retrieval
of the knowledge about the object, is
a simple part of the generation process.

- 13 -

Concept Considered or Pattern Considered
[+ special constraii:ts] [+ extra info.]
+ Process Initiated

Pattern selected:
NP -> l'.fM

Filling out selected pattern

Finding word--word found:
uJohn"

Now generating from:
(recipient

(of
(kiss-giving ...)))

No related 1.:rews found.
Applying referential relationships

Constraint produced:
[passive voice]

Now generating from:
(kiss-giving ...)

Explanation

This pattern is selected using the
knowledge that names refer to people,
and that they constitute NPs.

The name ~~John" fills the role
of the NM part of the pattern. KING
has the knowledge that this part may
be a single lexeme, and thus completes
its first word.

The program is now generating
the predicate part of the NP-VP
pattern. As in most generation
programs, KING walks through
each pattern and generates from
each constituent of that pattern
until the sentence is completed.
The control of this process is
described in Chapter 8.

KING uses the knowledge that
the recipient role is expressed using
a passive VP. This type of knowledge,
which relates concepts to linguistic
structures or constraints, is represented
as explicit referential knowledge using
an association called REF, described in
Chap~er 6. REFs are applied during the
mappmg process.

KING is now generating the
rest of the predicate.

- 14-

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

No related views found.
Applying referential relationships
Selecting linguistic pattern: VP

Pattern selected:
VP -> VP ADJUNCT

Selecting linguistic pattern: VP

Pattern selected:
VP -> VOP NP

Selecting linguistic pattern: V -P

Constraints are:
[lex_give]
[voice passive]
[person third]
[n urn ber singular]

Explanation

This pattern is chosen to express the
actor of an action referred to in
the passive voice. The VP ADJUNCT
pattern, used here to build .. by Mary"
onto the passive verb phrase, is
discussed in Chapter 5, and the method
of selecting this pattern is considered
in Chapter 8.

This pattern is chosen to express
the direct object, which refers to
kissing. Like the previous pattern,
this verb phrase form is chosen as a means
of generating a linguistic relation derived
from the original concept. These relations
will be described in Chapter 5. The reason
KING selects another pattern here without
further mapping is that the concept
expressed by the VP, the kiss-giving
concept, has already been mapped from.

Agreement constraints, lexical
categories, and derived constraints
are all applied each time KING starts
to produce a new pattern element. These
are the constraints on the verb part
of the sentence.

- 15 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Pattern selected:
V-P -> HELPER V-P

Selecting linguistic pattern: HELPER

Constraints are:
[lex......be]
[person third]
[number singular]

Finding word--word found:
~~was"

Selecting linguistic pattern: V-P

Constraints are:
[lex......give]
[form perfective]

Pattern selected:
V-P -> V

Explanation

Knowledge that passive verb parts
require helping verbs is used to
to select this compound verb pattern.
The organization of compound verbs
is developed in Chapter 4,

The knowledge that the passive
helping verb is "be" is attached
to knowledge about the passive
voice; the constraint that the
helping part of the verb is the
part which must agree is knowledge
about the HELPER V -P pattern.

There is now sufficient knowledge
to complete the next lexeme, using
the past tense as a default.

Knowledge that the passive verb
part is in perfective form is also
attached to the passive voice
constraint. That the lexical
category obtained from the concept
to be expressed is the lexical
category of this part of the complete
verb is knowledge about compound verbs
in general.

Since there are no more "helping''
relations (such as the "be" helper above)
to express, the generator now selects
this simple pattern to complete the verb.

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Finding word--word found:
"given"

Now generating from:
(kissing (surface cheekl))

No related views found.
Applying referential relationships
Selecting linguistic pattern: NP

Pattern selected:
NP -> NP PMOD

Selecting linguistic pattern: NP

Pattern selected:
NP -> DET NP*

Selecting linguistic pattern: DET

Constraints are:
[ref indef]

Finding word--word found:
"a"

Selecting linguistic pattern: NP*

Pattern selected:
NP* -> N

Explanation

In walking through the verb phrase,
KING is now producing the NP part
of the VP, which refers to kissing.

This pattern, a noun phrase followed
by a modifier, is chosen to express
the surface relation. The preposition
"on" is also selected at this point,
but is not used until the modifier PMOD
is generated.

This basic NP pattern, an article-noun
construct, is selected by default
to refer to kissing.

Default for referring to ''kiss" given
The means of deriving such defaults,
which depend on the type of concept
being expressed, are discussed in
Chapters 6 and 7.

This pattern is used for "kiss" because
of the lack of further modifiers.

-

- 17 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Selecting linguistic pattern: N

Constraints are:
[lex....kiss]

Finding word--word found:
(tkiss"

Now generating from:
cheekl
[prep_on]

Expanding token

Now generating from:
(cheek (part-of johnl))

No related views found.
Applying referential relationships
Selecting linguistic pattern: PMOD

Pattern selected:
PMOD -> PP

Selecting linguistic pattern: PP

Pattern selected:
PP ->PREP NP

Selecting linguistic pattern: PREP

Explanation

Mapping from the kissing concept
earlier using explicit referential
knowledge resulted in the instantiation of
the lexical category lex_kiss. This
category is then applied to the noun part
of the noun phrase using general know ledge
about noun phrases.

Walking through NP PMOD pattern,
KING generates the postmodifier part.

The expansion of the token
cheekl results in this concept.

This prepositional phrase pattern
is used for the linguistic relation
between the preposition "on" and
its object, used here to refer to the
surface relation.

The only prep phrase pattern is used.

- 18 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Constraints are:
[lex_on]

Finding word--word found:
Hon"

NP -> DET NP*

Finding word--word found:
''the"

Selecting linguistic pattern: NP*

Constraints are:
[lex_cheek]

Pattern selected:
NP* -> N

Finding word--word found:
Hcheek"

Now generating from:
maryl

Selecting linguistic pattern: ADJUNCT

Pattern selected:
ADJUNCT-> PP

Selecting linguistic pattern: PP

Explanation

This lexical category was derived from
the surface relation.

The basic NP pattern is the default
for referring to objects, such as
uthe cheek".

This lexical category results from
the cheek concept.

The basic NP*, used for the complete
noun part of the NP, is chosen because
because all other relations involving
cheekl have been expressed.

The generator is now producing
the "by" adjunct phrase to express
the actor of the kissing.

"By" adjuncts are expressed using
prepositional phrase patterns.

- 19 -

Concept Considered or Pattern Considered
[+ special constraints] [+ extra info.]
+ Process Initiated

Constraints are:
[prep_by]

Selecting linguistic pattern: PP

Pattern selected:
PP ->PREP NP

Selecting linguistic pattern: PP

Constraints are:
[lex._by]

Finding word--word found:
''by"

Now generating from:
maryl

Expanding token

Now generating from:
(person (name Mary))

Selecting linguistic pattern: PP

Pattern selected:
NP -> NM

Finding word--word found:
"Mary"

Explanation

Further knowledge about ««by"
phrases is that they involve a
particular preposition. Like many
of the other constraints here, this
stipulation is derived by the generator
in a manner described in Chapter 7.

The single prepositional phrase
pattern is again selected for the
final prep. phrase.

This lexical constraint is attached
to the [prep_by] constraint.

KING is now generating the final
cons ti tuen t, the object of "by".

Expansion of the token mary 1

Knowledge that name NPs are used for
for people is again applied to refer to Mary.

**
OUTPUT

**

John was given a kiss on the cheek by Mary.

============================

- 20 -

1. 7. The Thesis

The claim of this thesis is that particular features of a knowledge

representation framework are essential to the task of building practical,

adaptable, and extensible generators. Specifically, the traits of uniformity,

hierarchy, and the explicit representation of referential and metaphorical

relationships among concepts are necessary for the exploitation of abstrac

tions in the representation of knowledge about language. A knowledge

representation system with these features empowers the development of a

knowledge-intensive mechanism with a strong language capability. The

support of this thesis lies in the nature of the representation and the

successes of the implementation.

Chapter 2 presents an overview of research on language generation and

related areas, focusing on the theory and implementation of existing systems

and highlighting some of the practical problems with these systems. The

discussion is meant to provide an update of the state~of~the~art in language

production as well as the motivation for the research presented here.

Chapter 3 discusses the theoretical problem of exploiting generalizations

in language generation, and presents the fundamentals of the Ace approach

to this problem.
Chapters 4, 5, and 6 cover in detail the Ace knowledge representation

framework, a set of tools for the representation of linguistic and conceptual

knowledge, and provide examples of the knowledge encoded, contrasting it

with other representations. These chapters are addressed primarily to the

technical reader interested in the relation of language to knowledge

representation. Chapter 4 presents the fundamentals of the Ace framework,

Chapter 5 shows how this framework is applied to linguistic representation,

and Chapter 6 focuses on the association of linguistic and conceptual

knowledge.
Chapter 7 discusses the implications of the Ace representation on

language processing, and outlines the overall processing strategies and

design of the KING generator.

Chapter 8 describes the implementation of the KING generator, a

knowledge-driven mechanism for performing language generation using the

Ace representation. The implementation details are mainly provided for the

reader who is specifically interested in the technical aspects of the genera

tion task. A more thorough analysis of the trace given here is presented

also in Chapter 8.
Chapter 9 analyzes the contribution of this work and suggests areas for

future research.
Two appendices are provided specifically as an aid for readers who are

interested in building natural language programs. Appendix A provides

representative linguistic knowledge used by KING, and Appendix B supple

ments the examples of knowledge representation in the text.

- 21 -

2. Survey of Related Research

The develo'(:ment of natural language generation systems has been the
focus of only a small body of research. The generation task, however, has
evolved under the constant influence of advances and trends in artificial
intelligence, linguistics, philosophy, and psychology. This discussion will
trace the evolution, focusing on the current research issues in language
generation as they relate to other relevant topics. These topics include the
study of plans, intentions and communicative acts; the representation of
linguistic knowledge; the production of connected texts, stories, and
explanations; and "the analysis of coherence and focus constraints in
dialogues.

2.1. The Shaping of the Generation Task

The language generation problem has its roots in the goal of finding a
sufficient specification of the constraints governing grammatical sentences
(Yngve, 1962; Friedman, 1969). While this objective is central to the
generative linguistic paradigm, work within this paradigm failed to address
an issue of critical importance to the construction of language generators in
Artificial Intelligence systems. As such systems were conceived, the need
arose for the description not only of the constraints on grammatical output,
but also of the process by which a choice could be made among possible
outputs. The problem of language generation as a communication tool for
computer systems became dependent on three major considerations: (ji

linguistic representation --the knowledge which describes the language that
the system is generating into. (2) knotcledge representation -- the internal
structures which the system is generating from. and (3) the choice problem -
how the intricate relationship between the underlying knowledge and
linguistic knowledge determines the appropriate output.

The choice problem in many AI natural language systems was greatly
simplified by the limited domains within which the systems operated. The
limited scope restricted both the nature of the knowledge to be expressed
and the minimal quantity of linguistic knowledge required to satisfy the
communicative requirements of the programs. While the goal of minimizing
restrictions on the input made robustness an important requirement for the
input analyzers, robustness of output had no such motivation. Systems such
as Winograd's (1972) made use of relatively sophisticated models for
language understanding, but employed a minimal set of simple rules to
guide language production.

Some of the early work on language generation took advantage of
research addressed to language analysis, which had led to the development
of representations of linguistic knowledge such as Augmented Transition
Networks (Woods, 1970). Simmons and Slocum (1972) adapted an ATN
grammar to produce linguistic output from a semantic network, using a
variety of semantic tests and "paraphrase rules" at each arc in the ATN to
guide the production of output. Shapiro (1975) explicitly modeled generation
as the inverse of the parsing process using an ATN grammar. Generation
using an ATN, like parsing, consists of tracing a path through a network of
transitions. The main problem is to determine which path to follow from
each state in the network. This determination has generally been made by
applying tests, or queries, to select a path based on what is being expressed.

- 22 -

The BABEL generator used in the MARGIE system (Goldman 1974,
1975) also used an ATN grammar to apply syntactic constraints in the
generation of language. Like the Simmons and Slocum system, Goldman's
algorithm produced sentences by first selecting a verb, using queries as to
the nature of the structure of the semantic input. These queries were
organized into a discrimination net which distinguished verbs by their
conceptual content. Starting from a Conceptual Dependency representation
(Schank, 1975), the system selected a discrimination net based on what
"primitive act" was to be expressed and traversed the net according to
particular aspects of the input concept. For the primitive act "INGEST", for
example, BABEL would test whether the object being ingested was air, in
which case it would select the verb "breathe". If the object was smoke, it
would choose the verb ~~smoke", if the object was fluid, <tdrink", and solid,
·~eat". The bases for lexical choices were thus explicit within the system.

While the ATN-based generation systems had the capacity to produce a
wide range of outputs, their ability to use their linguistic capabilities was
hampered by the difficulty of encoding the appropriate rules and heuristics
to guide the choice process in many circumstances. The addition of a new
lexical item to such systems required the encoding of new queries to
distinguish the conceptual basis for the use of the lexical item from concepts
which would be expressed differently. Since the generators dealt with fairly
general concepts, equipping them with sufficient knowledge to differentiate
one complex concept from another was a difficult task, posing a practical
limitation on their linguistic capabilities. Other programs achieved greater
fluency by operating in domains in which the conceptual knowledge was
highly constrained. The tic-tac-toe program of Davey (1979) and the
psychoanalytic patient of Clippinger (1974) were able to imitate the use of
complex linguistic phenomena effectively within a limited context.

While appearing to demonstrate a substantial language capacity, most
language generators operating within severely restricted domains failed to
set the tone for further research. Their main handicap was the same as that
which made other early AI programs quickly lose their appeal: The model
they provided was not sufficiently general to be extended or adapted to new
applications. The work of Simmons and Slocum and of Goldman, however,
has proved to be of more than historical interest when taken independently
of the question-answering tasks for which their generators were used. Many
of the problems identified by these systems as well as approaches to their
solutions have continued to have an· influence on the field. The principal
interrelationships among linguistic representation, knowledge
representation, and mechanisms to produce appropriate output are all
highlighted by this research.

Analysis

A major result of the early research on language generation was the
recognition of important problems which had generally not been explored
within the generative linguistic paradigm. The focus of computational
linguistics has been on the description of linguistic competence, rather than
on the forces which control the use of language. Models of linguistic
competence encode the knowledge required to guide the syntactic correctness
of a generated output, but fail to encode the knowledge necessary to guide
the appropriateness of the output. Early language generation systems
reacted to this deficiency either by adding large amounts of ad hoc rules and

• 23 •

heuristics to a syntactic model, or by attempting to describe an independent
model of language production within a limited domain. The first approach,
evidenced in the adaptation of ATNs for generation, has the awkward
consequence of treating knowledge about language use as fundamentally
different from knowledge about language. The second approach, evidenced
in the more restrictive systems, often ignores the role of a competence
altogether, and treats the production of language as a phenomenon distinct
from language analysis or competence. Both approaches achieved
substantial successes, and together pointed the way towards the refinement
of linguistic models of knowledge about language, models which could be
used to describe the knowledge required for competence, analysis, and
generation, rather than treating each individually.

A second essential factor in the generation task made apparent by the
earlier research is the sensitivity of the language generator to the
representation scheme used for encoding its semantic input. An important
part of Goldman's generation mechanism was the discrimination net used to
select verbs. The need for this mechanism was due primarily to the use of a
small set of primitives in the Conceptual Dependency representation. Each
primitive act, such as "INGEST" or "ATRANS", could potentially lead to the
generation of a wide range of verbs, depending on the results of the tests in
the discrimination nets. Other systems which employed a richer set of
predicates were able to avoid the need for these tests by having a closer
correspondence between lexical items in the language and predicates in the
representation. But the proliferation of predicates made it difficult to
explain how surface utterances similar in meaning could be produced from
different representations. In Goldman's generator, the similarity in
meaning was represented at the level of the underlying knowledge
representation. In Simmons' and Slocum's generator, it was represented by
the use of paraphrase rules at the lexical and syntactic levels.

Observation: The nature of the knowledge representation used LS

critical to the task of choosing linguistic output.

Related to the underlying representation and the grammatical
representation used for generation is the question of how the knowledge
representation influences the choice process. In many of the early
generation systems, as well as in programs designed using the early systems
as a model, the knowledge used to guide the choice process was specifically
encoded as choice knowledge. In effect this knowledge was specified as a
procedure which the generator would execute to determine the appropriate
choice of output. Unfortunately, the encoding of knowledge specifically as
knowledge about the choice process makes it difficult to take advantage of
generalizations and to use the same knowledge for understanding.
Intuitively, it seems that much of the knowledge encoded as choice
knowledge is in fact knowledge about the relationship between language
and meaning, which ideally could be used for both analysis and generation.
Confining this information to the choice points makes it near impossible to
use it in analysis; furthermore, it makes the consideration of many unlikely
choices inevitable, since only after examining a particular choice can its
applicability be determined.

Observation: The choice of language seems to depend on the
interaction of linguistic and conceptual knowledge.

- 24 -

A distinction which has prevailed throughout the short history of
language generation is the division between deciding what to say and how
to say it. This distinction was enforced in most of the early systems, which
required that decisions about the conceptual content of the output be made
prior to decisions about its linguistic structure. As the field has developed,
the independent consideration of the conceptual decisions and linguistic
decisions has remained convenient. However, the strict division of language
generation systems into conceptual choice and linguistic choice mechanisms
poses certain difficulties: It assumes that the conceptual decisions provide
enough information to specify completely the knowledge necessary to guide
the linguistic decisions. Thus, if there are linguistic constraints which have
associated with them conceptual constraints, it may often be necessary to
reconsider the conceptual decisions. Thus a system which maintains the
separation between the "what to say" and "how to say it" components
demands considerable interaction between these components.

The successes and limitations of the early work on generation shaped
the task of automatically producing language into the interaction of several
goals, among them the following:

the refinement of declarative representations of linguistic knowledge
suitable for use in both analysis and generation

the development of models of the relationship between linguistic
knowledge and underlying conceptual structures

the construction of generation mechanisms operative within a variety of
domains
the interaction of conceptual and linguistic knowledge of varying levels
of specificity within the generation task

2.2. Generation as Language Planning

Much work on language generation m particular, and language
processing in general, has either implicitly or explicitly assumed language
processing to be a mapping between language and meaning. In other words,
the role of the language generator would be to produce a linguistic structure
as a direct translation of a representation of its meaning.· This assumption
proves adequate within the confines of very simple question-answering and
description tasks, where the function of the language being produced is quite
specific; i. e. to inform a user of the answer to a question or to provide a
description of an object or event. Language in general, however, is not
restricted to this model.

The notion that the meaning, or propositional content, of an utterance
does not always adequately describe its communicative function dates back
to early work in the philosophy of language. The modern study of this idea,
generally described as the theory of speech acts, was inspired by Austin
(1962), who pointed out that statements such as "I promise to do my
homework" do not really convey information about a fact about the world
but rather serve to commit the speaker to carrying out a particular task.
The examples given by Austin primarily fall into the class of performatives,
statements which themselves affect the world rather than describe it. Austin
argued that performatives such as "I promise to take out the garbage," "I

- 25 -

hereby pronounce you husband and wife," and "I order you to leave"

illustrate a class of utterances which could not be described by classical

truth-valued logic. since these examples serve to communicate more than a

proposition about the world.
Austin distinguished a number of classes of illocutionary acts, or actions

involving the production of language. An illocutionary act is the use of

language to convey a perlocutionary effect. The realization of an

illocutionary act embodies an illocutionary force and a propositional content.

The illocutionary force of an utterance is the effect which it conveys on the

world, not necessarily directly related to its propositional content. These

distinctions were clarified in the work of Searle (1969, 1979a, 1979b), who

formalized and popularized the speech act theory. Searle presents a

taxonomy of illocutionary acts encompassing five categories:

(1) directives e. g. ''Take out the garbage!"

(2) commissives, e. g. "I promise to be home by six,"

(3) representatives, e. g. "I took out the garbage,"

(4) declarations e. g. "I pronounce you husband and wife,"

(5) expressives. e. g. "I'm sorry I insulted you."

The illocutionary force of the above examples may be evident from the

nature of the utterance. For example, "I'm sorry" explicitly expresses an

apology. However, the illocutionary force of an utterance is not necessarily

conveyed by its surface form. For example, "Can you pass the salt?" is on

the surface a question, but its illocutionary force may be that of a directive.

"Play ball" may be considered to be both a directive and a declaration, as its

illocutionary force is both to order the players to begin the game and to

mark the official start of play. Utterances whose illocutionary force is

different from that which would ordinarily be conveyed by their surface form

are known as indirect speech acts.

Searle thus establishes several levels of description of an utterance: The

illocutionary level identifies the intention conveyed by the utterance. The

propositional level describes its meaning content, and the utterance level its

linguistic realization. Language as communication in the speech act theory

may thereby be viewed at several levels of abstraction; thus the problem of

relating linguistic representation to meaning representation does not itself

fully describe the knowledge required to construct an utterance when its

illocutionary force also is to be considered.

The introduction of the speech act theory into the linguistic components

of artificial intelligence systems is due primarily to the work of Bruce (1975)

and of Perrault, Allen, and Cohen (cf Cohen and Perrault, 1979). In the

OSCAR system at Toronto, language analysis was modeled as the

identification of the user's goals based on the linguistic input, and language

production the realization of the system's goals fgenerally matching those of

the user) in the output. In addition to recognizing basic surface speech acts,

OSCAR handled interactions between the system and user such as the

following:

User: What time does the train for Montreal leave?
System: 6:00 at track 9.

- 26 -

In this type of response the system identifies the user's goal of wanting to
know when a train leaves and infers that the user will also need to know
the track number. The goals of informing the user of the time and track
number are subsumed in the response.

The consideration of speech acts and intentionality in language
processing led to new metaphors for language generation. Cohen (1978)
models language generation as a planning process, in which the choice
process is guided by the goals that the speaker wishes to satisfy in producing
the utterance. Treating language production as planning avoids the
oversimplistic view of generation as direct translation, but gives birth to
new challenges, such as describing the role of language in satisfying the
communicative goals of the speaker.

Appelt (1982) designed and implemented a complete language generator
driven by a general purpose multiple-agent planning system. The system
used a hierarchical planner, KAMP, to work from the input goals and by
successive refinement specify a fully-realized plan for the output of an
utterance. The system was able to perform such complex language planning
tasks as the production of references sensitive to knowledge about the
hearer, and the combination of utterance acts with other actions, such as
pointing. The planner produces utterances such as .. Remove the pump with
the wrench in the tool box" given a formal description of the systems goals
and user's knowledge in an assembly task.

Appelt describes four levels of abstraction in the production of an
utterance. The highest, as in Searle's description, is the illocutionary level,
but Appelt defines a surface speech act level between the illocutionary level
and the concept activation level, which corresponds to Searle's propositional
acts. The lowest level, like Searle's. is the utterance level. By axiomatizing
the knowledge at each of the four levels, Appelt enables the planner, with
interactions among the various levels, to take advantage of knowledge of
different degrees of abstraction to produce a successful utterance.

Appelt's system currently provides the most complete model of language
generation. The use of a complex planning mechanism and a model of belief
based on the possible world semantics (Moore, 1980), allows the program to
take into account the goals and beliefs of speaker and hearer as well as of
knowledge about the task domain and knowledge about language at a range
of levels of abstraction. The language planner can theoretically operate
within a variety of domains; equipped with sufficient knowledge, the same
program can be used to perform a range of communicative functions.

Analysis

While the implementation of the KAMP language planner demonstrates
the possibility of combining language generation with other planning
activities, the system has a number of interesting problems. An important
practical difficulty with the program is its inability to operate in real time:
Many phases of the generation task require a surprising number of cycles,
adding up to a program which cannot reasonably be used within a natural
language interface. A number of causes of inefficiency prove to be technical
problems that could have easily been overcome with additional tuning;
others are inefficiencies in the planning model. The operation of the planner
requires the consideration of a great number of options at each level and the
evaluation of each, rather than selecting a possible plan and attempting to

....

- 27 -

carry it through to linguistic realization. The consideration of many options
at each stage in the generation process, as well as the ability of the system
to back up at any given stage, are time-consuming characteristics of the
system which also seem at odds with the way human beings produce
language.

This problem is similar to a drawback of many generation systems: The
decision-making model adopted fails to provide a practical way of limiting
alternatives, and forces the equal consideration of unlikely possibilities.
Without a mechanism for quickly determining which choices are worthy of
consideration, the production of appropriate utterances presents a major
search problem. In BABEL, the difficulty was evidenced mainly at the level
of lexical choice, where ''smoke", "breathe", and "eat" could all be evaluated
because of a common conceptual primitive. In KAMP, the proliferation of
alternatives may appear also at higher levels. In actual cooperative tasks
such as those modeled by KAMP, "Remove the pump with the wrench in the
tool box" may be used regularly in contexts where many other possibilities,
such as "The pump may be removed with the wrench" or "The wrench will
remove the pump" are equally appropriate. In the KAMP model, giving the
generator the ability to produce all these forms forces the generator to
consider them as alternatives.

Human beings are equipped with the capacity to express themselves in
a broad range of forms, but do not seem to consider many alternatives.
particularly in spoken language. For example, there is a tendency to be
consistent with previous sentence structures or descriptive terms. If a
person is asked, "What will remove the pump?", the response "The wrench
will remove the pump" is favored. Evidence suggests (cf. Cohen, 1985) that
such responses are not evaluated with respect to other possible utterances,
as there is increased fluency in producing such responses.

Observation: The manner in which knowledge is retrieved biases the
generation process.

The consideration of the way in which language is often used indicates
that certain factors serve as aids to the generation process by biasing the
retrieval of structures, rather than by influencing the evaluation of
candidate structures. This bias may even cause the speaker to ignore the
surface speech act implications of an utterance; for example, in cooperative
dialogues speakers use imperatives without really intending to command. It
is difficult to have this flexibility in a hierarchical planning or decision
making model, where decisions at the surface speech act level are evaluated
and made before lower levels are considered.

In addition to a variety of problems with efficiency, certain
representational problems are apparent in Appelt's system. The possible
worlds representation, which allows for the encoding of belief knowledge into
potentially infinite sets, poses some awkward stumbling blocks for the
planner. This seems not to be indicative of any major difficulty with the
planning model, but rather of some of the issues now being worked out in
the developing field of the semantics of belief. Problems with linguistic
representation present themselves as well: The linguistic representation in
KAMP is limited, handling no relative clauses or complex modifiers and
only the more basic surface structures. This de-emphasis was due to the
focus of the system is on the integration of language into a general
multiple-agent planner. Appelt (1983) has since employed a unification

- 28 -

grammar for the linguistic knowledge of the generator, as it facilitates the encoding of discourse information. Unification grammar will be discussed in the next section and in Chapter 5.

Considering language production as a planning process adds a new dimension to the generation task by requiring the integration of knowledge of goals, intentions, and communicative acts with that of language and meaning. While the ~'planning" metaphor seems best applicable to the strata of deciding ''what to say" rather than "how to say it", it provides a model powerful enough to describe the multiple levels of the task as well as the interaction among these levels. There are some practical problems with the treatment of language strictly as a planning process. The most formidable of these are the solidification of the representation schemes used and the discovery of methods of controlling the search through the large space of potential utterances.

2.3. Linguistic Representation

Quite a number of linguistic formalisms have been used in natural language-based Artificial Intelligence systems, but the field of language generation has consistently played favorite to a handful of linguistic representation schemes. The generators of Goldman and of Simmons and Slocum have led to considerable work using Transition Networks similar to those described by Woods (1970). Most of the other recent generation systems have employed some notation within the systemic/functional tradition, particularly systemic grammar (Halliday, 1967) and functional grammar (Kay, 1979), which has come to be known by its current variant, called unification grammar or functional unification grammar (Kay, 1984). It is often difficult to identify strict distinctions among these linguistic formalisms, as their adaptation to the task of language production serves rather to highlight their many similarities.
The Augmented Transition Network formalism contributed substantially to the development of natural language interfaces by establishing a means of organizing grammars which lends itself well to computer implementation. Each state in an ATN represents some point in the analysis or generation of an utterance, and each arc leading from a state represents a possible linguistic structure which may occur at that point. One problem with ATNs, as discussed earlier, is encoding within the transition network the information required to select, at any given state, the most appropriate arc during generation. Related to this is the difficulty of associating semantic properties with the various arcs in the network. The ATN formalism proves more easily adapted to parsing than to generation, because the traversal of the A TN is necessarily driven by linguistic structure. Conceptual and structural choices in generation must thus be made only when required at a particular stage in the traversal of the network; it thus becomes awkward to implement an ATN generator where such choices are made in an order different from that in which their corresponding linguistic structures appear.
Unlike ATNs, systemic grammar presents a linguistic formalism in which conceptual and structural choices may clearly be separated from surface order constraints. In systemic grammar, these choices are made by choice systems, which operate on sets of features. Features may be used to

...

- 29 -

convey specific conceptual, grammatical, or lexical information, ranging
from high-level semantic qualities such as intensional or collective to low
level lexicographic information. A system takes as input an expression of
initial features to be realized, and produces a selection expression, the set of
grammatical features chosen based on these constraints. As in a
discrimination net, each step in the traversal of a choice sys tern may involve
querying the membership of a particular feature in the input expression and
selecting a grammatical feature which depends on the result.

. The production of an utterance using systemic grammar (Mann, 1982)
proceeds from the application of a choice system to the invocation of a set of
realization operators, which produce grammatical structures, lexical features,
and ordering constraints from the chosen set of grammatical features. Each
realization operator carries out a particular task within the general domain
of furthering the specification of the final output. The joint application of
these operators results in the complete specification of the surface structure
and lexical choices in the output.

The systemic grammar formalism is attractive for the purposes of
language generators because the choices necessary in the formation of an
utterance are explicit within the grammar, as well as the knowledge
required to realize a set of choices. Much of the information contained in
the systemic grammar is semantic or functional knowledge associated with
the choices, making this knowledge part of the model rather than an
awkward addition to the model. Systemic grammar is unusual in that it has
developed since the earlier days of the generative paradigm, yet is
specifically designed to describe language use.

Ironically, two of the attributes of systemic grammar which make it
effective for language generation also provide evidence of potential
difficulties with the formalism. The first of these is the diversity of
realization operators, and the complexity of the relationships among these
operators. These operators are convenient for the production of language
because they represent direct correspondences between constraints and
surface realizations. Unfortunately, as systemic grammars grow the
intricacies of the relationships among realization operators become more and
more significant and it becomes extremely difficult to formulate realization
rules. The construction of large. systemic grammars is thus a monumental
task; however, it is not clear whether the problem is in fact more difficult
than it would be using another formalism or whether such complications are
intrinsic to the task of developing large grammars.

The second feature of systemic grammar which can prove problematic is
the tendency to underspecify the language being generated. This tendency
is in fact indicative of a major practical difference between grammars
primarily used for generation and those generally used for language
analysis. In analysis, having a grammar which underspecifies a language
leads to the negative result of increasing the range of inputs which the
system will fail to recognize. Overspecifying a language, on the other hand,
simply increases the likelihood of treating an ungrammatical input as being
acceptable, which is hardly much of a concern in most natural language
interfaces. Overspecification has disastrous effects for generation, however,
as a system which actually produces ungrammatical output will be deemed
inferior to one which produces a restricted set of grammatical outputs. In
the case of systemic grammar, underspecification often results from a failure
to identify the relationships among features produced by the choice
networks, thereby limiting the ability to realize these features.

- 30-

Case grammar (Fillmore, 1968) has had an influence on the

representation of both linguistic and conceptual knowledge used for

generation. Case grammar is not really a ugrammar" at all, but a set of

basic relationships which may be used to associate linguistic structures that

are similar to one another in meaning. While these relationships are in

principle compatible with most linguistic formalisms, some of the basic

principles of case grammar have led to modifications of existing

representation schemes or to changes in the manner in which they are used.

The most important impact of case grammar is to suggest the

categorization of knowledge about the meaning of language which is

reflected in the structure of language. These categories are exemplified by

the ~~cases" in the grammar. The agent case*, for example, represents a

particular relationship between the motivator of an action and the action,

and corresponds closely to the subject of active "action" verbs. The recipient

case suggests one that receives a transferred object, and is often realized

linguistically by an indirect object, the object of the preposition "to", or the

subject of a passive <~transfer" verb.

Within grammar formalisms, case categories are generally described as

being properties of particular linguistic structures, or features. Cases

represent a particular class of features which may be related directly either

to surface constraints or to the conceptual content of an utterance. Because

cases may thus be implemented as a type of feature, case grammar affects

more the nature of the knowledge encoded in linguistic formalisms than the

notational constraints on the formalisms themselves.

Functional unification grammar (Kay, 1984) is one of the more recent

products of the systemic/functional tradition and lends itself well to the

design of language production mechanisms. The formalism, like systemic

grammar, belongs to the class of feature and function notations, where

constraints on linguistic structures are determined by sets of features.

Features are attribute-value pairs which may be used to represent a wide

range of information as in systemic grammars--morphological, lexical,

syntactic, and functional knowledge. The value of a feature may be a

literal, special symbol, or a composite set of features.

An important feature within a linguistic structure in unification

grammar is the ~·pattern" feature, which specifies the surface location of

each constituent specified by the feature set. The term "pattern" is often

used to specify the pattern along with the associated features in the set.

During generation, patterns are selected based on an input '~functional

description", or "FD", which is matched against the linguistic patterns of the

grammar to determine the linguistic output.

The following is an example of a simple unification grammar patternt,

representing the characteristics of verbs used with helping verbs, such as

"has gone":

• The particular set of cases, as well as the names for the cases. varies drastically from one system to

another. The terms used above are among those which are most consistently used.

t More detailed examples of unification grammar will be presented in Chapter 5.

- 31 -

[
CAT= verb
PATTERN = (HELPER VB)
FORM = perfective
HELPER= [

]

CAT= verb
ROOT= have
TENSE = A TENSE
PERSON = A PERSON
NUMBER = A NUMBER

VB [

]

CAT= verb
FORM = participle
TENSE =past
ROOT =A ROOT

In the above, the ~~A" is used to mark features whose value corresponds to
the given feature of the matched FD. This pattern could be matched against
the following input FD:

FD =
[

]

CAT = verb
ROOT= go
TENSE = present
FORM = perfective
PERSON = third
NUMBER = singular

The matching of this FD with the given pattern would result in the eventual
production of the verb ~~has gone", based on the joining of features from the
FD with the features of the matched pattern.

What would ordinarily be represented by a range of nonterminal
productions in traditional grammars is represented implicitly by the
alternation of patterns in unification grammar. Instead of rules of the form
(S -> NP VP) a unification grammar knowledge base has information of
the form (S = [CAT = sentence ... { tl, t2, t3, ... }]), where { tl, t2, ... }
represents the alternative sets of features which the sentence may have.
Thus there are no grammar rules per se. Choice information is explicitly
represented by alternation within feature values. A feature of the form F =
{ tl, t2, ... } thus represents a set of alternative choices which may be
evidenced in the linguistic structure produced. The "grammar" is entirely
contained within the set of alternative sentence patterns. The "unification"
in unification grammar refers to the process by which these patterns are
matched against the input, which in generation consists of a complete
functional description of the utterance to be produced. This functional
description is then "unified" with the grammar, by a process which is quite
similar to logical unification. The unification process is applied recursively

- 32 -

through the patterns contained in the grammar until the output surface
structure and lexical choices are completely specified.

Unification grammar has the advantages of systemic grammar for
generation: the ability to express features corresponding to various levels of
utterance realization, the encoding of functional information, and the
explicit representation of alternatives within the grammar. Furthermore,
unification grammar has the attractive advantages of a uniform
representation scheme for various types of linguistic knowledge and thus the
ability to apply the unification process recursively until an utterance is
successfully completed. This simplicity has made the use of unification
grammars within actual AI systems possible. Unfortunately, along with the
simplicity of the unification algorithm comes its computational complexity,
which causes inefficiency unless the consideration of alternatives is somehow
constrained.

Unification grammar bears a strong similarity to the pattern-concept
pair representation conceived by Wilensky (1981). Pattern-concept (PC)
pairs, like unification grammar, were intended to provide a declarative
representation to be used for both analysis and generation. The unification
grammar notation and PC pairs are compatible, but the PC pairs stress
particular aspects of language use: They facilitate the encoding of
specialized linguistic knowledge and enable the interaction of conceptual and
linguistic knowledge in language processing. For example, the following
pattern-concept pair corresponds to the use of the verb "remove":

[
PATTERN = (<agent> < p-o-s = verb root = remove> <object>

< <word = from> <container> > l

CONCEPT = (state-change
(object ?OBJECT)
(state-name location)
(from (inside-of (object ?COl:\~)))
(to (not (inside-of (object ?CO~~)))))

TENSE = (value 2 tense)
OBJECT = (value 3)
CONT = (value 5)
FORMS = (active-s passive-s)
]

Specifications of constituents in angle brackets (< >) includes
linguistic information (ROOT = remove) or conceptual categories (agent,
container) or a combination of linguistic and conceptual specification.
Additional information associated with each PC pair determines the
correspondences between elements of the conceptual structure and
constituents of the linguistic structure: The special "value" indicator
designates the association of a property of the PC pair with a property of one
of its constituents, specified by number. Thus "TENSE = (value 2 tense)"
implies that the tense of the pattern is the tense of the second constituent,
the verb. "CONT = (value 5)" indicates that the token unified with the
variable "?cont" in the conceptual template corresponds to the fifth
constituent, the object of "from". This PC pair could be used, depending on
the concept being expressed, to produce the sentence "You should remove
the files from your directory" or the infinitive phrase "to remove a file from
the top level directory". The use of a PC pair in building a linguistic

...

- 33 -

structure requires the unification of the concept part of the PC pair with the
concept to be expressed, elaboration of the constituents of the pattern part to
include information obtained from this unification, and combination of the
PC pair with another pattern which determines surface order.

Analysis

Among the similarities of the grammar formalisms discussed above is
the potential for the encoding of functional and semantic information into
the features which constrain linguistic output. This result can be achieved
in ATN grammars adapted for generation by using register sets to represent
this information. For guiding the generation process, the use of semantic
and functional features is important because this information influences the
choice process. A second similarity is the explicit representation of the
choices available at each stage in the generation process. This distinguishes
ATNs, systemic grammar, and unification grammar from traditional
grammars and makes them attractive for language generation systems.

Two primary considerations raised here are (1) how to represent the
information required to guide the choice process, and (2) how to describe the
relationship, if any, between the linguistic features explicitly represented in
the grammar and conceptual knowledge in the system. The correspondence
of syntactic features to semantic and pragmatic knowledge is often
nebulously defined: for example, information about cases, presumably used
to describe the underlying conceptual structure of language, is often encoded
strictly as syntactic knowledge in grammatical representations. "Choice
knowledge" in generation systems is often represented procedurally at choice
points in the linguistic representation. Isolating knowledge about syntax,
syntactic choice and lexical choice from conceptual knowledge may limit the
ability of a system to take advantage of generalizations. These
representational concerns, as well as solutions to other problems in the
formalisms discussed here, will be considered in detail in Chapter 5.

Each of the representation schemes discussed here has found its way
into implemented natural language generation systems. The ATN
formalism was used in the Simmons and Slocum and Goldman generators
discussed earlier, and is still popular, particularly in some of the European
systems. Systemic grammar and unification grammar are the foundations
for linguistic representation in recent programs. The next section covers the
design of these programs and their representational and processing
strategies.

2.4. Applications of Generation Systems

Much of the recent work on language generation has resulted in
computer implementations suitable for use within large-scale AI systems.
These successful realizations of language production models highlight both
practical concerns and theoretical problems. This section presents an
overview of these systems; many of their details will be further developed in
future chapters.

One of the most extensive projects within the language generation
domain is the MUMBLE generator designed and developed by David

- 34-

McDonald (1980). MUMBLE is a portable mechanism which can serve as
the natural language back end to an expert system or other AI program. Its
linguistic knowledge base features extensive grammatical coverage of the
English language, carefully separated from any conceptual knowledge to
allow for domain-independence. The generator has been used to produce
multi-sentential texts from several different internal representations. One
example of the output produced by MUMBLE is the following text, produced
from a representation of a proof in a logical form used by Chester (1976):

Assume that there is some barber who shaves everyone who doesn't
shave himself (and no one else). Call him Giuseppe. Now, anyone
who doesn't shave himself would be shaved by Giuseppe. This
would include Giuseppe himself. That is, he would shave himself,
if and only if he did not shave himself, which is a contradiction.
This means that the assumption leads to a contradiction. Therefore,
it is false, there is no such barber.

McDonald divides the generation process into three components: the
expert program, which handles problem solving or reasoning within the task
domain; the speaker component, which makes the decision of ~'what to say"
and constructs a ·~message" describing the content of the utterance to be
produced, and the linguistic component, which, using its syntactic knowledge
as well as a Hdictionary" to link domain-dependent components of the
message to linguistic structures, produces the final utterance. Identifying
himself with the systemic tradition, McDonald presents the function of the
linguistic component of his program as a "decision making" process. The
production of an utterance involves a sequence of decisions made during
various stages in its realization. Much of the knowledge required to control
these decisions is embedded in "interface functions" which essentially
determine from a message element what features should be attached to its
corresponding linguistic structure. These functions, like the dictionary, are
reimplemented for each domain in which the generator is used.

The process of constructing an utterance in MUMBLE is analogous to
the application of a systemic grammar as described in the previous section.
The operation of the speaker component, which determines what message
elements are to be passed along to the linguistic component, corresponds to
the ~'choosers" operating in systemic choice systems to select features. The
interface functions of the linguistic component, which process each message
element and guide syntactic structure and lexical choice, correspond to the
realization operators described earlier. The form of message elements in
MUMBLE, however, is much more flexible than in most systemic
implementations. In fact, most message elements produced by the speaker
component of MUMBLE are entries in the knowledge base of the expert
program; thus the expert program determines the nature of the message
elements.

The interface functions of MUMBLE may be divided into two classes:
those which apply the grammar of the system to produce syntactic structure
from message elements, and those which apply the dictionary of the system
to produce lexical elements from the message. McDonald thus divides the
linguistic component into two stages. The first process is the construction of
the surface structure of the output, and the second the traversal of this
structure while making lexical choices subject to constraints. Lexical and
structural decisions are thus separated in MUMBLE.

- 35 -

McDonald attributes a number of the aspects of the design of MUMBLE
to a combination of psycholinguistic and practical concerns. His decision
making model, like other systemic approaches, is subject to inefficiency in
the search of possible choices. To allay this problem, McDonald makes
several assumptions. Notable among these is the "indelibility" stipulation:
that once the generator has produced a linguistic element and attached it to
the current surface structure tree, the decision to attach it is final. The
process is therefore not subject to time-consuming backtracking. The ability
to meet this stipulation is provided in part by the division of the linguistic
component into two phases, the first stage producing the surface tree and the
second stage traversing the tree and applying surface constraints. While
structures attached in the first phase are indelible, they may be augmented
during the second phase. The operation of the generator thus models the
psychologically plausible hypothesis that dynamically augmenting output as
it is produced is preferred to rebuilding structure. It is unclear whether the
no-backtracking strategy, however, can lead to the failure to produce an
utterance that would otherwise be within the capabilities of the system.

The TEXT generation system (McKeown, 1982), like McDonald's
program, tackles the language production problem by dividing the task into
"what to say" and "how to say it" components, but concentrates on the
particular domain of producing explanations in response to questions about
databases. Unlike many question-answering problems, the type of question
that McKeown concentrates on is the simple question requiring a
substantial response:

Q: What kind of data do you have?

A:
All entities in the ONR database have DB attributes REMARKS.
There are 2 types of entities in the ONR database: destructive
devices and vehicles. The vehicle has DB attributes that provide
information on SPEED-INDICES and TRA VEL-MEA..""'S. The
destructive device has DB attributes that provide information on
LETHAL-INDICES.

McKeown's system is driven at a high level by "rhetorical techniques",
schemata which represent textual organizations essentially corresponding to
specialized plans for producing particular explanations. Attached to each
schema are rules for passing information to the next level in the system,
which incorporates "relevant" information into the explanation, filling out
the schema with details of the explanation. A discourse component adds
focusing constraints to the completed schema, before it is passed to the
tactical component to be realized in English. The schema at this point
corresponds to a completed functional description of the output, and a
unification grammar is used to produce the final response.

The "what to say" elements of TEXT, which constitute what McKeown
refers to as the strategic component of generation, divide the role of
MUMBLE's speaker component into several levels. The generation process
thus consists of a ~~pipeline" of processes, starting with the application of
rhetorical techniques, followed by the "filling", and focusing mechanisms.
The "how to say it" process, like McDonald's speaker component, is divided
into lexical and grammatical elements, although in TEXT the lexical

decisions are made first.
In TEXT, as in MUMBLE, special care is taken to separate the

knowledge influencing the generation task at various levels. This has the
great advantage of modularity. In MUMBLE and in other generators,
modularity is exploited for the purpose of developing a portable generation
mechanism. In TEXT, it is exploited in part to allow for concepts such as
focus in discourse and rhetorical schemata to be treated in detail by
specialized mechanisms. Modularity was also used for division of labor in
TEXT, as portions of the tactical component as well as the database
representation scheme (McCoy, 1982) were developed semi-independently of
the higher level strategic components. This separation of knowledge has its
adverse effects, however, as it requires that the tactical component,
searching through a unification grammar to satisfy its input constraints, not
access any conceptual knowledge to guide its selection. It thus is relegated
to a straightforward and potentially time-consuming unification algorithm.

There have been a number of other noteworthy efforts devoted to the
development of explanation capacities for expert systems. Swartout (1981)
produces coherent medical explanations for DIG, a digitalis therapy advisor.
Kukich (1983) implemented a generator called Ana which automatically
produces stock reports from daily statistics of the behavior of Dow Jones
averages. While these systems are interesting in their own right, it is
difficult to isolate their underlying theory from the strict constraints of the
knowledge representation from which they generate.

A number of research projects are geared to the task of producing
connected texts in general. Meehan (1977) developed a program, TALE
SPIN, using knowledge about the goals of story characters to control the
production of fairly lengthy texts. The idea of using "story grammars"
(Klein, 1975), extending traditional grammars for use in text analysis and
generation, sparked a great deal of debate, but gradually lost popularity.
Yazdani (1982) has continued to attempt to automate story writing using a
problem-solving approach. Mann and Moore (1980, 1981) have exploited the
principles of systemic grammar and made use of the idea of rhetorical points
in the undertaking of a major text generation project. This work, while
ultimately geared towards the construction of powerful computer programs,
has concentrated to date on the development of a large systemic grammar.

Much of the research presented in this thesis was inspired by the
development of PHRED (PHRasal English Diction) (Jacobs, 1983, 1985), a
natural language generator designed for use in a variety of domains.
PHRED was constructed to share a knowledge base of pattern-concept pairs
with PHRAN (PHRasal ANalyzer) (Wilensky and Arens, 1980) as part of a
real-time user-friendly interface. The knowledge base of pattern-concept
pairs is similar to a unification grammar, but the manner in which it is used
differs from unification grammars in at least two major ways: First, the
interactions among syntactic and conceptual features are facilitated while
distinguishing the conceptual nature of conceptual features. Conceptual
features are elements of the conceptual structure from which PHRED
generates, while linguistic features are either input constraints or are
selected during the generation process. Second, the generator accesses its
knowledge base using a specialized "predisposition" mechanism to retrieve
candidate patterns, applying the expensive unification algorithms only after
the predisposition phase has produced an ordering of potential patterns.

- 37 -

The process by which PHRED produces an utterance from its conceptual

representation involves three stages. Fetching is the process of retrieving

candidate patterns from the knowledge base of pattern-concept pairs.

Restriction is the matching of a candidate pattern to the specifications

derived from the concept and the addition of constraints to a selected

pattern. Interpretation is the production of grammatical output from the

chosen pattern. These phases are applied recursively and repeatedly until

the process results in the complete specification of an utterance. At each

application of the three-stage process, the fetching mechanism performs a

hash based on the combination of features which specify the conceptual

content and linguistic constraints which are to be satisfied by a constituent.

This results in a stream of candidate patterns, which are further specified by

the restriction mechanism. The restriction process uses a unification

algorithm to assign feature values, but also adds ordering and agreement

constraints based on the combination of pattern-specific information with

general linguistic knowledge. The interpretation mechanism then applies

these constraints to complete the constituent or recursively invoke the

fetching mechanism.
Linguistic knowledge in PHRED, consisting of general syntactic

constructs, specific idiomatic knowledge, and lexical/morphological

information, is all handled by the same mechanisms. Thus, while the

overall scheme of the generator is the successive refinement of the output

specification, similar to the strategies used by Appelt, McDonald, and

McKeown, the process is simplified by the uniform treatment of knowledge.

This knowledge is, however, restricted to the tactical, or "how to say it",

level of generation.
PHRED and PHRAN were used as central components of the user

interface to the original version of the UNIX Consultant System (UC)

(Wilensky, Arens, and Chin, 1984). This system answers questions and

solves problems related to the UNIX operating system. UC passes the

conceptual form of its responses, usually either questions or answers to

questions, to the PHRED generator, ·which expresses them in the user's

language. The consultant can answer questions and produce its responses in

either English or Spanish, as evidenced by the examples below:

User: How do I delete a file?

UC: Typing 'rm filename' causes the file filename to be removed from
the current directory.

User: Como se borra un archivo?

UC: Para borrar el archivo de nombre filename del espacio de trabajo,
se escribe 'rm filename'.

User: How do I delete all the files from a directory?

UC: Typing 'rm *' will remove all files within the current directory
from the current directory.

Typing 'rm -r directoryname' will cause all files and directories
recursively inside of directoryname to be deleted from

directoryname and removes the directory directoryname from the
working directory.

There are a number of practical advantages to PHRED as the

generation component of a natural language system. Having a knowledge

base shared between analyzer and generator eliminates the redundancy of

- 38-

having separate grammars and lexicons for input and output It avoids
possibly awkward inconsistencies caused by such a separation, and allows
for interchangeable interfaces, such as the English and Spanish versions of
the UC interface. It operates in real time: The Unix Consultant requires
no more than nine seconds of CPU time to answer the questions above, of
which only three seconds or less is generally used by the generator.

The phrasal approach to language processing realized in PHRED has
proven helpful in generation as in analysis. PHRED commands the use of
idioms, grammatical constructions, and canned phrases without a specialized
mechanism or data structure. It does so without restricting its ability to
utilize more general linguistic knowledge.

While PHRED affords extensibility, simplicity, and processing speed, its
design incorporates a cognitive motivation as well. It diverges from the
traditional computational approach to language as a symbol manipulation
process, and treats it more as an associative process among knowledge
structures. The phrasal approach minimizes the autonomy of the individual
word, the bane of some Artificial Intelligence approaches to language. The
treatment of most linguistic knowledge as declarative bears cognitive as well
as practical significance. PHRED has proven to be a simple and effective
program, but the difficulty in extending the program to incorporate higher
level language production components has suggested an approach in which
abstract knowledge may be more easily exploited.

2.5. Dialogue, Context and Memory

At least two of the programs discussed in the previous sections, those of
McKeown and of Appelt, have made extensive use of focusing constraints on
the linguistic structures generated. Others, such as McDonald's (1980), have
considered discourse structure and constraints. Most of the systems apply at
least a simple set of heuristics to guide pronoun reference and other
context-dependent phenomena.

Much of the current treatment of focus and dialogue stems from the
work of Grosz (1977), who distinguished two types of focusing information:
global and immediate focus. Grosz concentrated on the problem of
representing information about global focus, items which remain in a
speaker's center of attention throughout a discourse, as opposed to those
which are transiently drawn into focus within a particular utterance. She
handled issues of global focus by inventing focus spaces. sets of items within
the speaker's knowledge base which are "opened" or brought into focus when
one of the items is referred to.

Sidner (1979) added the consideration of immediate focus to the
literature, concentrating primarily on anaphora and their relation to the
shift of focus. Sidner specified four rules for maintaining and shifting focus,
which influence the constraints on anaphora within the discourse.

Grosz's and Sidner's work was aimed at the comprehension of dialogues,
but McKeown was able to extend many of their basic ideas to aid language
generation within a dialogue. The pool of "relevant knowledge" alluded to
earlier, used to fill out TEXT's rhetorical schemata, corresponds to Grosz's
focus space. In the next stage, as the schema is filled with propositional
information to be realized in the output text, the generator may have to
select from a set of potential propositions. In this stage Sidner's immediate
focus rules are used to filter out propositions which violate focus constraints.

....

- 39 -

Among the propositions remaining, TEXT applies a simple set of heuristics
to make the choice of immediate focus. The ordering of these processes may
seem awkward, but is effective in producing natural anaphoric references,
essential for the multisentential explanations generated in McKeown's
system.

Hobbs (1978) raises the issue of how to describe coherence in discourse,
a question related to focus but more devoted to structural and lexical
decisions than to anaphora. Hobbs' work details local and global coherence,
in keeping with the divisions of Grosz. The research is geared primarily to
the analysis of dialogues; however, it is directly applicable to language
generation. Many of the problems covered by Hobbs' work are not addressed
in any current language generation system.

Focus, coherence, anaphora, ellipsis, and other dialogue-related
phenomena are all aspects of context in language processing. Understanding
anaphora, for example, is accomplished by the interaction of knowledge
about the syntactic constraints on anaphoric references with knowledge
about referents which are in the global focus. Generating anaphora can
likewise be viewed as the product of the interaction between syntactic
knowledge and knowledge about the conceptual objects which are available
for reference. As Hobbs makes clear, this interaction between conceptual
knowledge about a discourse and knowledge of its syntactic structure is a
widespread phenomenon. It is thus an attractive idea to consider the
modeling of context in general in such a way that local and global foci, and
syntactic and conceptual influences, can interact in both the understanding
and generation of language in discourse.

Arens (1982) developed a ((context model" for use in language

understanding, primarily in resolving references. The main idea behind the
model is that such understanding seems to be the result of the resolution of
a variety of effects on knowledge structures ((active" in memory. These
effects may include biases due to syntactic constraints, preconceptions or
presuppositions, or the semantic and pragmatic interpretation of the ongoing
dialogue. The model proposes a ((context buffer" consistent with Grosz's
((focus space" idea, but meant to be more generally applicable. The context
buffer is a set of concepts which are active in the current context.
Activation may come from direct reference in the discourse, or may spread
through ((clusters" of associated concepts in long-term memory. This model
is related to work in cognitive psychology (cf. Quillian, 1966; Anderson and
Bower, 1973). When a new reference requires resolution, it activates possible
referents in the context buffer and is matched against the most active. The
Unix Consultant uses this method uniformly to resolve references dependent
on contextual biases.

There are numerous difficulties with using a spreading activation model
in computer systems. The obvious technical problems are: (1) simulating an
inherently parallel process, (2) determining the strength of association
necessary to control the spread of activation, and (3) determining which

concepts are associated at all. The first problem detracts mostly from the
efficiency of the model, but the second and third problems are fundamentaL
They will likely be solved only by a simulation of the knowledge acquisition
process. Introspection and experimentation are both extremely limited in
their ability to provide functional networks for spreading activation models.

- 40-

Analysis

The practical task of incorporating knowledge about context into a

language generation system is one of modeling the implicit effect of a large

body of knowledge. The research discussed in this section suggests that

formulating the rules required to apply contextual constraints to language

involves the consideration of a tremendous quantity of knowledge, and doing

so explicitly is a computationally unattractive prospect. The TEXT system

demonstrates that applying these rules at several levels in the generation

process improves the quality of output, but increases the complexity of the

task. The key to facilitating contextual influences in generation seems to

be in the representation of knowledge which can be used to simulate the

effect of relevant context on the selection of linguistic structures.

l

..

- 41 -

Summary: A Schematic View of Some Generation Research

The following diagram presents a general view of some of the aspects of
language generation discussed here, with respect in particular to some of the
more recent generation systems and others presented in this chapter. The
rectangles indicate rough groupings of work according to linguistic
representation, emphasis, ttstrategic" approach, and primary test domain:

Figure 2-1.

- 42-

3. A Framework for Knowledge about Language

One of the main practical problems with the language generation
systems discussed in Chapter 2 is the difficulty in extending and adapting
these systems. I have proposed that this difficulty is due to the narrowness
in scope of the design of such programs, and that the key to extensibility
and adaptability is to focus on the representation and interaction of
knowledge in a system"

The research presented here has been largely driven by the successes
and limitations of PHRED. The problems with knowledge representation in
PHRED highlight some theoretical aspects of language processing which
seem particularly relevant to the development of more powerful generation
systems. Foremost among these is the need to take advantage of
abstractions or generalizations in the representation of specialized
knowledge. The consideration of this requirement is part of the theoretical
foundation of the Ace representation and the KING generator.

This chapter presents examples of how the problem of exploiting
generalizations appears in language generation, and gives an overview of
the aspects of the Ace framework which address this problem.

3.1. Specialization and Generalization

Part of the justification for the development of the PHRAN and PHRED
systems came from work in cognitive linguistics (cf. Chafe, 1968, 1984),
founded in the consideration of actual spoken and written texts. Such
research often highlights the specialized constructs prevalent in ordinary
language, and tends to downplay the importance of a "core" of grammatical
knowledge. Linguistic knowledge is viewed as a wide range of specialized
linguistic patterns with associated knowledge about the meaning of these
patterns. Related research on "sublanguages" (Harris, 1968; Kittredge and
Lehrberger, 1983) formed part of the theoretical basis of Ana (Kukich,
1983). Ana was able to generate fairly sophisticated stock market reports
by utilizing knowledge about the special phrases and constructs used in that
domain. PHRED, similarly, produced output for the UNIX Consultant
primarily by using specialized linguistic knowledge.

The use of specialized phrasal knowledge can have a substantial
influence on the robustness and efficiency of a natural language system. If
specialized linguistic knowledge is indeed as pervasive as Chafe would
argue, a system which deals only with ((core" grammatical and productive
constructs will handle but a small portion of a language. A generator
working within such a system would be severely limited in the range of
utterances which it could produce and in its ability to produce an output
appropriate to a given context. On the other hand, failing to take advantage
of linguistic generalizations can introduce redundancy and possibly
inefficiency into the knowledge base. Robust and efficient language
processing therefore demands a balance between specialized and generalized
knowledge. This balance was one of the theoretical goals for PHRAN
(Wilensky and Arens, 1980), but the actual implementation of PHRA.N and
PHRED did not exploit abstract knowledge as effectively as possible.

The need for command of specialized constructs in natural language
generation systems is not obvious, but surfaces frequently as the capacity of
the systems is increased. For example, the UNIX Consultant is called upon

- 43 -

to give responses such as the following:

You need write permission on the parent directory.
Typing 'vi <filename>' gets you into the 'vi' editor.
The 'ps' command gives you the status of your processes.

Terms such as "write permission" and "parent directory", discussed
earlier, are specialized in that they are specifically used conventionally to
refer to concepts in the UNIX world. The use of expressions for needing
write permission, getting into an editor, and giving the status of processes
also were handled in PHRED using specialized patterns. But these
expressions seem closely related to the constructs used in the following
examples:

You don't have write permission on the parent directory.
Type ':q' to get out of the editor.
'hostname' gives you the name of the machine.

Treating knowledge about the constructs above entirely as specialized
knowledge makes it difficult to take advantage of the similarities among
them. This difficulty aggravates the problem of adding new, related
knowledge to the system. For example, one can "need" write permission,
"have" write permission, "get" write permission, and "give" write
permission. These verbs are often used in the UNIX domain in relation to
concepts having to do with access, control, and permission. The specialized
meaning of "needing" write permission seems closely related to the
specialized meaning of ''having" or ''getting" write permission. Similarly,
"getting into" an editor is related to "being in" an editor and "getting out of'
an editor. "Giving" names and status is related to "getting" names and
status. Where such relationships exist, it should be possible to take
advantage of them by encoding certain knowledge as knowledge about a
class of related expressions. This eliminates the redundancy of treating all
the knowledge as specialized and limits the amount of information which
must be encoded for a new related expression. Therefore, it seems that
there are generalizations about the use of these expressions that should be
exploited by a generation system which produces them.

Generalizing about Give and Take

The ability of a generator to take advantage of generalizations in
producing constructs such as the above depends on its command of what I
call high frequency. low content verbs. These include "need", "have", "give"
and "get" above. Other high frequency, low content verbs include "take",
"make", "be", "do", and "put". All of these verbs may be used in a variety of
contexts and take on specialized meanings according to how they are used.
Their consideration here is important for two reasons: (1) A generator with
a realistic command of the English language must necessarily use these
verbs frequently, and (2) the interpretation of the verbs is heavily dependent
on context, thus making an excellent testing ground for the representation
used by the generator.

In order to determine the types of generalizations that can be exploited
in representing knowledge about high frequency, low content verbs, it is
helpful to consider examples from domains other than the UNIX Consultant.
The following represents a small, representative set of examples of the use
verbs ''give" and "take" in a variety of contexts*:

(la) Frazier gave Ali a punch/hook/jab.
(lb) Ali took a punch/hook/jab from Frazier.
(2a) John took a vacation from work.
(2b) John's boss gave him a vacation.
(3a) The doctor took (over) his colleague's patients.
(3b) The doctor's colleague gave him all his patients.
(4a) Could you give me some time?
(4b) Take a few minutes.
(5a) The operation took Frank's voice.
(5b) The operation gave him his voice back.
(6a) Humpty took a great fall/spill
(6b) ? What gave Humpty his fall/spill?
(7a) Tip gave the floor to Ted.
(7b) Ted took the floor.
(8a) Give Jesse a chance.
(8b) Jesse doesn't take chances.
(9a) AI was given command/charge of the troops.
(9b) He took charge/command.

The examples above illustrate a range of uses of the verbs "give" and
"take" which would seem to suggest that many of the specialized or non
prototypical uses of the verbs are based in some common metaphorical
relationship, possibly in a metaphorical concept of possession transfer. This
does not, however, serve as a general explanation for the use of the verbs.
There are, to give a few, problematic constructs such as the following:

(lc) Ali took a clout/sock/? from Frazier.
(2c) ? John took a vacation from his boss.
(4c) I'll take my time.
(5c) ? The operation gave him his speech back.
(5d) The operation gave him his hearing/sight back.

(5e) ? John took his hearing back from the operation.
(6c) ? Humpty took a slip.
(8c) ? Jesse took a chance from the New York primary.
(lOa) We gave Reagan the benefit of the doubt.

• The indication .. .,,. here is used to mark ;;entences which are awkward or incomprehensible. It is not a

syntactic judgement.

- 45-

(lOb) ? Reagan took the benefit of the doubt.

Some of the examples above illustrate uses of "give" and "take" which
are consistent with uses in the first set of examples, but are simply not
generated, often because of some other way of expressing a given meaning.
This may be the case with (lc), (5c), and (6c). Examples (2c), (4c), and (8c)
represent constructs involving "give" and "take" which sound awkward or
take on meanings which do not seem consistent with similar constructs in
(2b), (4a), and (Sa). Examples (5e) and r lOb) seem to fail because of the
implausibility of the idea that the subject could have played an agent-like
role. (4c) and (8c) appear to demonstrate that a specialized construct
commonly used to mean one thing is sometimes blocked from taking on
another meaning. (2c) sounds awkward due to a combination of these two
factors.

These examples indicate that the metaphorical view of certain concepts
as possession concepts and certain events as possession transfers might
provide a good general rule, but does not entirely explain the use of
constructs containing "give" and ~~take". Often the specialized uses of ~~give",
~~take", and ~~have" show a consistency in the types of objects with which
they are used, but retain subtle variations in their meaning when used with
these objects. For example, !!giving time", !!taking time", and !!having time"
along with ~'giving a minute" "taking an hour", and the like, illustrate the
convenient generalization that verbs describing the creation, allocation, and
consumption of a resource may be used to refer to the allocation and use of
time. ~~Take my time" in (4c), however, invokes a specialized meaning of
~•take" different from ·~take the time [to do something]". Sometimes such
constructs exhibit inconsistencies as well. For example, ~'John has hearing"
sounds awkward, while ~'John has good hearing" does not, presumably
because the content of the former is ordinarily expressed by ·~John can hear"
or ~'John is able to hear". The generalization that "have" may be used with
the same class of objects as "give" would fail in this case. Applying
generalizations about these verbs too broadly thus could cause a generator
to produce awkward or inappropriate sentences. The problem for generation
systems is to exploit the general relationships which may apply to constructs
such as those involving ~'give" and !!take" while also facilitating the
representation of specialized knowledge.

The following two sections discuss two features of a knowledge
representation framework designed to facilitate the use of generalizations in
language production.

3.2. Views and Indirect Reference

One aspect of a knowledge representation which makes the encoding of
linguistic generalizations easier is the explicit representation of referential
relationships. These include relationships between linguistic structures and
conceptual structures, and relationships between conceptual structures
which may be used in indirectly referring to concepts. The most common
such relationship is called a view (cf Wilensky, 1984; Jacobs and Rau, 1984).
A view is a relationship between two concepts which represents the fact that
an instance of one concept may be expressed, or viewed, in terms of the
other, without requiring that the instance be a instance also of the second
concept. This notion is useful in generation, where one may indirectly or

- 46-

metaphorically describe a concept by describing a related concept.
The first set of examples involving "give" and "take" illustrated how the

two verbs make be used in expressions similar in meaning. "Give" and
''take" may often be used to describe indirectly the same event, as may the
related verbs "get" and "receive". In the case of "John gave Mary a book"
and "Mary took a book from John" one might argue that the event being
described is a giving or a taking event. With "Ali took a punch from
Frazier" and "Frazier gave Ali a punch", which might express the same
concept, it is difficult to say whether this concept can be classified as either a
giving or a taking. But there are consistencies between the two sentences;
that is, the ''punch" is always the object, Ali is in a metaphorical sense the
recipient of the punch, and Frazier is the source. One way for a system to
take advantage of this consistency is to represent as an abstract concept the
class of events to which these verbs often refer, and to represent explicitly
the relationship between these verbs and the abstract concept.

The abstract concept which many uses of "give" and "take" express is
the transfer-event concept. We can hypothesize that the verb ''give"
describes a concept giving, and "take" describes a concept taking, and that
these concepts are in turn related to the transfer-event concept. If we call
the agent of a taking action the taker, and say that the transfer-event takes
place among source, recipient, and object, we can make the following
generalization:

Transfer-events may be viewed as taking, with the recipient playing
the role of taker.

The relationship between the transfer-event concept and the taking
concept is called a view because it is a relationship whose application
depends on context. In other words, a given event may be classified as a
transfer-event and not as a taking event, but in a particular context the same
event may be viewed as taking. This view is often applied in the context of
producing language, as language provides a common means of expressing
taking and not of expressing transfer-event. A similar view relates transfer
event to giving. By describing giving or taking, one is indirectly describing
the transfer-event.

Views are a type of structured association. A structured association
(Wilensky, in preparation) is a link between two concepts which in turn
joins other concepts whose relationship depends on that link. These
secondary relationships are called role-plays, such as that between taker and
recipient above. Role-plays are structural relationships associated with the
view or other structured association. When transfer-event is viewed as
taking, the recipient of the transfer-event is viewed as taker. There are
several types of structured associations implemented in Ace; these will be
discussed in Chapters 4-6.

One application of views is in the representation of metaphorical
relationships such as those described by Lakoff and Johnson (1980). These
relationships often serve to enable the use of a linguistic construct to refer
indirectly, or metaphorically, to a concept, much in the manner described
above. In the "give" and "take" examples, we can postulate a metaphorical
relationship between actions and transfer-events such as the following:

,._.

- 47 -

Actions may be viewed as transfer-events. with the actor playing the
role of source, the object playing the role of recipient, and the action
itself playing the role of object.

This metaphorical relationship may be used in the following manner: A
given action may be viewable as a transfer-event, which in turn may be
viewable as a giving or taking action. This enables the use of ugive" and
''take" to refer indirectly to a range of actions, as well as providing the role
play relationships which guide the linguistic structure produced. By
allowing the use of linguistic structures describing giving or taking
indirectly to describe other actions, a generator can then make use of these
views to produce a range of constructs. The following examples conform to
this general description:

(la) Frazier gave Ali a punch.
(lb) Ali took a punch from Frazier.
(lla) John was given a kiss on the cheek by Mary.
(llb) John gave Mary a hug.
(llc) John gave Mary a massage.

The "give" and "take" constructs above may all be explained using the
views presented here. For example, the concept described indirectly in (la)
and (lb) may be represented as a punching action, where Frazier is the actor
and Ali is the conceptual object or patient. The view of actions as transfer
events relates this action to an abstract metaphorical transfer-event in which
Frazier is the source, Ali the recipient, and the punching is the object. The
view of transfer-events as giving relates this event in turn to a giving action
in which Frazier is the actor. This enables the indirect description of the
event using "give" as in (la). A similar view between transfer-events and
taking actions represents part the information necessary to produce (lb).
The grammatical roles of Frazier, Ali, and "punch" in both sentences may be
predicted by the action as transfer-event view. The use of these views in the
generation process is covered in detail in Chapters 7 and 8.

Examples such as these illustrate how views may be exploited as
generalizations in the production of language, particularly with respect to
uses of the verbs "give" and "take". The next section discusses a second
method of representing generalizations. The way in which these
generalizations are used in the representation of specialized knowledge is
discussed toward the end of this chapter.

3.3. Hierarchies

Hierarchies can allow for parsimony in conceptual representations by
permitting knowledge common to multiple categories to be encoded at an
abstract level and inherited. This also makes the addition of specialized
knowledge in a system easier by allowing certain properties of a new
knowledge structure to be implicitly represented by virtue of membership in
an existing class of structures.

Inheritance has an important place in this representation. An example
of a hierarchical piece of knowledge is that giving is a subcategory of action
in which the giver plays the role of actor*. This allows the concept of giver,

• Those familiar with other knowledge representation schemes should beware that the use of terms 3uch

as actor, action, and event here differs from their use in most other systems. KL-ONE applications

- 48-

for example, to inherit knowledge about actors, such as the knowledge that
the actor of an action is animate.

Hierarchical associations also permit the application of abstract views to
more specific knowledge structures, and thus allow for these abstract views
to be used in a variety of constructs. For example, the communication
transfer event is a subcategory of the transfer-event in which the message
plays the role of the object transferred. The action telling is a view of
communication-transfer category. The knowledge that a communication
transfer has a source and a recipient is inherited from transfer-event. This
knowledge may be used in constructing dative phrases, just as it is used
with the verb ''give". Thus the relationship between Mary in ''John told
Mary a story" and the role which Mary plays in the underlying concept
utilizes the same generalized knowledge as the relationship between Mary
and recipient in "John gave Mary a book."

Relationships among knowledge structures in this framework are
themselves treated as knowledge which may be hierarchically organized.
Thus a view may be a subcategory of another view. For example, the
relationship between communication-transfer-event and telling may be
represented as a subcategory of the relationship between transfer-event and
giving. An important feature of this is that the structural relationship
between teller and source derives from the relationship between giver and
source. The knowledge about the correspondences between conceptual and
linguistic structures is thus often represented at an abstract level in the
system and inherited for particular relations. In this way, giving, selling,
and telling share common knowledge, as do buying and taking. Knowledge
about the similarities in linguistic structure among descriptions of these
concepts is thus encoded parsimoniously. Related concepts can be easily
added by creating each new concept as a subcategory of an existing concept.

Hierarchies can be used to organize both conceptual and linguistic
knowledge. I have suggested that linguistic constructs may themselves be
subcategories of other linguistic constructs, and in these cases parsimony is
served by the representation of the category structure. For example, there
is a general verb phrase category in Ace under which a number of types of
verb phrase constructs, such as finite verb phrases, infinitive phrases, and
gerund phrases, are organized. Certain knowledge which is associated with
this verb , phrase category may be inherited by all subcategories. For
example, an infinitive phrase exhibits the same grammatical structure as a
finite verb phrase in terms of the ordering of verb, indirect object, etc.,
though the constraints on how the infinitive phrase is used differ from those
on finite verb phrases. A more complex hierarchy is evidenced in the
organization of knowledge about helping verbs: Modal auxiliaries are a
subcategory of auxiliaries, which are a subcategory of "helping verbs".
Helping verbs include verbs such as "keep" and ''get", as in "keep going"
and "get stranded"; auxiliaries include "be" and "have", and modal
auxiliaries include ''do", "would", and "should". The hierarchical
organization of these verbs allows aspects of their behavior to be inherited
from their category groupings. Auxiliaries, for example, may all appear
before the subject in a question form, as in "Has John gone?" Modal
auxiliaries, furthermore, are always followed by a tenseless form of a verb.

especially tend to distinguish actions as being ab8tract concepts and events a.s mstances of actions which
have actually occurred. Here act!ons are views of events, and both are abstract concepts.

- 49 -

Hierarchies here, as in other knowledge representation frameworks,

may be used to take advantage of generalizations by allowing knowledge

structures to derive certain properties from more abstract concepts. This

allows the use of generalizations for certain linguistic knowledge, such as

the use of the dative form in ''John told Mary a story" and "John gave Mary

a book." This may be accomplished by representing relationships such as

that between the recipient of the abstract transfer-event and the linguistic

representation of the indirect object, so that this relationship may be used in

many or all such dative forms. This type of representation is covered in

Chapter 6.

Hierarchies and views are often alternative ways of making use of a

generalization. In the case of "tell" above, the generalized knowledge which

can be used to constrain the dative form derives from the representation of

the communication-transfer as a subcategory of transfer-event in the

conceptual hierarchy. In the case of the metaphorical uses of ''give" and

"take" in the previous section, the common knowledge derives from the

representation of a variety of actions as views of transfer-events. The same

effect might be accomplished by grouping such actions under the category of

transfer-event in the hierarchy. The main argument against doing so is that

it seems counterintuitive to classify such events under a common conceptual

category merely because they may be described metaphorically using the

same set of verbs. Thus we maintain the distinction between a concept

which may be viewed as another and a concept which is a subcategory of

another.
The previous section, in describing how views are used in this

representation scheme, discussed the use of metaphorical views to enable the

production of constructs such as "John gave Mary a hug". This section

outlined the use of hierarchies to represent general knowledge about actions

and events. The generalizations described here must be selectively

employed; in other words, there must be a facility for handling exceptions to

generalizations. The next section deals with how specialized knowledge is

used to restrict these generalizations.

3.4. Restricting the Use of Views

One problem with the use of views to expand the range of concepts to

which a linguistic structure can refer is the overgeneralization problem.

Most of the relationships which are captured by the notion of a view are

nothing more than generalizations, and are not applicable under many

circumstances. For example, the indiscriminant use of the view of actions as

transfer-events could lead to awkward constructs such as the following:

(lld) ? A kiss on the cheek was taken by John from Mary.
(lle) ? Mary took a hug from John.
(llf) ? Mary took a massage from John.
(llg) ? John gave Mary an embrace.

The application of a structured association is the use of that association

to instantiate a new knowledge structure from an existing structure. In the

case of generation, the application of views leads to the instantiation of new

- 50 -

concepts which might or might not be useful in constructing an utterance.
There are three basic means of restricting the application of general views,
thus preventing the production of inappropriate constructs such as (lld-g).
The first means is that there may be constraints on certain roles, and that
views are blocked which would place a concept in a role where it violates a
constraint. Thus, if there is a constraint on the taker role which dictates
that the taker must play an agent-like role in the taking action or meet some
other stipulation, this constraint could be used to prevent sentences such as
(lld-D, where Mary does not seem to play an agent-like role.

The second means of restricting the range of constructs which may be
produced by applying a view is by using macro-associations. A macro
association is a sequence of structured associations which joins a specific
concept to other knowledge structures. For example, in the case of "giving a
kiss", we can hypothesize that kissing is related to giving by a sequence of
two views, i. e., action as transfer-event and transfer-event as giving, which
are not applied independently. This would ordinarily prevent the use of
''take" to refer to kissing. Unlike the constraints described above, such
associations can be easily used to explain arbitrary preferences among
views. This aspect of Ace will be further discussed in Chapter 6.

The third means of restricting the use of views is the fact that views are
seldom "triggered" by abstract knowledge. The application of a view is
generally performed only when some special knowledge is available. For
example, the view of actions as transfer-events is not used except when
specific knowledge, such as the macro-association described above, links it to
a particular action. Such a view is thus represented as a general structured
association between actions and transfer-events, but also represented is
knowledge about the concepts to which the view is particularly appropriate.
The manner in which views are selected by the generator will be detailed in
Chapters 7 and 8.

3.5. Uniformity

While sections 3.2 and 3.3. focussed on representational issues which
can be considered mostly in isolation from processing concerns, uniformity in
the Ace framework is primarily a means of making processing easier. Using
common representational tools throughout a knowledge network allows a
few basic mechanisms to be used for a variety of knowledge manipulation
functions.

The main goal of uniformity here is to allow for the linguistic and
conceptual hierarchies to make use of the same inheritance mechanism.
Conceptual attributes are inherited by conceptual structures, and linguistic
attributes are inherited by linguistic structures. This type of uniformity was
proposed during much of the work on KL-ONE (Brachman et. al., 1979). but
few systems have actually taken advantage of inheritance for linguistic
features. In the work on PHRED. it was apparent that inheritance could
lead to a more parsimonious representation, but redundancy in the
representation was not considered a real problem. The inability to exploit
general knowledge, however, became more of an imposition as the
difficulties in extending the system appeared.

A second important reason for uniformity is the objective of utilizing
common mechanisms for language analysis and generation. This objective
was realized in an early Ace prototype system, but proved somewhat

. 51 -

awkward due to a variety of practical limitations. Nevertheless, this goal
had a significant positive effect: The process of mapping, or utilizing a
structured association to build one knowledge structure from another, is
accomplished by a uniform mechanism which may be used in different
aspects of language processing. This mechanism will be discussed in
Chapters 7 and 8.

The idea behind having a uniform mapping mechanism is that the
process of applying relationships such as views to produce meaning from
language could exploit the same mapping apparatus as the process of
applying the same relationships to produce language from meaning.
Perhaps more important, however, is that the same mapping apparatus can
be used repeatedly in the application of sequences of structured associations.
In the current version of KING, this means primarily that the same
mechanism which applies views is also used to apply associations between
meaning and language.. This uniformity has a substantial effect on the task
of applying these associations in KI~G, as the process which applies them
takes advantage of a common set of rules for selecting which associations to
apply, regardless of whether it is producing new concepts or new linguistic
structures.

Summary

This chapter has posed a problem of particular relevance to the practical
issues of extensibility and adaptability in language processing. This
problem, that of exploiting generalizations in the encoding of specialized
knowledge, suggests a framework for knowledge representation which has
been implemented in the Ace system. This chapter has laid the groundwork
for the details of the system by focusing on theoretical aspects of language
use, as evidenced in particular examples. Chapters 4, 5, and 6 will present
the Ace representation in some detail, giving the particulars of the
representation as applied to these and other examples. The design and
implementation of KING will be covered in Chapters 7 and 8.

- 52 -

4. Knowledge Representation Fundamentals

I have suggested that the development of extensible and adaptable
natural language systems depends on a knowledge representation frame
work within which generalizations are effectively exploited, The Ace
representation (Jacobs and Rau, 1984) embodies such a framework. The
theoretical goal of Ace is to apply a uniform, hierarchical knowledge
representation scheme to the task of representing knowledge about
language. This realization of this goal was accomplished by implementing
and extending a knowledge representation called KODIAK <Wilensky, 1984)
and applying this representation to the problem of linguistic representation.

This chapter presents the basic knowledge representation principles
behind Ace, and presents an example of how conceptual knowledge is
represented.

4.1. Basic Principles

Many knowledge representation systems, however different they appear
superficially, may be shown to have the same formal expressive or inferen
tial power. This discussion will avoid the question of formal power and
center instead on the nature of the knowledge which must be expressed.
The knowledge representation framework presented here is not intended to
suggest a particular formal representation, but to provide a means for
expressing the essential knowledge in a form suitable for encoding within a
representational formalism.

The following Ace principles guide the encoding of knowledge important
in the generation task:

Representation Principle 1. The Inheritance of Conceptual Relations
Concepts in memory are organized into a hierarchy of categories, in
which more specific concepts inherit "features" from more general con
cepts. This inheritance is a representational tool which has been
employed throughout the history of Artificial Intelligence (cf. Quillian,
1966; Roberts and Goldstein, 1977; Bobrow and Winograd, 1977; Brach
man, et. al., 1979) The question of what exactly is inherited, however,
can be answered in a variety of ways. Ace takes advantage of struc
tured inheritance, (cf. Brachman, et. al., 1979) in which concepts linked
to a particular structure may inherit from supercategories of that struc
ture. For example, knowledge about the seller of a selling action may
be inherited from knowledge about the giver of a giving action ..

Representation Principle 2. The Proliferation of Conceptual Categories.
Individual concepts are themselves categories, and any concept about
which there is particular knowledge is considered to form a category.
Thus categories proliferate: Probably, there are far more conceptual
categories than there are lexical items in the system. For example, it
will be shown later in this chapter that it is reasonable to postulate a
concept specifically for the action of paying money in exchange for mer
chandise, although there is no lexical item corresponding to this con
cept. The lexical term .. pay" is associated with a more general concept,
that of providing money in exchange for virtually anything. The lexical
term .. give" may be associated with a general giving concept, but giving

- 53 -

to charity, givmg an idea, and givmg a chance are distinct concepts
with distinct linguistic manifestations. For example, the use of the verb
''give" without object or indirect object as in "Bill gave" and "I gave at
the office" is a linguistic phenomenon which appears almost exclusively
when referring to charitable giving.

Representation Principle 3. Referential Relationships among Categories.
There are a range of conceptual relationships important in language use
which are not easily described as factual or ontological relationships.
The one which is considered here is the view relationship, which helps
to determine how concepts may be used in expressing other concepts.
The concepts of giving and taking discussed in Chapter 3 are all views
of a common transfer event, but the instantiation of the abstract giving
and taking concepts cannot be factually inferred from the instantiation
of a transfer event. For example, "John gave five dollars to charity"
does not imply that a charitable organization took the five dollars from
John. ''Mary took the money from John" does not imply that John gave
Mary the money. In many circumstances, however, the same event may
be described using "give" or "take". For example, (1) "John gave Mary
five dollars for the book" may imply (2) "Mary took five dollars from
John for the book". Representing giving and taking as views of
transfer-event permits the encoding of knowledge about describing
transfer-events without requiring a given event to be classified as giving
or taking. These views may thus represent the knowledge that "John
took <x> from Mary" and "Mary gave John <x>" might be used to
describe the same event. Such views will be shown to be useful in
determining how linguistic structures are used to refer to events.

The next section describes the basic elements of the hierarchical frame
work in Ace.

4.2. Structured Associations in Ace

Ace makes use of a notation in which there are two types of entities:
objects and structured associations*. A structured association is a relation
among two or more objects which also relates corresponding objects associ
ated with the related objects.

Three types of structured associations, taken from the KODIAK
representation, are of special importance in Ace+. The first of these, DOM
!NATE, associates a subcategory with its parent category. One can assert

(DOMINATE chair recliner)

to indicate that the concept of a recliner is a subcategory of the concept of a
chair, or

• This term, and the idea of using general structured associations as a language processing tool, are due

to Wilensky.
+ These three associations, as well as many of the 1deas here. have evolved during a series of seminars

among the Berkeley Artificial Intelligence Research group, led by Robert Wilensky. Other participants

in these discussions were: Richard Alterman. :Margaret Butler, David Chin, Charley Cox, Marc Luria,

Anthony Maida, James Martin, James :Mayfield, Peter Norvig, Lisa Rau. and ~igel Ward.

- 54 -

(DOMINATE color reef)

to specify that the concept red is a color concept. DOMINATE is thus akin to
the ''a-k-o" link and other similar relationships in some systems.

The second association, INSTANT lATE. links an individual to its
parent category, for example,

(INSTANTIATE person Johnl)

means that the token Johnl designates an individual which is a member of
the person category. Both INSTANTIATE and DOMINATE permit multiple
inheritance: An individual in Ace can INSTANTIATE more than one
category, and a subcategory may be DOMINATEd by more than one parent
category.

The third type of structured association, MANIFEST. connects an object
to a related category which is considered aspectual with respect to it; in
other words, the conceptualization of the MANIFESTed object depends on its
relationship with the MANIFESTing object. An Ace assertion of the form

(MANIFEST action actor)

indicates that the concept actor is aspectual to the concept of an action, so
that an instantiation of the actor concept is necessarily an instance of that
concept with respect to an instantiation of the action concept,

These three structured associations are analogous to links and slots in
other similar representation systems; the motivation behind KODIAK was
to preserve the ideas behind frame-based representations while clarifying
the semantics of a "slot". For a comparison of KODIAK with other research,
see Wilensky (forthcoming).

The term ROLE-PLAY, also taken from KODIAK, is used to indicate
corresponding concepts across structured associations. For example, the
assertion,

(INSTANTIATE action actionl with (ROLE-PLAY actor Johnl))

indicates that the token actionl represents an instance of the action
category, and that the token Johnl "plays the role of', or corresponds to,
the actor of the action.

MANIFEST, INSTANTIATE and ROLE-PLAY are thus combined to
indicate a relationship among concepts that is underexploited in frame-based
representations. The assertion above represents the knowledge that Johnl
fills the actor "slot" of the action concept; however, this slot is itself a con
cept which may be related to others in the conceptual hierarchy. For exam
ple, actors of actions are participants of events. Thus knowledge about a
"slot", or aspectual, is not confined to its relationship to a particular concept.

Conceptual relationships are often best presented in diagram form, and
throughout this thesis diagrams will be used to illustrate the Ace hierarchy.
The following illustration will be used to represent DOMIN ATE relations:

- 55 -

recliner

Figure 4-1.

In the above diagram, the "D" label is used to indicate the DOMINATE
relation between chair and recliner.

The INSTANTIATE relation will be shown in a similar fashion to the
DOMINATE relation, as in the following diagram:

Johnl

Figure 4-2.

The 'T' label is used to indicate the INSTANTIATE relation between
Johnl and person.

The MANIFEST relation is illustrated as in the following diagram:

action I

"" m

~
Figure 4-3.

The label ''m" above is used to indicate the MANIFEST relation
between action and actor. In general, DOMINATE and INSTANTIATE
links are drawn vertically, and MANIFEST links are drawn diagonally.

The ROLE-PLAY relation, which may be used in combination with all
structured associations in Ace, is shown as follows:

-56-

action

RP2r._ __ ac_to_r -...J

Figure 4-4.

The ROLE-PLAY link, labeled .. RP", originates at the seller concept and
joins this concept with the actor concept. This ROLE-PLAY is associated
with the DOMINATE relation between action and selling, indicating that
any concept playing the role of seller in a selling action is also playing the
role of actor. A shorthand way of drawing the same concept, in which the
ROLE-PLAY relation is implicit, is the following:

selling I
""" actor

t ~eller

Figure 4-5.

The notation above will be used in most of the diagrams which follow.
While it is more concise that the explicit ROLE-PLAY in figure 4-4, the
reader must infer which structured associations have ROLE-PLAYs associ
ated with them.

This section has presented the basic structured associations used in the
Ace representation. The next section describes how these associations are
used to represent knowledge about a particular complex event.

4.3. The Commercial Transaction Example

This section will consider in some detail an example of conceptual
representation within the Ace framework which relates to the problem of
exploiting generalizations in language processing. Specifically, we address
the question of representing knowledge about buying and selling. I have
suggested that it is useful to generalize about linguistic constructs such as
the dative form in .. John gave Mary a dollar", .. John told Mary a story", and
.. John sold Mary a book", and that these generalizations often depend on the

...

-57 -

representation of the concepts being expressed. Consider the concept of the
commercial transaction (Fillmore, 1977). The commercial-transaction
represents an event in which a merchandise object is exchanged for legal
tender. There is a great deal of knowledge which may be related to this
event, such as the relationship between buyer and seller, the occupation of
buyer and seller, the location of the transaction, and the like. Most
essential, however, is the knowledge about what is being exchanged in the
transaction. The representation of this knowledge and its relation to the
commercial-transaction concept can be especially useful in the encoding of
knowledge about expressing the commercial-transaction concept.

The commercial-transaction concept is not easily classified. Certainly it
is an event, but the knowledge about events does not help to represent the
important concepts associated with the commercial-transaction. Events
sometimes have participants, and often seem to have objects which undergo
changes of state as a result of the event. But the particular roles of
participants and objects in the commercial-transaction are not easily
specified without further decomposing the event. The commercial
transaction is a complex event, composed of at least two simpler events. We
can assert the following:

(DOMINATE event complex-event)
(DOMINATE event simple-event)
(MANIFEST event participant)
(MANIFEST simple-event object)

These assertions capture the knowledge that simple-events and complex
events are subcategories of the general concept of an event, that events have
participants, and that simple-events have objects. Events may have many
participants and objects; the simple-event category represents the class of
events which affect a single object. This is similar to the state-change concept
in Conceptual Dependency (Schank, 1975).

The commercial-transaction, then, is a type of complex-event, which is
composed of two simple-events, as follows:

(MANIFEST complex-event sub-event)

(DOMINATE complex-event commercial-transaction
with (ROLE-PLAY sub-event ct-merchandise-transfer)
with (ROLE-PLAY sub-event ct-tender-transfer)
with (ROLE-PLAY participant merchant)
with (ROLE-PLAY participant customer))

The above assertions capture the information that the commercial
transaction is made up of a ct-merchandise-transfer and a ct-tender-transfer.
These two simple-events are both subcategories of the class of transfer-events:

(DOMINATE simple-event transfer-event)
with (ROLE-PLAY participant source)
with (ROLE-PLAY participant recipient))

-58-

(DOMINATE transfer-event ct-merchandise-transfer
with (ROLE-PLAY object merchandise)
with (ROLE-PLAY source merchant)
with (ROLE-PLAY recipient customer))

(DOMINATE transfer-event ct-tender-transfer
with (ROLE-PLAY object tender)
with (ROLE-PLAY source customer)
with (ROLE-PLAY recipient merchant))

These assertions indicate that the ct-merchandise-transfer component of
the commercial-transaction consists of a transfer of merchandise from mer~
chant to customer, and that the ct-tender-transfer component consists of a
transfer of tender from customer to merchant. The events ct-merchandise
transfer and ct-tender~transfer are aspectuals of the commercial-transaction;
that is, they are concepts which cannot be instantiated without instantiating
a commercial-transaction concept. There may be other concepts intimately
related to the commercial-transaction concept, some of which will be con
sidered here; the knowledge about ct-merchandise-transfer and ct-tender
transfer is most critical in describing the commercial-transaction event.

The relation of the commercial-transaction event to its components is
illustrated by the following diagram:

- 59 -

participant

object

sub-event
participant ~

source
participant ..._ ____ __,

~

D D

Figure 4-6.

The above diagram illustrates the knowledge that the commercial
transaction is a complex-event which consists of a transfer of merchandise
and a transfer of tender. The merchant receives the tender from the custo
mer, and the customer receives the merchandise from the merchant. Con
cepts such as merchant, customer, merchandise, and tender are aspectuals of
the commercial-transaction; that is, they are specific concepts whose meaning
is undetachable from the commercial-transaction event. However, much of
the knowledge about these concepts, such as the recipient and source roles, is
inherited from other concepts. As in other frame-like systems (Roberts and
Goldstein, 1977; Bobrow and Winograd, 1977), this organization allows roles
of a concept to be inherited in this manner. The ROLE-PLAY relationship
in Ace, however, permits more than this simple form of inheritance: It
allows for the semantics of aspectuals to be defined in terms of other aspec
tuals. For example, the meaning of the merchant aspectual of the
commercial-transaction here is represented in part by the ROLE-PLAY rela
tion which links this aspectual to the source of the ct-merchandise-transfer
and that which links it to the recipient of the ct-tender-transfer.

The assertions above form an important core of knowledge about
commercial-transactions. We might also want to add quite a bit of other

- 60-

knowledge which links together the elements of a commercial-transaction in
other ways; for example, that the transfer of merchandise is part of a social
contract for the transfer of tender. We can represent the gist of the obliga~
tion relationships of the commercial-transaction via the following assertions:

(DOMIN ATE state obligation)
(MANIFEST obligation obligator)
(MANIFEST obligation obliged-event)

(DO MIN ATE obligation m t-obligation
with (ROLE-PLAY obligator merchant)
with (ROLE-PLAY obliged-event ct-merchandise-transfer))

(DOMINATE obligation tt-obligation
with (ROLE-PLAY obligator customer)
with (ROLE-PLAY obliged-event ct-tender-transfer))

These assertions represent knowledge about two obligation concepts.
mt-obligation is the obligation of the merchant to transfer the merchandise,
and tt-obligation is the obligation of the customer to transfer the tender.
These obligations are elements of the commercial-transaction, as in the fol
lowing diagram:

obligator

obligator

tt-obligation

obligation

Figure 4-7.

With the obligation concepts represented above involving the transfer of
merchandise and transfer of tender components of the commercial
transaction, we have encoded much of the inviolable knowledge about such
events. This knowledge is important in the way language is used to describe

...

- 61 -

such events. For example, it will be shown in Chapter 6 that the knowledge
that merchandise and tender play object roles is linked to knowledge about
transitive verb forms, so that phrases such as "bought a book" and ((paid five
dollars" conform to a general rule.

The next section discusses how concepts such as buying and selling,
used to refer to the commercial-transaction concept, are represented in Ace.

4.4. Actions as VIEWs of Events

I have suggested that verbs such as "give" and "take" refer to the con
cepts giving and taking, and thus refer indirectly to the general transfer
event concept. The motivation for this analysis is to facilitate the represen
tation of knowledge about the roles which giver and taker play, thereby ena
bling "John gave Mary a book" and "Mary took a book from John" to
describe indirectly the same event, as "Ali gave Frazier a punch", and ((Fra
zier took a punch from Ali" may indirectly describe the same event.

The commercial-transaction event is generally described using the verbs
((buy", "sell", and ((pay". ((Sell" and "pay" behave similarly to the verb
·~give"; ('buy", behaves more like "take". For example, ('John sold Mary a
book", and "Mary paid five dollars for the book" both use the dative form,
and "John bought the book from Mary" exhibits a structure identical to
"John took the book from Mary". The representation of the concepts buying
and selling in Ace relates these concepts to giving and taking so that
knowledge about expressing giving and taking may be used also for buying
and selling.

As the discussion in Chapter 3 proposed, the concepts giving and taking
in Ace are related to the transfer-event concept by a structured association
called a VIEW. VIEWs are used to represent knowledge about concepts
which may be used in expressing other concepts. The following Ace asser
tions represent the basic knowledge about giving and taking:

(DOMINATE action giving
with (ROLE-PLAY actor giver))

(DOMINATE action taking
with (ROLE-PLAY actor taker))

viewl: (VIEW transfer-event giving
with (ROLE-PLAY source giver))

view2: (VIEW transfer-event taking
with (ROLE-PLAY recipient taker))

This encodes the knowledge that giving and taking are both actions, and
that both are VIEWs of the transfer-event concept. When the transfer-event
is VIEWed as giving, the source of the transfer-event plays the role of giver,
which plays the role of actor. The labels viewl and view2 are used to refer
to the VIEW associations, which are treated as concepts in the system.
These associations are presented in graphic form below:

part
. . R
IClpant

participant ·~. I
~ R

recipient

Figure 4-8.

This diagram represents the knowledge used to relate the concepts giv
ing and taking to the concept of the transfer-event. The relationships
between this knowledge and linguistic structures are described in Chapter 6,
and the manner in which this information is used in generation is discussed
in Chapters 7 and 8. The VIEWs represented here may be used in describ
ing transfer-events, to other concepts which may be VIEWed as transfer
events, and to more specific concepts which are DOMINATED by transfer
event. For example, the analysis which follows will show how these VIEWs
help to relate buying and selling to the commercial-transaction event.

The ct-merchandise-transfer component of the commercial-transaction is
DOMINATEd by transfer-event. The ct-merchandise-transfer may be
VIEWed as a buying or selling action, as is represented in the following
assertions:

(DOMINATE giving selling
with (ROLE-PLAY actor seller))

(DOMINATE taking buying
with (ROLE-PLAY actor buyer))

view3: (VIEW ct-merchandise-transfer selling
with (ROLE-PLAY merchant seller))

view4: (VIEW ct-merchandise-transfer buying
with (ROLE-PLAY customer buyer))

These assertions indicate that buying and selling are ways of VIEWing
the ct-merchandise-transfer event. This VIEW is used to indicate the
correspondences between the concepts playing the actor role in buying and
selling, and the participants of the commercial-transaction. These may be
illustrated by the following diagram:

~ 63 -

source R

recipient ·\. I
~ R

customer

Figure 4-9.

VIEWs such as view3 and view4 above are concepts in Ace, and thus
structured associations such as that between the selling action and the ct
merchandise-transfer are elements in the conceptual hierarchy. Treating
VIEWs as concepts allows this association, view3, to be related to the associ
ation viewl between the giving action and the concept of a transfer-event.
Specifically, we can assert the following:

(DOMINATE viewl view3)
(DOMINATE view2 view4)

The structured association view3 is thus treated as a subcategory of the
association viewl, and view4 as a subcategory of view2, as shown in the fol
lowing diagram:

Figure 4-1().

This example demonstrates on a small scale how the hierarchical
arrangement of VIEWs is used in the encoding of structured associations.
Structured associations such as viewl between transfer-event and giving
DOMINATE other more specific relations, such as view3. Note that this
makes the explicit representation of ROLE-PLAY relations for view3
unnecessary, as the relationship between merchant and seller in view3 is
specified by the relationship between source and giver in viewl.

The representation of the selling concept is a simple example of how Ace
encodes abstractions which may be used in language processing. The
abstraction here is the relationship between a general category giving and a
general category transfer-event. There are two ways in which this abstrac
tion may be used, both to be covered in future chapters: (1) A more specific
association may be represented as a subcategory of the abstract association.
This is the case in the selling example presented here. In this case,
knowledge about the abstract association may be used in applying the
specific association, thus knowledge about expressing an abstract concept
may be used in expressing a more specific concept. This allows much of the
same knowledge to be used for phrases involving ''giving" and "selling''. (2)
A concept which is associated by another VIEW with the abstract concept
may then also be expressed using the abstract VIEW. This is the case with
expressions such as "give a punch", which takes advantage of the abstract

- 65 -

action as transfer-event view in combination with the transfer-event as giving

VIEW. These examples will be further considered in Chapter 6 and in the

processing chapters.

Summary

This chapter has illustrated the use of the Ace representation in the

representation of conceptual knowledge. The commercial-transaction exam

ple demonstrates how the Ace tools may be used to exploit abstract

knowledge about transfer-events in encoding knowledge about buying and

selling, The most important advantages of Ace, still to be considered, are

those which allow for the association of knowledge about language with con

ceptual knowledge~ and thus allow for the selection of linguistic structures

from their associated concepts. The next two chapters discuss the applica

tion of the Ace framework to the representation of linguistic knowledge and

to the representation of the knowledge which associates linguistic and con

ceptual structures.

- 66-

5. Linguistic Representation

The previous chapter presented the fundamentals of the Ace representa
tion, and showed how this representation is used in the hierarchical encod
ing of conceptual knowledge. The same representational framework is used
to encode linguistic knowledge in Ace. In linguistic representation, as in
conceptual representation, the utility of the Ace framework depends on the
hierarchical representation of abstract and specialized knowledge. This
chapter describes how linguistic knowledge is encoded in the Ace hierarchy.

5.1. Principles of Linguistic Representation

One of the problems with many of the linguistic formalisms described in
Chapter 2 is the lack of an efficient organization of linguistic knowledge.
The organization of linguistic information in a system should allow for the
parsimonious distribution of knowledge. Redundancy in representation is
generally a sign that adapting and extending a knowledge base will be
difficult. This section clarifies some of the problems with redundancy in
linguistic representation and describes how the hierarchical organization of
linguistic knowledge in Ace addresses this issue.

For its basic linguistic structures, Ace adopts the fundamental linguistic
notation common to feature systems such as unification grammar (Kay, 1984)
lexical functional grammar (Kaplan and Bresnan, 1983), and pattern
concept pairs (Wilensky and Arens, 1980) The advantages of this notation
for generation systems have been touched on in Chapter 2. Most impor
tantly, the notation allows for the specification of grammatical knowledge in
a form which may be used for either language analysis or language produc
tion. It assumes the ability to produce grammatical constructions directly
from their conceptual form, without independent syntactic derivation.

The term feature is used here to designate a linguistic property consist
ing of an attribute and a value. Attribute names are written in capital
letters in this notation. Sets of features which represent linguistic struc
tures are referred to as templates. and are presented within square brackets.
This corresponds to what has often been called a "pattern" in spite of the
fact that it contains linguistic information which may or may not include a
pattern. Patterns here designate only those structures which specify an ord
ering of the constituents, or structural elements, contained in a template. A
constituent of a template is a component of the template which represents
part of the surface form of an utterance. A set of constituents which together
form a linguistic structure but whose surface ordering is not specified will be
called a relation. The term structural description will be used to refer to the
patterns and relations specified within a template.

Templates in this section are presented using the feature notation.
which denotes templates by sets of features within square brackets. This
notation is used to illustrate some templates which are encoded in Ace. The
internal representation of these templates is achieved using the same frame
work as the conceptual representation discussed in Chapter 4. The following
is an example of a simple template:

[
ROOT= have
TENSE = present
PERSON = third
NUMBER = singular
VOICE = active
LEX = ~·has"
]

The above template contains a set of features, such as ltTENSE =
present". In each feature, the attribute is given first, followed by an .e = ", fol
lowed by the value of the feature. This template can be used by the genera
tor to produce the appropriate form of the verb ltto have" to meet a set of
constraints which matches the feature set.

A more complex template may contain more information, including
features which themselves contain templates and surface ordering informa
tion. For example, the following template specifies the general form of
prepositional phrases:

[
PATTERN = (PREP PREP-OBJ)
P-0-S = prep-phrase
PREP-OBJ = [

PREP= [

P-0-S = NP
CASE = objective

P-0-S = prep

In this template, the PATTERN feature indicates that the linguistic
realization of the template requires a PREP constituent followed by a
PREP-OBJ constituent. The PREP-OBJ. constituent must be a noun-phrase
in the objective case, and the PREP constituent must be a preposition. The
P-0-S attribute, which stands for ~~pattern-of-speech", is used here to desig
nate a class of templates to which the given template belongs. This
corresponds roughly to the CAT attribute, or "category", generally used in
unification grammar; the term "pattern-of-speech" used in the pattern
concept pair representation is employed here to emphasize that the P-0-S
attribute may designate classes not usually recognized as syntactic
categories, and that it is not necessary in all templates.

- 68-

Some Problems with Unification Grammar

As an example of the difficulty in achieving parsimony in a linguistic
representation of this type, consider the task of representing knowledge
about passive sentences. In some implementations of unification grammar a
sentential template such as a passive sentence is represented using the PAT~
TERN feature to designate the structure of the passive, for example*:

[
PATTERN= (... VERB-PART ... BY-ADJUNCT)
P ~O-S = sentence
VOICE = passive
VERB-PART = [

]
BY-ADJUNCT

P-0-S = verb
VOICE = passive

P-0-S = prep-phrase
PATTERN = (PREP-BY PREP-OBJ)
PREP-OBJ = <agent>
PREP-BY = [

]
PREP-OBJ = [

LEX = "by"
P-0-S = preposition

P-0-S = NP
CASE = objective

The " ... " in the pattern above indicates that other constituents may
appear between the VERB-PART constituent and the BY-ADJUNCT consti
tuent without affecting the use of this template. The feature "PREP-OBJ =
<agent>" indicates the correspondence of the object of the preposition "by"
to the semantic "agent" role. This template adequately specifies the rela
tionship between the passive verb and the prepositional phrase which indi
cates the agent of the corresponding action.

There are, however, several technical problems with this template. For
example:
(1) The relationship between this template and that of the passive sentence

which does not have a BY-ADJUNCT is only implicit. This seems to
promote redundancy: For example, the voice of a sentence is always the
voice of the verb part, or complete verb, of the sentence; it seems redun
dant for this information to be repeated in all sentence patterns. Also,
the semantic knowledge associated with the passive structure, such as
semantic role of the underlying subject, must be duplicated for each pas
sive pattern.

• This example is a slightly modified version of one presented on p. 332 of Winograd (19831. Other gram

mars include a different treatment of sentence level templates with the same information. such as that
on p. 216 of :McKeown (19821, and present slightly different problems.

- 69-

(2) It is unclear that the specification of the structure of the adjunct prepo
sitional phrase here is necessary, as it is a grammatical phrase in any
case if it has the "P-0-S = prep-phrase" feature. Ideally, the implemen
tation of the grammar should allow for this information to be omitted.
It is sufficient to know that the adjunct is a prepositional phrase with
preposition ((by".

(3) If there is special knowledge about the relationship between a passive
verb and the BY-ADJUNCT, it does not appear to be fundamentally
different from the relationship between other verb structures and BY
ADJUNCTs. For example, the phrase "the invasion of Grenada by the
US" seems to embody the same passive-adjunct relationship as the sen
tence "Grenada was invaded by the US." In a system where it is impor
tant to associate linguistic structure with the appropriate meaning, the
similarity of the BY-ADJUNCTs in these examples can be of substan
tial aid.

(4) In unification grammar, this representation of the passive sentence tern
plate requires that the selection of the passive without agent be made
only when an agent is not present. This precludes the option of simply
not expressing the agent during this selection. McKeown's grammar
eliminates this potential difficulty by assuming that the agent (the ''pro
tagonist" in her system) is always present. In PHRED, the grammar
included a separate ((ordering pattern" which included the by-adjunct,
but it was designated as being optional. This was awkward because an
optional adjunct had to be specified as a constituent of every pattern in
which it could appear.

(5) The PATTERN feature used in this template must necessarily interact
and overlap with other patterns in order for the generator to form a
complete sentence: In this example, the PATTERN of the passive tern
plate must be combined with other sentence and verb phrase patterns to
form the structure of a complete sentence. This results from the use of
the'(... " in -the pattern to allow for intervening phrases. The PATTERN
feature thus specifies only partially the structure of the sentence. It
seems also that this structure rn ust be specified for other prepositional
phrases used in verb phrases in the grammar. Thus the reason for the
existence of this template seems to be not to specify a surface structure
but to provide some template to which to attach the special meaning of
the BY-ADJUNCT. It would seem that this could be accomplished
without using a special pattern.

These are not inherent problems with unification grammar or other
feature systems, but are difficulties in using such systems to encode basic
linguistic knowledge without certain awkward and redundant templates.
Such awkwardness and redundancy may be avoided by applying some sim
ple knowledge representation techniques to the encoding of linguistic tern
plates.

The Ace Linguistic Principles

The Ace linguistic hierarchy takes advantage of the following principles
to alleviate the difficulties described above:

- 70 -

Representation Principle 4. The Inheritance of Linguistic Features.
Sets of features which are common to a certain class of templates need
not be specified independently for each template in the class. Thus, if
there is a set of features shared among passive sentences, or among
prepositional phrases, these features belong by default to any template
in the class. This would eliminate the need for fully specifying the struc
ture of the adjunct phrase in the passive template above, as most of its
features are common to all prepositional phrases.

Representation Principle 5. The Proliferation of Linguistic Categories.
In order to take advantage of the inheritance of features, there must be
a wide range of classes of templates which share sets of features. Often
these categories depart from the traditional syntactic classifications.
Requiring that a template be a member of a unique category in the case
of a gerund or nominalization can prove difficult, as these may inherit
certain attributes from verbs and certain attributes from nouns. Thus
any template may inherit features, including structural descriptions,
from multiple categories. Categories are arranged hierarchically, so
each category inherits from all its ancestors in the hierarchy.

Representation Principle 6. Distinguishing Grammatical Relations from
Grammatical Patterns.
A great deal of linguistic information seems associated with structural
relationships between linguistic constituents which are dependent nei
ther on their order in a surface structure nor on the precise nature of
the structure in which they appear. For example, the relation between
subject and verb retains its linguistic features regardless of how the
subject and verb appear in any surface structure: The agreement
between subject and verb in "John was given the book by Mary" is the
same as in "Was John given the book by Mary?" as is the conceptual
recipient role which John plays. Such information does not pertain to a
particular surface structure, but to any surface structure in which a
noun phrase and verb are in the subject-verb relation. In "John kissed
Mary on the cheek" and "The kiss on the cheek pleased Mary", the role
of "on the cheek" as it relates to "kiss" is independent of whether the
prepositional phrase is part of a verb phrase or noun phrase. In gen
eral, structural linguistic relationships are not limited to those which
are directly linked to constituent order, and thus a more general facility
than the pattern feature is required to represent these relationships.

Principle 4 above, the Inheritance of Linguistic Features, suggests a
means for the more perspicuous encoding of many of the features in the pas
sive sentence template. The knowledge that the voice of a sentence is the
voice of its verb part is knowledge about all sentences which need not be
explicitly represented in each template. The structure of the by-adjunct also
need not be explicitly encoded, as it inherits its structure from the preposi
tional phrase.

Principle 5, the Proliferation of Linguistic Categories, suggests that
groups of templates and other linguistic structures with common features be
organized into categories wherever necessary. Principle 4 proposes a
hierarchical organization, and Principle 5 suggests that this organization
can best be exploited by allowing the organizational nodes in the hierarchy
to proliferate. Thus the various templates in the system can be

- 71 -

hierarchically organized into classes of templates. The proliferation of these
classes reduces the amount of information that has to be encoded for a given
template by allowing the template to inherit features from a general
category. For example, the traditional verb phrase category inherits its
structure from a more general category which includes gerund phrases and
infinitives as well. In fact, it is even feasible to have a "by-adjunct" category,
whose meaning is generally determined by its relation to the verb part of a
sentence or clause. The role of such categories will be pursued further in
subsequent examples.

Principle 6, Distinguishing Grammatical Relations from Grammatical
Patterns, is employed in passive sentences to eliminate the need for a special
pattern to handle the function of the by-adjunct in these sentences. In the
Ace linguistic hierarchy, adjuncts within verb phrases are joined to the verb
part of the sentence by a verb-adjunct relation, which includes the relation
between the passive verb and its by-adjunct as well as many relations
between verbs and adverbial prepositional phrases. The verb-adjunct rela
tion furthermore shares a common supercategory with the relation between
the nominal and postnominal modifier constituents of complex noun phrases.
Thus "the kiss on the cheek" and "the game yesterday" exploit a common
relation with "John kissed Mary on the cheek" and "The game was played
yesterday". For this linguistic class, the choice of what adjuncts will appear
in a sentence is not a structural choice but a decision of whether to express a
particular relation.

The idea of the grammatical relation is one which has been part of a
number of linguistic theories (cf. Kaplan and Bresnan, 1983). However, the
treatment of relations as categories in the Ace hierarchy facilitates certain
uses of relations which would be difficult to implement otherwise. For
example, the relation between a modal auxiliary and a main verb constrains
the verb to be in non-finite form. The way in which this relation may be
realized in a verb phrase, however, is knowledge about a more general rela
tion. This example will be considered further in section 5.3.

·These three principles suggest modifications to the way basic linguistic
representation has been handled in language generation systems. These
modifications are not fundamental changes to the common representational
framework of the unification-based systems, but are extensions to the frame
work which facilitate a more parsimonious and effective encoding of linguis
tic knowledge. The first two principles involve minor changes in the way a
grammar is implemented, in order to minimize redundancy. The third
requires the addition of a new type of linguistic structure, the grammatical
relation, to avoid one of the awkward uses of linguistic patterns.

The next section describes how these principles are applied to linguistic
representation in Ace and gives some examples of the encoding of simple
grammatical information in the Ace hierarchy.

5.2. Basic Grammatical Knowledge in Ace

The principles outlined above motivate a linguistic representation in
which knowledge is dispersed throughout the hierarchy, with a greater
number of structures, each containing more limited information. Linguistic
knowledge in Ace is organized into a hierarchy which incorporates this type
of organization. This modularity leads to a simple set of basic linguistic
templates, with little redundancy and relative ease of extension. Active and

- 72 -

passive constructs are handled using the same set of patterns. To see how
this is done, we will consider a basic sentence template in feature notation,
and then show how it may be represented parsimoniously in Ace:

[
PATTERN= (NP VP)
P-0-S = Basic-S
PARENT-P-0-S = sentence
NP = [P-0-S = noun-phrase]
VP = [P-0-S = finite-verb-phrase
RELATION= [

PARENT-RELATION = subject-predicate
SUBJ = NP
PRED = VP

This template covers NP-VP constructs regardless of voice, and thus can
be used for passive with agent, passive without agent, or active sentences.
The RELATION feature above is used to indicate that the NP of the basic
sentence PATTERN plays the role of subject in relation to the VP of the
PATTERN. The RELATION feature, like the PATTERN feature, is some
what specialized, used to indicate structural relationships among pattern
constituents. The RELATION feature occurs in most templates which have
a PATTERN feature, and more complex patterns may be associated with
more than one RELATION.

The features PARENT-P-0-S and PARENT-RELATION are used to
show the membership of linguistic structures in categories. Since each tem
plate is itself a category, its name as well as the name of the group to which
it belongs must be specified. Its name is specified by the P-0-S feature. No
name is given for the RELATION feature, which is asserted to be a subclass
of the subject-predicate relation.

The subject-predicate relation in the template above represents a
linguistic category which incorporates much of the information about basic
sentences. For example, the knowledge that the verb phrase agrees with the
noun phrase in the sentence is knowledge about the subject-predicate rela
tion, and knowledge about the roles of the concepts referred to by the NP
and VP is associated with this relation. Thus this knowledge may be
applied to the other forms in which the subject-predicate relation may
appear, such as the WH- and inverted forms. The use of this knowledge in
generation is detailed in Chapter 8.

As the Basic-S template belongs to the sentence category, it may inherit
features of that category and may be used where linguistic constraints
require a sentence. The knowledge that the tense and voice of the Basic-S
correspond to the tense and voice of the VP constituent is inherited from the
sentence category.

The reason for allowing levels of sentence categorization is demon
strated by the ways in which embedded sentences appear. In some cases,
any sentence pattern may appear as part of another sentence pattern. For
example, the following sentences are acceptable: "To delete foo, type 'rm
foo"' and "To delete foo, can I type· 'rm foo'?" In other cases, such as comple
ments, a Basic-S is required: "I thought that can I type 'rm foo' ?" is not

- 73 -

acceptable. The knowledge about preposed constituent patterns thus

specifies that the preposed elements may be followed by any sentence pat

tern, while the pattern for "that" complements specifies the more specific

Basic-S pattern. Having a hierarchical representation of these sentence

categories seems natural, but is precluded by most implementations of

feature systems.
I have proposed that uniformity of representation, while not motivated

by any particular representational problem, is a useful goal to be applied to

linguistic representation. This goal may be stated by the following princi

ple:

Representation Principle 7. Uniformity of representation.
Linguistic knowledge is knowledge, and thus can be encoded using the

same representational framework as conceptual knowledge. The same

structured associations used in the conceptual hierarchy can be used in

the linguistic hierarchy*. Having such uniformity of representation has

the practical value of facilitating the interaction of conceptual and

linguistic structures.

The sentence template above can be easily encoded using the structured

associations of Ace described in Chapter 4. Features of linguistic structures

are generally MANIFESTed by those structures, although certain features

related to inheritance, such as the "p-o-s" attribute, have a different status:

They serve to specify which linguistic categories DOMINATE a given tem

plate. Within the Ace hierarchy, categories such as sentence and noun

phrase are types of linguistic-templates. These templates have numerous

aspectuals, among them l-pattern and [-relation, corresponding to the PAT

TERN and RELATION attributes in the above template. These aspectuals

are of type pattern and relation, respectively. This may be stated in the fol

lowing Ace assertions:

(DOMINATE linguistic-template sentence)

(MANIFEST linguistic-template l-pattern)
(MANIFEST linguistic-template [-relation)
(DOMINATE relation l-relation)
(DOMINATE pattern l-pattern)

Relations are made up of aspectuals rel-part, for "relation part", and

patterns are made up of aspectuals const, for "constituent". Constituents

must be ordered, but the order of relation parts is not important. The par

ticular relation subject-predicate has a subj aspectual and a pred aspectual,

both playing the role of rel-part:

• The use of a knowledge representation language to encode linguistic knowledge has been practiced with

KL-ONE IBrachman et. al. 1979; Sondheimer. Weischedel and Bobrow, 19841 and its successors (cf.

Brachman. Fikes, and Levesque, 1983), also favoring uniformity of representation. Such systems have

not been used, to my knowledge, to encode associations between conceptual and linguistic knowledge.

(MANIFEST relation rel-part)
(MANIFEST pattern const)

(DOMINATE relation subject-predicate
with (ROLE-PLAY rel-part subj)
with (ROLE-PLAY rel-part pred))

The Basic-S template can be encoded using the following assertions:

(DOMINATE sentence Basic-S
with (ROLE-PLAY [-relation basic-s-relation)
with (ROLE-PLAY [-pattern basic-s-pattern))

(DOMINATE pattern basic-s-pattern
with (ROLE-PLAY const bs-np)
with (ROLE-PLAY const bs-vp))

(DOMINATE subject-predicate basic-s-relation
with (ROLE-PLAY subj bs-np)
with (ROLE-PLAY pred bs-vp))

(DOMINATE noun-phrase bs-np)
(DOMINATE finite-verb-phrase bs-vp)

Adhering to the convention that each aspectual be given a unique name

leads to the use of names such as bs-np and basic-s-pattern to designate the

NP and PATTERN features of the template.

These assertions, relating the basic sentence template to linguistic

knowledge in the Ace hierarchy, may be illustrated by the following

diagram:

....

rei-part

subj

pred

basic-s-relation

- 75 -

m~ I !-pattern
'--"------'

.-L
~!-pattern

!-relation

Figure 5·1.

const

D

noun-phrase

There is a direct correspondence between the diagram above and the
Ace assertions given earlier. In future discussions, many of the examples
will be presented only in diagram form.

The basic sentence template handles active and passive sentences using
the same NP-VP pattern, as is common in most grammars. Unlike the
unification grammar example shown earlier, Ace also handles passive verb
phrases with or without by-adjuncts using the same templates as it does for
active verb phrases. The verb phrase template used for the passive with
agent, as well as for many other constructs, is the following:

[
P-0-S = adjunct-verb-phrase
PARENT-P-0-S = verb-phrase
PATTERN= (VP ADJUNCT)
VP = [P-0-S = verb-phrase]
ADJUNCT = [P-0-S = adjunct]
RELATION= [

PARENT-RELATION = verb-adjunct
VERB = VERB-PART of VP
ADJUNCT = ADJUNCT

In Ace, this piece of knowledge is represented as follows:

~ 76 ~

1-pa tern

s;\~m I

const const

verb-phrase

adjunct

Figure 5-2.

The verb-adjunct relation in the figure above is used in the generation
process to express conceptual elements of events which do not appear else
where in the verb phrase. Its parent category, mod-relation, represents the
class of linguistic relations which includes adjectival and adverbial
modifiers. The verb-adjunct relation is a linguistic category which in con
junction with a pattern such as that of the adjunct-verb-phrase determines
the position of the adjunct in the verb phrase. This use of relations and pat
terns in the generation process is part of the restriction phase of generation,
which will be described in Chapter 7.

This adjunct-verb-phrase template allows the appendage of adjuncts to
verb phrases and specifies that the verb part of the verb phrase is related to
the appended adjunct via the verb-adjunct relation. No additional grammati
cal information is needed to represent the role of the by-adjunct in the pas
sive verb phrase; its special semantic role is represented by knowledge asso
ciated with the passive-by-adjunct subcategory of the verb-adjunct relation.
The term adjunct is used loosely here to refer to prepositional phrases and
adverbials which are part of the specification of an event, including consti
tuents which are often designated as arguments. Since the linguistic
behavior of passive by-adjuncts is the same as that of adjunct prepositional
phrases in general, the pattern above may be used to produce any such
adjunct constructs. The following examples from KING illustrate the com
mon use of the adjunct-verb-phrase pattern for two different phrases:

Input concept:
Type desired:

Relations used:

Patterns used:

Phrase produced:

- 77 -

(kissing (kissee maryl) (surface cheekl))
gerund-phrase

(verb-adjunct (va-verb (kissing)) (va-adjunct cheekl)))
(verb-obj-relation (vo-verb (kissing)) (obj maryl)))

adjunct-verb-phrase
basic-verb-phrase

kissing Mary on the cheek
--

Input concept:
Type desired:

Relations used:

Patterns used:

Phrase produced:

(kiss-giving (recipient maryl) (given-kiss (kissing)))
finite-verb-phrase

(verb-adjunct (va-verb (kiss-giving)) (va-adjunct maryl)))
(verb-obj-relation (vo-verb (kiss-giving)) (obj (kissing)))

adjunct-verb-phrase
basic-verb-phrase

gave a kiss to Mary
--

Relations associated with a template specify the correspondence between
constituents in the grammatical relation and constituents in the pattern of
the template. Thus a relation can be instantiated by the generator before it
chooses the template structure which will realize it. This is similar to the
way in which PHRED handled flexible word order, by requiring that "pat
terns" of flexible order be combined with ''ordering" patterns to produce out
put. The PHRED representation, however, made it difficult to use the flexi
ble patterns to represent grammatical fragments which only partially
specified the constituents of the final structure. Thus PHRED, like most
unification grammar implementations, had separate patterns for dative
verbs and verbs which took complements, and had distinct patterns for
active and passive sentences and verb phrases. This forced the redundant
specification of the aspects of verb phrase structure which are common to
active and passive phrases, as well as those which are common to dative and
basic verb phrase constructs. For example, information about the case of
subject and object, as well as their roles in a sentence, is not influenced by
the presence of an indirect object. Thus to represent all this information
specifically for the dative verb phrase template would be wasteful. Such
redundancy is avoided in Ace by allowing for more flexibility in the patterns
and by the use of relations, which permit the encoding of fragments of syn
tactic information.

The above sentence and verb phrase templates are sufficient for the
basic structure of both active and passive sentences. The voice of the verb is
not considered at the level of the sentence template, and the by-adjunct is
likewise treated grammatically as any other adjunct. There must, of course,
be some structure which includes the knowledge that the by-adjunct

attached to a passive verb is special semantically, if not syntactically. This
knowledge is associated with the passive-by-adjunct relation. This relation
is a subcategory of the verb-adjunct relation, as illustrated below:

head-part

... ,~, j

Figure 5-3.

mod-part r •a-odjun<t

s: by-ouijunct

D

While the verb-adjunct relation associates a verb part with the general
adjunct category which restricts how these constituents appear in a surface
structure, the passive-by-adjunct relation above constrains the make~up of
the verb part and the adjunct. The specification that the VERB component
of the relation , i. e. pub-verb, must be of the category passive-verb-part con
strains the verb part to be of passive voice. The by-adjunct category which
governs the ADJUNCT part of the relation means that the adjunct must be
a prepositional phrase with preposition "by". This is ensured by the follow
ing by-adjunct template, first in feature notation:

[

]

P-0-S = by-adjunct
PARENT -P-0-S = prep-phrase
PREP = [LEX = "by"]

The organization of this template in the Ace framework is demonstrated
in the following figure, where lex_by designates the lexical category of the
preposition "by":

- 79 -

prep-phrase

I- pattern

const

.....__PP"_P_re_p_-'1 r._ __ P_P·_n_p ---'

by-adjunct

pp-prep

/
ba-prep

Figure 5-4.

The above knowledge is used to distinguish the by-adjunct from other
types of adjuncts in Ace, and is used by KING in the construction of the
passive-with-agent form. Unlike the passive-with-agent patterns discussed
earlier, here information is broken up into small chunks and is attached to
linguistic groupings at various levels in the Ace hierarchy. The perspicuity
of these groupings becomes fully apparent only when one considers a range
of syntactic phenomena which are to be expressed. <(John was given a kiss
by Mary", "the house built by the French", and "the file to be deleted by the
system from your current directory" all make use of the linguistic
relationship between passive and by-adjunct. The special semantic content
of this relation is handled using the REF structured association to be
introduced in section 6.2. In terms of parsimony of representation for
analysis and generation, it is especially useful to be able to take advantage
of the same verb-adjunct relationship to explain a variety of surface
manifestations, as it allows the association of a relation such as by-adjunct
with the appropriate semantic information without encoding redundantly
the structural information for the various linguistic forms in which it can
appear.

This section has presented the basic linguistic templates of the Ace
hierarchy using the feature notation. The discussion which follows
demonstrates how this linguistic knowledge may be encoded using the
framework described in Chapter 4, and discusses the effect of property
inheritance within this framework on linguistic knowledge.

5.3. Multiple Inheritance in the Ace Linguistic Hierarchy

This section shows how the structured associations of Ace, and
particularly the capacity for multiple inheritance, are used to encode some of
the linguistic knowledge used in the construction of simple sentences.

- 80-

Verb phrases in Ace

Verb phrases provide a good example of the use of a linguistic hierarchy
because they exhibit a variety· of surface forms while obeying certain
regularities. One type of verb phrase is the dative-up, a verb-phrase made
up of a constituent dvp-indir, which includes the verb and noun phrase
corresponding to the indirect object, followed by the noun phrase
corresponding to the direct object. The treatment of the dvp-indir as a
separate constituent is done to facilitate the handling of other dative forms.
This knowledge about dative-up is represented by the following assertions:

(DOMINATE linguistic-template verb-phrase)
(DOMINATE verb-phrase dative-up)

with (ROLE-PLAY [-pattern dvp-pattern)
with (ROLE-PLAY [-relation dvp-relation))

(DOMINATE pattern dvp-pattern
with (ROLE-PLAY canst dvp-indir)
with (ROLE-PLAY canst dvp-np))

(DOMINATE indir-vp dvp-indir
with (ROLE-PLAY ivp-verb dvp-verb))

(DOMINATE noun-phrase dvp-np)

These assertions represent the knowledge that the pattern of a dative
verb phrase consists of an indir-vp followed by a noun-phrase. The indir-vp
template is represented as follows:

(DOMINATE verb-phrase indir-vp)
with (ROLE-PLAY [-pattern ivp-pattern)
with (ROLE-PLAY [-relation ivp-relation))

(DOMINATE pattern ivp-pattern
with (ROLE-PLAY canst ivp-verb)
with (ROLE-PLAY canst ivp-np))

(DOMINATE verb-part ivp-verb)
(DOMINATE noun-phrase ivp-np)

This knowledge represents the make-up of dvp-indir, dvp-np, dvp-verb,

and dvp-pattern of the dative-up. These aspectuals may then be used to
assign knowledge to all or part of the dative verb part pattern. For
example, the following assertions indicate that dvp-verb and dup-np are m
the verb-obj-relation, the relation between verbs and direct objects:

- 81 -

(DOMINATE relation verb-obj-relation)
with (ROLE-PLAY rei-part vo-verb)
with (ROLE-PLAY rel-part obj))

(DOMINATE verb-obj-relation dvp-relation
with (ROLE-PLAY vo-verb dvp-verb)
with (ROLE-PLAY obj dvp-np))

The knowledge about the relationship between the verb and indirect
object is knowledge about the indir-vp, encoded as follows:

(DOMIN ATE relation verb-indir-relation
with (ROLE-PLAY rei-part vi-verb)
with (ROLE-PLAY rel-part iobj))

(DOMIN ATE verb-indir-relation ivp-relation
with (ROLE-PLAY vi-verb ivp-verb)
with (ROLE-PLAY iobj ivp-np))

The representational effect of the hierarchy of linguistic structures and
features is illustrated in the assertions above. That the dative-up category is
DOMINATEd by verb-phrase determines the syntactic role of the dative-up
in a sentence or clause, as well as providing for the [-pattern aspectual. The
relationship the verb and indirect object of the dvp-pattern is represented as
knowledge about the indir-vp template, and the semantic knowledge about
the relationship between the dvp-verb and dvp-np can be associated with the
verb-obj-relation. The knowledge about the dative verb phrase is shown in
the following diagram:

indir-vp l
~D

~D

dative-vp

7
!-pattern

ivp-verb

Figure 5-5.

By allowing aspectuals which represent patterns and pattern
constituents to play multiple roles, the representation of linguistic
knowledge in this manner emphasizes the role of inheritance in the
linguistic hierarchy. This topic is considered below.

Multiple Inheritance

One important aspect of the Ace notation is the ability of a linguistic
structure to inherit features from more than one parent category. This
ability has been alluded to, particularly in the discussion of the similarities
between ordinary verb phrases, gerund phrases, and infinitive phrases.
Much of the knowledge about these structures is common to all three: All
consist of a verb or verb derivative possibly followed by a noun phrase or
noun phrases (in the dative structure) and possibly modified by adverbials
and adjuncts. But infinitive phrases behave in most cases as noun phrases,
exhibiting certain special syntactic properties, and gerund phrases are
nouns. These phrases can be handled by allowing the inheritance of
features from the a verb phrase category while each template may itself
belong to a different p~o-s category. The following templates represent three
such categories using feature notation:

[

]

[

]

[

]

P-0-S = inf-phrase
PARENT-P-0-S = verb-phrase
FORM = infinitive

P~O-S = gerund-phrase
PARENT -P-0-S = verb-phrase, noun
FORM = progressive

P-0~8 = finite-verb-phrase
PARENT -P-0-S = verb-phrase
FORM = finite

The hierarchy of verb phrase structures 1s represented m Ace as
illustrated by the following graph:

-

!-pattern !·relation

~~m
const

4·

!-pattern~
bvp ela 10n

vo-verb
obj

cons~ j
B

D

- 83 -

D

rn

vi-verb

!-pattern _d_ !-relation

dv'(lfm
const const

!-pattern 1-r(fel~::~ ela ion

con~t io 'd•~ d~ obJ

const
~vo-verb

D dt::T"

finite

Figure 5-6.

The various verb phrase patterns fall beneath the verb-phrase template
in the linguistic hierarchy, as do the gerund phrase, infinitive phrase, and
finite verb phrase nodes. In order to produce a finite verb phrase, a node
lower in the hierarchy must be instantiated. This hierarchical organization
permits the gerund phrase and infinitive phrase to have the same linguistic
structure as the verb phrase, modulo the form of the verb part. An
instantiated verb-phrase in Ace thus inherits most of its internal structure
from one category, for example dative-up, and its external behavior from
another, for example, finite-verb-phrase. The verb-phrase category itself
plays no external syntactic role--there is no pattern in which a constituent
belongs to the verb-phrase category and to no lower category, although
theoretically there could be. The effective organization of information about
verb phrases stems directly from the application of the basic knowledge
representation principles of Ace to linguistic knowledge.

Another example of the hierarchical encoding of knowledge in Ace is
the representation of "helping verbs". For the purpose of this discussion, the
term compound verb* refers to verbs which are composed of other verbs and
in which the first verb is a "helping verb" that carries the tense, person and
number of the compound. Verbs such as "jump start" and "hog tie" do not
belong to the class of compound verbs considered here. Verbs such as "get
paid" and "keep going" do, as do "have gone" and "was given". In some

• This term is used elsewhere in a variety of ways, primarily for verbs which include other parts of

speech. The meaning here is somewhat more restricted.

cases, the helping verb can be classified as an auxiliary; that is, it may

appear in a variety of constructs such as in subject-aux inversion and tag

questions. When the helping verb is an auxiliary, it can be used in a number

of constructs, such as in ccHas John gone?" and c'The book was given to John,

wasn't it?" Other helping verbs may not belong to this class: uKept John

going?" and uJohn got paid, gotn't he?" are unacceptable.

The main organizational category for knowledge about verbs and auxi

liaries in Ace is the helperGverb relation, which links a helping verb with a

main verb. Associated with this category is the knowledge that the person

and number of the complete verb correspond to the person and number of

the helping verb. The aux-verb relation is a subcategory of helper-verb, and

can be realized in a broader range of linguistic constructs. The modal-verb

relation is a type of aux-verb and carries with it the constraint that the verb

must be in non-finite form. This knowledge may be represented by the fol

lowing hierarchy:

re ·part

~ helper

helper

modal·aux

... /~
*aux h-verb

r--m-oM--1-a_u_x~~ ~--_.--~

Figure 5-7.

The role of the helpers in determining tense and aspect, as well as in

determining the form of the main verb, is thus represented in the specific

helper-verb relations. The way in which the helper-verb relations are real

ized in surface structure is determined by various pattern templates. The

compound verb template, which corresponds to ccgot beaten" as well as .chas

left" as these forms might appear in a basic sentence, is as follows:

,'-

- 85 -

verb-part

Figure 5-8.

The knowledge above represents one way in which verbs appear with

helping verbs. The form of the main part of the verb is not constrained by

the template, but is determined by the specific subcategory of the helper-verb

relation to which the relation being realized belongs. For example, in ~~must

go", the pattern determines the order of helper and main verb, while

membership in the modal-verb relation determines the finite form of the

verb. This is similar to the way in which the passive-by-adjunct relation

interacts with the adjunct-verb-phrase pattern. The restriction of patterns

using constraints on relations is discussed in Chapters 7 and 8.

Another form in which the helper-verb relation may appear is in a ques

tion where the helper appears before the subject, as shown in the following

diagram:

- 86-

~
I ···-~··-· l

1-patt?rn 1-rJation 1-r

D

pred

const

Figure 5-9.

The aux-inv-S template above specifies that the constituent in the A UX
position must be an element of the auxiliary category. Other information
about the form of the main verb is determined on the basis of what type of
auxiliary is used. This type of sentence has the special property that its
predicate includes the auxiliary, as if the auxiliary appeared after the sub
ject. This property is specified by the combination of ais-aux and ais-vp
using the '' +" structure. The "+" is used as a special symbol to represent
the knowledge that non-adjoining constituents combine to play a single role.
The subject-predicate relation, which DOMINATEs ais-relation2, mandates
the agreement of the subject with the complete verb. The helper-verb rela
tion, DOMINATing ais-relationl, specifies that the complete verb consists of
the AUX part in relation to the verb part of the verb phrase. The knowledge
that the person, number, and tense of the complete verb is determined by
the auxiliary is obtained from the following knowledge about the helper-verb
relation:

- 87 -

tense

,,.....•--h--te....Jns~e--,L
number person- rson

r: h-person ¥(L I number

h-number

Figure 5-10.

h-verb

The above representation indicates the correspondence of attributes of
the helping verb to attributes of the complete verb. These features
correspond to attributes marked by "value" in pattern-concept pairs. and are
a substitute for the use of explicit variables in unification grammar. In the
production of a sentence of the aux-inv-S form, a generator will apply its
knowledge of the subject-predicate relation to determine that the verb phrase
must agree with the noun phrase in person and number. It must then deter
mine the person and number of the noun phrase, and apply its knowledge of
verb phrases to constrain production so that this is the person and number
of the verb part of the verb phrase. The knowledge above is then applied to
specify the person and number of the auxiliary.

The hierarchy of helping verb relations described here highlights the
role of inheritance in Ace. Different aspects of linguistic structure and
behavior are inherited from different structures in the linguistic hierarchy.
For example, knowledge about agreement is represented at the level of the
helper-verb relation, while knowledge about the form of the verb part may
be represented at the level of modal-verb. The role of multiple inheritance
in the case of helping verbs is more subtle. One example of such multiple
inheritance is in the case of passive verb parts. The helping verbs "get" and
"be" are both treated as passivizers in Ace. Thus ((John got told the story by
Mary" and ((John was told the story by Mary" may be handled using the
same linguistic basic linguistic knowledge. "Be", however, is an auxiliary,
while ((get" is not. These verbs thus inherit certain aspects of their linguis
tic behavior from different categories. The form of the main verb is deter
mined by membership in the passive-verb category, while auxiliary behavior
is determined by membership in the modal-verb category. The relation vpas,
which represents the relation between passive ube" and a main verb, belongs

0 88 -

to both categories, and has the further constraint that the helping verb 1s
"be".

The examples given here present the general handling of helping verbs
in the Ace framework, particularly the interaction between patterns and
relations. The two main differences between this formulation and that which
exists in most implemented generation systems are the following:

(1) The hierarchical encoding of linguistic knowledge avoids redundancy in
the encoding of knowledge about verbs. In most feature systems, for
example, knowledge about a particular auxiliary is represented by a set
of features which may duplicate sets of features of other auxiliaries. In
Ace, these sets of features are replaced by more general linguistic
categories.

(2) The use of the relation to associate helper and verb allows linking of
their lexical and semantic properties to relations rather than to the
several patterns in which they may appear. For example, the
knowledge about passive verbs in Ace is encoded as knowledge about
the passive-verb relation, independent of the structures in which these
relations are realized. Other systems have either encoded this
knowledge redundantly or applied various rewriting rules to represent
similarities in linguistic structure.

Summary

This chapter has presented the basic facilities of Ace for linguistic
representation and has given examples of the use of the Ace feature system
for the encoding of grammatical knowledge. The discussion has focussed on
the application of four principles to distributing linguistic knowledge in the
Ace hierarchy. This distribution leads to a more parsimonious encoding of
linguistic knowledge which facilitates the addition of new knowledge to the
hierarchy. The next chapter discusses how this linguistic knowledge is
related to the conceptual hierarchy introduced in Chapter 4.

- 89 -

6. Associating Language and Meaning

The most essential representational tools for language generation are
those which facilitate the mapping from conceptual structures to linguistic
structures, and those which help to guide the choice of language based on
conceptual or intentional information. This chapter will focus on the aspects
of the Ace representation which satisfy this need.

Chapter 4 presented the foundations of the Ace framework and its appli
cation to meaning representation, proposing that concepts be hierarchically
organized, linked together via structured associations. Chapter 5 described
how linguistic knowledge can also be hierarchically organized within this
framework, and how features can thus be inherited through linguistic
categories. ·The idea of a linguistic relation was proposed, to distinguish
structural relationships from ordering relationships in grammatical con
structs. Naturally, the knowledge required to produce correct and appropri
ate utterances includes both of these classes in addition to the links which
bind the classes together.

6.1. Basic Principles

The goal of taking advantage of explicit referential knowledge, dis
cussed in Chapters 1 and 3, along with the framework presented in Chapters
4 and 5, suggests two more principles directed towards the association of
linguistic and conceptual knowledge:

Representation Principle 8. Correspondence of Linguistic and Conceptual
Structures.
Linguistic structures, such as lexical terms, linguistic categories, and
grammatical structures, are directly associated with conceptual
categories. General linguistic categories, such as verb-indir-relation,
correspond to general conceptual categories, such as transfer-event.
Specific lexical terms, such as "buy" and "sell", are linked to more
specific concepts, such as buying and selling. Grammatical structures,
such as the modifier-noun relation, are associated with conceptual rela
tions, such as MANIFEST.

Representation Principle 9. Association of Linguistic Features with Con
ceptual Attributes.
The structured association permits the relation of linguistic aspectuals
with conceptual aspectuals via ROLE-PLAY. Linguistic features, such
as dvp-pattern and ivp-verb as described in Chapter 5, are represented
as aspectuals in Ace, as their status depends on the template of which
they are a part. The association of these features with conceptual attri
butes goes along with the association of the template with a concept.
For example, the indirect object feature iobj is an aspectual of verb
indir-relation. The linguistic feature iobj is linked to the conceptual
attribute recipient, an aspectual of the transfer-event concept. The
direct-object feature obj, an aspectual of verb-obj-relation, is linked to
the conceptual object concept, an aspectual of the simple-event concept.
Thus linguistic features have conceptual correlates.

- 90-

The next section describes how these principles are realized in the asso
ciation of language and meaning in Ace.

6.2. Linking Linguistic and Conceptual Structures Using REF

The main tool for representing relationships between linguistic struc
tures and conceptual structures in Ace is a structured association called
REFO The REF association, designating ttreferential" relationships, is simi
lar to VIEW, except that it joins language to concepts instead of concepts to
concepts.

The linguistic knowledge presented earlier has included information
about how verbs and their objects or indirect objects may appear in surface
structure. The knowledge essential to build these structures, however, is
contained in the correspondence between linguistic relations and conceptual
entities. This information is presented below.

(REF verb-indir-relation transfer-event
with (ROLE-PLAY vi-verb transfer-event)
with (ROLE-PLAY iobj recipient))

The above assertion indicates that the linguistic relation verb-indir
relation is associated with the concept of a transfer-event, and that the
indirect object of the relation corresponds to the recipient of the transfer
event Furthermore, the vi-verb of verb-indir-relation relation refers to the
transfer-event itself.

A similar piece of knowledge is used to relate the verb-obj-relation to
simple-event:

(REF verb-obj-relation simple-event
with (ROLE-PLAY vo-verb simple-event)
with (ROLE-PLAY obj object))

As these relations are realized in the dative verb phrase pattern con
sidered in the previous chapter, the dative verb phrase is indirectly linked to
transfer-events and simple-events. Transfer-events, as introduced in Chapter
3, provide an abstract category with respect to which the meaning of aspec
tuals such as recipient can be defined. Simple-events are events which desig
nate a single object. The assertions above define relationships in Ace
between the linguistic aspectual iobj and the recipient of a transfer, and
between the linguistic aspectual obj and the conceptual object.

The knowledge which links the dative pattern to its related conceptual
structures is diagrammed below:

indir-vp I
....
pattern

IV

dative-vp

7

;~d~
~D const const

~

. 91 -

ivp-ve~~P---'

Figure 6-1.

RP

simple-event

p ''
~IClpant

~

The above diagrams illustrate how the syntactic structure of the dative
verb phrase is associated with its conceptual structure. The dative verb
phrase is composed of a verb part dvp-verb followed by two noun phrases. It
is, of course, possible to have adverbial modifiers in various places, which is
facilitated by treating the verb part and its indirect object constituent as a
distinct pattern. This pattern, ivp-pattern, is shown in the top diagram
above. The verb part and noun phrase in the ivp-pattern pattern belong to
the verb-indir-relation, which associates with the indirect object the concept
of recipient. This diagram presents a slightly abbreviated version of the Ace
representation given in Chapter 5, as ivp-verb and ivp-np are associated only
indirectly with the verb-indir-relation via the ivp-relation aspectual.

The structured association between the verb-obj-relation and the
simple-event concept in the lower diagram of Figure 6-1 links the object of
the verb in the dative verb phrase to the object of the simple event. In this
association, as in the association of the verb-indir-relation with the transfer
event, the verb part dvp-verb is associated via ROLE-PLAY with the event
itself, rather than with any aspectual of the event.

Like the pattern-concept pair or the unification grammar template, REF
is a means of associating linguistic structure with conceptual structure. The
template, however, is replaced with an explicit structural link in the
knowledge network. This makes it easier to perform the knowledge-driven
aspects of generation because no querying or complex matching is necessary.
The use of the REF association also facilitates incremental generation by

- 92 -

encoding knowledge about referential relationships as structured associa~
tions at various levels in the Ace hierarchy*.

In many ways the REF structured association is similar to DOMINATE
and VIEW. For example, in the assertion

(DOMINATE action selling
with (ROLE-PLAY actor seller))

the association between actor and seller is connected to the association
between action and selling. In the assertion

(VIEW ct-merchandise-transfer selling
with (ROLE-PLAY merchant seller))

the association between merchant and seller is linked to the VIEW associa
tion between ct-merc.handise-transfer and selling. In the above example, we
have the association

(REF verb-obj-relation simple-event
with (ROLE-PLAY obj object))

which binds the relation between simple-event and verb-obj-relation to the
REF association between the aspectuals object and obj. The path between a
linguistic structure and its meaning, therefore, is represented as a sequence
of structured associations. While these associations are distinguished in the
notation according to the types of entities which they relate, they share
sufficient structure that a relatively simple mechanism can be used to guide
their application and interaction in the generation process. This mechanism
is described in Chapters 7 and 8.

The graphical form of the representations described here corresponds
directly to the assertions in the list notation. The Ace representations
presented henceforth are provided only in the diagram form.

In general, lexical categories in Ace are related to one or more concep
tual categories by a REF association. We thus have:

~--Ie_~_·_ei_I __ ~----REF----~~~~ ---~-1-li-ng--~

Figure 6-2.

The diagram above shows the REF association between the lexical
category "sell" and the selling action. The form of a verb is determined by

• Those familiar with KL-ONE and other similar representation languages will observe that the Ace

representation tends to avoid matching by assuming that the concept being generated from is assigned to

a specific category. Thus some of the work done by template matching in systems such as PHRED is

done during the classification of a concept in Ace. This is consistent with the Proliferation of Conceptual

Categories principle: the generator need not obtain conceptual information that is more specific than
that contained in the category in which a concept has been classified.

- 93 -

the lexical category in conjunction with the other linguistic categories to
which the verb belongs. The following examples from KING illustrate the
use of lexical categories constrained by linguistic properties:

Input concept:
Type desired:

Constraints used:

(given-kiss (kissing))
noun

lex.....kiss
number singular

Word chosen: kiss
===========================
Input concept:
Type desired:

Constraints used:

Word chosen:

(selling)
gerund

form progressive

selling
===========================
Input concept:
Type desired:
Input constraints:

(selling)
finite-verb
tense past
number singular
person third

Word chosen: sold
--

The means by which constraints are propagated and lexical choices are
made will be considered in Chapter 7.

6.3. Linking Linguistic Structures to Aspectuals Using REF

Chapter 4 discussed the idea of aspectual concepts, or concepts which
have meaning only in relation to other concepts. Aspectuals, however, are
still well-defined concepts in Ace, and may be joined to linguistic structures
using REF associations. Consider, for example, the actor aspectual. There
seems to be a close relationship between this aspectual and the active voice
feature. I hypothesize that in the sentence "John gave Mary a book", the
verb phrase "gave Mary a book" is linked by a structured association to a
conceptual structure. This conceptual structure does not seem to be an abso
lute concept, but corresponds to the meaning of "played the role of giver in
giving Mary a book." The "activeness" of this phrase is the linguistic realiza
tion of the meaning "play the role of actor". In "John was given a book by
Mary", the verb phrase corresponds to the meaning of "played the role of
recipient " It is not practical to treat this correspondence as dependent on
the correspondence between sentence and concept, because phrases such as
"giving Mary a kiss" may refer to a role without explicitly saying anything
about the player of the role. In Ace, we may represent the relationships
between linguistic features such as voice_active and aspectuals such as actor
using REF links, as illustrated by the following diagram:

- 94-

1...-v-oi_ce _ _a_c_ti-ve__.I----RE F----i);lr~~ __ a_ct-or---1

Figure 6a3,

In the above diagram, the linguistic features voice_active and
voice_passive represent constraints on linguistic structure. These are joined
via REF links to conceptual structures. This represents the knowledge that
the active voice feature relates to the actor aspectual, and the passive voice
feature to the recipient or object aspectual. Thus a linguistic structure which
is constrained by the active voice feature corresponds to the meaning,
"played the role of actor in ... " In the case of Hgave Mary a book", the verb
phrase means ''played the role of giver in giving Mary a book", because the
actor role in giving is played by the giver. This knowledge about the active
and passive voices is thus represented independently of the linguistic struc~
tures which the voices constrain.

The subject-predicate linguistic relation described in Chapter 5 is associ~
ated by a REF link with a conceptual structure called a predication. This
structure relates a conceptual entity to a role which it plays, called the c
predicate (for "conceptual predicate") of the predication. Predications may be
referred to in a variety of ways other than by the subject-predicate relation,
as in "John's sale of the book", and "knowing the ropes". As discussed above,
the predicate part of a sentence seems to correspond to the meaning "played
the role of " The c-predicate role thus seems to be played by another
aspectual. For "John sold Mary a book", the predication may be illustrated
by the following figure:

c-subject c-predicate

~ johnl I
/

of

~
recipient object

,.------'1'---, ,---""..3......-----,
maryl I I bookl

Figure 6-4.

...

-

- 95 -

The above predication represents a concept which might be expressed in
~'John's selling Mary the book" as well as in uJohn sold Mary the book"; The
role of c-predicate in the above structure is played by the role of seller in the
concept selling!. The c-predicate in the above examples is expressed by
" ... selling Mary the book" and ~~ ... sold Mary the book". Because the seller
aspectual is in a ROLE-PLAY relation with the actor aspectual, seller is
implicitly associated with the uoice_actiue structure. Thus the c-predicate of
the above knowledge structure is expressed in the active voice. This
representation allows certain knowledge about expressing such predicates to
be independent of the corresponding subjects. This permits a generator to
make choices such as selecting the voice of a verb phrase based on the mean
ing of the verb phrase, rather than of the sentence in which the verb phrase
appears.

Predications are an abstract entity in the Ace hierarchy. Any concep
tual relation may be viewed as a predication, although only certain such
predications may be easily described in English. The relationship between
concepts and predications is special because the c-predicate of the predication
is linked to the role which the c-subject plays. When a concept is viewed as
a predication, some aspectual of that concept becomes the c-predicate, and
the concept playing the role of that aspectual becomes the c-subject. This
may be diagrammed as follows:

I predication ~/~VIEW---i..__c....,-onc_ept---'

m/ i?' R~&~P

~
Figure 6-5 .

The u&" in the above diagram indicates a special type of ROLE-PLAY
relation, in which the role played by the c-subject is associated with the c
predicate. The normal ROLE-PLAY relation "RP" indicates that whatever
plays the role of aspectual plays the role also of c-subject. The "&" relation,
on the other hand, indicates that the aspectual itself plays the role of c
subject. For example, the predication shown in figure 6-4 may be derived by
applying this VIEW to selling!: The concept johnl, which plays the role of
the aspectual seller, is joined by ROLE-PLAY to play the role of c-subject.
The aspectual seller is joined by "&" to play the role of c-predicate. This
VIEW is thus used to select a particular aspectual of a concept for the c

predicate role. Since most concepts have more than one aspectual, a genera
tor using this VIEW must choose among the aspectuals of a concept to deter
mine how to form a predication. It is this choice which determines, for
example, whether a sentence will be in active or passive form. Chapter 8
will provide more detail on how these VIEWs are used in the production of
an utterance.

- 96-

6.4. Knowledge About Specialized Constructs

The examples given in section 6.2 are simple illustrations of the use of
associations between language and meaning at a variety of levels. These lev
els become especially apparent in the representation of knowledge about spe
cialized constructs, whose meaning can be only partially represented as asso
ciations from more general linguistic structures. The analysis in Chapter 3
argued for a representation in which specialized knowledge interacts with
general knowledge. The Ace hierarchy facilitates this interaction.

The three principles given at the beginning of Chapter 5 are particu
larly relevant in the representation of grammatical and extragrammatical
constructions and of non-core grammatical constructions. Extragrammatical
phrases, such as "by and large" and "all of a sudden" are treated as special
patterns, just as they were in the pattern-concept pairs of PHRED and as
they would ordinarily be handled in unification grammar. Non-core construc
tions, such as "The more < S >, the more < S >" and ~~<X>, let alone
<X>" are also treated as patterns, but may fall in the linguistic hierarchy
at a level below certain other syntactic patterns and above some more
specific patterns. For example, "The more <S>, the more <S>" construct,
illustrated by "The more Fred eats, the more repulsive he becomes" may be
a special case of the construct "The <comp> <X>, the <comp> <X>",
as in ~(The less money I make, the happier I am". It may also be considered
a parent construction of specific phrases, such as "The more, the merrier".
The construct "<X>, let alone <X>", as in "Bill won't even each fish, let
alone sashimi" may be a subcategory of "<X>, < sub-conj > (X)", a general
subordinating conjunction construct. The "let alone" construct is, however,
more constrained than most subordinated constructs. Experience with sys
tems such as PHRED and Ana suggested handling such specialized con
structs with specific patterns; the Ace hierarchy allows such patterns to
inherit from more general constructs.

The means in which specialized knowledge is encoded varies according
to the particular construct. In the case of simple, non-productive constructs,
such as "kick the bucket", the specialized interpretation and the literal
meaning are actually associated with different linguistic patterns. This
accounts both for the lack of syntactic flexibility of the idiom and the lack of
any substantive contribution to its meaning by its individual components.
For example, the ''bucket" part of the "kick the bucket" pattern does not
actually refer to any sense of the word "bucket", nor does it refer to any
thing. The "kick the bucket" knowledge can thus be represented as given
below:

- 97-

I , .. j"M·· I
I

EF-1._ __ di_e _ __,

pattern

basic-np

bvp-verb

/
kb-verb

lex._the ~bnp- et

"n
kb-det

bnp-n

Figure 6-6.

"Kick the bucket" is thus a linguistic pattern whose only variation in
structure is determined by the form of the verb "kick". The noun-phrase
part has a specified structure, but the verb part of the verb phrase may be
further specified, and obeys the constraints inherited from other basic-up
patterns. Thus "kicking the bucket" as a noun and "to have kicked the
bucket" as an infinitive phrase may instantiate the same pattern, but
''kicked a bucket" will not.

A motivated construct such as "bury the hatchet" corresponds to no par
ticular linguistic pattern, as it may appear in phrases such as "The hatchet
was buried at Appomattox" and "John and Mary buried their hatchet". This
type of specialized construct is awkwardly handled in all current systems,
including PHRAN and PHRED. In Ace, it corresponds to the following
structure:

lex_bury 1---REF----;;o.~l burying I
"\D

D

le~atchet rEF

RP~

Figure 6-7.

The above representation handles the problem of representing the struc
ture of ~~bury the hatchet" in a manner substantively different from
PHRAN/PHRED. On the conceptual level, the concept of terminating a war
is associated with the "burial" concept via a VIEW, the type of structured
association generally used for such metaphorical relationships. However,
there is no particular linguistic structure that can be used either as a
trigger for this VIEW in analysis or as a means of determining the prefera
bility of the use of the lexical terms ~~bury" and "hatchet" in generation.
The solution embedded in the above representation is to treat the hatchet
burying as a more specific concept than burying. The object of this action,
buried-hatchet, is a more specific concept than hatchet; it is the metaphorical
hatchet that is buried at the end of a war.

The practical solution described above for the representation of flexible
linguistic constructs takes advantage of the Proliferation of Conceptual
Categories Principle presented earlier. It is a simple trick in implementing
a system to create a special concept corresponding to a particular construct
rather than to try to encode the knowledge about the construct as part of the
linguistic knowledge of the system. The solution seems bold from a
representational perspective because it goes against the grain of approaches
which try to achieve a strong separation of linguistic and conceptual
knowledge. The hatchet-burying concept exists essentially to satisfy a
linguistic demand, supplying an indirect link between the lexical terms
"bury" and "hatchet" and the concept of terminating a war. The effect of this
organization is to link the specialized meaning of the "bury the hatchet" con
struct to the use of the lexical term "bury" and the lexical term "hatchet"
where "hatchet" refers to the conceptual object of the hatchet-burying. This
allows for the realization of the construct in expressions such as ·~The

hatchet was buried at Appomattox" as well as in its more typical forms.

The richness of the ~~bury the hatchet" metaphor makes the description
above a fairly simplistic one, but the same approach is manifest in a variety
of more simple expressions. For example, in the sentence "John gave Mary a
hug'', the construct involves a similar relationship between a verb and its

- 99-

object. There is no single syntactic structure which can be identified with
the specialized interpretation, yet intuitively the specialized meaning seems
tied to the use of the verb «give" in conjunction with the object «hug". While
the metaphorical connection between the hugging action and the giving
action is dependent on the «acting upon is giving" metaphor, this «hugging
is hug-giving" metaphor must be associated with the particular lexical items
~tgive" and (thug". The following diagram illustrates how both objectives
may be accomplished:

lex_give

object

given-hug ~f------0------'

Figure 6-8.

In the above diagram the link between hug-giving and hug-transfer is
labeled viewl ', to indicate that it is DOMIN A TEd by the structured associa
tion between giving and transfer-event. This association, Viewl, relates the
source of the transfer-event to the giver or actor of the giving. By inheritance
and ROLE-PLAY, viewl' associates the giver of the hug-giving action with
the source of the hug-transfer event. The views view2 and view3 represent
metaphorical associations that actions may be VIEWed as transfer-events
from the actor to the object. View3 indicates the correspondence between the
object of an action or event and the recipient of the transfer, and between the
event and the object of the transfer. View2 represents the relationship
between source and actor. This structured association may correspond to a
conceptualization of actions as transfers of energy from the actor to the
object being acted upon, a common metaphor for specialized constructs such
as "John took a fall", and "John got a punch from Bill". The Ace system
allows for the representation of constructs such as these to take advantage of
their common metaphorical associations.

- 100 -

The association between the hug-transfer event and the hugging action,
labeled view2,3', allows the inheritance of the knowledge that the source of
the hug-transfer corresponds to the actor of the hugging action, that the
object of the hug-transfer corresponds to the hugging action itself, and that
the recipient of the hug-transfer corresponds to the object of the hugging. The
view2,3' association is DOMINATEd by both view2 and view3 and thus
inherits their ROLE-PLAYs.

It is apparent that the use of inheritance and structured associations
makes the encoding of phrases such as "bury the hatchet" and ~'giving a
hug'' easier, but the representations here raise some legitimate questions
about the cognitive reality of the Ace approach. For example, the Prolifera
tion of Conceptual Categories Principle has inspired the creation of concepts
such as hug-giving and hatchet-burying; this raises the question of whether
these concepts are anything more than just a notational convenience.

In the case of hatchet-burying, there seems to be little evidence other
than introspection for the existence of a concept of ending a war which is
specifically invoked by the "bury the hatchet" expression. But certainly
there must be some common structure invoked by a diversity of linguistic
manifestations such as "The hatchet seems to have been buried" and "John
and Mary buried their hatchet". The question, then, is whether this struc
ture is conceptual or linguistic. The answer, in Ace, is that it doesn't really
matter. The very nature of the Ace representation suggests an especially
close association between certain conceptual structures and linguistic ele
ments. Thus it is possible to have a concept such as hatchet-burying which
has very little knowledge independently associated with it other than the
knowledge that the lexical items "bury" and "hatchet" are used to describe
it. It is a concept that seems to have no significance other than as a linguis
tic tool. On the other hand, there is no reason per se why there could not be
a linguistic structure which played the same role as the hatchet-burying does
here. The option to create a hatchet-burying concept was exercised because
the parent class of conceptual structures, actions, seems to correspond well to
the ways in which the "bury the hatchet" construct can appear.

The hug-giving concept may be justified for essentially the same reason
as the hatchet-burying concept: There must be some knowledge structure
representing the underlying construct, and it seems as reasonable to have it
be a conceptual structure as to be a linguistic structure. In more restrictive
expressions such as "kick the bucket", the underlying structure is unques
tionably a linguistic entity. In more flexible cases such as "bury the
hatchet" and "giving a hug", it makes more sense that it be a conceptual
entity.

The existence of the hug-transfer concept, however, is more tentative.
Superficially, it seems that the concept should exist, as expressions such as
"Mary got a hug from John" and "Mary received a hug from John" seem to
invoke the same VIEW as "John gave Mary a hug''. However, "Mary took a
hug from John" is questionable. If there is in fact a hug-transfer concept, it
seems that one should be able to use this latter form to refer to it. One
might argue that there is a constraint, inherited from the actor aspectual,
that a taker must have some kind of agent-like properties with respect to the
transfer, but this seems contradicted by examples such as "John took a
punch in the mouth" and "Humpty took a fall".

There are two good answers to this problem, both of which assume that
to some degree language is arbitrary in the constructs that it allows and
does not. The first answer, which is behind the representation given here, is

-

- 101 -

that concepts such as hug-transfer do exist, but that one normally does not
use action verbs such as "give" and ~~take" to refer to them, and that the
specific association between ~~give" and hug-transfer effectively counter
mands this generalization. This specific association thus preempts general
linguistic knowledge in the case of ~tgive a hug". This conclusion is sup
ported by the fact that the sentence ~~Mary took a hug from John" belongs to
the class of constructs that are comprehensible and even reasonable, but
which are just not used. Thus it is acceptable to have a representation
which indirectly associates hug-transfer with taking-action, so long as the
representation does not ordinarily lead to the generation of the awkward
construct. Since specific associations are preferred to indirect associations,
the lexical term ugive" is better than "take" in describing hug-transfers.

The second answer is that the association between hug-giving and hug
ging exists, but does not go through the concept of hug-transfer. This would
suggest a direct VIEW relation between hug-giving and hugging, which
would inevitably be DOMINATEd by a general VIEW between givings and
actions, relating actor to giver and object to recipient. The advantages of this
approach are twofold: First, processing efficiency may be increased by hav
ing more direct mappings between meaning and language; and, second,
eliminating the hug-transfer concept precludes the use of incorrect constructs
such as ~~taking a hug". However, the "giving a hug" expression would in
this way be represented independently of "getting a hug" and "receiving a
hug". The combination of structured associations to produce more direct
associations can be called short-circuiting (cf Wilensky, 1983), and generally
results in processing advantages but leads to a less parsimonious and possi
bly less extensible representation.

A macro-association, as mentioned in Chapter 3, is a short circuit
between structures otherwise indirectly associated. Macro-associations con
nect sequences of structured associations. These associations may be applied
in order to make use of intermediate concepts in the sequence without con
sidering all the associations which relate to these intermediate concepts.
For example, it would seem wasteful to view hugging as a hug-transfer
event and thus consider all the structured associations relating to transfer
event, such as the VIEW relating transfer-event to taking. Rather, hug
transfer seems an intermediate stage in the view between hugging and hug
giving. ·This type of short circuit may be illustrated by the following
diagram:

- 102 -

,.--m:ac(view2, viewl) ---..

lex_give

object

given-hug 1==1------D-------'
Figure 6-9.

The labels mac(view2, viewl) and mac(view2,3'; viewl') in the diagram
above illustrate the macro-associations which link actions to givings by con
necting other structured associations. These macro-associations may be used
to prefer particular sequences of structured associations in either analysis or
generation; however, their application does not entirely bypass the indivi
dual VIEWs. The manner in which these macro-associations may be used in
generation is discussed in the next two chapters.

The distinction was made earlier between highly constrained constructs
such as "kick the bucket" and more flexible ones, such as "bury the hatchet".
The representation given for the "bury the hatchet" expression was general
enough to allow for phrases such as "burying a hatchet" and "the hatchet to
be buried" to correspond to the specialized meaning. It would seem counter
intuitive to have no indication in the representation that "burying a
hatchet" is somehow not as good a manifestation of the expression as "bury
ing the hatchet". The preferability of ''burying the hatchet" is probably not
entirely attributable to its conceptual structure.

The problem of distinguishing "burying the hatchet" from "burying a
hatchet" has several potential solutions. The most elegant would seem to be
a general association which would connect constructs of a certain type with
the definite article, so that "take a walk" and "give a hug" are actually dis
tinguished from "bury the hatchet" and "take the cake". To represent the
underlying motivation for the choice of article, however, seems a formidable
task. A second possible solution would be to associate "bury the hatchet"
with a linguistic structure similar to the "kick the bucket" pattern, which
would serve as a default. This would prove somewhat inefficient, since the
specific linguistic structure would still not serve to guide the choice of article
in the passive or other unconventional use of the phrase. In this case, the
sensible solution seems to be to attach to the object of the hatchet-burying
concept an as::'lociation with the noun phrase "the hatchet" in addition to the

....

- 103 -

association with the lexical term "hatchet". This would suggest that under
normal circumstances the definite article would be used, but if some other
constraint were violated by this choice, the cpnstruct could still be realized.

6.5. Encoding New Knowledge in Ace

This thesis has posed extensibility and adaptability as critical issues in
knowledge representation, but the discussion in this chapter and in the pre
vious two chapters has only implicitly addressed the issue of adding new
knowledge to Ace. I have made the argument that parsimony of representa
tion is an indicator of extensibility, and that explicit referential knowledge
and uniformity are indicators of adaptability. Many of the examples
presented in these three chapters can be used to support this argument.

Most of the examples of events presented here have been related to the
abstract concept of a transfer-event, and linguistic knowledge about referring
to these events thus derives from more general knowledge. The
commercial-transaction event, for example, can be decomposed into two
transfer-events, which in turn are joined by VIEW associations to actions
such as buying and selling. While this introduces a fair amount of concep
tual knowledge into the hierarchy, in keeping with the Proliferation of Con
ceptual Categories Principle, there is essentially no special linguistic
knowledge required to realize all the forms in which descriptions of the
commercial-transaction can appear. The dative form of the verbs, the prepo
sitions used, and the constraints on what can be the subject, all derive from
more general knowledge about transfer-events, particularly the ROLE-PLAY
relationships between elements of transfer-events and elements of linguistic
relations.

Similarly, the specialized knowledge about constructs such as ''giving a
hug'' illustrates the ease with which knowledge about transfer-events may be
used to increase the linguistic knowledge of a system. By associating hug
ging with hug-giving, the Ace hierarchy represents the relationships realized
in "John gave Mary a hug'' and "Mary was given a hug by John" without
any special linguistic patterns or relations. The addition of knowledge about
"giving a kiss" likewise iz:1volves merely the encoding of two new VIEWs
into the hierarchy, and, as will be shown later, enables KING to produce
"Mary was given a kiss on the cheek by John" or "John kissed Mary on the
cheek" without any special linguistic knowledge. Encoding knowledge about
the concepts kissing and punching, along with lexical knowledge about
"kiss" and "punch", enables KING to produce the following sentences:

John's being punched on the nose bothered Mary.
Mary's kiss on the cheek pleased John.
John wanted to be given a kiss on the cheek by Mary.

The Ace hierarchy was easily adapted to apply its knowledge about
transfer-events to the UNIX domain. Many concepts in the UNIX domain,
for example, are viewed as communication-transfers, or transfer-events whose
object is some type of message. These events are often referred to using
verbs such as "tell", "give" and "get". The knowledge about transfer-events
allows these verbs to be used for communication-transfers without any addi
tional linguistic structures. Classifying certain UNIX-world concepts thus

- 104-

allowed the generator to produce:

To get the name of the machine, type ~hostname'.
Type ~write John' to send John a message.
~Ls' gives you the names of your files.

Multiple inheritance is an important aid in the encoding of new infor
mation into the Ace hierarchy. As an illustration, note that object is not an
aspectual of transfer-event but of a higher-level concept in the system,
simple-event. Thus, while transfer-events have associated with them special
knowledge about linguistic structures in which source and recipient may be
realized, they do not have special knowledge about referring to their objects.
Now, consider events in which the object is a command or desire. These are
often referred to using verbs such as "order", "tell", "instruct", "want",
"need", and "force". We may desire to have "John told Mary to go", ''John
asked Mary to go", and "John forced Mary to go" all make use of the same
linguistic knowledge. This is accomplished by having the knowledge about
the role of the desired event or state inherited from a different part of the
hierarchy from knowledge about transfer-events.

Consider the sentence "John ordered Mary to go". This sentence seems
to describe an act of communication, but also reflects the compulsion of
"needing Mary to go" or "wanting Mary to go". Such constructs seems to
inherit some of their structure from means of describing communication, and
some of their structure from means of describing compulsion. Acts of com
munication are subcategories of the abstract category transfer-event. This
accounts for the linguistic structure of "John asked Mary a question" and
"John told Mary a story". Needs and desires are categorized as unrealized
predications, or states which are unrealized at the time of an event.
Unrealized-predications are unrealized states of the unrealized-subject. The
linguistic relation verb-usub relates the verb of a verb phrase to the consti
tuent which refers to the unrealized-subject of the unrealized-predication.
This relation associations "John" and "Mary" in "John wanted Mary to
leave". The relation verb-upred associates the verb with the expression of
the unrealized-predicate. This relates "John" and "to leave" in the above
sentence. The hierarchy to which the ordering concept is associated is illus
trated by the following figure:

- 105 -

Figure 6-10.

In the above figure, the concept ordering is shown as belonging to both
the communicating and unrealized-predication categories. By virtue of this
knowledge, "John ordered Mary to leave" may be produced by combining
knowledge about referring to unrealized-predic;ations with knowledge about
referring to transfer-events: The dative construct derives from knowledge
about transfer-events, and the use of the infinitive phrase derives from
knowledge about expressing unrealized-predicates, related to verb-usub and
verb-upred but not shown above. "John told Mary to leave" may be used to
describe an ordering event, without any additional knowledge about the
verb phrase structures within which "tell" and ((order" can be used.

The difference between mJohn wanted to leave" and ''John wanted Mary
to leave" in Ace is not treated as a representational consideration. In one
case, the subject of the unrealized-predication may be the same as the sub
ject of the sentence. If this is true, a general processing rule in KING, to be
considered in Chapter 7, dictates that each concept may play only one role
in the linguistic relations realized. This rule presents complications in cer
tain uses of pronouns, complications which still are difficult for KING.
Nevertheless, it seems practical to handle EQUI- constructs such as these by
using processing rules rather than representational distinctions.

- 106-

Summary

This chapter has explored the use of a hierarchical, uniform knowledge
representation in the encoding of associations between language and mean~
ing. The examples presented are meant to illustrate how the Ace frame~
work handles the representation of generalized and specialized relationships
and of indirect associations between language and meaning. The structured
association REF in Ace is used to represent structural relationships between
linguistic and conceptual entities. By utilizing these associations at various
levels of the Ace hierarchy, the representation provides a mechanism for
making use of generalizations and indirect relationships in the encoding of
specialized knowledge and thereby heightens the extensibility and adapta
bility of a knowledge base. The next two chapters will consider how this
representation can be exploited in the generation of language.

- 107 -

7. Processing Aspects of Generation

The previous three chapters have presented the details of the Ace
representation, designed to alleviate knowledge representation problems
which limit the extensibility and adaptability of language processing sys
tems. This chapter describes how this knowledge can be applied to the gen
eration task. The processing framework described here is fundamental to the
design of KING (Knowledge INtensive Generator), a system built to produce
natural language output from a conceptual representation using a
knowledge base in the Ace form.

In the spirit of PHRED, KING is built to share a declarative knowledge
base with a language analyzer, and to produce linguistic output in real-time.
KING is also geared toward facilitating the exploitation of new knowledge,
to make adaptation and extension easier. While the problems with PHRED
and other generation systems are primarily issues in knowledge representa
tion, the design of the mechanism which organizes and applies the
knowledge is an important consideration. I have suggested that knowledge
intensivity and incrementality are two important aspects of such a mechan
ism. Knowledge-intensivity is important because knowledge is easier to
adapt than program. Incrementality is an asset because it helps to make
the knowledge of the system more versatile, taking advantage of modularity
of knowledge representation. The mechanism described here, and realized
in KING, takes advantage of an incremental, knowledge-intensive means of
exploiting the power of the Ace representation.

The process of constructing an utterance using this mechanism may be
broken down into three basic phases. as described below:

Mapping is the process of retrieving and applying :;tructured associa
tions which relate the concept to be expressed into other conceptual
structures and qltimately to linguistic structures. The result of the map
ping process is a set of linguistic relations and constraints which should
be realized in the structure produced. Mapping is primarily a data
driven component of the system, as the selection of structured associa
tions for mapping depends mostly on the nature of the input concept.

Pattern selection is the task of accessing templates specifying linguistic
patterns from the knowledge base of the system, and of selecting the
pattern which best fits the input constraints and the structures derived
from mapping. Pattern selection is the means by which knowledge
structures derived from mapping may be combined. This process is
more goal-directed than the mapping process, as it depends heavily on
the linguistic entailments arrived at through mapping.

Restriction consists of applying a set of constraints to a selected pattern.
thereby producing a pattern \vhose constituents are further specified
using the constraints which have led to the selection of the pattern.
The result of the restriction process is an instantiation of a linguistic
pattern, representing a surface structure upon whose constituents the
generation sequence is recursively invoked.

For example, consider the problem of producing a sentence such as
"John sold Mary a book''. The input to KI:\G in this case is the conceptual

- 108 -

representation of a particular commercial-transaction event. The mapping
process results in the application of structured associations between
commercial-transaction and ct-merchandise-transfer and between ct
merchandise-transfer and the buying or selling action, and identifies linguis
tic relations needed to express these concepts in a surface structure. These
relations, obtained from REF associations with concepts DOMINATing ct
merchandise-transfer and selling, include subject-predicate, verb-indir
relation, and uerb-obj-relation. Pattern selection results in the choice of a
basic sentence pattern and a dative verb phrase, i. e., the means for combin
ing these relations in a sentence .. Restriction results in the insertion of
aspectuals of these relations in the appropriate places in the surface struc
ture. For example, the subject-predicate relation used with the Basic-S pat
tern results in the restriction that the noun phrase of the pattern refer to
the filler of the subj of the relation.

The sections which follow give an overview of each of the three phases
of the generation process. Further details with respect to the implementa
tion of each phase are presented in Chapter 8.

7.1. Mapping

The mapping phase of KING utilizes structured associations to produce
new instances of knowledge structures from instances of other knowledge
structures. In generation, this process can produce a variety of new struc
tures from a conceptual input; for example, a new conceptual structure, a
lexical category, a linguistic relation, or a linguistic constraint. These are
derived from the mapping mechanism by traversing different types of struc
tured associations. New conceptual structures may be produced by utilizing
DOMINATE, MANIFEST. and VIEW associations. New linguistic struc
tures are generally produced from REF associations.

In the commercial-transaction example, knowledge structures such as
ct-merchandise-transfer and selling are accessed through MANIFEST and
VIEW associations. That is, the mapping process uses the instantiated
commercial-transaction concept to instantiate the ct-merchandise-transfer
aspectual, using ROLE-PLAY relationships to determine the fillers of the
roles of the ct-merchandise-transfer. ROLE-PLAYs similarly determine the
roles of selling which are filled when the VIEW relation is applied between
ct-merchandise-transfer and selling. This use of an aspectual of the complex
commercial-transaction event to describe the event is due to the lack of any
direct means of referring to the commercial-transaction.

REF associations are used to map into linguistic structures, including
relations, constraints, and lexical categories. A lexical category, for exam
ple, the lex_sell category ("LEX = sell" in the feature notation), is a linguis
tic structure which is later used to produce a lexical item in KING. A con
straint, for example, the uoice_active constraint !"VOICE = active" in the
feature notationl. constrains either the selection of a linguistic pattern or
the form of a lexical item. Also, relations, such as the r-·erb-obj-relation and
uerb-indir-relation described in Chapters 5 and 6, are instantiated by map
ping across REF structured associations.

When a VIEW association is applied in KI~G, the result is an instan
tiation of a new concept. The mapping process continues from the new con
cept, thereby initiating an indirect reference to the original concept. When

- 109 -

a REF association is applied, the result is an instantiation of a linguistic
structure. In this case, KING continues to attempt to apply REF associa
tions from the same concept and then passes control to the pattern selection
mechanism. No further VIEWs are used unless the process of building a
linguistic pattern fails at this point. The mapping process thus applies
VIEWs only until it reaches a point where it has derived enough referential
knowledge for the building of the required pattern.

The discussion below considers the selection of structured associations
in KING's mapping phase.

Choosing Structured Associations

The process of applying a structured association as a map is relatively
straightforward: Given the instantiation of a concept and its aspectuals, a
new concept is instantiated using the ROLE-PLAYs of the structured associ
ation to determine the fillers of the new aspectuals. The process of selecting
which structured associations to apply, however, is a more difficult one, criti
cal to the generation task. KING employs a strategy which replicates many
of the heuristics embedded in other generation programs. This strategy may
be summarized by the following principles:

Processing Principle 1. Favor "horizontal" associations over other associ
ations.
The explicit referential associations recognized by KING are VIEW and
REF. I refer to these as "horizontal" associations. Typically, these are
explored before more "vertical" associations such as DOMI~ ATE and
MANIFEST. This is similar to the "choose the most specific match"
rule obeyed by BABEL and PHRED: The verb "sell" is generally
favored over the verb ''give" for a selling concept because it is associated
with selling via a REF, while ''give''· may only be reached by first follow
ing a DOMINATE link to giving. The justification for favoring VIEWs
over DOMIN ATE and MANIFEST is that, when a direct means of
expressing a concept is not found, the expression a metaphorically
related concept is preferable in general to an expression of a concept
which is too specific or too general.

Processing Principle 2. Favor ''upu;ard'' associations over other vertical
as soc iatio ns.
The "upward" associations in Ace are INSTANTIATE and DOMIN ATE.
This principle means that in producing language one derives linguistic
constructs using supercategories of the concept to be expressed, rather
than attributes of the concept to be expressed. Thus indirect reference
by supercategory is generally favored over reference by component.

Processing Principle 3. Favor associations which yield linguistically
appropriate structures.
The generator prefers associations which produce linguistic structures,
but it is also biased towards those which produce linguistic structures
which are likelv to be useful. REF associations are favored over all
other structured associations, provided that the linguistic structures
which they produce are usable. For example, actions are often referred
to using verb phrases, but in some contexts they produce nouns or

- 110 -

modifiers. The generator should then be biased towards the appropr ate
structure. The phrases "John's selling the book", "John sold the bo.)k",
and "the selling of the book by John", may all result from the s.=.me
conceptual structure but depend on the structural constraints of the
local context, including the linguistic constraints which propagate :.... om
linguistic structures already selected. The structured mappings w ::ich
produce the possessive construct and the definite reference should not be
used when constructing a complete sentence, and the subject-predicate
relation should not be considered when constructing a noun or noun
phrase.

The first two principles illustrate some of the processing aspects of the
interaction of specialized and generalized knowledge in KING. The idea of
preemption, favoring specialized knowledge over more general knowledge, is
behind the first principle. Because structured associations in Ace may
inherit their structure from more abstract associations, this specialized
knowledge may depend on more general knowledge, but it may also override
or preempt more general knowledge. The second principle specifies that
where there is no specialized knowledge about referring to a particular
concept, it is acceptable to apply knowledge about a more general concept.
This principle would apply, for example, in referring to the ct-tender-transfer
concept: The verb ~~pay" refers to a concept which DOMINATEs ct-tender
transfer, as <(paying" is associated with the concept with paying for
anything, while ct-tender-transfer as used here designates an event
performed in exchange for merchandise.

The third principle keeps the process of applying maps from producing
structures which will not be useful in constructing the requir~d phrase.
This applies mainly to structured associations which yield linguistic
relations. The use of these relations may be subject to a variety of
constraints. For example, the uerb-obj-relation and uerb-i-: lir-relation
relations may be realized only in verb-phrase constructs; if .:orne other
construct is being produced it is necessary to refer to recipient and
conceptual object using other relations, as in "the sale of the book to Mary".
This principle has the following corollary:

Corollary A. Avoid redundant and semantically inconsistent expressions.
Structured associations may not be applied which involve more than one
concept in the same role or involve the same concept in multiple roles.
For example, "John kissed Mary's cheek" realizes the role of cheek as a
conceptual object, but if "Mary" has been used in that role the generator
should find another relation to express the cheek's role, as in "John
kissed Mary on the cheek." This corollary also avoids building sentences
such as "John was kissed the cheek" and !~Mary kissed John's cheek on
the cheek".

Like PHRED, KING is designed to incorporate as much as possible into
predisposition mechanisms. The heuristics above predispose the generator
towards applying certain structured associations and thus producing
particular structures preferentially. These predispositions may influence the
language produced. Even where the the heuristics are neutral with respect
to some set of structured associations, the generator selects a structured
association to apply, randomly if necessary, and continues to generate using
that association. This is the case, for example, with the commercial-

- 111 -

transaction example. The generator will not produce a structure for ''John
sold Mary a book", another for ''Mary bought a book from Joru:·•, and
evaluate the structural choices. Rather, it will map from comr:ercial
transaction to ct-merchandise-transfer and then to either buying or ;elling,
and will complete its work based on the result. In this way the biasin~ of the
mapping process has a substantial effect on the output of the ge.::erator.
This is similar to predisposition in PHRED and to the indelibility rea1ized in
MUMBLE, but is generalized to conceptual structures: A VIE\V of a
conceptual structure, once applied by KING, is not evaluated with respect to
other VIEWs. If the generator applies a VIEW to obtain the buying concept
from act-merchandise-transfer, it will not consider a selling VIEW.

Macro-associations in Mapping

Macro-associations have a special role in the process of selecting and
using associations for mapping. The macro-association in KING allows a
knowledge structure to affect mappings from subsequent knowledge
structures. These associations effectively constitute short cuts that the
generator can use in determining which mappings to apply, by connecting a
series of mappings.

As described in Chapter 6, a macro-association in Ace specifies a
sequence of structured associations which may be applied to produce a new
structure from a given structure. This helps the generator to avoid
considering related but unessential knowledge structures. For example, if
ml represents the structured association between commercial-transaction
and ct-merchandise-transfer, and vl represents the VIEW relation between
ct-merchandise-transfer and selling, then mac(ml ,vl) can be used to
designate a macro-association between commercial-transacticn and selling.
This macro-association may be used to map to the selling c-:.ncept without
considering the mappings which would instantiate ct-tender-transfer and
buying. This suggests the following rule:

Corollary B. Favor macro-associations over other structured associations.
except where Principle 3 applies.
Macro-associations are considered before other structured associations in
the mapping phase, assuming that no association directly produces a
valid linguistic structure. Thus mac(ml ,vl) above in the absence of
other macro-associations would cause KING to refer to a selling concept
unless some constraint were violated.

The two differences between applying a macro-association and applying
a sequence of associations independently are (1) At any stage in the
application of a macro-association, the next association in the sequence is
considered before any other associations, and (2) If the application of an
association in the sequence specified by a macro-association fails, the
mapping process resumes where the macro-association was initiated, instead
of at the last concept instantiated.

There are two important ways in which macro-associations differ from
simple short cuts. First, the macro-associations may be biased according to
their intermediate mappings. This stipulation is to allow, theoretically, for
the preference of forms such as ''John gave Mary a kiss in exchange for a

- 112 -

favor" to t'John kissed Mary in exchange for a favor". Since a macro
association corresponds to a sequence of mappings, rather than a single asso
ciation, at any stage in the mapping process the macro-association may be
used or abandoned based on context and subject to the application of con
straints which affect the individual mappings. Such contextual biases are
not, however, implemented in KING.

In the ''giving a kiss" example, suppose mac(vlO,vll) denotes a macro
association between kissing and giving through transfer-event This macro
association generally results in the instantiation of the giving concept. In
other cases, the choice of a macro-association is more likely to be influenced
by constraints on the individual mappings, as is the case, for example, with
"taking the news", which is subject to the constraint that the news must be
negative. This constraint is not particular to the macro-association which
relates the reacting concept to transfer-event and the lexical terms; it applies
to most associations which link transfer-event to taking where the taker is
not an underlying actor. Thus if madv20.v21) links reacting to taking, the
application of v21 between transfer-event and taking is subject to the usual
constraints. If a constraint on this mapping fails, the generator continues
mapping not from transfer-event, but from reacting.

The second major complication in the use of macro-associations is in
their interaction with other associations and macro-associations. A macro
association may link a concept to other concepts by specifying a general
sequence of associations. Suppose that mO is the relation between complex
event and simple-event, and uO is the VIEW association between simple-event
and action. Then madmO, vO) is a macro-association which links complex
event to action. This macro-association biases the generator toward instan
tiating an action concept, but the choice between associations with buying
and selling is not predetermined. The mechanism thus consistently favors
the use of more specific structured associations where possible. The general
macro-associations determine the type of structure to be produced, e. g.,
action, while the specific associations determine the particular structure, e.
g., buying or selling.

The principles presented here are implemented in the mapping mechan
ism of KING, to be described in section 8.3. The same mechanism is used to
apply REF associations as is used for VIEW associations. Each time such
REF associations are used, the mapping process continues to apply REF
associations from the last concept instantiated, keeping track of all the
linguistic structures it has derived. The result of the mapping process is a
set of constraints and linguistic relations which should be realized in the
part of the utterance being produced. :Mapping from the concept (selling
(object book)), for example, produces an instantiated verb-obj-relation along
with the lexical category lex_sell. Chapter 8 provides further examples of
how these relations and constraints are derived and used.

The set of linguistic structures resulting from the mapping process is
passed to the pattern selection phases. which is described in the next section.

7.2. Pattern Selection

The hierarchical organization of linguistic patterns makes a simple
method of pattern selection in KING very effective. As in PHRED, potential
patterns are returned by the generator in an ordered stream, biased by the

- 113 -

constraints to be satisfied and the relations to be expressed by the pattern.
The order in which patterns are retrieved and considered may influence the
language produced. In KING, however, the bulk of the specialized linguistic
knowledge is stored in the hierarchy of relations, while the patterns them
selves are used to determine constituent order. There are thus far fewer
patterns to be considered by the system. While neither PHRED nor KING
has been extended to have a very large grammar, the linguistic coverage of
KING is unquestionably better than PHRED's, although KING's knowledge
base has roughly 50 patterns and the English knowledge base of PHRED
has several hundred.

Pattern selection has a substantial top-down element, stemming from
the fact that the applicability of a pattern depends heavily on the structure
within which it is used. An example given earlier is that a complement
using ''that" must be followed by a basic sentence pattern. In this case, the
pattern selection process is easy because only the basic sentence pattern
need be considered. In contrast, the production of noun-phrases and verb
phrases is constrained less by where they appear and more by the concepts
which are being expressed.

The pattern selection mechanism has three potential outcomes: If its
input specifies a lexical category, it may produce a lexeme. Otherwise, it can
produce a template, including a pattern which satisfies the necessary con
straints. Otherwise, it will fail, generally passing control back to the map
ping mechanism.

The following principles describe the process of selecting patterns:

Processing Principle 4. Consider only those patterns which fall in the
most specific pattern category.
The input to the pattern selection phase may include pattern categories
such as noun phrase or verb phrase. Such categories are always in the
pattern which the generator is working from; for example, if KING is in
the process of using an NP-VP pattern, the first constituent must be a
noun phrase and the second a verb phrase. More specific categories may
be given, such as question-sentence, postnominal-modifier, or basic
sentence. These categories may also be derived in the mapping process.
The linguistic pattern being produced must necessarily belong to the
most specific of these categories.

Processing Principle 5. Favor patterns which are associated with contex
tual structures.
This principle distinguishes contextual biases from strict constraints.
An element of the context may be used to derive a pattern category, but
the generator can if necessary select a pattern not in that category.

Processing Principle 6. Favor patterns which subsume as many relations
as possible.
Among the candidates of equal status from Principles 4 and 5, patterns
may be ordered according to the number of linguistic relations which
they express. Patterns which express relations not derived from the
mapping process are discarded.

Principles 4 and 5 above are relatively simple. The fourth principle dic
tates that only patterns which satisfy external constraints should be

- 114-

considered. The fifth dictates that contextual knowledge should be used
where possible. Very few contextual biases are actually implemented in
KING, but the mechanism is designed to allow for a greater contextual
influence. One contextual phenomenon that has been encoded is that if part
of the context in which KING operates is that the system is instructing its
hearer, this biases the generator toward imperative sentences. If part of the
situational context is the be-polite objective, the system may be biased
towards using questions. The representation of objectives such as instruct
and be-polite, as it stands, however, does not capture much of their meaning.

Principle 6 is difficult to implement. One problem is that it is not easy
to determine what relations can ultimately be expressed in a pattern. Some
noun phrase patterns, for example, include verb phrase constructs, and thus
may express relations such as verb-obj-relation and verb-indir-relation. In
this case it is important to have a means of determining which noun phrase
pattern will allow the relations to be expressed, to facilitate the generation
of phrases such as ~~selling Mary the book". This problem is further detailed
in Chapter 8.

Another caveat to Principle 6 is that in certain cases it does not seem
sensible to rely on the data-driven mapping process to provide all the rela
tions necessary to realize a pattern. This seems true with do-support, the
use of the auxiliary ~~do" in constructs such as ''Did John go?" and "John did
not go". The aux-verb relation with modal "do" should be instantiated if and
only if the inverted question or negative pattern is selected and no other
aux-verb relations have been instantiated. Otherwise, the generator might
not be able to produce ~~John did not go" or might erroneously produce '~John
did not be kissed by Mary". To avoid this, the inverted question and nega
tive pattern thus have associated with them a default aux-verb relation,
specifying the auxiliary ~'do". The lack of a derived aux-verb relation thus
does not prevent these patterns from being selected, but causes the default
to be passed to the restriction phase.

As an example of the pattern selection process, consider the production
of the verb phrase part of "John sold Mary a book." The generator will at
this point have obtained a variety of constraints such as "FORM = finite"
and "VOICE = active", and will have determined from the Basic-S pattern
that it must produce a verb-phrase referring to a particular selling concept.
The mapping process, furthermore, will have produced the relations verb
indir-relation (iobj = maryl) and verb-obj-relation (obj = booklJ.

As suggested by Principle 4, the pattern selection mechanism first
retrieves all templates with patterns in the verb-phrase category (about a
dozen in the current knowledge basel. It then orders these templates accord
ing to the number of derived relations which they express. The basic-up of
figure 5-6, for example, is considered before the intrans-vp pattern, because
it expresses the verb-obj-relation. In this case, KING chooses the pattern
which subsumes the uerb-indir-relation and verb-obj-relation, the dative verb
phrase pattern*:

• This pattern has been slightly simplified here to make the example clearer. As presented in Chapter 5,

the indirect object part of the dative verb phrase should be treated as part of an embedded indir-vp con

stituent. This does not influence the example.

- 115 -

~
vi-verb

---- o---

Figure 7-1.

Each time a pattern is selected by the generator, it is passed along to
the restriction mechanism, which performs the bulk of KING's linguistic
grunt work. This mechanism is described in the following section.

7 .3. Restriction

Restriction is the process of applying constraints to a selected pattern.
matching it with the relations it is to subsume and preparing the consti
tuents of the pattern for completion. This role is often played by unification
in systems such as those of Appelt (1983) and McKeown (1982). In PHRED
the restriction process was divided into three components: unification. which
matched the attributes of the input to the features of a pattern template,
elaboration. which added constraints to individual constituents of the pat
tern, and combination, used to combine ordering patterns with flexible-order
patterns. KING represents a step away from traditional unification, per
forming no syntactic unification at all. There are a variety of reasons for
this elimination, the most significant of which is the goal of replacing an ele
ment of the generation process which can be both time-consuming and
counter-intuitive: the use of explicit variables to represent associations
between knowledge structures.

In unification-based systems. variables represent two basic kinds of
associations: \ 1) the relationship between a linguistic attribute and a con
ceptual attribute, such as the "PREP-OBJ = <agent>" specification in the
passive template in section 5.1, and 12) the relationship between a feature
of one linguistic structure and that of another linguistic structure, such as
the "TENSE = · TENSE" specification in the unification grammar example
of Chapter 2. Both of these types of associations are represented by ROLE
PLAYs in the Ace hierarchy. In unification grammars, these variables serve
two functions: (1) the matching of pattern attributes to input attributes, for
example, to produce "PREP-OBJ = johnl", and (2) the addition of features

- 116-

to individual constituents of the pattern, for example, to specify the tense of
the verb of a pattern based on the constrained tense. Both functions are
accomplished in KING by using REFs with ROLE-PLAYs instead of explicit
variables. The first function is carried out by the application of REF associ
ations in the mapping process. The second is carried out by the use of
ROLE-PLAYs between patterns and pattern constituents in the restriction
phase.

The restriction process in KING consists of stepping through the given
relations and constraints. For each relation or constraint which has been
produced through the mapping process, conceptual structures or constraints
are added to the appropriate pattern constituent. For each relation, this
means looking for a relation type which DOMINATEs the relation and is
associated with the template containing the selected pattern. The appropri
ate conceptual element from each aspectual of the relation is then added to
the corresponding constituent. For all linguistic structures derived through
mapping, explicit ROLE-PLAYs are checked to add linguistic structures
wherever necessary to pattern constituents. This may include constraints
which are particular to the given relation. For example, the passive-by
adjunct relation has a constraint that the preposition of the adjunct is ''by".

Restriction in KING compacts the unification, elaboration, and combina
tion components of PHRED into a simpler mechanism. Unification is not
applied at all: Simple checks are used to be sure that the selected pattern
does not violate constraints; however, as in PHRED, the system depends on
the pattern selection mechanism to ensure that constraints are satisfied.
The elaboration process is essentially the same as that in PHRED, except
that the hierarchical organization of linguistic structures allows the
correspondences between pattern attributes and constituent attributes to be
inherited, and also makes it easier to specify classes of linguistic constraints
which correspond to certain constituents. For example, attributes such as
person, number, tense, and form are used to specify constraints on verbs,
and they may be grouped into a common category, verb_constraint. Associ
ated with verb-phrase constructs, then, is a ROLE-PLAY which indicates
that all verb_constraints are constraints on the verb-part constituent of the
verb phrase construct. This knowledge is then inherited by all verb phrase
constructs. This accounts for the omission of this information from the tem
plates presented here. In other systems, the correspondence between each
constraint of the verb and each constraint of. the verb phrase require8 an
additional feature, such as "TENSE = ' TENSE".

Unification is unnecessary in KING because the knowledge contained in
the templates of most linguistic representations is broken down into less
complex, and more modular. structured associations. The nature of the
knowledge representation is such that large-scale template-matching is
unnecessary. Associations are applied based on the category classification of
the concept to be expressed. and the output structure is built incrementally
from the results. In unification-based systems, template-matching is neces
sary to perform such operations as the binding of conceptual attributes in a
template. The "<person> <give> <person> < physob >" pattern in
PHRED, for example, had associated with it a conceptual template with
variables corresponding to each of the three main constituents, the two
<person> constituents and the < physob >. A "RECIPIENT = (value 3-l"
binding explicitly indicated that the binding of RECIPIENT corresponded to
the third consitutent of the pattern.

- 117 -

In KING, this binding is replaced by the mapping process, where
ROLE-PLAYs effectively specify the relations among aspectuals which are
equivalent to variable binding. A ROLE-PLAY between iobj and recipient
takes the place of this specific binding and applies to all dative forms. Simi
larly, ROLE-PLAYs within the templates replace explicit variables used for
elaboration: The correspondences between features of patterns and features
of constituents, such as the TENSE feature discussed earlier, are indicated
by the ROLE-PLAY relation. These correpondences also apply across a
range of templates.

The result of the restriction of the dative verb phrase pattern given ear
lie~ might be the following:

First constituent: V -P
Concept selling
Constraints -- lex sell

voice active
form finite
person third
number singular

Category -- verb part

Second constituent:
Concept
Constraints -
Category --

Third constituent:
Concept
Constraints -
Category --

NP (1)
maryl
case objective
noun phrase

NP (2)
bookl
case objective
noun phrase

The lex sell constraint on the verb part, produced by mapping across the
REF association between the selling concept and the corresponding lexical
category, is assigned to the first constituent by virtue of the knowledge that
all verb_constraints on verb phrases are assigned to their verb parts. The
voice active constraint derives in much the same manner. The form finite
constraint is an inherent constraint on the finite-verb-phrase category, which
is the subclass of verb phrase constructs with finite verbs. The person and
number constraints are passed along from earlier stages. After each consti
tuent is produced. the generator fills in the appropriate constraints on the
dependent constituents. The case constraints on the noun phrases derive
from constraints on the object and indirect object of the relations.

The restriction procedure. after it has completed the specification of
each of the constituents of a pattern, reinvokes the generator successively on
each constituent. As with PHRED, the order in which constituents are pro
duced is generally left-to-right; however, it is possible to specify an order for
a pattern or class of patterns. In English, this means that head nouns are
produced before modifiers and subjects before auxiliaries in inverted con
structs. This guarantees that agreement between constituents can be easily
enforced.

The output of the restriction process, as shown above, consists of a set of
constituents for which concept, constraints, and category are specified.

- 118 -

These serve as input to the generator for further refinement of the structure.
The generation process thus proceeds by recursively invoking the mapping -
pattern selection - restriction sequence, starting, in this case, with the verb
part constituent. The control flow of the program through a complete exam
ple is traced in section 8.6.

Summary

This chapter has presented a high-level description of the processing
aspects of generation as implemented in KING. The three-stage generation
process is geared toward making use of the power and modularity of the Ace
representation, as well as facilitating the interaction between abstract and
specialized knowledge as introduced in Chapters 3-6. Chapter 8 considers
the implementation and execution of the generator in greater detail.

-

- 119 -

8. Implementation of KING

KING is part of a new, evolving version of the UNIX Consultant

system. Some of the details of the KING implementation have come about in

a somewhat haphazard manner, and thus are separated here from the more

theoretical issues discussed in the previous chapter. This discussion is

provided to give a clearer picture of the internal workings of the generator.

8.1. Knowledge Manipulation Tools

The implementation of the Ace framework used by KING provides

many of the same facilities as other knowledge representation languages

such as FRL (Roberts and Goldstein, 1977), KL-ONE (Brachman et. al.,

1979), and PEARL (Deering, Faletti and Wilensky, 1981). The basic set of

knowledge manipulation tools was adapted from an implementation of a

subset of PEARL, modified to incorporate the KODIAK structured

associations and multiple inheritance, and extended to include the Ace

VIEW and REF associations. The most relevant aspects of this

implementation are the following:

Pseudonyms.
Pseudonyms are used by the generator to access attributes through

ROLE-PLAY relations. In most representations such as those

mentioned above, the filler of an attribute "slot" of a structure is

accessed by referring to the name of the attribute. In the Ace

implementation, these fillers often play a number of roles, and may be

accessed by any of the roles which they play, either directly or

indirectly. For each concept and attribute, Ace keeps a list of

pseudonyms, or correspondences between names of attributes and names

of their roles. For example, the actor attribute of the selling concept

corresponds to the pseudonym seller, since the seller plays the role of

actor. The participant aspectual might also be used to designate a

seller, because seller indirectly plays the role of participant.

Inherited Properties.
As in most knowledge representations, attributes of concepts in Ace are

inherited by DOMINATEd concepts. This includes ROLE-PLAY

relations such as the correspondence between the tense of a sentence

and the tense of a verb phrase, which is inherited by all sentence

templates. The Ace implementation stores all these inherited relations

on property lists associated with the names of concepts. Names of

concepts which DOMINATE a given concept are also stored on these

property lists, so all inherited attributes may be easily accessed.

Structured associations.
ROLE-PLAYs attached to all structured associations in Ace are

implemented using pseudonyms, but are applied differently according to

the association to which they are linked. For example, pseudonyms

attached to DOMINATE links are always used when instantiating a

new attribute. Thus when the actor of a selling action is instantiated,

the seller role of the selling action is automatically filled. With

horizontal associations, such as VIEW, pseudonyms are used only when

c 120 °

the horizontal association is explicitly applied. Thus the seller role is

not automatically filled when the merchant of a ct-merchandise-transfer

event is instantiated, but is filled when the VIEW between etc

merchandise-transfer and selling is applied. The tense role of a verb

phrase likewise is not filled until both the tense of the sentence and the

verb phrase component of the sentence are instantiated. The general

rule, thus, is the following: If a structured association is applied between

A and B. and attribute A' of A is instantiated, then instantiate the

corresponding attribute B' of B.

These aspects of knowledge manipulation are exploited during each of

the three main phases of the generation process. For example, in mapping,

KING instantiates a new concept by applying a structured association. If

this association has a ROLE-PLAY attached to it in which a role is played

by an instantiated attribute of the mapped concept, it then must instantiate

the corresponding role of the new concept. Since this role may be a

pseudonym for other roles, it must also instantiate these other roles.

In the restriction process, new attributes are added to constituents of a

pattern. These attributes may be added by applying correspondences, or

ROLE-PLAYs, between elements of instantiated linguistic relations and the

pattern being restricted. This correspondence may result in filling in a noun

phrase component of a dative verb phrase pattern with the corresponding

iobj element of the verb-indir-relation. The instantiation of this dative verb

phrase with the attribute "TENSE = past" results in the application of the

ROLE-PLAY between tense of verb-phrase and tense of up-verb of verb

phrase, which results in the addition of the "TENSE = past" feature to the

vp-verb.
The following sections will describe the Ace knowledge which is used in

generation, and how this knowledge is applied during the mapping, pattern

selection, and restriction phases in KING.

8.2. What KING starts from

The main input to KING is an instantiated Ace concept, with additional

specifications of input constraints and of the pattern type to be produced.

For example, the LISP function call (KING huggingl nil s) would represent

a typical request for KING. The first argument, hugging!, represents the

concept to be expressed; the second designates the list of input constraints,

and the third, s, the category of the pattern to be generated. The concept

hugging! might have attributes attached to it, such as in the following

diagram:

huggingl

7
hugger "" object

/ '3.
johnl I maryl

Figure 8-1.

- 121 -

This diagram represents basically what KING is generating from;

however, huggingl is an instance of the hugging concept, and through this

instantiation is connected to the network given in figure 6-8, as shown

below:

leX-give

p m

0

object

given-hug ~1------D------"

huggingl 1-j----
7 " hugger object

r-----;(~ --~~---.
johnl j maryl

Figure 8-2.

The diagram above g1 ves the essential fragment of the conceptual

knowledge which is related to the hugging concept to be expressed. This

example will be used in the next three sections to consider the knowledge

manipulated during the generation process.

8.3. Mapping

The mapping process starts from the concept INSTANTIATEd by the

concept being generated from, and continues generally upward in the

network if successful maps are not found. At each concept considered, KING

may attempt to traverse macro-associations and horizontal associations. The

- 122 -

selection of which map to apply is carried out using the heuristics described

in Chapter 7; that is, macro-associations and VIEW or REF associations are

applied first. If the upward search through the network does not result in

mapping to a new concept or the derivation of sufficient linguistic

information to realize a surface structure, then MANIFEST associations are

used. This can result in a metonymical reference, such as a reference to a

complex object or event by referring to a part of the object or event, as in the

commercial-transaction example.

When a structured association is selected, the mapping process applies

each ROLE-PLAY relation attached to the association to instantiate roles of

the new concept being created. This may result in the application of other

ROLE-PLAYs as well to determine pseudonyms for the new attribute. If

this process is applied successfully to produce a new concept, this new

concept becomes the starting point for future maps. If the last map applied

was an element of a macro-association, the first map considered with respect

to this new concept will be the continuation of that macro-association.

The mapping process terminates when a set of linguistic relations

applicable to the desired pattern category has been produced. The relations

and constraints derived from mapping are then passed to the pattern

selection mechanism.

Mapping into Conceptual Structures

In cases where objects and events are referred to indirectly, the

mapping process produces new instances of conceptual structures as well as

linguistic relations. In the "giving a hug" example, because of the

preference of macro-associations, the first association applied is the macro

association between hugging and hug-giving at the bottom of figure 8-2.

Were this macro-association not present, the generator at this point would

map directly into the predication relation and produce the sentence "John

hugged Mary". In this case, however, the first mapping applied will be the

first part of the macro-association, view2 .3', which has attached to it the

following relations:

(ROLE-PLAY actor source)
(ROLE-PLAY action object)
(ROLE-PLAY object recipient)

These ROLE-PLAY relations are inherited from view2 and view3 of

figure 8-2, and thus do not have associated with them the most specific

pseudonyms for actor. The mapping process thus obtains the actor of

huggingl by looking at the pseudonyms for hugging. This yields the

association (ROLE-PLAY actor hugger), which leads to johnl.

ROLE-PLAYs which link absolute concepts to roles, such as (ROLE

PLAY action object) in this case, are applied only after ROLE-PLAYs are

applied to their aspectuals. This allows the generator to enforce the

stipulation that aspectuals may each be mapped only once. Thus, when the

association (ROLE-PLAY action object) is applied to huggingl, johnl and

maryl already fill roles in the new hug-transfer concept. The object role is

thus filled by the huggingl concept without its associated attributes.

- 123 -

The result of applying uiew2.3' to huggingl is thus the following
structure:

I hug-transferl J
7\~

given-hug source recipient

huw•.<l ~ r __ m_ary_l --'

Figure 8-3.

The hug-transferl concept above is produced by applying the first
structured association in the macro-association mac(view2,3'; uiewl'), which
is the uiew2 .3' association. The next map tried, therefore, is the viewl'
VIEW, which has attached to it the correspondence (ROLE-PLAY source
giver). The application of this map builds a new concept hug-givingl, and
first applies this ROLE-PLAY to fill the giver role with johnl. This
exhausts the ROLE-PLAY relations attached to viewl. However, the
concept being produced is a giving action, and giving actions are transfer
events as well as being VIEWs of transfer-events. In such cases, where the
structure being produced through the application of a VIEW is also
DOMINATEd by the concept INSTANTIATEd by the original structure,
property inheritance dictates that all attributes of the original structure
should be preserved. In general, the mapping process implicitly maps all
roles which are applicable to the new structure. The hug-givingl structure
is thus the following:

maryl

Figure 8-4.

Mapping into Linguistic Structures

When macro-associations have been exhausted and the mapping process
has produced a conceptual structure from which REF links can be applied to
instantiate linguistic structures, it applies all such relevant mappings to
yield a set of applicable relations. The application of REF associations is
exactly the same as that of VIEWs, except that no maps are attempted
which originate from the resulting structures.

When the generation of the "giving a hug" example reaches the stage of
producing a verb phrase, it is working from the following knowledge
network:

indir-vp I
"' pattern

iv

dative-vp

7

;~ .4:_
~D canst canst

~

- 124 G

participant

R

ivp-ve~~P---'

1----REF----:~~1 giving

~----~ o#
lex..give

rEF~ . hug-givingl

'-------' ~ [gJVen- ug rec1pient

~ ,..r__m_a_r_y_l_...,

lex...hug

Figure 8-5.

The application of structured associations in the above network proceeds
by applying REF links at successively higher levels. The first such REF
association produces lex_give, the lexical category associated with hug
giving. Further up in the hierarchy, the transfer-event concept is reached.
This results in the instantiation of the uerb-indir-relation with indirect object
referring to maryl, and verb corresponding to hug-givingl. Still further up
the hierarchy, the REF association between simple-event and the verb-obj
relation establishes huggingl as the obj or direct object referent in this
relation.

The output of the mapping phase at this point is the following set of
constraints and relations*:

• The constraint voice..actwe is produced via a REF association from the giver role. as described in

Chapter 6.

- 125 -

(lex_give)
(voice_active)
(verb-indir-relation (iobj maryl))
(verb-obj-relation (obj hugging!))

The mapping process thus produces a set of instantiated linguistic
relations, lexical categories, and constraints, which can potentially be
satisfied by a variety of surface structures. The pattern selection phase,
considered below, determines how the linguistic knowledge derived from
mapping can be combined into a grammatical utterance.

8.4. Pattern Selection

The two inputs to the pattern selection mechanism in KING are a set of
linguistic structures and the category of the pattern to be produced. These
linguistic structures may have been produced by the mapping process or
passed along from earlier stages of generation. As described in Chapter 7,
the main objective in pattern selection is to choose a pattern of the correct
type which satisfies the necessary linguistic constraints and realizes as
many linguistic relations as possible.

The basic scheme of KING's pattern selection mechanism is to retrieve
all patterns of the correct type and apply a small set of rules to order them.
Patterns which violate specified constraints are discarded, as are patterns
which involve relations which have not been specified. Thus, in the
production of a stative sentence, such as "John became ill", verb phrase
patterns which involve transitive constructs are immediately eliminated.

The mapping process sometimes derives patterns, in which case these
patterns are given preferential treatment to those retrieved by considering
the most specific absolute type. One example in which this type of pattern
selection takes place is in certain specialized constructs, where a pattern
applies specifically to a given concept, such as in the "kick the bucket"
expression. Such patterns are not indexed by the pattern type to which they
belong, and thus can only be used if the mapping mechanism produces them.

For each template, such as dative-up, the Ace implementation maintains
a list of DOMINATors, such as verb-phrase. For each template category, the
knowledge manipulation functions maintain a list of templates containing
patterns in that category. Processing Principle 4 of Chapter 7, which
suggests considering only patterns which fall into the designated category, is
thus enforced by retrieving a set of patterns DOMINATEd by that category.

The ordering of these patterns according to Principle 6, i. e.,
determining which patterns subsume the most relations, is much more
difficult. The problem with this test, as described in Chapter 7, is that it not
easy to determine which relations a pattern can realize. For any given
pattern, Ace provides easy access to the relations which are embodied in
that pattern by treating these relations as features of the pattern. This
does not include, however, the relations which may be embodied within the
constituents of the pattern. A simple noun phrase or verb phrase pattern
may be able to express a large number of relations because one of the
constituents of the pattern is may be another complex noun phrase or verb
phrase.

- 126 -

The question of how to realize as many relations as possible proved to
be an implementation problem in KING, a problem which seems to stem
from the disembodiment of grammatical relations from grammatical
patterns. One solution to the problem would be to provide some means of
starting from a pattern and looking ahead to determine what relations could
be subsumed by each constituent of the pattern, thereby considering
combinations of patterns instead of individual patterns at each stage in the
generation process. The problem with this solution is that it introduces a
great deal of complexity into an otherwise simple mechanism, requiring the
generator to perform a substantial search through its grammar during the
pattern selection phase and seeming to defeat the purpose of incrementality
in KING.

The compromise solution adopted instead was to make a special case of
chain rules, or patterns with only one constituent, and perform this
lookahead only for these patterns. For example, the gerund phrase pattern
corresponds to the chain rule ''NP* -> P-VP", where NP* is a modifiable
noun phrase and P-VP is a verb phrase with the verb part in progressive
form, as in ''John's being kissed by Mary". For this type of rule, KING
considers verb phrase patterns along with noun phrase patterns, effectively
treating gerund phrases as both verb phrases and noun phrases as described
in Chapter 5. The internal structure of the gerund phrase derives from its
verb phrase structure, while its external linguistic behavior and the
progressive form constraint on the verb part are knowledge about a
particular NP* pattern.

When the pattern selection stage is reached and the pattern type is a
simple category such as verb, determiner, or noun, KING abandons its
normal pattern selection algorithm and instead uses simple morphological
knowledge to construct its output word. This is in contrast to the PHRED
approach which painstakingly attacked morphology with the same
mechanism as syntax. Word formation is accomplished by using a
discrimination net to index simple morphological rules according to sets of
constraints such as "TENSE = past" and "PERSON = third", storing
exceptions along with each irregular verb. A lexical category such as
lex_give has as one of its properties a root attribute, to which these rules
may be applied to produce an output word. In the case of lex_give, the past
tense form is an exception, "gave".

The pattern selection process in KING is relatively simple because most
of the specialized knowledge of the generator is in linguistic relations rather
than patterns. The verb-indir-relation and verb-obj-relation derived in this
example are used to select the dative-up pattern, as described in section 7.2.
The process of using these relations to generate from the selected pattern is
performed in the restriction phase, described in the next section.

8.5. Restriction

The input to the restriction process is the output of both the mapping
and pattern selection phases. The restriction process in KING is
implemented as a loop which considers each element of linguistic structure
returned by the mapping process with respect to the pattern selected.

If the element being considered is a linguistic relation, KING uses the
name of the relation to find the pseudonym for the relation as it applies to
the particular pattern, and from this pseudonym retrieves the set of

- 127 -

correspondences or ROLE-PLAYs between pattern elements and relation
elements. In the case of the dative verb phrase and direct object as shown in
figure 8-5, for example, this set is the following:

(ROLE-PLAY obj dup-np)
(ROLE-PLAY uo-uerb dup-verbl

Using these ROLE-PLAY relations, KING assigns the structure playing
the role of obj in the verb-obj-relation to the dup-np role of the dup-pattern.

A linguistic relation, like any knowledge structure in Ace, may have
constraints imposed on its roles as well as having fillers for these roles. In
this case, these constraints are attached to the corresponding elements of the
selected pattern in the same manner as the concepts are added. Thus each
constituent of the pattern may have attached to it a pattern category, a
token referred to, and a set of linguistic constraints, which will serve as
input to the generator in the generation of this constituent.

The application of relations to a pattern is one means of elaborating, or
filling out, pattern constituents. Another means of elaborating constituents
is enabled when the element of linguistic structure being considered applies
entirely to a particular constituent of the pattern. In this case ROLE
PLAYs are used to determine the constituent to which the structure applies.
If the structure is a constraint which conflicts with a constraint on the
pattern itself, the pattern must be rejected. Otherwise, the structure is
attached to any pattern constituent retrieved in ROLE-PLAY relations with
the type of the constraint or structure as a pseudonym. This retrieval for the
dative-up yields the following relation. inherited from the verb-phrase
structure:

(ROLE-PLAY tense (tense (of up-verb)))

The term (tense (of up-verb))) is used to designate the player of the tense
role of the player of the up-verb role. The up-verb pseudonym is applied to
the dative- VP, obtaining the role dvp-verb. The tense input constraint,
"TENSE = past", is then added as an elaboration to the dvp-verb of the
selected pattern.

Further aspects of the operation of the mapping - pattern selection -
restriction mechanism are demonstrated in an example in the next section.

8.6. An Annotated Trace of KING

The following is a trace of KING producing the sentence "John was
given a kiss on the cheek by Mary":

*******Running KING*******

KING starts from the Ace representation of a kissing event, and first
applies a sequence of VIEWs as in the "giving a hug'' example described in
this chapter. For each of these VIEWs, the mapping process uses

- 128 -

pseudonyms to determine the appropriate roles in the concept being
produced.

****Now generating from:

(kissing (kisser maryl) (kissee johnl) (surface cheekl))

Input structures:
nil

Desired structure: s

*****Applying map

Map is :

((action transfer-event) (actor source) (object recipient) (*all* object))

The designator *all* in the map to transfer-event indicates that the
structure being mapped is not an aspectual but an absolute concept; thus the
kissing concept itself is used to fill the given-kiss role:

After mapping, struct is

(kiss-transfer (source maryl)
(recipient johnl)
(given-kiss (kissing (surface cheekl))))

*****Applying map

Map is :

((transfer-event giving) (source giver))

After mapping, struct is :

(kiss-giving (kiss-giver maryl) (recipient johnl) (given-kiss (kissing (surface cheekl))))

*****Applying map

Map is :

He-relation pred) (nuc subj) .((*asp* nuc) pred))

- 129 -

After mapping, struct is

(pred (c-subj johnl)
(c-pred
(recipient
(of (kiss-giving (kiss-giver maryl) (given-kiss (kissing (surface cheekl))))))))

In the map to pred (referred to as predication in the text), nuc (for
nuclear-term) is a pseudonym for all roles of the concept which may be
mapped into the subj role. For this example, the generator has been
instructed to favor johnl.

The term (*asp* nuc) is used to indicate that the pseudonym of the
element playing the nuc role is mapped into the c-pred role, rather than
mapping the ROLE-PLAYer itself. This is because predications, as
presented in section 6.3, are considered to be references to aspectuals, rather
than to absolute concepts.

This series of mappings produces the pred structure, which is linked by
REF associations to linguistic relations. The mapping process next applies
these REF associations:

Adding linguistic structures (mapping):

Structures at completion:

((sp (subj johnU
(pred
(recipient
(of (kiss-giving (kiss-giver maryl) (given-kiss (kissing (surface cheekl))))))))

(sv (subj johnl)))

The sp, or subject-predicate, relation is the linguistic relation
corresponding to the predication concept. The sp relation is realized in
sentential forms. If KING had been called upon to refer to the same
predication with a noun phrase, this stage of the mapping process would
have produced the posn relation, corresponding to phrases such as "John's
being given a kiss". In this case, the sp relation is used to retrieve the basic
sentence pattern, B -s:

*****Filling out pattern (restriction):

(B-s
((bs-np nil nil np)
(bs-vp nil ((person (matches s-np)) (number (matches s-np))) vp)))

Each constituent in the pattern above is indicated by an aspectual
name, a referent token, a list of linguistic structures, and a pattern category.

- 130 Q

The restriction process may fill in some of this information, and then passes
the constituents individually back to the generator. The first constituent
passed here is the reference to johnl:

****Now generating from:

johnl

Input structures:

((case nominative))

Desired structure: np

Adding linguistic structures (mapping):

(person (name John))

Structures at completion:

((dn (n (person (name John)))) (name (name John)) (animate) (case nominative))

In the case of referring to persons, the mapping process adds a
preference for the noun phrase pattern which employs a name. Otherwise
the generator might use the dn relation above (for determiner-noun) to
produce ''the man", "the person", or "the man named John". The dn, name,
and animate structures above are derived from mapping, while the case
nominative constraint is passed along from the constraints on the basic
sentence pattern.

The production of the noun phrase for johnl results in the filling of the
linguistic category nm (for "name") with the name John:

*****Filling out pattern (restriction):

(N-np ((N-np-nm nil nil nm)))

- 131 -

****Now generating from: .

John

Input structures:
nil

Desired structure: nm

****WORD FOUND**** : HJohn"

Having completed the noun phrase part of the sentence, KING next
attempts the verb phrase constituent referring to the recipient role of johnl
in the kiss-giving action:

****Now generating from:

(recipient (of (kiss-giving (kiss-giver mary1) (given-kiss (kissing (surface cheekl))))))

Input structures:
nil

Desired structure: vp

Adding linguistic structures (mapping):

Structures at completion:

((vpas))

The structure vpas produced by the mapping process expands to the
"VOICE = passive" constraint. This constraint is associated with object and
recipient roles, so that references to these roles lead to passive forms. The
earlier choice of johnl as subject is thus what causes this to be a pass1ve
sentence.

When producing a reference to an aspectual, the mapping process
automatically maps next from the concept in which the role is being played.
In this case it is the kiss-giving concept:

- 132 -

Adding linguistic structures (mapping):

(kiss-giving (kiss-giver maryl) (given-kiss (kissing (surface cheekl))))

Structures at completion:

((vo (obj (kissing (surface cheek!))))
(pvby-adj (adj maryl))
(lex_give)
(vpas))

As described in the text, the mapping from the simple-event concept
which DOMINATEs kiss-giving fills the role of obj in the vo relation (short
for verb-obj-relation) with the player of the object role in the simple-event,
which in this case corresponds to the player of the given-kiss role. Mapping
from the action concept produces the pvby-adj relation (corresponding to
passive-by-adjunct in the text) where the role of adj or adjunct is filled by
the actor or kiss-giver. The lexical category lex_give is produced from the
direct REF association with kiss-giving. The pattern selected to express
these linguistic structures is the adjunct-verb-phrase, A-up:

*****Filling out pattern (restriction):

(A-vp ((avp-vp nil nil vp) (avp-adj nil nil adj)))

Filling out this pattern places maryl in the adjunct position. The other
linguistic structures, using ROLE-PLAY relations, are used to fill attributes
of the avp-vp constituent. The generator next tries to generate a form which
expresses the remaining constituents. This results in the selection of a
transitive verb phrase structure:

****Now generating from:

nil

Input structures:
((vpas)
(voice passive)
(lex_give)
(person third)
(number singular)
(vo (obj (kissing (surface cheekl)))))

Desired structure: vp

- 133 -

*****Filling out pattern (restriction):

(B-vp ((bvp-verb nil nil v-p) (bvp-np nil nil np)))

Application of the vo relation to the above pattern results in the
elaboration of the noun phrase constituent by the concept maryl.
Elaboration using ROLE-PLAYs specifies the constraints on the verb part
aspectual bvp-uerb, which is generated next:

****Now generating from:

nil

Input structures:

((lex.....give) (vpas) (voice passive) (person third) (number singular))

Desired structure: v-p

The structure upas is DOMINATEd in the Ace linguistic hierarchy both
by constraint and linguistic-relation. As a constraint, it expands to "VOICE
= passive". As a relation, it is a form of the helper-verb relation with the
constraint that the "helper" is the auxiliary "be". The next pattern filled is
the verb-part pattern which realizes this relation, the compound verb
pattern:

*****Filling out pattern (restriction):

(C-v-p ((cvp-h nil nil h) (cvp-v-p nil nil v-p)))

The C-v-p pattern consists of two constituents, the first a helping-verb

(abbreviated by h) and the second a verb-part (abbreviated by u-p). The
elaboration phase of the restriction process applies the constraint lex_be on
the helper constituent, as well as the agreement constraints. The helper is
then generated:

~ 134-

****Now generating from:

nil

Input structures:
((lex._be) (person third) (number singular))

Desired structure: h

****WORD FOUND**** :

****Now generating from:

nil

Input structures:

((form perfective) (lex._give))

Desired structure: v-p

*****Filling out pattern (restriction):

m-v-p ((B-v-p-v nil nil vl))

****WORD FOUND**** : "given"

KING has now completed the noun phrase and complete verb,
corresponding to "John was given ... " The next constituent is the noun
phrase referring to the kissing action. The mapping process applied to this
concept produces a lexical category and two linguistic relations, a
determiner-noun relation and the vbo relation. Like the pvby-adj relation,
vbo is a linguistic relation that may be realized either in verb phrases or
noun phrases, but the player of the adj role is the object of the preposition
"on":

....

****Now generating from:

(kissing (surface cheekl))

Input structures:
nil

- 135 -

Desired structure: np

Adding linguistic structures from:

(kissing (surface cheekl))

Structures at completion:

((idn (n (kissing (surface cheekl))))
(vbo (adj cheekl) (v-p (kissing)))
Oex_kiss))

The determiner-noun relation idn, corresponding to indefinite noun
phrases, is produced by the generator as the default when referring to
actions. The vbo relation here falls into the class of linguistic structures
which can be realized only in postmodifiers, thus the pattern selected next is
the postmodified noun phrase, X -np:

*****Filling out pattern (restriction):

(X-np ((xnp-np nil nil np) (xnp-pmod nil nil pmod)))

The idn structure results in the selection of a determiner-noun pattern
and restricts this pattern to an indefinite determiner:

*****Filling out pattern (restriction):

(B-np ((bnp-det nil nil det) (bnp-np* nil nil np*)))

****Now generating from:

nil

Input structures:
((ref indef))

0 136-

Desired structure: det

****WORD FOUND**** : "a"

*****Filling out pattern (restriction):

(B-np* ((bnp*-n nil nil n)))

****Now generating from:

nil

Input structures:
((lex..Jtiss))

Desired structure: n

****WORD FOUND**** : "kiss"

KING has now produced the structure corresponding to "John was given
a kiss ... " The next constituent produced is the postmodifier part of the
noun-phrase, corresponding to the concept cheek I:

****Now generating from:

cheekl

Input structures:
((vbo (adj cheekl) (v-p (kissing))) (prep_on))

Desired structure: pmod

- 137 -

Adding linguistic structures from:

(cheek (part-of johnl))

Structures at completion:

((dn (n (cheek (part-of johnl))))
(inanimate)
Oex._cheek)
(prep_on))

Since the vbo relation can be realized only by a prepositional phrase,
the postmodifier pattern selected is the prepositional phrase postrnodifier, to
which restriction adds the constraint that the preposition must be <!on" and
the noun phrase corresponds to the expanded cheekl concept:

*****Filling out pattern (restriction):

(P-pmod ((ppmod-pp nil nil pp)))

****Now generating from:

nil

Input structures:
((prep_on) (vbo (adj cheekl) (v-p (kissing))) (dn (n (cheek (part-of johnl)))))

Desired structure: pp

*****Filling out pattern (restriction):

(B-pp ((bpp-prep nil nil prep) (bpp-np nil nil np)))

****Now generating from:

nil

Input structures:
(Oex._on))

Desired structure: prep

- 138 Q

****WORD FOUND**** : "on"

****Now generating from:

nil

Input structures:

((dn (n (cheek (part-of johnl)))))

Desired structure: np

*****Filling out pattern (restriction):

(B-np ((bnp-det nil nil det) (bnp-np* nil nil np*)))

****Now generating from:

nil

Input structures:
nil

Desired structure: det

****WORD FOUND**** : "the"

KING still has no real knowledge to select the appropriate determiner
here, and thus will choose a default, either ''a" or "the". It then applies
mapping to derive the lexical category lex_cheek and produces the
corresponding noun:

...

- 139 -

****Now generating from:

(cheek (part-of johnl))

Input structures:
nil

Desired structure: np*

Adding linguistic structures from:

(cheek (part-of johnl))

Structures at completion:

((dn (n (cheek (part-of johnl)))) (inanimate) (lex_cheek))

*****Filling out pattern (restriction):

(B-np* ((bnp*-n nil nil n)))

****Now generating from:

nil

Input structures:
((lex_cheek))

Desired structure: n

****WORD FOUND**** : "cheek"

The final phrase produced is the prepositional phrase corresponding to
the by-adjunct. At this point KING has completed the noun phrase "a kiss
on the cheek" and is generating the final constituent of the adjunct-verb
phrase pattern:

a 140 •

****Now generating from:

maryl

Input structures:

((pvby-adj (adj maryl)) (prep_by))

Desired structure: adj

Adding linguistic structures from:

(person (name Mary))

Structures at completion:

((dn (n (person (name Mary))))
(name (name Mary))
(animate)
(pvby-adj (adj maryl))
(prep_by))

The production of the by-adjunct proceeds in exactly the same way as
the generation of the "on" prepositional phrase, except for a different
constraint on the preposition itself:

*****Filling out pattern (restriction):

(B-adj ((B-adj-pp nil nil pp)))

****Now generating from:

nil

Input structures:
((prep_by)
(pvby-adj (adj maryl))
(name (name Mary))
(dn (n (person (name Mary)))))

Desired structure: pp

- 141 -

*****Filling out pattern (restriction):

(B-pp ((B-pp-prep nil nil prep) (B-pp-np nil nil np)))

****Now generating from:

nil

Input structures:
((lex_by))

Desired structure: prep

****WORD FOUND**** : ttby"

The descriptor for maryl, after expansion, is produced in the same way
as that for johnl. This results in the completion of the surface structure,
and ttwalking'' through the surface structure results in the final utterance.

****Now generating from:

mary1

Input structures:
((dn (n (person (name Mary)))) (prep_by))

Desired structure: np

Adding linguistic structures from:

(person (name Mary))

Structures at completion:

((name (name Mary)) (animate) (dn (n (person (name Mary)))) (prep_by))

. 142-

*****Filling out pattern (restriction):

(N-np ((N-np-nm nil nil nm)))

****Now generating from:

Mary

Input structures:
nil

Desired structure: nm

****WORD FOUND**** : "Mary"

**
OUTPUT

**

John was given a kiss on the cheek by Mary.

--

- 143 -

8.7. Analysis of KING

At the time of this writing, KING is a fully implemented tactical
language generator with the ability to produce utterances which form a
useful and exemplary subset of natural English. The system is incorporated
in a new version of the UNIX Consultant, which is still under development.
Written in Franz Lisp and compiled, the code of the generator, exclusive of
indexing and knowledge representation tools, is slightly more than 20K,
about one-fifth the size of the analogous code of PHRED. The Ace
implementation takes up another 15K. The knowledge base includes about
50 basic linguistic patterns, 75 linguistic relations, several hundred Ace
assertions describing these structures, 150 concepts, and 200 ~~horizontal"

structured associations. The typical running time of the program is about
two seconds for a sentence of 10-15 words.

8.7.1. Successes

In a variety of ways KING has proven to be a strong qualitative
success. The most obvious successes are in alleviating the difficulties in
making use of new knowledge in the system.

With respect to the knowledge acquisition bottleneck, the Ace
framework has proven to be a great help. Because the representation of the
system allows new information to be easily linked to existing knowledge,
extending the power of the system is far easier than it was in PHRED. For
example, the addition of a new concept related to the transfer-event enables
the use of the dative construct. The encoding of metaphorical
generalizations in the UNIX consultant, such as the relationship between
access and possession realized in ~~You need write permission", is
accomplished by using structured associations. New grammatical patterns
often require only the specification of the linguistic relations in the pattern.

KING gets more power per knowledge cell because the hierarchical
representation eases the problem of redundancy. Furthermore, the use of
indirect mappings from meaning to language provides, for a given concept, a
broader range of potential utterances than direct mappings.

KING is smaller than PHRED mostly because it suffers less from the
knowledge adaptation tie-up. Much of the code in PHRED, as in most
knowledge-based systems, was written to make up for rough spots in the
representation and to handle linguistic phenomena which did not fit well
with the representation. As a result, PHRED had sections of code which
were distinctly devoted to verbs, noun-phrases, and pronouns. Code
explosion tends to follow the separation of phenomena which might be
treated uniformly. In principle, KING is small because it is knowledge
intensive, because the power of its knowledge base obviates the need for
specialized code.

One of the major technical problems to be overcome in language
generation systems is the consideration of many possible linguistic choices
which are not applicable or have little chance of success. By incorporating a
significant data-driven component, KING avoids many such choices. The
process of selecting linguistic structures, as described in sections 7.2 and 8.4,
is largely dependent on the results of the data-driven mapping mechanism.
The proliferation of categories in the representation also takes much of the
work out of the process of selecting structures and instead puts it into

- 144-

combining and synthesizing structures, or restriction. Unification-based
generators tend to perform selection within the unification mechanism;
others apply queries or other matching methods. The pattern selection
process in KING is much simpler because it takes advantage of the relations
derived from mapping. Thus it is the incremental nature of the generation
mechanism that eliminates many of the frivolous possibilities.

The advantages described above are basically software successes, due
mostly to the cognitive approach. A less tangible, but more important,
success of the work presented here is a reshaping of the generation task and
the identification and redefinition of problems within this new framework.

The structured associations used by KING to produce language from
meaning prove to be a powerful linguistic tool, providing a means of taking
advantage of generalizations and enabling indirection in language. They do
this by transforming much of the generation process into a search problem
where the search space includes not only a range of linguistic constructs but
a multitude of related conceptual structures as well. This mars the
traditional what to say/how to say it distinction, as the search is constrained
not only by what is to be expressed but also by the context and by the
available linguistic tools, including metaphorical or metonymical
relationships.

Since the "how to say it" component of generation seems to have a
''what to say" element to it, one must consider whether to apply a planning
model such as Appelt's or a rhetorical structure model such as Mann's or
McKeown's to this phase as well. Certain aspects of text planning and
rhetorical structure have their influence at all levels of language production,
but there seems to be a difference between the construction of text plans and
the execution of the plans. The distinction between the strategic and tactical
aspects of generation still holds, but strategy cannot be isolated from tactics.
In Appelt's hierarchical model, the interaction between levels of language
planning consists effectively of communication between various planning
components. In the KING model, the interaction is accomplished by having
intentional strategies, like contextual information, bias the search for
tactics.

Another result of the KING implementation is the identification of
important aspects of the generation process which may be accomplished by
general knowledge-manipulation strategies. The initial implementation of a
parser-generator using the Ace representation (cf. Jacobs and Rau, 1984)
took advantage of three general knowledge manipulation mechanisms which
were used for both analysis and generation. Because of the basic differences
between analysis and production, generation within this model relied
heavily on the manner in which maps were applied, while analysis depended
more on the process of combining the results of the mapping. The
mechanism which performed this combination, originally used for both
analysis and generation in the original system, was replaced by the
restriction mechanism described here. Both analysis and generation depend
heavily on the selection and use of structured associations in Ace, and thus
accessing and applying these structured associations is a critical knowledge
manipulation tool.

- 145 -

8.7.2. Limitations

Fortunately, the development of the Ace representation and the KING
generator has achieved success by virtue of technical improvements in the
representation of knowledge about language and in tactical language
generation. It has proven to be a useful tool as part of a natural language
help facility. Unfortunately, all the work that has been done in language
production has still barely scratched the surface of the generation problem.

Probably the greatest of the unsolved problems in generation is the
problem of context. The work presented here describes a generator equipped
to produce grammatical output as a communicative tool. Like most such
systems, it has certain knowledge about the role of context in generation,
which can lead to favoring certain linguistic constructions over others. The
broad problem of context in language, however, may be viewed as the
interaction of beliefs, intentions, situational knowledge, and discourse
knowledge. The use of context in language generation requires a general
mechanism for dealing with this interaction as well as a representation
scheme for encoding the contextual knowledge and a means of simulating
the relative influences of various contextual elements. All these effectively
constitute a model of human memory, which is unlikely to exist for some
time. The treatment of contextual information as biases on the application
of structured associations, however, is an area whose exploration may
produce some short term success.

The main representation tool used by KING which is not available in
other generators is the structured association, and the use of this tool is
largely responsible for KING's success in knowledge-intensive, incremental
generation. This technique, however, has the negative effect of introducing
the complexity of controlling the application of these associations. To a
degree, the search problem that has been partially solved by eliminating the
consideration of candidate linguistic structures has been transferred to the
search problem in selecting structured associations. This complexity is a
potential problem; however, relatively simple methods of controlling the
search, as described in section 7.1, produce very good results.

One technical problem that arises from the Ace representation is the
start-up cost of building a knowledge base. The examples of Ace
representation presented here have been primarily pieces of knowledge
about events and verb phrases, because the verb phrase structure is most
essential to sentence-level generation. The encoding of each area of an Ace
network requires a substantial initial effort. Once this initial activation is
overcome, it becomes much easier to add related knowledge to the network.
But because specific knowledge in the system depends on more abstract
knowledge, the correct organization of the abstract knowledge is especially
important. This means that the benefit of the Ace representation in adding
new knowledge to the system comes only after the most fundamental
knowledge is encoded.

Summary

This chapter has presented some of the implementation details of KING,
a simple, knowledge-intensive generation mechanism. The program utilizes
the processing principles of Chapter 7 to exploit the Ace representation. The
use of ROLE-PLAY relations is especially important to the generator in

- 146 -

allowing structured associations to apply to the task of mapping from
general or specific knowledge structures. The incrementality of the
generator makes the pattern selection process difficult from an
implementation standpoint, but allows the mechanism to make maximal use
of the knowledge derived from mapping across structured associations. The
restriction process is performed smoothly without unification by making use
of explicit and implicit ROLEGPLA Y relations.

The KING implementation seems to support the idea that a
representation such as Ace enables the use of a simple mechanism to
achieve substantial generation capabilities. The knowledge base of the
generator is still relatively small, but the ease with which it has been
adapted suggests a strong potential for expanding the capabilities of the
system.

- 147 -

9. Summary and Conclusion

The basis for this thesis is the cognitive and practical motivation for the
development of knowledge representation tools for language processing.
This foundation has been realized in the Ace representation framework,
which utilizes methods in linguistic and conceptual representation to
synthesize an associative, uniform, and hierarchical representation
applicable to the language generation task. The KING generator is a small,
knowledge-intensive mechanism using an Ace knowledge base to provide a
system within which the processing entailments of the representation can be
explored. The practical and theoretical results of this work have two areas
of impact: (1) the increased understanding of representational and
processing aspects of language generation, and (2) the suggestion of areas in
which the work can be further explored.

The first area above supplies some immediate positive feedback, in the
perception of improvements in a system. The second area, however, is
perhaps most important in this type of work. This research has
concentrated on the development of tools, and the power of a tool is best
tested by continued use. It is safe to admit that most aspects of the
language generation task have not been solved and to assert that many can
be productively explored. Thus the work presented here is geared toward
speeding the evolution of language generation systems by presenting a
framework within which further research can be conducted.

9.1. Summary

The knowledge-based approach described in this thesis suggests that the
problem of generating language be attacked from a broad perspective in
which linguistic phenomena are considered with respect to issues in
knowledge representation. The practical problem addressed is that of
building extensible and adaptable natural language systems. While this
problem is related to redundancies in knowledge representation, it is not
parsimony of representation directly that alleviates them. Parsimony is an
indicator that a knowledge representation provides the ability to exploit
generalizations, a facility which also makes a knowledge base easier to
adapt and extend.

An examination of high-frequency, low-content verbs such as "give" and
"take" suggests that the generalizations behind specialized linguistic
knowledge do not generally apply throughout a particular class of
constructs. There are, however, manifest structural similarities in the
linguistic constructions which involve these verbs. The use of such
similarities depends on the ability to integrate general and specific
knowledge into a representational framework for language processing.

The generalizations mentioned above are often metaphorical conceptual
relationships which lead to particular linguistic constructions. For example.
expressions such as "give a punch'' and ''take a punch" are motivated by the
conceptual action as transfer view. That such conceptual relationships seem
to allow particular forms of reference suggests a representation of explicit
referential and metaphorical relationships among concepts. These
relationships, called VIEWs, may be used in generation to refer indirectly to
concepts by generating references to other concepts.

- 148 -

The interaction of generalized and specialized knowledge suggests a
hierarchical representation for both linguistic and conceptual knowledge.
The use of conceptual relationships supports the idea of representing explicit
referential knowledge in the representation. An additional representational
objective is uniformity, which makes it easier to handle the interactions
among different types of knowledge.

Hierarchy, explicit reference, and uniformity are realized in the Ace
representation system. Ace adopts the linguistic foundations of feature
systems such as unification grammar, but builds from these foundations a
hierarchical linguistic representation, using a common framework for
linguistic and conceptual knowledge. Essential to this framework is the
notion of a structured association. a relation among knowledge structures
which has associated with it structure relating other knowledge structures.
The structured association is used to organize linguistic and conceptual
knowledge and to connect linguistic knowledge to conceptual knowledge.

The application of the Ace representation to the problem of exploiting
generalizations is illustrated by the verbs "buy" and "sell", which refer to
the commercial transaction event in Ace. Structured associations relate the
concepts buying and selling to components of the commercial transaction
event. These structured associations are represented as special cases of the
associations between taking and giving and transfer events. Thus the
correspondences between linguistic and conceptual roles in "John sold Mary
a book" and "John gave Mary a book" are represented at an abstract level.
This abstraction is exploited in the representation of other related verbs and
concepts. This leads both to a more sparse encoding of knowledge and to
more effective means of adding new knowledge to the Ace network.

The use of Ace in facilitating indirect reference is presented using the
examples of "giving a hug" and "bury the hatchet". Both of these are
examples of specialized constructs which refer to events indirectly by
referring to metaphorical views of the events. A chain of structured
associations encodes such indirect relationships and allows the
representation of such flexible constructs. Fixed or unmotivated expressions,
such as "kick the bucket", and handled easily without indirection. The Ace
framework thus provides a uniform set of tools for representing a variety of
knowledge about language.

The Ace representation is used by KING (Knowledge INtensive
Generator) to produce language from a conceptual representation. KING is
a small, simple mechanism built to apply the power of the underlying
knowledge using a combination of data-driven and top-down methods. A
tactical language generator along the lines of PHRED, KI~G demonstrates
how some of the more complex or time-intensive aspects of generation are
simplified because of a more suitable organization of knowledge. The
generator produces the output of a new version of the C'NIX Consultant
system, which is still being developed. It has been tested independently
with positive results in the production of a range of linguistic constructs.

9.2. Directions for Further Research

This work has concentrated on some representational and tactical
aspects of language generation. Planning, focus, context, rhetorical
structure, and other matters are essential to the generation task. This
thesis has not addressed any of the theories which concentrate on these

1~.

- 149 -

problems. Progress in these areas, however, depends heavily on the
development and improvement of representational and processing tools. I
intend that the tools presented here will be useful in the continuation of
research on planning, focus, context, rhetorical structure, and other critical
topics in generation. One of the goals of the Ace tools is to ease the
interface between the strategic and tactical aspects of generation; thus
extending the use of these tools to the strategic level should be productive.

Two areas for future related research that have particular promise are
the study of context and of knowledge acquisition. Both pose extremely
difficult theoretical and practical problems. The problem of context
sensitivity is fundamental for generators which are to be used with
knowledge about different users, domains, and situations. The problem of
acquisition is critical because it is hard to believe that true robustness can
be achieved without automated methods of adding knowledge to a system.

One reason for promise in the problem of context is the hierarchical
organization of structured associations in Ace. The associations which link
linguistic and conceptual structures themselves belong to conceptual
categories, and thus may be accessed through a variety of organizational
nodes. Because the encoding of this associative knowledge thereby leaves
room for the explicit and implicit encoding of knowledge about the
application of these associations, there is room for the use of contextual
information to control which associations are applied in generation.

A second reason why the framework proposed here may improve
context-sensitive aspects of the generation task is the decreased granularity
of knowledge in the system. One of the problems with using contextual
information effectively in language is that language processing systems
often apply large pieces of knowledge, which may have complex contextual
constraints. The emphasis on the incremental use of smaller chunks of
knowledge simplifies the constraints on each chunk and emphasizes the
process of incrementally building new knowledge structures. As the use of
context is a process which involves the interaction of many types of
knowledge structures, a model in which this interaCtion is stressed seems
well suited to the problem of context. The KING implementation provided a
system in which certain simple aspects of context could be tested, and
showed some positive signs that structured associations could allow for the
encoding of contextual information.

The knowledge acquisition problem may be made easier because the
Ace framework emphasizes the exploitation of abstract knowledge in a
system. The addition of new knowledge often involves adding a new
linguistic category, determining where in the hierarchical organization the
new category fits, and associating this category with a conceptual structure.
The process of adding knowledge "by hand" is made easier because it is
easier to add knowledge that is related to existing knowledge; the process of
acquiring knowledge automatically should be similarly facilitated.

One of the most interesting aspects of developing and applying KING
has been the light which linguistic demands place on the organization of
conceptual knowledge. Ace and KI~G were designed with the goal of
attacking issues in knowledge representation which influence the generation
process, and the implementation of the systems punctuated more strongly
than expected the role of conceptual representation and organization in
language processing. The consideration of a variety of linguistic
phenomena, such as relative clauses. EQUI-. and WH- movement, all
provoked questions in conceptual representation. The way in which

- 150 -

problems such as these were handled made heavy use of multiple
inheritance and ROLE-PLAY as implemented in Ace. The ability to handle
these constructs, like the ability to produce many specialized linguistic
constructs, was achieved using relatively little additional knowledge of
linguistic structure. The relations between concepts and language, and the
relationships among concepts, proved to be most critical in the ability to
generate these linguistic structures. The automated acquisition of linguistic
knowledge, therefore, may be approached by considering the effect of
conceptual organization on linguistic capabilities.

9.3. Conclusion

A knowledge-based approach to the task of natural language generation
highlights theoretical issues in natural language processing which are
behind practical problems in building generation systems. The generation
task is rooted in the problem of representing knowledge about language;
thus, many of the difficulties of the task are alleviated by addressing the
theoretical problems at the level of knowledge representation, and applying
the power of the knowledge to the task of generation.

The Ace representation is a reshaping and reworking of the knowledge
representation tools required in language processing. The tools address
theoretical and cognitive issues at the same time as they are tuned to the
task of building adaptive and extensible systems. The KING generator
presents a simple demonstration of the power of the representation applied
to the generation problem.

The bulk of the areas of application of the Ace framework are open for
further exploration. The immediate positive results presented here are the
improved handling of phenomena which were difficult for previous systems,
the ease with which a sampling of linguistic and conceptual knowledge is
encoded in Ace, and the applicability of a simple, efficient, generation
mechanism making use of this knowledge.

- 151 -

Appendix A: An Annotated Ace Grammar

The most common linguistic patterns used by the KING generator are
presented here, with some analysis, to show how basic linguistic constructs
are handled. The choice of what subset of English to include was made pri
marily to provide a reasonably robust language facility, but also to ensure
that the generator could demonstrate the capacity to handle a range of
linguistic constructs.

Naturally, there will be mistakes and omissions in this knowledge base.
The scrutiny of the patterns and discussion here should nevertheless provide
insight into the workings of KING and the development of a knowledge base
in the Ace representation.

Only the pattern templates are presented here. These patterns often
inherit properties of high-level templates; for example, the ROLE-PLAYs
which represent correspondences between attributes as discussed in Chapter
8. The knowledge about constraints on certain constituents, which may also
be inherited from such high-level templates, is also generally omitted. In
most cases these constraints will be apparent.

The sentence templates used by KING are presented first. Below is the
basic sentence template discussed in Chapter 5.

9
I ~asic-S I _. _____ ___.f !-pattern

noun-phrase

Figure A-1.

The imperative sentence pattern, returned by the pattern selection
mechanism when a command or instruction is desired, is simply a verb
phrase whose verb is in the tenseless form:

- 152 -

!-pattern

~ ddD
Figure A-2.

verb-phrase

The handling of questions is a more complex problem. Wh-questions are
handled using two different templates, one which is equivalent to the basic
sentence pattern and the other handling Wh- forms where the Wh- term is
part of the predicate. The following is a general wh-question template, han
dling those forms where the Wh- term is not the subject of the sentence.
The relation verb-term DOMINATEs all relations which link a verb to other
constituents which might appear in a verb phrase with the verb, including
verb-adjunct, verb-object, etc. The Wh- constituent must thus be part of one
of these relations. The wh constraint is assigned within the Wh- consti
tuent, which determines the pronoun, such as "who'', or determiner, such as
"which", ultimately used.

Do-support, mentioned in Chapter 7, is a rare example of a relation, in
this case the helper-verb relation, whose aspectual, helper, is filled by default
if the restriction process fails to fill it. The pattern below, therefore, is
selected on the basis of two relations, uerb-term and subject-predicate, which
because of the nature of the mapping mechanism means whenever the ques
tion term has not been mapped into a subj role. If the question term is in
the subj role, the Basic-S pattern is used, with the wh constraint assigned to
the NP term.

There are undoubtedly many potential linguistic arguments about this
treatment. PHRED's knowledge base, and most others to which I have been
exposed, explicitly represented the correspondence between the Wh- term
and a "gapped" or "silent" component of the VP. This was better for exam
ples where an adjunct is not "pied piped", e. g. to produce the unpreferable
"Whom was Mary hit by?" instead of ''By whom was :Vlary hit?" The "gap"
method may also be easier in analysis, because it allows the same analysis
mechanism to be used once the "silent" constituent has been inserted. The
method espoused here, in both analysis and generation, instead takes
advantage of the non-redundancy stipulation. In generation, this means
that the relation associating the Wh- term and verb is not expressed in the
verb phrase because it is expressed elsewhere; in analysis, it means that
this relation must be determined on the basis of which relations were not

- 153 -

expressed elsewhere. The main problem with this approach 1s that it
requires grammatical patterns which are not ordinarily used except in
"gapped" constructs; for example, the verb phrase "give Mary" is grammati
cal, but may only be used in cases such as "What did John give Mary?" and
"The book which John gave Mary".

The inverted Wh- question template is given below:

T D

I 1-rela tion !-relation

'---i-ws--rell-~-- ~·ws-re12
""· ·,,

vt-tenn helper _

!-pattern
----- !-relation

const

·-
subj

const ./

vt-verb ,._'-,_-,__iws-_w_b --'r _I ~\·u 7j
'---iw_•--np __ ~-'~ l._

4

__ 'w_s-~vpr---'
~ "

------ vp-verb
h-verb

----------------------------~--------========~ e ---__=9.___i_w_s-v_er_b--'
const

------- const --------1

Figure A-3.

I
pred

The inverted sentence construct, used for all yes-or-no questions, is
similar to the inverted Wh- construct, but is spared the complication of the
extra relation. The operator "+" in both templates is used to ensure proper
agreement of subject and auxiliary.

- 154-

Figure A-4.

Subordinated sentences here are treated as two sentences joined by a
subordinating conjunction. This includes constructs such as "Delete the file
after you have printed it" and "What message was produced when you exe
cuted the command?"

9 D

Figure A-5.

- 155 -

The next patterns are the relative clause templates. These are very
similar to the Wh- and inverted Wh- sentences, except that the relative
clause with the relative pronoun in the subject position does not appear m
inverted form:

vt-verb

relative-clause

relative-pron

verb-term

'
D

I- relation

r--ir-c--,.-n-~rr-·'

vt-term
COOllt

relative-proD

ire-rei

!-pattern

l verb-phrase

~-..:1...--....c::;D

Figure A-6.

0

!-pattern

roost

1rc-np

~
~

/ ~onst

noun-phrase

D

Figure A-7.

I subject-predicate

A

D

irc-rel2

pred

j

·,, I
,-'-·.::.'\----:t___~D 7'

irc-vp

vp-verb

verb-phrase

- 156 -

The verb phrase templates represent the widest range of constructs han
dled by KING. The presentation in Chapter 5 discussed how the verb
phrase patterns, in conjunction with the hierarchy of grammatical relations,
could be used to encode parsimoniously the ability to produce language such
as "Selling John the book bothered Mary," and ''John wanted to be sold the
book by Mary!'

As the discussion in Chapter 5 pointed out, a wide range of linguistic
attachments to verbs are treated within the class of adjuncts in the Ace
representation in order to minimize the amount of syntactic knowledge.
Thus passive by-adjuncts require no special syntactic patterns. Because the
objects and indirect objects of verbs require special ordering, there are pat
terns for this purpose. Adjuncts are handled by the following knowledge
structure, introduce in Chapter 5:

verb· phrase

adjunct

Figure A-8.

The following are the patterns which handle orderings within verb
phrases, exclusive of adjuncts. These have been discussed and diagrammed
in Chapter 5:

i
I~

4~~rn
const

!-relation

!-pattern~
bvp ela ion

vo-verb

~b
obj

cons~ j
B

D

- 157 -

D

!-relation
!-pattern ;j !-pattern

ivp· ela ion rf !-relation

m dvp pat rn

vi-verb
const const

con\1t io ; ,,a;: d~ obJ

const
~vo-verb

D d~

finite

Figure A-9.

Below are given the verb phrase patterns which describe states, rather
than actions. The first of these is the predicate modifier, which is used for
"John was sick", "Mary looked sick", and "The file became lost":

~
!-relation !-pattern

1

vpr-verb

~--------~~~D

verb-part

Figure A-10.

- 158-

The verb-prmod relation is used to indicate relations between verbs and
modifiers which correspond to a state of the subject of the verb for stative
verbs and the object of the verb for transitive verbs. The cases of "Bill made
John sick" or "Make the file publicly readable" are handled by the following
pattern:

~
vo-verb

DJ noun-phrase

,.---~--......:::;

Figure A-11.

modifier

A class of verb phrase patterns incorporates other verb phrase patterns.
This is the case with constructs used with EQUI verbs such as "want" as in
"John wanted Mary to go", and "John promised Mary to take out the gar
bage". Some of the other applications of these patterns have been con
sidered in Chapter 6. The same pattern may be used for both of these sen
tences, because the subject-predicate relations are determined during the
mapping process from the conceptual structure to be expressed. While these
subject-predicate relations are not directly satisfied by the sentence struc
ture, they are available to guide constraints, such as refiexivization.

- 159 -

~vus-verb

~

Figure A-12.

I verb-phrase

D)'

l noun- phrase

0

Verb phrases can appear alone as complements in verb phrases, such as
in "John wanted to go" and "John had to sell Mary the book".

~
]-relation]-pattern

verb-part
l vup-verb

~-----"""'-......._o

Figure A-13.

KING works from a small repertoire of noun-phrase patterns, relying on
specialized knowledge about referring to objects to select noun phrases. For
example, there is a structured association between the concept of a concrete
object and the determiner-noun relation which causes the selection of the
Basic-NP pattern below:

- 160 -

~ 1-relatton !-pattern

determiner l
~..Lo

noun

?---.3--L..---,

Figure A-14.

Objects which have names are generally referred to by name. The
name relation is produced via mapping from such objects, causing the
N ame-NP pattern to be used:

~
!-relation !-pattern

I '!T .. rn I

name const nm

o---*

Figure A-15.

~
~n

- 161 -

const

\

I pronoun

D)'
/

pnp-pron

Figure A-16.

There are several ordinary noun-phrase patterns without determiners,
used for referring to collectives, abstract concepts, generics, and groups. In
these cases, the entire noun phrase is made up of the NP* component, to
which constraints such as number are attached.

const D)'

~ num J,.r

I np*

plural

Figure A-17.

- 162 -

I noun

07

Figure A-18.

Certain noun-phrase patterns use verb phrase constructs. The gerund
phrase and infinitive phrase are handled by the knowledge that these verb
phrase constructs also belong to the class of noun phrase templates. The fol
lowing knowledge accounts for the sentential complement:

Basic-S

\
D const

"" /
cmnp-com I

const

cmnp-~

Figure A-19.

Handling modifiers is a difficult problem. In this knowledge base, pre
and post-modifiers are linked to their modified nouns by the modifier-noun
relation, which does not predetermine the order in which they appear. The
type of modifier determines whether mapping produces a postmodi/ier-noun
relation. This generally occurs when the modifier is a predicate, as in "The
man sold the book by Mary sold it to John". KING fails to be able to deal
elegantly with constructs such as "the salvaged tire" because it will favor a
Postmodified-NP pattern. This, like the "John gave Mary for her enjoy
ment " sentence discussed earlier in this appendix, is an example where
the length of a constituent makes it preferable to put it in a position other
than where it would ordinarily belong. The influence of the complexity and
length of a constituent on the choice of linguistic structure is a phenomenon

- 163 -

which is not covered in KING.
Postmodifiers may appear after nouns or noun-phrases, depending on

the restrictiveness of the modifier. The following pattern is used for non
restrictive postmodifiers and for constructs such as "who from Mary's home
town":

noun-phrase 1D postmodifier

?--1---L---,

Figure A-20.

The following patterns are used for constructing NP* elements:

I noun

canst

\
bnp•-n

Figure A-21.

- 164-

modifier-n

modifier l
..______,J._D

NP*

r---~...L.---,

Figure A-22.

postmodilier

Figure A-23.

These are the normal premodifier constructs:

- 165 -

const

\
D

/
am-adj

Figure A-24.

I verb

Figure A-25.

I noun

canst

\
nmd-n

Figure A-26.

- 166 -

const
~const D

~~
~

Figure A-27.

cp
const D

~ mmd-adv

Figure A-28.

These are the postmodifier constructs, including relative clauses, prepo
sitional phrases, and passive postmodifiers. These are used, for example, in
"John knew the man who loved Mary", "What is the name of the file deleted
from the queue?" and "the terminals on line":

e 167 •

Figure A-29.

~
form

Figure A-30.

• 168 °

Figure A-31.

This is the prep phrase template:

~
!-relation !-pattern

prep l
'"-------.,.~~ D

noun-phrase

Figure A-32.

These are the adjunct patterns:

- 169 -

Figure A-33.

Figure A-34.

Here are the verb-part patterns:

- 170 -

verb-part

Figure A-35.

I verb

const

\
bv-verb

Figure A-36.

- 171 -

Appendix B: Some Knowledge Representation Examples

The examples of knowledge representation in the text were presented to
illustrate particular aspects of the Ace framework. This section is provided
to give a clearer picture of parts of an Ace network. The examples will be
discussed with respect to their influence on processing.

The following is a piece of Ace knowledge about write-permission in
UNIX:

Figure B-1.

user J

1

possessed

L;rmission

EwJ_n_e_ed_in_g___.~E~

This diagram is a faithful rendition of knowledge used to generate sen
tences such as "You need write permission on the parent directory." There is
no link between the knowledge about write-permission and the knowledge
about preconds. The reason for their positioning above is to emphasize the
fact that "You need write permission ... " describes a state which is an
instance of both write-permission and unmet-precond.

The links labeled "REF*" indicate that some sequence of associations
leads from one structure to the other. Thus the necessity concept is joined to
the need_to linguistic construct via chain of structured associations, some of
which are not represented here. The necessity category DOMINATEs enti
ties which are obligatory; this is associated with the concept of an obligation,
which represents an entity which is obligatory for the obligator, as illus
trated in Chapter 4. Thus "You must have write permission" refers
indirectly to the necessary state by referring to an obligation on the part of
the user.

c 172 -

The nodes have_to, need_to, and musLdo are linguistic relations which
dictate both the choice of verb and the constraints on the structure in which
the verb appears. uYou have to have write permission" and "The write per
mission has to be set" may be generated from this knowledge, depending on
what maps into obligator. The verb uneed" as in "You need to have write
permission" behaves oddly, as the negative form could be ''You needn't have
write permission". uNeed" and udare" are two examples of auxiliaries which
behave as auxiliaries only in special circumstances, and otherwise are pre
empted by their equi- forms.

Circles in the diagram are used for clarity in illustrating the hierarchy
of structured associations linking concepts of access and possession to
linguistic entities. The pos =control VIEW represents the common meta
phorical relationship between possession and control. This metaphorical
association can be applied to the concept of write-permission, which allows
the user access to a file. The circles labeled "w-pm" and ''-w-pm" represent
implicit structured associations. The verb ''have" can thus be used to
describe this access. "Have" refers to a general state of possession: "You
have write permission", uYou must have write permission", and "You don't
have write permission" are all possible forms. "Need" refers to a more par
ticular state of possession--a possession state which is a necessity and an
unrealized-state, as is the case in "You need write permission". The verb
"lack" and a somewhat archaic form of "want" can also be used to refer to
unrealized possession states, but "need" is still more specific.

The use of the VIEW here allows "need", "require", "have", and "lack"
to be used to refer to states of write-permission without duplicating any
structural knowledge about the use of the verbs. In the example given,
''need" is the favored choice, because it is associated with the specific concept
of not having something that is necessary.

When KING is called to inform the user that write permission is
needed, it is passed a concept which is an instance of write-permission as
well as playing the role of unmet-precond in the user's plan. Since the plan
component of the plan is implicit in the user's statement-- "I tried typing 'rm
foo' "--the response need only describe the failed precondition. KING thus
generates the response, "You need write permission on the parent directory."

- 173 -

The input to KING consists of a network of instantiated concepts, which
the generator traverses in producing the utterance. In the case of the
response, "Use the 'rm' command", part of this network is the following:

step

$
eiJ·ff·~

planner objecti~
fse1 de

del file
-~------,

message
rrn-commandl

name

Figure B-2.

In response to the question .. How do I delete a file?", the UNIX Consul
tant passes to KING a pointer to the executel part of the network. This
node is an instance of the execute concept, which represents the notion of
using a UNIX command. A structured association between rm-command
and the name relation, a subcategory of a more general structured associa
tion used to refer to named concepts.

When the response "Use the 'rm' command" is followed by the question,
"How can I do that?", UC interprets the question as asking for details in
executing the plan it has described. It passes to KING a pointer to the step
association between execute I and typingl, because the system identifies steps
as causal enablers, and .. how" questions are requests for enablers.

c 174-

One of the advantages of the KODIAK representation which is demon
strated in the Ace hierarchy is the ability to define concepts and relation
ships in terms of more abstract concepts and relationships. The commercial
transaction example given in Chapter 4 demonstrates how knowledge about
transfer-events is used in the representation of concepts such as buying and
selling. The discussion in Chapter 5 mentions that the Ace representation
poses a high start-up cost, because of the difficulty in initially arranging
abstract concepts in the hierarchy. This hierarchy of abstract concepts is not
illustrated in the text. The following diagram represents some of the
abstract relationships in the system:

stateho der

~
.~

partlClpant
/

actor I

Figure B-3.

The concept of a transfer-event above is represented as a change in state
of an object, where the initial state is possession on the part of the source
and the final state is possession on the part of the recipient. The verbs
"give" and "take" tend to be used to refer to transfer events. The motivation
for metaphorical uses of "give" and "take" often comes from the abstract
VIEW association between s-state and possession in the diagram above. This
VIEW represents the close association between states of being and states of
possession. For example, "I am ill" can mean "I have a headache" and "I am
inspired" can mean "I have an idea". KING does not directly use the
abstract relationship between being and possession, but makes use of struc
tured associations which are motivated by this relationship. Constructions
tend to be consistent about whether they use "being" constructs or "having"
constructs, as in "That gave me a headache", and ''You've just given me an

- 175 -

idea", but uPomegranites make me ill". The verb ttmake", meaning ucause to
be" is used for constructs which may also use ttbe"; the verb ugive", meaning
ucause to have" is used for constructs which may also use tthave". In
languages where ul have hunger" is used to mean 'tl am hungry", "It gives
me hunger" is used to mean ttlt makes me hungry". Such consistency applies
to the UNIX world as well. ttChrnod" can be used to make a file publicly
writable, but gives one write permission on the file. Because permission is
treated as a state of possession, constructs ordinarily used to describe posses
sion are used to describe write permission. Such constructs cannot be used
with writability, which is viewed as a state of being of a file.

This text has focussed on the transfer-event as a tool for exploiting con
ceptual relationships in language processing; however, a great deal of terri
tory remains to be explored in terms of stative verbs, locative relationships,
and other related phenomena. The above diagram may be related to linguis
tic structures as in the following schema:

~ 0 0

lex...have

~-~--in_g~~~-1-eL_~_k_e~

Figure B-4.

The relationships between transfer-events and the gwzng and taking
actions as above have been discussed earlier. These transfer-events may also
be referred to via the concept of receiving, which falls into a category whose
properties are still being explored, known as happen-to. While actions desig
nate an actor who must play an active role, happen-tos are events in which
the designated role-player plays an inactive role. This idea can be applied
to other types of e-states, or state changes, as well. For example, becoming
above is a VIEW of s-state-change as a happen-to. VIEWed as an action,
where the actor need not be part of the s-state-change, the event maps into
making. Thus "John became ill" is to "Mary made John ill" as uJohn
received the book" is to "Mary gave John the book".

The examples presented here illustrate some further details of the Ace
representation and its incorporation of motivation and indirect reference into
language processing. All of these diagrams, however, seem to open up as
many questions as they answer. This is indicative of the many areas in
which this approach must still be explored and developed.

- 176 -

References

Anderson, J.R., and Bower, G. H. 1973. Human Associative Memory. Wash
ington, D. C.: Winston.

Appelt, D. 1982. Planning Natural Language Utterances to Satisfy Multiple
Goals. SRI International AI Center Technical Note 259.

Appelt, D. 1983. Telegram: A grammar formalism for language planning.
In Proceedings of the 21st Annual Meeting of the Association for Computa
tional Linguistics, Cambridge, Massachusetts.

Arens, Y. 1982. The context model: language and understanding in con
text In Proceedings of the Fourth Annual Conference of the Cognitive Science
Society, Ann Arbor, Michigan.

Austin, J. L. 1962. How To Do Things With Words. New York: Oxford
University Press.

Bobrow, D. and Winograd, T. 1977. An overview of KRL, a knowledge
representation language. Cognitive Science 1 (1).

Brachman, R. 1979. On the Epistemological Status of Semantic Networks.
In N. V. Findler (ed.), Associative Networks: Representation and Use of
Knowledge by Computers. New York: Academic Press.

Brachman, R., et. al. 1979. Research in Natural Language Understanding.
Bolt Beranek and Newman Research Report #4274.

Brachman, R., Fikes, R., and Levesque, H. 1983. KRYPTON: Integrating
terminology and assertion. In Proceedings of the National Conference on
Artificial Intelligence. Washington, D. C.

Bruce, B. 1975. Belief Systems and Language Understanding. Bolt
Beranek and Newman Research Report #2973.

Chafe, W. L. 1968. Idiomaticity as an anomaly m the Chomskyan para
digm. Foundations of Language 6 (1).

Chafe, W. L. 1984. Integration and Involvement in Speaking, Writing, and
Oral Literature. In D. Tannen (ed.), Oral and Written Language. Norwood,
N. J.: Ablex.

Chester, D. 1976. The translation of formal proofs into English. Artificial
Intelligence 7 (3).

Clippinger, J. H. 1974. A Discourse Speaking Program as a Preliminary
Theory of Discourse Behavior and a Limited Theory of Psychoanalytic
Discourse. Ph. D. thesis, University of Pennsylvania.

....

- 177 -

Cohen, P. R. 1978. On Knowing What to Say: Planning Speech Acts.
University of Toronto, Technical Report #118.

Cohen, P. R. 1984. The pragmatics of referring and the modality -of com
munication. Computational Linguistics 10 (2).

Cohen, P. R. and Perrault, C. R. 1979. Elements of a plan-based theory of
speech acts. Cognitive Science 3.

Davey, A. 1979. Discourse Production. Edinburgh: Edinburgh University
Press.

Deering, M., Faletti, J., and Wilensky, R. 1981. PEARL: An efficient
language for Artificial Intelligence programming. In Proceedings of the
Seventh International Joint Conference on Artificial Intelligence. Vancouver,
British Columbia.

Fillmore, C. J. 1968. The Case for Case. In E. Bach and R. Harms (eds.)
Universals in Linguistic Theory. New York: Holt, Rinehart and Winston.

Fillmore, C. J. 1979. Innocence: a second idealization for linguistics. In
Proceedings of the Fifth Berkeley Linguistics Symposium, Berkeley, Califor
nia.

Friedman, J. 1969. Directed random generation of sentences. Communica
tions of the ACM 12 (6).

Gentner, D. 1983. Structure-mapping: A theoretical framework for analogy.
Cognitive Science 7, pp. 155-170.

Goldman, N. M. 1974. Computer Generation of Natural Language from a
Deep Conceptual Base. Ph. D. Thesis, Stanford University.

Goldman, N. M. 1975. Conceptual Generation. In R. C. Schank, Conceptual
Information Processing. New York: American Elsevier Publishing Com
pany.

Grosz, B. J. 1977. The representation and use of focus in dialogue under
standing. Stanford Research Institute Technical Note No. 151.

Grosz, B. J. 1979. Utterance and objective: Issues in natural language
communication. In Proceedings of the Sixth International Joint Conference
on Artificial Intelligence,

Halliday, M. A. K. 1967. Notes on transitivity and theme in English. Jour
nal of Linguistics 3.

Halliday, M. A. K. 1968. Notes on transitivity and theme in English. Jour
nal of Linguistics 4.

- 178 -

Hobbs, J. 1978. Coherence and Coreference. SRI Technical Note No. 168.

Hobbs, J., and Evans, D. 1980. Conversation as planned behavior. Cogni
tive Science 4, pp. 349-377.

Jacobs, P. 1983. Generation in a natural language interface. In Proceedings
of the Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, Germany.

Jacobs, P., and Rau, L. 1984. Ace: associating language with meaning. In
Proceedings of the European Conference on Artificial Intelligence. Pisa, Italy.

Jacobs, P. 1985. PHRED: A generator for natural language interfaces.
University of California, Berkeley, Computer Science Division Technical
Report #UCBICSD 85/198.

Kaplan, R. M. and Bresnan, J. (eds.) 1983. The Mental Representation of
Grammatical Relations. Cambridge: MIT Press.

Kay, M. 1979. Functional grammar. In Proceedings of the Fifth Annual
Meeting of the Berkeley Linguistic Society.

Kay, M. 1984. Functional unification grammar: a formalism for machine
translation. in Proceedings of the Tenth International Conference on Compu
tational Linguistics, Stanford, California.

Kittredge, R. and Lehrberger, J. 1983. Sublanguages: Studies of Language
in Restricted Domains. New York: Walter DeGruyter.

Klein, S. 1975. Meta-compiling text grammars as a model for human
behavior. in Proceedings of TINLAP-1, Cambridge, Massachusetts.

Kripke, S. 1977. Speaker Reference and Semantic Reference. in French, et.
al. (eds.) Contemporary Perspectives in the Philosophy of Language. Min
neapolis: University of Minnesota Press.

Kukich, K. 1983. Knowledge-Based Report Generation: A Knowledge
Engineering Approach to Natural Language Report Generation. Ph. D.
thesis, Univ. of Pittsburgh.

Kempen, G., and Hoenkamp, E. 1982. An Incremental Procedural Grammar
for Sentence Formulation. University of Nijmegen (the Netherlands)
Department of Psychology, Internal Report 82-FU-14.

Lakoff, G. 1977. Linguistic gestalts. In Proceedings of the Thirteenth
Regional Meeting of the Chicago Linguistics Society.

Lakoff, G., and Johnson, D. 1980. Metaphors we Live By. Chicago: Univer
sity of Chicago Press.

i'"

- 179 -

Lakoff, G. 1984. There-constructions: a case study in grammatical con
struction theory. University of California, Linguistics Working Paper.

Langacker, R. 1982. Foundations of Cognitive Grammar. Linguistics
Department, University of California, San Diego.

Maida, A. 1984. Processing entailments and accessing facts in a uniform
frame system. in Proceedings of the National Conference on Artificial Intelli
gence. Austin, Texas.

Mann, W. 1982. The Anatomy of a Systemic Choice. University of South
ern California, lSI Technical Report #ISI!RR-82-104.

Mann, W., and Matthiessen, C. 1983. Nigel: A Systemic Grammar for Text
Generation, t!niversity of Southern California, lSI Technical Report
#ISI/RR-83-105.

Mann, W. C. and Moore, J. A. 1980. Computer as Author -- Results and
Prospects. USC Information Sciences Institute, Report #RR-79-82.

Mann, W. C. and Moore, J. A. 1981. Computer generation of multipara
graph English text. American Journal of Computational Linguistics 7 (1).

McCoy, K. 1982. Automatic enhancement of a data base knowledge
representation used for natural language generation. Master's thesis,
University of Pennsylvania.

McDonald, D. D. 1980. Language Production as a Process of Decision-making
Under Constraints. Ph. D. dissertation, MIT.

McKeown, K. 1982. Generating natural language text in response to ques
tions about database structure. Ph. D. thesis, University of Pennsylvania.

Meehan, J. R. 1977. TALE-SPIN, an interactive program that writes
stories. in Proceedings of the Fifth International Joint Conference on
Artificial Intelligence.

Moore, J., and Newell, A., 1974. How can MERLIN Understand? In L.
Gregg (ed.), Knowledge and Cognition. Erlbaum Associates, Inc.

Moore, R. 1980. Reasoning about Knowledge and Action. SRI International
AI Center Technical Report #191.

Quillian, M. R. 1966. Semantic Memory. Cambridge: Bolt Beranek and
Newman.

Riesbeck, C. 1975. Conceptual Analysis. In R. C. Schank, Conceptual Infor
mation Processing. New York: American Elsevier Publishing Company.

- 180 -

Roberts, R. B. and Goldstein, I. P. 1977. The FRL Manual. MIT AI Lab
Rebort #AIM-408.

Schank, R. C. 1975. Conceptual Information Processing. New York: -Ameri
can Elsevier Publishing Company.

Schank, R. C. and Abelson, R. P. 1977. Scripts, Plans, Goals, and Under
standing. Halsted, New Jersey: Lawrence Erlbaum Associations.

Searle, J. 1969. Speech Acts: An Essay in the Philosophy of Language.
Cambridge: Cambridge University Press.

Searle, J. 1979a. Indirect speech acts. in Expression and .Meaning: Studies
in the Theory of Speech Acts, Cambridge: Cambridge University Press.

Searle, J. 1979b. A taxonomy of illocutionary acts. in Expression and
Meaning: Studies m the Theory of Speech Acts, Cambridge: Cambridge
University Press.

Shapiro, S. C. 1975. Generation as parsing from a network into a linear
string. American Journal of Computational Linguistics, Fiche 33.

Shapiro, S. C. 1979. Generalized augmented transition network grammar
for generation from semantic networks. In Proceedings of the Seventeenth
Meeting of the Association for Computational Linguistics.

Sid.ner, C. L. 1979. Towards a Computational Theory of Definite Anaphora
Comprehension in English Discourse. Ph. D. thesis, MIT.

Simmons, R. and Slocum, J. 1972. Generating English discourse from
semantic networks. Communications of the ACM 15 (10).

Sondheimer, N., Weischedel, R., and Bobrow, R., 1984. Semantic interpreta
tion using KL-ONE. In Proceedings of the Tenth International Conference on
Computational Linguistics, Palo Alto.

Swartout, W. R. 1981. Producing Explanations and Justifications of Expert
Consulting Programs. Ph. D. thesis, MIT.

Wilensky, R. 1981. A Knowledge-based Approach to Natural Language
Processing: A Progress Report. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, Vancouver, British Columbia.

Wilensky, R. 1983. Planning and Understanding: A Computational
Approach to Human Reasoning. Reading, Mass.: Addison-Wesley.

Wilensky, R. 1984. KODIAK - A Knowledge Representation Language. In
Proceedings of the Sixth Annual Conference of the Cognitive Science Society,
Boulder, Colorado.

...

- 181 -

Wilensky, R., and Arens, Y. 1980. PHRAN--A Knowledge-based Approach
to Natural Language Analysis. University of California at Berkeley, Elec
tronics Research Laboratory Memorandum #UCB/ERL M80/34.

Wilensky, R., Arens, Y., and Chin, D. 1984. Talking to UNIX in English:
An overview of UC. Communications of the Association for Computing
Machinery, June.

Winograd, T. 1972. Understanding Natural Language. New York:
Academic Press.

Winograd, T. 1983 Language as a Cognitive Process. Vol. 1: Syntax. Read
ing, Mass.: Addison-Wesley.

Woods, W. A. 1970. Transition network grammars for natural language
analysis. CACM 13:10, pp. 591-606 .

Yazdani, M. 1982. How to write a story. In Proceedings of the European
Conference on Artificial Intelligence.

Yngve, V. H. A. 1962. Random generation of English sentences. In The
1961 Conference on Machine Translation and Applied Natural Language
Analysis. London: Her Majesty's Stationary Office.

