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ABSTRACT   

 
An experiment is a test under controlled conditions to investigate the validity of a hypothesis. 
Experimentation is the basis for creating new knowledge – determining whether some factor 
causes an effect. Well-designed experiments provide a systematic approach to observe 
relations among variables while ruling out alternative explanations. This report has examined 
a number of experimental designs including the simple experiment, matched-pairs, repeated-
measures and the single group design. The relevant statistical techniques are also discussed to 
help identify key quantitative methods for data processing and analysis. While not intending 
to replace any textbook, this guide summarises the resources and some worked examples that 
have helped the authors gain a basic understanding of design, measurement and statistical 
analysis to support military experiments. 
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Executive Summary    
 
An experiment is a test under controlled conditions to investigate the validity of a 
hypothesis. Experimentation is the basis for creating new knowledge – determining 
whether some factor causes an effect. The basic premise of this evidence-based 
approach is to discard subjectivity of authorities, and to seek the facts from scientific 
observation of certain phenomena. Well-designed experiments provide a systematic 
approach to observe relations among variables while ruling out alternative 
explanations. In order for an experiment to establish cause-and-effect, the experiment 
must have internal-validity – that is, setting up the conditions that allow a treatment’s 
effects to be isolated. While uncontrolled experiments such as those conducted in the 
field do not mitigate all confounding factors, they nonetheless provide external-
validity to support the results from controlled experiments. 
 
This report has examined a number of experimental designs including the simple 
experiment, matched-pairs, repeated-measures and the single group design. The 
relevant statistical techniques are also discussed to help identify key quantitative 
methods for data processing and analysis. While not intending to replace any textbook, 
this guide summarises the resources and some worked examples that have helped the 
authors gain a basic of design, measurement and statistical analysis to support military 
experiments. 
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1. Introduction 

Science is derived from the Latin term scientia, which means “knowledge”. Accordingly, 
scientific method literally means the “method that searches after knowledge.” Scientific 
method originated around the 16th century when people found that when data was 
assembled and examined without bias, some previously undiscovered meaning might be 
revealed. Traditionally, scientific method seeks to understanding the unknown by (Leedy 
and Ormrod, 2005): 

1. identifying a problem to solve 

2. establishing a hypothesis that if confirmed resolves the problem 

3. gather data relevant to the hypothesis 

4. analysing and interpreting the data to determine whether the hypothesis is 
supported or not. 

 
Experimentation is a central aspect of scientific method and is the basis for creating new 
knowledge - determining whether some factor causes an effect. 
 
The Logic of Warfighting Experiments (Kass, 2006) and GUIDEx (Kass et al., 2006) provide 
quintessential reading for planning military experiments. However, both books have 
deliberately omitted some aspects of experimental design and statistics. Being from a 
different background (engineering), the authors have decided to collaborate on this short 
guide to help identify key topics on experimental design, measurement and analysis. 
 
 
 

2. Experimental Design 

An experiment is a scientific procedure used to test a hypothesis, answer a question, or 
prove a fact. Two common types of experiments are simple experiments and controlled 
experiments. A simple experiment is a specific type of study to establish a cause-and-effect 
and often used to determine the effect of a treatment. Experiments can be extremely 
complex and involve a multitude of variables. In a complex setting, a controlled 
experiment is considered a better experiment because it is harder for other factors to 
influence the results, which could lead to an incorrect conclusion. 
 
In order for an experiment to establish cause-and-effect, the experiment must have 
internal-validity – that is, setting up the conditions that allow a treatment’s effects to be 
isolated (Mitchell and Jolley, 2010). A simple experiment provides the easiest way to 
establish a cause-and-effect relationship, but this approach is not always possible or viable 
due to real world constraints. This section details a range of experimental designs and the 
requirements for each to establish causality. 
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2.1 Simple Experiment 

The goal of science is to establish and advance knowledge. Experiments provide a 
systematic procedure for scientists to observe relations among variables while ruling out 
alternative explanations (Nock et al., 2008). In human-in-the-loop experiments, ideal or 
simple experiments are those where participants are randomly assigned to either a 
treatment or control (comparison) group. The idea that some variable has an effect on 
another is tested in a simple experiment by considering whether measurements from a 
group given the treatment are statistically different to those from the control group. 
Examples of simple experiments where participants are randomly assigned into groups 
include: 

• clinical trials testing the effectiveness of a drug where one group is given the 
treatment and the control group given a placebo, 

• tests to establish whether some widget improves performance of 𝑋 where one 
group is given the new device and the control group employing the standard 
technique 

or 

• experiments to examine whether a process change is more efficient than the 
existing process where groups are assigned to one method or another. 

 
While random assignment mitigates selection bias as an explanation for differences 
between treatments (Slavin, 2007), it doesn’t produce identical groups. Results from each 
group will have statistical variation due to chance (i.e. different group means). Testing for 
statistical significance determines whether the difference between groups is due to 
something other than random error. As a rule of thumb, simple experiments should 
employ at least 30 participants in each condition to minimise error due to differences 
between participants (Mitchell and Jolley, 2010). 
 
Table 1 summarises the possible outcomes of a statistical significance decision from an 
experiment. A correct decision is made when the decision from statistical significance 
testing agrees with the actual state of affairs. A type 1 error occurs when the analysis 
reports a treatment as having an effect when in fact it does not, that is differences due to 
chance are mistaken for real differences. In contrast, a type 2 error occurs when a 
treatment is reported as not having an effect when in reality there is. Under these 
circumstances, a treatment did have an effect but the study failed to detect it (Mitchell and 
Jolley, 2010). 
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Table 1: Possible outcomes of statistical significance decisions (Mitchell and Jolley, 2010) 

Statistical Sig-
nificance Decision

Treatment has an 
Effect

Treatment doesn't 
have an Effect

Significant: Reject the 
Null Hypothesis Correct decision Type 1 error

Not significant: Don't 
reject Null Hypothesis Type 2 error Correct decision

True State of Affairs

 

Descriptive statistics are techniques for describing a sample and include measures of 
central tendency (mean, median and mode), frequency distributions and graphs. 
Comparisons using this approach on data from two groups reveal differences between 
those specific groups but the results cannot be generalised to a larger population. 
Importantly, comparing the group’s performances by comparing means this way to 
determine the treatment effect neglects to account for random variations due to chance. To 
account for these variations and for conclusions from the experiment to be applied more 
generally require techniques from inferential statistics such as the 𝑡-test and ANOVA. 
These and other techniques are described in Section 4 under Hypothesis Testing. 
 
Results from each group will be spread about some mean value. These variations are 
termed random errors and may be due to (Mitchell and Jolley, 2010): 

• random measurement error 

• random differences between testing situations 

• random differences between participants 

• data entry errors when coding data. 
 
These all contribute to type 2 errors. Ways to mitigate these errors to design powerful 
experiments include taking greater care in data entry, standardising procedures, using 
reliable measures, increasing numbers of trials or using a homogeneous group of 
participants. Another way to reduce type 2 errors is to create a larger treatment effect such 
as by setting higher doses or increasing difficulty levels. 
 
Also known as false positives, type 1 errors occur when a chance difference is mistakenly 
considered for a real difference. There is only one way to deal with type 1 errors and that 
is to decide on the risk of making such an error through significance level, 𝛼. The concept 
of statistical significance is most easily understood by an example. Suppose a coin used in 
coin tossing is being assessed for bias because previous flips revealed a tendency for heads 
to appear. An experiment to test for bias is conducted by ten flips of the coin with the 
results compared against the chances for heads to appear in such circumstances for a fair 
coin. The chances of obtaining 8, 9 or 10 heads in 10 tosses from a fair coin is shown in 
Table 2. As shown scoring ten heads out of ten tosses is not impossible, albeit a very small 
chance. 
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Table 2: Probability occurring from 10 coin tosses (Mitchell and Jolley, 2010). 

Event Expression % Decimal Calculations

8 or more heads P(X ≥ 8) = P(X = 8) + P(X ≥ 9) 5.47% 0.0547

9 or more heads P(X ≥ 9) = P(X = 9) + P(X = 10) 1.07% 0.0107

10 heads P(X = 10) 0.1% 0.001

Probability occuring from 10 coin tosses
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The level of significance, 𝛼 determines the level of risk of making type 1 errors when 
making a conclusion. For the coin toss example, setting 𝛼 to 0% (or 0.0) implies accepting 
no risk in making type 1 errors, meaning that not even ten heads from ten tosses will be 
convincing enough to declare a bias coin because the 𝑝-value (chance) of 0.001 is larger 
than 𝛼. Setting 𝛼 = 0.05 or 5% implies considering the coin biased when scoring nine or 
more heads from ten tosses, but not with eight or more heads. Reducing the risk of making 
type 1 error increases the probability of type 2 errors because genuine treatment effects 
(such as actually using a biased coin) are overlooked (Mitchell and Jolley, 2010). 
 
Declaring a statistically significant result implies beyond reasonable doubt that differences 
observed between groups is due to the treatment and not chance. Here, reasonable doubt 
is taken to be some value of 𝛼 that is typically set to 0.05 or 5%. For this reason, we often 
see a declaration that “the results were statistically significant (𝑝 < 0.05)” (Mitchell and 
Jolley, 2010). 
 
 
2.2 Matched-Pairs Design 

While a simple experiment provides one of the easiest ways of determining whether a 
factor causes an effect, practical limitations often prevent participants from being 
randomly assigned to each group. In some cases, randomly assigning at least 
30 participants from a population to each group poses a significant challenge that prevents 
use of the simple experiment. A matched-pairs design is an alternative approach 
combining the best attributes of matching and random assignment that requires fewer 
participants than with simple experiments (Mitchell and Jolley, 2010). 
 
Whereas a simple experiment attempts to minimise random errors between groups by 
increasing numbers of participants, a matched-pairs design seeks to do so by creating 
control and treatment groups with similar attributes. Similar groups are created by 
measuring participants with respect to a variable correlating with the dependent measure. 
For example, participants in a memory experiment would be given a memory test that 
then allows them to be ranked according to their scores. Paring the two highest scores and 
repeating this step for the remaining ranked participants, then randomly assigning one 
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member of each pair to either the control or treatment group produces the similar groups 
(Mitchell and Jolley, 2010). 
 
 
2.3 Repeated-Measures Design (Within-Subjects Design) 

The ultimate way to eliminate random error due to individual differences is to employ the 
same group for both treatment and control. In repeated-measures designs, each participant 
receives all types of treatments administered in the experiment and measured after each 
type of treatment. A restriction with a between-subjects design such as a matched-pairs 
design or simple experiment is the limit of one observation per participants. Within-
subjects designs however allow getting at least two observations per participant. For 
example, in a study of women’s ratings of men based on masculinity, Frederick and 
Haselton had participants performing octuple duty – providing ratings of attractiveness 
for eight drawings that varied in muscularity (Mitchell and Jolley, 2010). However, a 
potential risk with a repeated-measures design relates to order (trial) effects due to taking 
multiple observations from the same participant. That is, in a within-subjects design the 
treatment may not be the only factor being manipulated due to order effects being a 
confounding factor. Mitchell and Jolley (2010) identify four sources of order effects: 

Practice: learning from earlier treatments improves performance in subsequent trials 

Fatigue: performance decreases due to tiredness in subsequent trials 

Treatment carryover: effects of earlier treatments carry to responses in latter trials 

Sensitisation: participants realise what the independent and dependent variables in 
latter parts of the experiment and may act to support the hypothesis rather than 
reacting to the treatment 
 

Randomising the order of trials is one way of balancing out order effects, while giving 
participants extensive practice before the experiment minimises practice effects. Treatment 
carryover effects can be reduced by allowing sufficient time for the effects from a previous 
treatment to wear off. Reducing the demands of a treatment or shortening the duration 
helps minimise fatigue effects while minimising sensitisation effects might involve 
preventing participants from noticing the changes between treatments. 
 
 
2.4 Single Group Designs 

Whilst some Defence human-in-the-loop experiments employ a single operator such as for 
evaluating cockpit design or a command support system, command and control (C2) 
experiments typically involve a unit (group) where it is difficult to allocate a unique team 
to each trial due to a small pool of participants. For this reason, the same unit receives all 
treatment conditions in a single group design (Kass et al., 2006). As in repeated-measures 
designs, order effects are a risk for establishing cause-and-effect in single group designs 
because latter trials may be positively biased due to learning or memory effects or 
negatively biased from fatigue. Kass et al. suggest using a counterbalanced design to 
reduce order effects (see Table 3). 
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Table 3: A counterbalanced experimental design. 

Mon Tue Wed Thu
Current Future Future Current  

If units are presented with identical scenarios for all conditions, the appropriate statistical 
analysis technique is the paired 𝑡-test or repeated-measures (M)ANOVA (Gueorguieva 
and Krystal, 2004). Otherwise, if scenarios between conditions are similar but not exactly 
the same, then the 𝑡-test or (M)ANOVA becomes the appropriate method for analysis. 
 
 
2.5 Exploratory / Uncontrolled Experiments 

Defence experiments such as the study of autonomous workgroups in dynamic targeting 
in Exercise Pitch Black 2008 (Lo et al., 2013) or the CAGE series (Lo et al., 2014) of joint 
fires activities have been uncontrolled in nature. An uncontrolled experiment does not 
mitigate confounding factors, thus preventing statements about cause-and-effect from 
being determined. In CAGE3A (run in 2013), issues included: 

1. order effects (memory, fatigue and learning effects) 

2. controlled variables were not held constant (IT systems regularly failing) 

3. independent variables were not held constant under the same condition (removing 
players, removing monitors, introducing unplanned systems, changing seating 
from days 2 or 3 in the To-Be week) 

4. multiple hypotheses being tested in a single experiment. 
 
Ideally, an experiment should only test a single hypothesis. According to Neuman (2006), 
an experiment is rarely appropriate for research questions that require studying the impact 
of dozens of diverse variables simultaneously. Rarely do experiments enable assessing 
conditions across a wide range of complex settings or numerous social groups all at the 
same time. During CAGE3A, causes from one hypothesis appeared to impact another, 
meaning that an alternative cause not identified in the hypothesis was responsible for the 
effect. For this reason, uncontrolled experiments only produce anecdotal evidence 
supporting or refuting experimental objectives (Lo et al., 2014). However, this is not to say 
that uncontrolled experiments aren’t important. For example, field experiments as 
exploratory experiments examining interventions in the real world can provide valuable 
insights into the sociotechnical system, identify problems to investigate or gain new 
insights to develop hypotheses. A campaign of controlled and uncontrolled experiments 
demonstrates internal and external validity for cause-and-effect statements. 
 
 
 

3. Measuring Data and Descriptive Statistics 

Studies of sociotechnical systems invariably involve gauging people’s behaviours, 
characteristics, attitudes and opinions. Techniques to facilitate the quantification and 
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evaluation of possibly complex behaviours and attitudes include the checklist and the 
rating scale. A checklist is a list of behaviours or characteristics under investigation that 
allows the researcher or participant to tick off if observed, present or true or vice-versa. A 
rating scale is useful when a behaviour, attitude or opinion needs to be evaluated on an 
interval scale of measurement such as in Table 1. Developed by Rensis Likert, rating scales 
are sometimes referred as Likert Scales (Leedy and Ormrod, 2005). A Likert scale has the 
advantage of producing responses as quantitative data reflecting degrees of opinion. 

Table 4: Likert scales can generate quantitative metrics from a variety of questions1 

(Low) (High)
1 2 3 4 5

Agreement Strongly 
Disagree

Disagree Undecided Agree Strongly 
Agree

Frequency Never Rarely Occasionally Frequently Very 
Frequently

Importance Unimportant Of Little 
Importance

Moderately 
Important

Important Very 
Important

Likelihood Almost Never 
True

Usually Not 
True

Occasionally 
True Usually True

Almost 
Always True

Likert Scale

 

 
 
3.1 Descriptive Statistics 

Once collated, performance between specific groups can be compared using descriptive 
statistics for describing a sample including measures of central tendency (mean, median 
and mode), frequency distributions and graphs. Measures of variability include dispersion 
and deviation while a measure of relationship is correlation. However, correlation doesn’t 
necessarily indicate causation (Leedy and Ormrod, 2005). Results from descriptive 
statistics cannot be generalised to a larger population. Generalising to a larger population 
requires inferential statistics as discussed in Section 4. 
 
 
3.2 Visualising Results 

An alternative approach to comparing numeric results through descriptive statistics is 
through visualisation. This section surveys some notable approaches including, 

1. Radar / Spider Chart 

2. Box and Whisker Plots 

3. 100% Stacked Bar 

4. comparing estimates of density functions fitted from the data. 
 
Choice of the approach is dependent on the type of input data (naturally qualitative versus 
those derived from a Likert scale) or the number of dependent variables. 

                                                      
1 S. A. McLeod (2008), Likert Scale – Simply Psychology. http://www.simplypyschology.org/likert-
scale.html, accessed 4 April 2014 

http://www.simplypyschology.org/likert-scale.html
http://www.simplypyschology.org/likert-scale.html
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1.1.1 Radar / Spider Chart 
A radar or spider chart such as shown in Figure 1 allows one set of multi-dimensional data 
to be compared against another (Few, 2005). In a C2 experiment, average performance 
across a number of variables such as communication, leadership, team workload, shared 
situation and others may be compared against mean scores after the application of a 
treatment. Another use of radar charts is in comparing performance over the days for a 
specific characteristic such as timeliness. 

 
Figure 1: An example radar chart comparing sets of multi-dimensional data2 

 
1.1.2 Box and Whisker Plots 
A box and whisker plot aggregates a box plot showing the first, second and third quartile 
levels with whiskers representing another pair of user-defined large and small values 
(Mergerdichian et al., 2012). Popular values presented by whiskers include: 

• mean value ± one standard deviation, 

• maximum / minimum values sampled 

• 2nd and 98th percentile. 

 
Box plots provide a quick way to assess statistical differences between samples for a 
specific measure. Placed side-by-side, a pair of box and whisker plots provide a graphical 
way to compare statistics of a measure from two or more samples (see example in 
Figure 2). 

                                                      
2 Wikipedia Radar Chart http://en.wikipedia.org/wiki/Radar_chart, accessed July 2013 

http://en.wikipedia.org/wiki/Radar_chart
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Figure 2: Examples of box and whisker plots3 

1.1.3 100% Stacked Bar 
A 100% stacked bar enables comparison of distributions within categories. Each row of the 
graph represents all responses such as from Likert scales for that category. By matching 
responses across rows according to common ratings (such as Strongly Disagree, Disagree, 
etc.) a visual comparison can be made across categories (see Figure 3). 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IT

 Sales

 Finance

 Engineering

The Restructure has Improved Workplace Efficiency

Strongly Disagree Disagree Neutral Agree Strongly Agree
 

Figure 3: Example of a 100% stacked bar. 

 
1.1.4 Comparing Distributions 
If the form of the distribution is known, the parameters may be evaluated algebraically or 
in some cases, solved numerically from histograms generated from the set of 
measurements. For example, solving the parameters for a Normal distribution simply 
involves evaluating the mean and standard deviation from the sample, while doing so for 
a Rayleigh distribution requires non-linear optimisation. Standard techniques for the latter 
include the Gauss-Newton, the Levenberg-Marquardt and Powell’s Dog Leg method 
(Madsen et al., 2004). 

                                                      
3 Wikipedia Box Plot http://en.wikipedia.org/wiki/Box_plot, accessed July 2013 

http://en.wikipedia.org/wiki/Box_plot
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Figure 4: Fitting a Rayleigh distribution over a histogram. 

 
Once fitted, the resulting distributions may be compared side-by-side as shown in 
Figure 5. 

 
Figure 5: Comparing two example Normal distributions4. 

 
The Kolmogorov-Smirnov test evaluates numerically the difference between two samples 
(e.g., 𝐹1 and 𝐹2) (Sheskin, 2004) or a sample and its reference distribution (e.g., 𝐹) (Papoulis 
and Pillai, 2002). The distance is the maximum vertical distance between two cumulative 
distribution functions given by: 

𝑑 = max
𝑥

|𝐹1(𝑥) − 𝐹2(𝑥)| 
or 

𝑑 = max
𝑥

|𝐹1(𝑥) − 𝐹(𝑥)| 
respectively. 
 
 
 

                                                      
4 http://www.researchgate.net/post/..., accessed July 2013 

http://www.researchgate.net/post/...
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4. Hypothesis Testing and Inferential Statistics 

An experiment is a test under controlled conditions to investigate the validity of a 
hypothesis. A hypothesis gives a reasonable or educated guess to explain a phenomenon 
under investigation (Leedy and Ormrod, 2005, Salkind, 2008). According to the Collins 
Dictionary the term is derived from the Greek word hupotithenai, meaning to propose, 
suppose or put under. Proving a hypothesis is unfeasible because doing so would involve 
testing the entire population for validity (Salkind, 2008). Instead, hypothesis or 
significance testing involves experimenting on a sample and determining whether the 
results provide sufficient evidence to support the hypothesis. A well designed experiment 
seeks to mitigate sampling bias by ensuring samples approximate the characteristics of the 
population. 
 
A variable in an experiment is any factor that can be introduced, changed, measured or 
controlled. Independent variables are factors that change in an experiment and are 
associated to the cause(s). Dependent variables relate to the effect(s) and are measured in 
an experiment. Controlled variables must be held constant throughout all treatments in an 
experiment. Allowing controlled variables to change causes them to become independent 
variables (Slavin, 2007). Confounding variables are additional, unaccounted for variables 
in an experiment. These confounding factors threaten the validity of conclusions made 
from an experiment because the treatment isn’t the sole factor accounting for observed 
effects (Leedy and Ormrod, 2005). 
 
A good hypothesis captures a problem statement or research question in a form that is 
more amenable to testing. Hypothesis testing involves studying the extent to which the 
independent variable (the cause or treatment) influences the dependent variable (the 
effect) (Leedy and Ormrod, 2005). The research or alternative hypothesis is a definitive 
statement of a relationship between variables. Here, the term variable refers to any quality 
or characteristic being investigated that has two or more possible values. The null 
hypothesis states the converse of the research hypothesis, that is no relationship exists 
between the variables (Salkind, 2008). 
 
Descriptive statistics as described in Section 3 are techniques for describing a sample and 
include measures of central tendency (mean, median and mode), frequency distributions 
and graphs. While comparisons using this approach on data from two groups reveal 
differences between those specific groups, the results cannot be generalised to a larger 
population. Simply comparing means to determine treatment effects neglects to account 
for random variations due to chance. To account for these variations and for conclusions to 
be applied more generally require techniques from inferential statistics such as the 𝑍-test, 
𝑡-test, paired 𝑡-test, ANOVA and MANOVA described in this section. Non-parametric 
approaches include the Mann-Whitney or Wilcoxon signed-rank test. 
 
Hypothesis testing determines whether the experimental evidence provides statistical 
support for the null hypothesis or its alternative by computing a 𝑝-value that gives the 
probability that the null hypothesis is wrong. Typically, the 𝑝-value is compared against a 
significance level of 𝛼 = 0.05 that requires the availability of moderate evidence for 
rejecting the null hypothesis in favour of the alternative (see Table 5). 
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Table 5: Interpreting 𝑝-values when conducting hypothesis testing. 
p -value Meaning
p  ≥ 0.1 No evidence against null hypothesis

0.05 < p  ≤ 0.1 Weak evidence against null hypothesis in favour of the alternative
0.01 < p  ≤ 0.05 Moderate evidence against null hypothesis in favour of the alternative
0.001 < p  ≤ 0.01 Strong evidence against null hypothesis in favour of the alternative

p  ≤ 0.001 Very strong evidence against null hypothesis in favour of the alternative  

The value of 𝛼 establishes the level of reasonable doubt, that is wrongly rejecting the null 
hypothesis when it is true. The confidence interval is evaluated by 1 − 𝛼. Setting 𝛼 = 0 
implies never rejecting the null hypothesis. 
 
 
4.1 Central Limit Theorem 

Evidence to support or refute the null hypothesis is gathered by conducting multiple trials 
to assess the outcomes. We can represent the set of 𝑛 outcomes as random variables 
𝑋1, …𝑋𝑛. That is, each trial is a random process that generates results according to some 
distribution, i.e. normal, bimodal, uniform, exponential… The term, sample is frequently 
overused in statistics and can either mean the outcome of a single trial or a set of 𝑛 
outcomes. In hypothesis testing, the term typically refers to the latter, with 𝑋1, …𝑋𝑛 being 
summarised by its mean value, 𝑋. 
 
One of the fundamental theorems in probability is the Central Limit Theorem (CLT) 
relating the distribution generating each trial outcome to the sampling distribution, 𝑋. It 
states that if 𝑋 is the mean of 𝑛 mutually independent random variables taken from any 
population with mean 𝜇 and standard deviation 𝜎, then the probability distribution of: 

  (1) 

tends to the standard normal probability distribution5 𝑁(0,1) as 𝑛 → ∞ (Smith, 1993). 
Similarly, the distribution of 𝑋 tends to 𝑁�𝜇, 𝜎/√𝑛� as 𝑛 → ∞. The effect can be illustrated 
using convolution because if 𝑋 and 𝑌 are independent random variables with density 
functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) defined for all 𝑥 and 𝑦, then the sum 𝑍 = 𝑋 + 𝑌 is a random 
variable with density (Grinstead and Snell, 1997, Papoulis and Pillai, 2002): 

  (2) 

where convolution is defined as (Liu and Liu, 1975), 

 ( ) ( ) ( ) ( )∫
∞

∞−
−=⊗ τττ dtgftgtf . . (3) 

Since 

                                                      
5 S. Khan (2011) Central Limit Theorem, http://www.khanacademy.org/math/probability/statistics-
inferential/sampling_distribution, accessed April 2014 

n

X
σ

µ−

( ) ( ) ( )yfxfzf YXZ ⊗=

http://www.khanacademy.org/math/probability/statistics-inferential/sampling_distribution
http://www.khanacademy.org/math/probability/statistics-inferential/sampling_distribution
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For example, consider a stochastic process with a uniform distribution. The sampling 
distribution for 𝑛 = 2 is a triangular distribution that can be generated by scaling the 
uniform distribution by a factor of 0.5 followed by convolving the resulting scaled 
distribution with itself. For any original distribution, as 𝑛 increases, the sampling 
distribution increasingly resembles a normal distribution and is the basis for the CLT. 
 
 
4.2 𝒁-Statistic 

In some situations, the population’s statistical properties are known so the experiment 
only involves testing the experimental group and assessing the probability (the 𝑝-value) 
that the results come from the population with known statistical properties. For example, 
body mass, height and intelligence quotient (IQ) scores have known population means 
and variances, enabling hypothesis testing using a single sample statistic. A significance 
test using the 𝑍-statistic is useful for large values of 𝑛 because the following statistic takes 
on a normal distribution: 

 
X

XX
Z

σ
µ−

= . (6) 

Here, 𝑋� gives the sample mean, 𝜇𝑋�  gives the mean of the sampling distribution and 𝜎𝑋� the 
standard deviation of the sampling distribution. Although the mean and standard 
deviation of the sampling distribution is often unknown, if we assume the null hypothesis 
that the sample was taken from the population, then 𝜇𝑋� = 𝜇 and 𝜎𝑋� = 𝜎/√𝑛 where 𝜇 and 𝜎 
gives the mean and standard deviation of the population respectively. This allows the 
𝑍-statistic to take on the following form: 

 

n

XZ
σ

µ−
= . (7) 

According to the CLT, when the sample size is large (𝑛 → ∞), samples from 𝑋� will appear 
normally distributed for arbitrary population distributions. However, when the 
population distribution appears normal, even when 𝜎 is unknown it is possible when 
𝑛 ≥ 20 or 30 (Carlberg, 2011) to still use the 𝑍-statistic by assigning 𝜎 = 𝑠𝑋�, the standard 
deviation of the sample means, for: 
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Most natural populations have a particular mathematical form that is termed normally 
distributed (Salkind, 2008). 
 
The following example by Conley and Pollard6 is used to illustrate hypothesis testing 
using 𝑍-statistics: 

Suppose we are interested in the following research hypothesis: 

H1: The IQs of Yale students are higher than the general population. 

After taking a random sample of 35 students and measuring their IQs, we find that 
their mean score is 107. Population IQ scores has a mean of 100 and a standard 
deviation of 15. 

 
The first step involves assuming that the sample was taken from the general population; 
that is evaluating the probability of sampling 𝑛 = 35 students whose mean IQ score is 107, 
comes from the general population. Leveraging off the CLT enables the standard deviation 
of the sample means for such a sample size to be computed: 
 

𝑠𝑋� = �𝜎
2

𝑛
=

𝜎
√𝑛

 

=
15
√35

= 2.535 

 
This can then be used to work out a 𝑍-score to evaluate how many standard deviations the 
result is from the mean: 
 

𝑍 =
𝑋� − 𝜇
𝑠𝑋�

 

=
107 − 100

2.535
= 2.761 

 
That is, when sampling 35 students whose average IQ score equals 107 is 2.761 standard 
deviations away from the expected mean of 100 (from the CLT). Considering that we are 
dealing with a one-tailed test, our focus is in the area to left of the 𝑍-score which in our 
case is 0.9971 (99.71%), in other words the sample score is higher than 99.71% of all other 
samples comprising of 35 students. The corresponding 𝑝-value is 1– 0.9971 = 0.0029 
which is 29 chances out of 10,000 chances that this would occur if we assume that there is 
nothing special about the group. 
 
In statistics, it is customary to use a significance level of 𝛼 = 0.05 corresponding to 
moderate evidence supporting the null hypothesis. This level of 𝛼 implies a willingness to 
                                                      
6 D. Conley and D. Pollard (1998) Hypothesis Testing, Confidence Intervals, and Power, 
http://www.yale.edu/soc119a/lecture7.htm, accessed April 2013 

http://www.yale.edu/soc119a/lecture7.htm
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be wrong once out of 20 times. For the example, for 𝛼 = 0.05, we are confident in rejecting 
the null hypothesis because the 𝑝-value of 0.0029 < 𝛼. In fact, strong evidence is available 
to support the alternative hypothesis. 
 
 
4.3 Standard 𝒕-Test 

Without understanding the population statistics (its mean and standard deviation), the 
experiment needs to be conducted on a control group without the treatment applied. The 
standard 𝑡-test is used to compare the means from exactly two groups and is the 
appropriate statistical test for such a case. It detects whether a statistical difference exists 
between the two group’s results through a 𝑝-value expressing the probability that the null 
hypothesis is wrong. Assumptions for using the standard 𝑡-test include: 

1. the two populations compared should both be Normally7 distributed 

2. the two populations should have the same variance. 
 
Whereas the 𝑍-statistic takes on a normal distribution for large sample sizes, it is not the 
case for smaller 𝑛. That is, for smaller 𝑛, 𝜎 is not closely approximated by 𝑠𝑋�  and the 
resulting statistic takes on a 𝑡-distribution: 

 n

n
s

Xt
X

 smallfor ;µ−
= . (9) 

The shape of the 𝑡-distribution depends on 𝑛: flatter for smaller values of 𝑛 and taking the 
shape of the Normal distribution as the sample size increases (Carlberg, 2011). Its pdf is 
defined as follows (Papoulis and Pillai, 2002): 

 ( ) ( )( )
( )

( )

∞<<∞−







+

Γ
+Γ

=

+−

x
n
x

nn
nnt

n

for 1
2/
2/1 2

1
2

π
. (10) 

Here, the mean 𝜇 = 0 and standard deviation is 𝜎 = � 𝑛
𝑛−2

 for 𝑛 > 2. 

After computing the 𝑡-statistic, the value is compared against a threshold from a 𝑡-test 
table giving the 𝑡-value required to reject the null hypothesis. 
 
Population statistics are not always available, so a separate control group is used to 
estimate the population statistics. The 𝑡-statistic divides the difference between group 
means by the variation within and between the two groups (Salkind, 2008): 
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Here, 

                                                      
7 Tested using the Kolmogorov-Smirnov or Shapiro-Wilk test. 
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𝑋1: Mean for group 1 

𝑋2: Mean for group 2 

𝑛1: Number of participants in group 1 

𝑛2: Number of participants in group 2 

𝑠12: Variance for group 1 

𝑠22: Variance for group 2 
 
When the obtained value from Equation 11 is greater than the critical value from a 
standard 𝑡-table, then the null hypothesis can be rejected. Looking up the critical value 𝑡crit 
from a 𝑡-table requires knowing the degrees of freedom 𝑑𝑓, the chosen level of significance 
𝛼 and whether a one or two-tailed test is being used. The 𝑡-test for independent means 
defines degrees of freedom as follows (Carlberg, 2011): 

 
2

11

21

21

−+=
−+−=

nn
nndf

. (12) 

This allows the computed 𝑡-score to be referenced as 𝑡(𝑑𝑓). 
 
The following example illustrates applying a 𝑡-test to data obtained from two groups 
(Salkind, 2008). 

A programme has been designed to help Alzheimer’s patients remember the order 
of daily tasks. Group 1 was taught using visuals while group 2 was taught using 
visuals and intense verbal rehearsal. The data below counts the number of words 
remembered by each group. 

7 5 5 3 4 7 5 3 4 4 2
3 6 1 2 10 9 4 5 2 5 4
3 10 2 8 5 5 5 4 6 7 6
8 1 2 5 1 12 8 7 8 8 7
8 4 15 5 3 4 9 5 7 8 6

Group 1 Group 2

 
 
Here, 𝑋1 = 5.43, 𝑋2 = 5.53, 𝑠1 = 3.42, 𝑠2 = 2.06, 𝑛1 = 30 and n2 = 30. The null and research 
hypotheses are as follows: 

𝐇0: 𝜇1 = 𝜇2 

 
𝐇1: 𝑋1 ≠ 𝑋2 

 
𝐇1 is in the form of a two-tailed non-directional research hypothesis. The level of 𝛼 
(measuring accepted risk / Type 1 error / level of significance) is chosen to be 0.05. Here, 
the appropriate test is a 𝑡-test for independent means rather than one for dependent means 
because the groups are independent of one another while degrees of freedom 𝑑𝑓 = 30 +
30 − 2 = 58: 
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For this problem, there is a requirement to identify the critical value where 𝑑𝑓 = 58 and 
𝛼 = 0.05 for a two-tailed 𝑡-test. Unfortunately, the standard tables for 𝑡-values do not give 
values for 𝑑𝑓 = 58, only 𝑑𝑓 = 55 or 60. Salkind (2008) suggests choosing a degrees of 
freedom closest to that desired, in this case being 𝑑𝑓 = 60. For this example, the obtained 
value to reject the null hypothesis needs to be equal or exceed 𝑡crit = 2.001. The obtained 
value of – 0.18 is less than 2.001 so the null hypothesis cannot be rejected. That is, the null 
hypothesis is the most attractive explanation. 
 
 
4.4 Paired 𝒕-Test 

Also referred to as the repeated measures 𝑡-test, the paired 𝑡-test is used when data has 
been collected from a single group of participants who are tested twice: before and after a 
treatment. While similar to the standard 𝑡-test, the availability of pre and post intervention 
data for each subject allows the two sets of results to be aggregated by subtracting one 
from the other. Here, the null hypothesis is demonstrated by showing that both sets of 
results come from the same population: 𝜇post = 𝜇pre while assuming that 𝜎post = 𝜎pre. As 
with the standard 𝑡-test, assumptions for the paired 𝑡-test include: 

1. the two populations compared should both be Normally8 distributed 

2. the two populations should have the same variance. 
 
The test statistic for the paired 𝑡-test is (Salkind, 2008): 

  (13) 
where: 

∑𝐷: Sum of all differences between groups of scores 

∑𝐷2: Sum of all differences squared between groups of scores 

𝑛: Numbers of pairs of observations 
 

                                                      
8 Tested using the Kolmogorov-Smirnov or Shapiro-Wilk test. 
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As with the standard 𝑡-test, the paired 𝑡-test is also referred to by degrees of freedom 𝑡(𝑑𝑓) 
although 𝑛 in the following is referring to the pairs of observations (Carlberg, 2011): 

 1−= ndf  (14) 

allowing the computed 𝑡-score to be referenced as 𝑡(𝑑𝑓). When the obtained value from 
Equation 13 is greater than the critical value obtained from a standard 𝑡-table, the null 
hypothesis can be rejected. The critical value is obtained from the cut-off for a 𝑡-statistic 
corresponding to a 𝑑𝑓 value for some chosen level of significance 𝛼 using a one or two-
tailed test. 
 
The following example from Salkind (2008) demonstrates hypothesis testing using a 
paired 𝑡-test: 

Twenty-five participants were each tested before and after a treatment with the 
scores given in the table below. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pre 3 5 4 6 5 5 4 5 3 6 7 8 7 6 7 8 8 9 9 8 7 7 6 7 8
Post 7 8 6 7 8 9 6 6 7 8 8 7 9 10 9 9 8 8 4 4 5 6 9 8 12

Participant

 
 
The null and research hypotheses are as follows: 

𝐇0: 𝜇post = 𝜇pre 

𝐇1: 𝑋post > 𝑋pre 
 
as a one-tailed, directional research hypothesis. For this experiment, the level of 
significance or risk is chosen to be 𝛼 = 0.05 for a paired 𝑡-test. Testing the null hypothesis 
here is equivalent to testing whether 𝜇post − 𝜇𝑝𝑟𝑒 = 0. 
 
The difference and squared difference values between the two sets of scores are given 
below: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pre 3 5 4 6 5 5 4 5 3 6 7 8 7 6 7 8 8 9 9 8 7 7 6 7 8
Post 7 8 6 7 8 9 6 6 7 8 8 7 9 10 9 9 8 8 4 4 5 6 9 8 12
Diff 4 3 2 1 3 4 2 1 4 2 1 -1 2 4 2 1 0 -1 -5 -4 -2 -1 3 1 4
Diff2 16 9 4 1 9 16 4 1 16 4 1 1 4 16 4 1 0 1 25 16 4 1 9 1 16

Participant

 
 
Here, ∑𝐷 = 30, ∑𝐷2 = 180, 𝑛 = 25. Applying the 𝑡-test given in Equation 13 gives the 
following result: 
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The critical value for the 𝑡-test for a one-tailed test, 𝑑𝑓 = 25– 1 = 24 and 𝛼 = 0.05 is 1.711 
using a standard 𝑡-table. Here, the null hypothesis can be rejected since the obtained value 
𝑡(24) = 2.45 is greater than the critical value 1.711. That is, the result is extreme enough 
according to our level of accepted risk that the difference between the pre and post-
treatment results occurred not by chance but was due to the treatment. 
 
 
4.5 ANOVA 

Previously, we examined the two-sample 𝑡-test used to compare two population means 𝜇1 
and 𝜇2. Analysis of Variance (ANOVA) is a hypothesis testing technique testing the 
equality of two or more population means. Often known as one-way ANOVA for 
comparing the means of more than two groups or levels of an independent variable, the 
analysis involves comparing the variances of samples taken due to differences between 
individuals within groups and between groups (Salkind, 2008). The same assumptions for 
the 𝑡-test apply to ANOVA and include (Smith, 1993): 

1. normally distributed data 

2. independent samples taken from each of the treatments 

3. the population standard deviation σ is common to each treatment. 
 
ANOVA generalises the standard 𝑡-test to enable comparisons of 𝑘 > 2 population means. 
As a result, the null hypothesis becomes (Smith, 1993), 

𝐇0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 

 
against an alternative hypothesis that at least two of the population means differ. Central 
to a 𝑘 > 2 comparison of means is the following total sum of squares (SStotal): 
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Here, 𝑋•• denotes the grand mean of all samples, 𝑖 references a particular observation 
given by 𝑋𝑖𝑗 in treatment 𝑗 while 𝑛𝑗 gives the total number of observations in treatment 𝑗. 
Adding and subtracting 𝑋𝑗 does not affect the final sum but allows SStotal to expand to9, 
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9 K. McIntyre (2005) Notes on ANOVA, http://ww2.mcdaniel.edu/Bus_Econ/mcintyre/ANOVA.PDF, 
accessed April 2013 

http://ww2.mcdaniel.edu/Bus_Econ/mcintyre/ANOVA.PDF
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The middle term here can be crossed off because deviations from the mean always sum to 
zero. Since the third term makes no references to 𝑋𝑖𝑗, SStotal can be written as follows 
(Smith, 1993), 

 
( ) ( )

treatmentsresiduals

1 1

2

1

2
total

SSSS

SS

+=

−+−= ∑ ∑∑
= =

••
=

k

j

k

j
jj

n

i
jij XXnXX

j

. (17) 

If 𝑠𝑗 gives the sample standard deviation of the 𝑗th sample, then SSresiduals can be expressed 
as, 
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SStreatments measures the differences between groups while SSresiduals captures the differences 
between individuals within groups. The following provide two choices of two unbiased 
mean square estimators of 𝜎2: 
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=  (20) 

where, 

 1treatments −= kdf  (21) 

and 

 
residuals

residuals
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SS
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df
=  (22) 

where, 

 kndf −=residuals . (23) 

where n gives the total number of measures, 
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The total degrees of freedom, 

 1total −= ndf  (25) 

An F-test is used to check whether the variance between treatments is the same as the 
variance between individuals within treatments are equal. Using ANOVA, 
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The 𝐹-value indicates how far the data doesn’t support the null hypothesis as a deviation 
from 𝐹 = 1. A large value of 𝐹 implies that the effect of the treatment is relevant because 
the variability between samples is much larger than the variability within each sample. 
The critical value for the 𝐹-test can be found from an 𝐹-table and requires knowing the 
Type 1 error rate 𝛼, 𝑑𝑓treatments and 𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠. The null hypothesis is rejected when the 
obtained 𝐹-value is larger than the critical value 𝐹crit. The computed values are then 
summarised in an ANOVA table: 

Table 6: Composition of a one-way ANOVA table 

Source
Degrees of 
Freedom

Sums of 
Squares

Mean 
Squares F F crit

Treatments 
(between) df treatments SStreatments MStreatments MStreatments / MSresiduals F crit

Residuals 
(within) df residuals SSresiduals MSresiduals

Total df total SStotal  

The following example from Smith (1993) illustrates applying the one-way ANOVA to 
support hypothesis testing: 

Samples of 25 kg packs of PVC powder were selected from 5 batches coming off an 
assembly line. The discrepancy between the label weight and its weighed value 
was noted in units of × 10−2 kg. It is assumed that the 5 samples were 
independent, normally distributed with a common variance. The recorded data is 
as follows: 

Table 7: Measurements from batch example. 

1 2 3 4 5
1 0 6 7 -25 1
2 -15 -28 -13 -45 10
3 8 5 -13 17 -45
4 36 5 -40 1 -15
5 7 -19 15 -14 -3
6 27 -10 -15 1 -28
7 10 25 17 -5 30
8 15 -14 -38 -50 11
9 15 10 -5 10 -5
10 24 0 -2 -35 -50
11 29 15 -37 10 9

14.18 -0.45 -11.27 -12.27 -7.73
-3.51 -3.51 -3.51 -3.51 -3.51
17.69 3.05 -7.76 -8.76 -4.22
14.55 15.73 20.42 23.30 24.73

Mj  - GM:
SDj :

Batch (j  ∈ [1, k ]) … (Treatments)

i 
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, n
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 (M
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The terms referred to as 𝑀𝑗 are the means calculated over a single sample, 
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such that for example, 
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The grand mean (𝐺𝑀) is given by, 
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The standard deviation referred to in the table as 𝑆𝐷𝑗 are calculated over a single sample, 
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The ANOVA table for this example is, 

Table 8: ANOVA table for batch example. 

Source
Degrees of 
Freedom

Sums of 
Squares

Mean 
Squares F F crit

Treatments 
(between) 4 5248.84 1312.21 3.23 2.56
Residuals 

(within) 50 20306.91 406.14

Total 54 25555.75  

SStreatments and SSresiduals are computed as follows, 
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and 
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SStotal is therefore, 
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The degrees of freedom are calculated as follows, 

4
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with mean squares, 
 

21.312,1
4

84.248,5

SS
MS

treatments

treatments
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=

=

=
df

 

14.406
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91.306,20
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=

=

=
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The obtained value for the 𝐹-value is, 

 

23.3
14.406
21.312,1

MS
MS

residuals

streatement

=

=

=F

 

𝐹crit for Type 1 error of 𝛼 = 0.05, 𝑑𝑓treatments = 4 and 𝑑𝑓residuals = 50 is 2.56. 
 
Since the obtained value of 3.23 is larger than the critical value of 2.56, then the evidence 
supports rejecting the null hypothesis – at least two of the batches are significantly 
different. The box plot in Figure 6 shows the quartiles of each sample with the whiskers 
representing the smallest and largest values observed (Coakes and Ong, 2011). The 
diagram shows that batch 1 is the likely cause of the rejection of 𝐇0. 
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Figure 6: Box and whisker plot of the batch data produced with SPSS. 

A closer look at Figure 6 shows that batch 2 is highly skewed and requires a further 
assessment of normality. With 𝑛2 = 11 (less than 100) a test involving the Kolmogorov-
Smirnov and Shapiro-Wilk statistics is used to confirm this requirement (Coakes and Ong, 
2011). Employing SPSS produces significance values of 0.2 and 0.896 respectively, both 
exceeding 0.05 and thus confirming the assumption of normality. 
 
 
4.6 Two-Way ANOVA 

Section 4.5 detailed the one-way ANOVA for observations of a single dependent variable 
influenced by a single independent variable (the treatment). Cases involving multiple 
independent variables affecting a single dependent variable involve factorial analysis of 
variance (factorial ANOVA). The two-way ANOVA is the simplest kind of factorial 
ANOVA and is used when there are two independent variables (Salkind, 2008). The two 
independent variables typically comprise of a factor and treatment producing an outcome 
measured by the dependent variable. A two-way ANOVA firstly applies a one-way 
ANOVA on the independent variables, followed by an analysis of whether both factors 
together affect the outcome. The total sum of squares for a two-way ANOVA with 
independent variables 𝐴 and 𝐵 is (Moore and McCabe, 2003, Sparks, 2011), 
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Here, we have avoided labelling 𝐴 and 𝐵 as treatments because often just one variable is a 
treatment while the other represents a factor. Consider factors 𝐴 and 𝐵 as having 𝑎 and 
𝑏 levels respectively, and 𝑛𝑖𝑗 observations for 𝑖 ∈ [1, 𝑎] and 𝑗 ∈ [1, 𝑏]. The total number of 
observations is therefore, 
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SS𝐴, SS𝐵 and SS𝐴𝐵 and SS𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 in Table 9 are computed as by ignoring the unfocussed 
variable and performing a one-way ANOVA on the data on 𝐴 and 𝐵 respectively as 
follows 

 ( )∑∑∑
= = =

••••• −=
a

i

b

j

n

k
iA

ij

XX
1 1 1

2SS , (29) 

 ( )∑∑∑
= = =

••••• −=
a

i

b

j

n

k
jB

ij

XX
1 1 1

2SS , (30) 

 ( )∑∑∑
= = =

•••••••• −−−=
a

i

b

j

n

k
jiijAB

ij

XXXX
1 1 1

2SS  (31) 
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where 𝑠𝑖𝑗 denotes the standard deviation within group 𝑖, 𝑗. 

Table 9: Composition of a two-way ANOVA table 

Source Degrees of Freedom
Sums of 
Squares Mean Squares F F crit

Factor A 
(between) df A  = a  - 1 SSA MSA  = SSA  / df A MSA  / MSresiduals F crit,A

Factor B 
(between) df B  = b  - 1 SSB MSB  = SSB  / df B MSB  / MSresiduals F crit,B

Factor AB 
(between) df AB  = (a  - 1)(b  - 1) SSAB MSAB  = SSAB  / dfAB MSAB  / MSresiduals F crit,AB

Residuals 
(within) df residuals = n  - ab SSresiduals MSresiduals =  SSresiduals / df residuals

Total df total = n  - 1 SStotal  

To simplify the calculations, the statistics package SPSS has been used to work through the 
following two-way ANOVA example from Salkind (2008). 
 
A study involves studying the impact of gender and exercise program (two independent 
variables) on weight loss (the dependent variable). The experimental design is as follows: 

High Impact Low Impact

Male

Female

Exercise Program

G
en

de
r
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The data collected from the experiment is as follows: 
Treatment:

Gender: Male Female Male Female
76 65 88 65
78 90 76 67
76 65 76 67
76 90 76 87
76 65 56 78
74 90 76 56
74 90 76 54
76 79 98 56
76 70 88 54
55 90 78 56

High Impact Low Impact

 
A two-way ANOVA produces three null hypotheses. The first assesses the impact of the 
exercise program on the outcome of weight loss, 

𝐇0: 𝜇high = 𝜇low 

𝐇1: 𝑋high ≠ 𝑋low. 

The second assesses whether gender has an impact on weight loss, 

𝐇0: 𝜇male = 𝜇female 

𝐇1: 𝑋male ≠ 𝑋female. 

The third hypothesis assesses whether there’s an interaction effect of exercise program and 
gender on treatment on weight loss, 

𝐇0: 𝜇high,male = 𝜇high,female = 𝜇low,male = 𝜇low,female 

𝐇1: 𝑋high,male ≠ 𝑋high,female ≠ 𝑋low,male ≠ 𝑋low,female. 

The application of SPSS on the data produces the output  
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Table 10: Applying a two-way ANOVA in SPSS on the data. 

 

The first hypothesis is tested as though the data excludes gender information and a one-
way ANOVA performed on the treatment of exercise program. From Table 10, SPSS 
returns a 𝑝-value of 0.704 (under the Sig. column) which is larger than 𝛼 = 0.05, meaning 
we fail to reject the null hypothesis. That is, the choice of exercise program (either high or 
low impact) by itself has no effect on weight loss. 
 
The second hypothesis is tested on the data while ignoring treatment information by 
performing a one-way ANOVA on gender. The analysis results in a 𝑝-value of 0.734 for 
gender being larger than 𝛼 = 0.05, meaning we fail to reject the null hypothesis. We 
conclude that gender (being either male or female) in isolation has no effect on weight loss. 
 
The third hypothesis is tested by considering whether both independent variables of 
gender and exercise program have an effect on weight loss. The 𝑝-value of 0.004 under the 
final column of the row indicated by Treatment * Gender is less than 𝛼 = 0.05, thus 
indicating that both factors affect the outcome. In other words, an interaction exists 
between the explanatory variables (Seltman, 2013) and we conclude that the effect of 
changes in the exercise program depends on the gender (the other factor). 
 
 
4.7 MANOVA 

Multivariate analysis of variance (MANOVA) extends ANOVA by enabling the analysis of 
multiple dependent variables (DVs). Remember that ANOVA tests for the truth of the null 
hypothesis that the means of 𝑘 treatments are equal: 

 kµµµ === 210 :H . (33) 
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MANOVA tests for the truth of the null hypothesis that 𝑘 treatments with a 𝑝-dimensional 
vector of population means are equal (Bray and Maxwell, 1985): 
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allowing relationships between DVs to be assessed. Whereas ANOVA only uses the 𝐹-test 
to form a test statistic, MANOVA uses several including: 

• Wilks’ lambda 

• Pillai-Bartlett trace 

• Roy’s greatest characteristic root 

• Hotelling-Lawley trace. 
 
These statistics are derived from the full and reduced models of errors associated with the 
data 𝑋𝑖𝑗 for trial 𝑖 in treatment 𝑗. For the full model, the individual error estimate is given 
by, 

 ( ) jijij XX −=Fε̂  (35) 

and is applied to each DV. The sum of squared errors given by, 
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is also referred to as the sum of squares within treatments SSresiduals. Similarly for the 
reduced model, the individual error estimate given by, 

 ( ) •−= XXijij Rε̂  (37) 

is also applied to each DV. The sum of squared errors given by, 
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is also called the total sum of squares, SStotal. The sum of squares between treatments, 

 ( )2
residualstotaltreatments SSSSSS

•−=

−=

XXn jj

 (39) 

where 𝑛𝑗 represents the number of trials in treatment 𝑗. 



UNCLASSIFIED 
DSTO-TN-1291 

UNCLASSIFIED 
29 

For simplicity, the remainder of this section will focus on the two DV based MANOVA. 
Table 11 illustrates computing the errors for full and reduced models for such a problem. 
For simplicity, errors associated with DV1 are labelled under 𝑒1 and those related to DV2 
labelled under 𝑒2 for both models. 
 

Table 11: Errors for Full and Reduced Models for two-way MANOVA data 

Treatment Trial e 1 e 2 (e 1)
2 (e 2)

2 e 1e 2 e 1 e 2 (e 1)
2 (e 2)

2 e 1e 2

1
…
i

Sum:

1
…
i

Sum:

1
…
i

Sum:

Grand Sum:

Full Model Reduced Model

1

j

…

111 DVfor XX i −

211 DVfor XX i −

2DVfor jij XX −

1DVfor jij XX − 1DVfor •− XX ij

2DVfor •− XX ij

21 DVfor •− XX i

11 DVfor •− XX i

 

The 𝐹-test is the basis of the univariate test of significance, comparing ∑ ∑ 𝑒12(F)𝑖𝑗  against 
∑ ∑ 𝑒12(R)𝑖𝑗  for DV1 and separately for all other DVs. MANOVA also considers the 
relationship between DVs by also comparing ∑ ∑ 𝑒1𝑒2(F)𝑖𝑗  against ∑ ∑ 𝑒1𝑒2(R)𝑖𝑗 . These 
sums of cross-products is closely related to the correlation between the two variables 
where, 
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and 
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The inclusion of cross product terms for MANOVA results in the following error matrix 
for the full model, 
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and the following error matrix for the reduced model, 
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The hypothesis sum of squares and cross-product matrix is given by, 𝐇 = 𝐓− 𝐄. The four 
multivariate test statistics for MANOVA referred to above are all based on eigenvalues 𝜆𝑖 
of 𝐇𝐄−1 where 𝑖 = 1, … , 𝑠. The test statistic for Wilks’ lambda is,  

 ∏
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The formula for the Pillai-Bartlett trace is given by, 

 ∑
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while the test statistic for Roy’s greatest characteristic root is, 
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The formula for the Hotelling-Lawley trace is, 

 ∑
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Determining whether the null hypothesis should be rejected requires comparing the 
observed value of the test statistic to the sampling distribution of the statistic under the 
null hypothesis. This requires a transformation of each test statistic to a variable 
approximating the 𝐹-distribution with the intention of deriving a 𝑝-value. As SPSS 
produces the desired outputs automatically, we won’t be detailing the calculations. 
However, Bray and Maxwell (1985) summarise the transformations from the 𝑈 and 
𝑉-statistics to those approximating an 𝐹-variable for those interested in the calculations. 
The resulting 𝑝-values are compared to the chosen significance level 𝛼 for accepting or 
rejecting the null hypothesis. 
 
 
4.8 Mann-Whitney 𝑼-Test / Wilcoxson Signed-Rank Test 

The Mann-Whitney 𝑈-test is considered the non-parametric equivalent of the independent 
samples 𝑡-Test and can be performed on ordinal (ranked) data. The Mann-Whitney 𝑈-test 
is well suited to Likert item data as it cannot be presumed that the underlying population 
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fits a normal distribution and the Mann-Whitney 𝑈-test is included in most modern 
statistical packages. The analysis of individual Likert items will be in terms of determining 
if there is a statistical difference in responses between the two treatments.  
 
Although the Mann-Whitney test does not require normally distributed data it does 
require that the data from each population must be an independent random sample, and 
the population distributions must have equal variances and the same shape. Equal 
variance can be tested through the application of a non-parametric version of the Levine’s 
test for homogeneity of variance. This test can also be used to support required 
assumption that the two samples come from the same distribution shape. In addition, a 
visual inspection of the probability plot may help in determining if the distributions look 
similar. 
 
Testing the Likert item results consist of creating a null and alternative hypothesis. The 
null hypothesis, H0 is: The samples come from the same distribution, or there is no 
difference in ranks between the treatments. The alternative hypothesis, H1 is: The samples 
come from different distribution, or there is a significant difference, typically 𝛼 = 0.05. 
The Mann Whitney 𝑈-statistic is defined as10: 
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where 𝑅𝑖 are the rank values. 
The 𝑈-test can be calculated by hand for small data sets. The calculation procedure is 
conducted as described below: 

1. Rank the results, where there is a tie use the average value. 

2. Add up the ranks for the observations which came from sample 1 (𝑅1) and use 
the expression bellow to calculate 𝑈1: 

 
( )

1
11

211 2
1 RNNNNU −

+
+=  (49) 

For sample size 𝑁1 and sum of ranks 𝑅1 in sample 1. 

3. Use the expression below to calculate 𝑈2, 

 1212 UNNU −=  (50) 

Use the smaller value of 𝑈1 and 𝑈2 when consulting significance tables. Note: The Mann-
Whitney 𝑈-statistic follows a 𝑍-distribution when the sample size is greater than 20. For 
values less than 20 refer to the Mann-Whitney Critical Value table. 
 

                                                      
10 Stats Direct, Mann Whitney U-Test, 
www.statsdirect.com/webhelp/#nonparametric_methods/mann_whitney.htm, accessed April 2014 

http://www.statsdirect.com/webhelp/#nonparametric_methods/mann_whitney.htm
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5. Summary 

A hypothesis has to be capable of being tested by an experiment. Well-designed 
experiments provide a systematic approach to observe relations among variables while 
ruling out alternative explanations. This report has examined a number of experimental 
designs including the simple experiment, matched-pairs, repeated-measures and the 
single group design. While uncontrolled experiments such as those conducted in the field 
do not mitigate all confounding factors, they provide external-validity to support the 
results from controlled experiments. 
 
A difficulty with human-in-the-loop experiments is the requirement to gauge behaviours, 
characteristics, attitudes and opinions. An approach to generate quantitative data from 
such responses is to use Likert scales. Once collected, the data can be analysed using 
descriptive statistics or compared using a number of approaches to visualise results. These 
approaches reveal differences between the specific groups but to generalise the results to a 
larger population requires inferential statistics. 
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Science is derived from the Latin term scientia, which means “knowledge”. Accordingly, scientific method literally means the “method that searches after knowledge.” Scientific method originated around the 16th century when people found that when data was assembled and examined without bias, some previously undiscovered meaning might be revealed. Traditionally, scientific method seeks to understanding the unknown by (Leedy and Ormrod, 2005):

1. identifying a problem to solve

2. establishing a hypothesis that if confirmed resolves the problem

3. gather data relevant to the hypothesis

4. analysing and interpreting the data to determine whether the hypothesis is supported or not.



Experimentation is a central aspect of scientific method and is the basis for creating new knowledge - determining whether some factor causes an effect.



The Logic of Warfighting Experiments (Kass, 2006) and GUIDEx (Kass et al., 2006) provide quintessential reading for planning military experiments. However, both books have deliberately omitted some aspects of experimental design and statistics. Being from a different background (engineering), the authors have decided to collaborate on this short guide to help identify key topics on experimental design, measurement and analysis.







[bookmark: _Toc387404563][bookmark: _Toc387821902]Experimental Design

An experiment is a scientific procedure used to test a hypothesis, answer a question, or prove a fact. Two common types of experiments are simple experiments and controlled experiments. A simple experiment is a specific type of study to establish a cause-and-effect and often used to determine the effect of a treatment. Experiments can be extremely complex and involve a multitude of variables. In a complex setting, a controlled experiment is considered a better experiment because it is harder for other factors to influence the results, which could lead to an incorrect conclusion.



In order for an experiment to establish cause-and-effect, the experiment must have internal-validity – that is, setting up the conditions that allow a treatment’s effects to be isolated (Mitchell and Jolley, 2010). A simple experiment provides the easiest way to establish a cause-and-effect relationship, but this approach is not always possible or viable due to real world constraints. This section details a range of experimental designs and the requirements for each to establish causality.



[bookmark: _Ref368400876][bookmark: _Toc387404564][bookmark: _Toc387821903]Simple Experiment

The goal of science is to establish and advance knowledge. Experiments provide a systematic procedure for scientists to observe relations among variables while ruling out alternative explanations (Nock et al., 2008). In human-in-the-loop experiments, ideal or simple experiments are those where participants are randomly assigned to either a treatment or control (comparison) group. The idea that some variable has an effect on another is tested in a simple experiment by considering whether measurements from a group given the treatment are statistically different to those from the control group. Examples of simple experiments where participants are randomly assigned into groups include:

· clinical trials testing the effectiveness of a drug where one group is given the treatment and the control group given a placebo,

· tests to establish whether some widget improves performance of  where one group is given the new device and the control group employing the standard technique

or

· experiments to examine whether a process change is more efficient than the existing process where groups are assigned to one method or another.



While random assignment mitigates selection bias as an explanation for differences between treatments (Slavin, 2007), it doesn’t produce identical groups. Results from each group will have statistical variation due to chance (i.e. different group means). Testing for statistical significance determines whether the difference between groups is due to something other than random error. As a rule of thumb, simple experiments should employ at least 30 participants in each condition to minimise error due to differences between participants (Mitchell and Jolley, 2010).



Table 1 summarises the possible outcomes of a statistical significance decision from an experiment. A correct decision is made when the decision from statistical significance testing agrees with the actual state of affairs. A type 1 error occurs when the analysis reports a treatment as having an effect when in fact it does not, that is differences due to chance are mistaken for real differences. In contrast, a type 2 error occurs when a treatment is reported as not having an effect when in reality there is. Under these circumstances, a treatment did have an effect but the study failed to detect it (Mitchell and Jolley, 2010).



[bookmark: _Ref366660563]Table 1: Possible outcomes of statistical significance decisions (Mitchell and Jolley, 2010)





Descriptive statistics are techniques for describing a sample and include measures of central tendency (mean, median and mode), frequency distributions and graphs. Comparisons using this approach on data from two groups reveal differences between those specific groups but the results cannot be generalised to a larger population. Importantly, comparing the group’s performances by comparing means this way to determine the treatment effect neglects to account for random variations due to chance. To account for these variations and for conclusions from the experiment to be applied more generally require techniques from inferential statistics such as the ‑test and ANOVA. These and other techniques are described in Section 4 under Hypothesis Testing.



Results from each group will be spread about some mean value. These variations are termed random errors and may be due to (Mitchell and Jolley, 2010):

· random measurement error

· random differences between testing situations

· random differences between participants

· data entry errors when coding data.



These all contribute to type 2 errors. Ways to mitigate these errors to design powerful experiments include taking greater care in data entry, standardising procedures, using reliable measures, increasing numbers of trials or using a homogeneous group of participants. Another way to reduce type 2 errors is to create a larger treatment effect such as by setting higher doses or increasing difficulty levels.



Also known as false positives, type 1 errors occur when a chance difference is mistakenly considered for a real difference. There is only one way to deal with type 1 errors and that is to decide on the risk of making such an error through significance level, . The concept of statistical significance is most easily understood by an example. Suppose a coin used in coin tossing is being assessed for bias because previous flips revealed a tendency for heads to appear. An experiment to test for bias is conducted by ten flips of the coin with the results compared against the chances for heads to appear in such circumstances for a fair coin. The chances of obtaining ,  or  heads in  tosses from a fair coin is shown in Table 2. As shown scoring ten heads out of ten tosses is not impossible, albeit a very small chance.

[bookmark: _Ref366823766]Table 2: Probability occurring from 10 coin tosses (Mitchell and Jolley, 2010).





The level of significance,  determines the level of risk of making type 1 errors when making a conclusion. For the coin toss example, setting  to  (or ) implies accepting no risk in making type 1 errors, meaning that not even ten heads from ten tosses will be convincing enough to declare a bias coin because the ‑value (chance) of  is larger than . Setting  or  implies considering the coin biased when scoring nine or more heads from ten tosses, but not with eight or more heads. Reducing the risk of making type 1 error increases the probability of type 2 errors because genuine treatment effects (such as actually using a biased coin) are overlooked (Mitchell and Jolley, 2010).



Declaring a statistically significant result implies beyond reasonable doubt that differences observed between groups is due to the treatment and not chance. Here, reasonable doubt is taken to be some value of  that is typically set to  or . For this reason, we often see a declaration that “the results were statistically significant ()” (Mitchell and Jolley, 2010).





[bookmark: _Toc387404565][bookmark: _Toc387821904]Matched-Pairs Design

While a simple experiment provides one of the easiest ways of determining whether a factor causes an effect, practical limitations often prevent participants from being randomly assigned to each group. In some cases, randomly assigning at least  participants from a population to each group poses a significant challenge that prevents use of the simple experiment. A matched-pairs design is an alternative approach combining the best attributes of matching and random assignment that requires fewer participants than with simple experiments (Mitchell and Jolley, 2010).



Whereas a simple experiment attempts to minimise random errors between groups by increasing numbers of participants, a matched-pairs design seeks to do so by creating control and treatment groups with similar attributes. Similar groups are created by measuring participants with respect to a variable correlating with the dependent measure. For example, participants in a memory experiment would be given a memory test that then allows them to be ranked according to their scores. Paring the two highest scores and repeating this step for the remaining ranked participants, then randomly assigning one member of each pair to either the control or treatment group produces the similar groups (Mitchell and Jolley, 2010).





[bookmark: _Toc387404566][bookmark: _Toc387821905]Repeated-Measures Design (Within-Subjects Design)

The ultimate way to eliminate random error due to individual differences is to employ the same group for both treatment and control. In repeated-measures designs, each participant receives all types of treatments administered in the experiment and measured after each type of treatment. A restriction with a between-subjects design such as a matched-pairs design or simple experiment is the limit of one observation per participants. Within-subjects designs however allow getting at least two observations per participant. For example, in a study of women’s ratings of men based on masculinity, Frederick and Haselton had participants performing octuple duty – providing ratings of attractiveness for eight drawings that varied in muscularity (Mitchell and Jolley, 2010). However, a potential risk with a repeated-measures design relates to order (trial) effects due to taking multiple observations from the same participant. That is, in a within-subjects design the treatment may not be the only factor being manipulated due to order effects being a confounding factor. Mitchell and Jolley (2010) identify four sources of order effects:

Practice: learning from earlier treatments improves performance in subsequent trials

Fatigue: performance decreases due to tiredness in subsequent trials

Treatment carryover: effects of earlier treatments carry to responses in latter trials

Sensitisation: participants realise what the independent and dependent variables in latter parts of the experiment and may act to support the hypothesis rather than reacting to the treatment



Randomising the order of trials is one way of balancing out order effects, while giving participants extensive practice before the experiment minimises practice effects. Treatment carryover effects can be reduced by allowing sufficient time for the effects from a previous treatment to wear off. Reducing the demands of a treatment or shortening the duration helps minimise fatigue effects while minimising sensitisation effects might involve preventing participants from noticing the changes between treatments.





[bookmark: _Toc387404567][bookmark: _Toc387821906]Single Group Designs

Whilst some Defence human-in-the-loop experiments employ a single operator such as for evaluating cockpit design or a command support system, command and control (C2) experiments typically involve a unit (group) where it is difficult to allocate a unique team to each trial due to a small pool of participants. For this reason, the same unit receives all treatment conditions in a single group design (Kass et al., 2006). As in repeated-measures designs, order effects are a risk for establishing cause-and-effect in single group designs because latter trials may be positively biased due to learning or memory effects or negatively biased from fatigue. Kass et al. suggest using a counterbalanced design to reduce order effects (see Table 3).



[bookmark: _Ref381172929]Table 3: A counterbalanced experimental design.





If units are presented with identical scenarios for all conditions, the appropriate statistical analysis technique is the paired ‑test or repeated-measures (M)ANOVA (Gueorguieva and Krystal, 2004). Otherwise, if scenarios between conditions are similar but not exactly the same, then the ‑test or (M)ANOVA becomes the appropriate method for analysis.





[bookmark: _Toc387404568][bookmark: _Toc387821907]Exploratory / Uncontrolled Experiments

Defence experiments such as the study of autonomous workgroups in dynamic targeting in Exercise Pitch Black 2008 (Lo et al., 2013) or the CAGE series (Lo et al., 2014) of joint fires activities have been uncontrolled in nature. An uncontrolled experiment does not mitigate confounding factors, thus preventing statements about cause-and-effect from being determined. In CAGE3A (run in 2013), issues included:

1. order effects (memory, fatigue and learning effects)

2. controlled variables were not held constant (IT systems regularly failing)

3. independent variables were not held constant under the same condition (removing players, removing monitors, introducing unplanned systems, changing seating from days 2 or 3 in the To‑Be week)

4. multiple hypotheses being tested in a single experiment.



Ideally, an experiment should only test a single hypothesis. According to Neuman (2006), an experiment is rarely appropriate for research questions that require studying the impact of dozens of diverse variables simultaneously. Rarely do experiments enable assessing conditions across a wide range of complex settings or numerous social groups all at the same time. During CAGE3A, causes from one hypothesis appeared to impact another, meaning that an alternative cause not identified in the hypothesis was responsible for the effect. For this reason, uncontrolled experiments only produce anecdotal evidence supporting or refuting experimental objectives (Lo et al., 2014). However, this is not to say that uncontrolled experiments aren’t important. For example, field experiments as exploratory experiments examining interventions in the real world can provide valuable insights into the sociotechnical system, identify problems to investigate or gain new insights to develop hypotheses. A campaign of controlled and uncontrolled experiments demonstrates internal and external validity for cause-and-effect statements.







[bookmark: _Ref381188511][bookmark: _Toc387404569][bookmark: _Toc387821908]Measuring Data and Descriptive Statistics

Studies of sociotechnical systems invariably involve gauging people’s behaviours, characteristics, attitudes and opinions. Techniques to facilitate the quantification and evaluation of possibly complex behaviours and attitudes include the checklist and the rating scale. A checklist is a list of behaviours or characteristics under investigation that allows the researcher or participant to tick off if observed, present or true or vice-versa. A rating scale is useful when a behaviour, attitude or opinion needs to be evaluated on an interval scale of measurement such as in Table 1. Developed by Rensis Likert, rating scales are sometimes referred as Likert Scales (Leedy and Ormrod, 2005). A Likert scale has the advantage of producing responses as quantitative data reflecting degrees of opinion.

[bookmark: _Ref381183784]Table 4: Likert scales can generate quantitative metrics from a variety of questions[footnoteRef:1] [1:  S. A. McLeod (2008), Likert Scale – Simply Psychology. http://www.simplypyschology.org/likert-scale.html, accessed 4 April 2014] 










[bookmark: _Toc387404570][bookmark: _Toc387821909]Descriptive Statistics

Once collated, performance between specific groups can be compared using descriptive statistics for describing a sample including measures of central tendency (mean, median and mode), frequency distributions and graphs. Measures of variability include dispersion and deviation while a measure of relationship is correlation. However, correlation doesn’t necessarily indicate causation (Leedy and Ormrod, 2005). Results from descriptive statistics cannot be generalised to a larger population. Generalising to a larger population requires inferential statistics as discussed in Section 4.





[bookmark: _Toc387404571][bookmark: _Toc387821910]Visualising Results

An alternative approach to comparing numeric results through descriptive statistics is through visualisation. This section surveys some notable approaches including,

1. Radar / Spider Chart

2. Box and Whisker Plots

3. 100% Stacked Bar

4. comparing estimates of density functions fitted from the data.



Choice of the approach is dependent on the type of input data (naturally qualitative versus those derived from a Likert scale) or the number of dependent variables.



1.1.1 [bookmark: _Toc387404572][bookmark: _Toc387821911][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Radar / Spider Chart

A radar or spider chart such as shown in Figure 1 allows one set of multi-dimensional data to be compared against another (Few, 2005). In a C2 experiment, average performance across a number of variables such as communication, leadership, team workload, shared situation and others may be compared against mean scores after the application of a treatment. Another use of radar charts is in comparing performance over the days for a specific characteristic such as timeliness.

[image: Spider_Chart]

[bookmark: _Ref360520601][bookmark: _Ref360520598]Figure 1: An example radar chart comparing sets of multi-dimensional data[footnoteRef:2] [2:  Wikipedia Radar Chart http://en.wikipedia.org/wiki/Radar_chart, accessed July 2013] 




1.1.2 [bookmark: _Toc387404573][bookmark: _Toc387821912]Box and Whisker Plots

A box and whisker plot aggregates a box plot showing the first, second and third quartile levels with whiskers representing another pair of user-defined large and small values (Mergerdichian et al., 2012). Popular values presented by whiskers include:

· mean value ± one standard deviation,

· maximum / minimum values sampled

· 2nd and 98th percentile.



Box plots provide a quick way to assess statistical differences between samples for a specific measure. Placed side-by-side, a pair of box and whisker plots provide a graphical way to compare statistics of a measure from two or more samples (see example in Figure 2).

[image: 432px-Michelsonmorley-boxplot]

[bookmark: _Ref360526309]Figure 2: Examples of box and whisker plots[footnoteRef:3] [3:  Wikipedia Box Plot http://en.wikipedia.org/wiki/Box_plot, accessed July 2013] 


1.1.3 [bookmark: _Toc387404574][bookmark: _Toc387821913]100% Stacked Bar

A 100% stacked bar enables comparison of distributions within categories. Each row of the graph represents all responses such as from Likert scales for that category. By matching responses across rows according to common ratings (such as Strongly Disagree, Disagree, etc.) a visual comparison can be made across categories (see Figure 3).





[bookmark: _Ref381344438]Figure 3: Example of a 100% stacked bar.



1.1.4 [bookmark: _Toc387404575][bookmark: _Toc387821914]Comparing Distributions

If the form of the distribution is known, the parameters may be evaluated algebraically or in some cases, solved numerically from histograms generated from the set of measurements. For example, solving the parameters for a Normal distribution simply involves evaluating the mean and standard deviation from the sample, while doing so for a Rayleigh distribution requires non-linear optimisation. Standard techniques for the latter include the Gauss-Newton, the Levenberg-Marquardt and Powell’s Dog Leg method (Madsen et al., 2004).

[image: C:\Users\loe\Documents\Experimental Design\Report\Pictures\Fit Rayleigh.png]

Figure 4: Fitting a Rayleigh distribution over a histogram.



Once fitted, the resulting distributions may be compared side-by-side as shown in Figure 5.

[image: C:\Users\loe\Documents\Experimental Design\Report\Pictures\Normal Curves.png]

[bookmark: _Ref381351438]Figure 5: Comparing two example Normal distributions[footnoteRef:4]. [4:  http://www.researchgate.net/post/..., accessed July 2013] 




The Kolmogorov-Smirnov test evaluates numerically the difference between two samples (e.g.,  and ) (Sheskin, 2004) or a sample and its reference distribution (e.g., ) (Papoulis and Pillai, 2002). The distance is the maximum vertical distance between two cumulative distribution functions given by:



or



respectively.







[bookmark: _Ref366739032][bookmark: _Ref381259254][bookmark: _Toc387404576][bookmark: _Toc387821915]Hypothesis Testing and Inferential Statistics

An experiment is a test under controlled conditions to investigate the validity of a hypothesis. A hypothesis gives a reasonable or educated guess to explain a phenomenon under investigation (Leedy and Ormrod, 2005, Salkind, 2008). According to the Collins Dictionary the term is derived from the Greek word hupotithenai, meaning to propose, suppose or put under. Proving a hypothesis is unfeasible because doing so would involve testing the entire population for validity (Salkind, 2008). Instead, hypothesis or significance testing involves experimenting on a sample and determining whether the results provide sufficient evidence to support the hypothesis. A well designed experiment seeks to mitigate sampling bias by ensuring samples approximate the characteristics of the population.



A variable in an experiment is any factor that can be introduced, changed, measured or controlled. Independent variables are factors that change in an experiment and are associated to the cause(s). Dependent variables relate to the effect(s) and are measured in an experiment. Controlled variables must be held constant throughout all treatments in an experiment. Allowing controlled variables to change causes them to become independent variables (Slavin, 2007). Confounding variables are additional, unaccounted for variables in an experiment. These confounding factors threaten the validity of conclusions made from an experiment because the treatment isn’t the sole factor accounting for observed effects (Leedy and Ormrod, 2005).



A good hypothesis captures a problem statement or research question in a form that is more amenable to testing. Hypothesis testing involves studying the extent to which the independent variable (the cause or treatment) influences the dependent variable (the effect) (Leedy and Ormrod, 2005). The research or alternative hypothesis is a definitive statement of a relationship between variables. Here, the term variable refers to any quality or characteristic being investigated that has two or more possible values. The null hypothesis states the converse of the research hypothesis, that is no relationship exists between the variables (Salkind, 2008).



Descriptive statistics as described in Section 3 are techniques for describing a sample and include measures of central tendency (mean, median and mode), frequency distributions and graphs. While comparisons using this approach on data from two groups reveal differences between those specific groups, the results cannot be generalised to a larger population. Simply comparing means to determine treatment effects neglects to account for random variations due to chance. To account for these variations and for conclusions to be applied more generally require techniques from inferential statistics such as the ‑test, ‑test, paired ‑test, ANOVA and MANOVA described in this section. Non-parametric approaches include the Mann-Whitney or Wilcoxon signed-rank test.



Hypothesis testing determines whether the experimental evidence provides statistical support for the null hypothesis or its alternative by computing a ‑value that gives the probability that the null hypothesis is wrong. Typically, the ‑value is compared against a significance level of  that requires the availability of moderate evidence for rejecting the null hypothesis in favour of the alternative (see Table 5).

[bookmark: _Ref360718355]Table 5: Interpreting ‑values when conducting hypothesis testing.





The value of  establishes the level of reasonable doubt, that is wrongly rejecting the null hypothesis when it is true. The confidence interval is evaluated by . Setting  implies never rejecting the null hypothesis.





[bookmark: _Toc387404577][bookmark: _Toc387821916]Central Limit Theorem

Evidence to support or refute the null hypothesis is gathered by conducting multiple trials to assess the outcomes. We can represent the set of  outcomes as random variables . That is, each trial is a random process that generates results according to some distribution, i.e. normal, bimodal, uniform, exponential… The term, sample is frequently overused in statistics and can either mean the outcome of a single trial or a set of  outcomes. In hypothesis testing, the term typically refers to the latter, with  being summarised by its mean value, .



One of the fundamental theorems in probability is the Central Limit Theorem (CLT) relating the distribution generating each trial outcome to the sampling distribution, . It states that if  is the mean of  mutually independent random variables taken from any population with mean  and standard deviation , then the probability distribution of:

	[image: ]	(1)

tends to the standard normal probability distribution[footnoteRef:5]  as  (Smith, 1993). Similarly, the distribution of  tends to  as . The effect can be illustrated using convolution because if  and  are independent random variables with density functions  and  defined for all  and , then the sum  is a random variable with density (Grinstead and Snell, 1997, Papoulis and Pillai, 2002): [5:  S. Khan (2011) Central Limit Theorem, http://www.khanacademy.org/math/probability/statistics-inferential/sampling_distribution, accessed April 2014] 


	[image: ]	(2)

where convolution is defined as (Liu and Liu, 1975),



	.	(3)

Since



	,	(4)

then



	.	(5)

For example, consider a stochastic process with a uniform distribution. The sampling distribution for  is a triangular distribution that can be generated by scaling the uniform distribution by a factor of  followed by convolving the resulting scaled distribution with itself. For any original distribution, as  increases, the sampling distribution increasingly resembles a normal distribution and is the basis for the CLT.





[bookmark: _Toc387404578][bookmark: _Toc387821917][bookmark: OLE_LINK3][bookmark: OLE_LINK4]-Statistic

In some situations, the population’s statistical properties are known so the experiment only involves testing the experimental group and assessing the probability (the ‑value) that the results come from the population with known statistical properties. For example, body mass, height and intelligence quotient (IQ) scores have known population means and variances, enabling hypothesis testing using a single sample statistic. A significance test using the ‑statistic is useful for large values of  because the following statistic takes on a normal distribution:



	.	(6)

Here,  gives the sample mean,  gives the mean of the sampling distribution and  the standard deviation of the sampling distribution. Although the mean and standard deviation of the sampling distribution is often unknown, if we assume the null hypothesis that the sample was taken from the population, then  and  where  and  gives the mean and standard deviation of the population respectively. This allows the ‑statistic to take on the following form:



	.	(7)

According to the CLT, when the sample size is large (), samples from  will appear normally distributed for arbitrary population distributions. However, when the population distribution appears normal, even when  is unknown it is possible when  or  (Carlberg, 2011) to still use the ‑statistic by assigning , the standard deviation of the sample means, for:



	.	(8)

Most natural populations have a particular mathematical form that is termed normally distributed (Salkind, 2008).



The following example by Conley and Pollard[footnoteRef:6] is used to illustrate hypothesis testing using ‑statistics: [6:  D. Conley and D. Pollard (1998) Hypothesis Testing, Confidence Intervals, and Power, http://www.yale.edu/soc119a/lecture7.htm, accessed April 2013] 


Suppose we are interested in the following research hypothesis:

:	The IQs of Yale students are higher than the general population.

After taking a random sample of  students and measuring their IQs, we find that their mean score is . Population IQ scores has a mean of  and a standard deviation of .



The first step involves assuming that the sample was taken from the general population; that is evaluating the probability of sampling  students whose mean IQ score is , comes from the general population. Leveraging off the CLT enables the standard deviation of the sample means for such a sample size to be computed:







This can then be used to work out a ‑score to evaluate how many standard deviations the result is from the mean:







That is, when sampling  students whose average IQ score equals  is  standard deviations away from the expected mean of  (from the CLT). Considering that we are dealing with a one-tailed test, our focus is in the area to left of the ‑score which in our case is  (), in other words the sample score is higher than  of all other samples comprising of  students. The corresponding ‑value is  which is  chances out of  chances that this would occur if we assume that there is nothing special about the group.



In statistics, it is customary to use a significance level of  corresponding to moderate evidence supporting the null hypothesis. This level of  implies a willingness to be wrong once out of  times. For the example, for , we are confident in rejecting the null hypothesis because the ‑value of . In fact, strong evidence is available to support the alternative hypothesis.





[bookmark: _Toc387404579][bookmark: _Toc387821918]Standard ‑Test

Without understanding the population statistics (its mean and standard deviation), the experiment needs to be conducted on a control group without the treatment applied. The standard -test is used to compare the means from exactly two groups and is the appropriate statistical test for such a case. It detects whether a statistical difference exists between the two group’s results through a -value expressing the probability that the null hypothesis is wrong. Assumptions for using the standard ‑test include:

1. the two populations compared should both be Normally[footnoteRef:7] distributed [7:  Tested using the Kolmogorov-Smirnov or Shapiro-Wilk test.] 


2. the two populations should have the same variance.



Whereas the ‑statistic takes on a normal distribution for large sample sizes, it is not the case for smaller . That is, for smaller ,  is not closely approximated by  and the resulting statistic takes on a -distribution:



	.	(9)

The shape of the ‑distribution depends on : flatter for smaller values of  and taking the shape of the Normal distribution as the sample size increases (Carlberg, 2011). Its pdf is defined as follows (Papoulis and Pillai, 2002):



	.	(10)

Here, the mean  and standard deviation is  for .

After computing the ‑statistic, the value is compared against a threshold from a ‑test table giving the ‑value required to reject the null hypothesis.



Population statistics are not always available, so a separate control group is used to estimate the population statistics. The ‑statistic divides the difference between group means by the variation within and between the two groups (Salkind, 2008):



[bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: _Ref383604496]	.	(11)

Here,

:	Mean for group 1

:	Mean for group 2

:	Number of participants in group 1

:	Number of participants in group 2

:	Variance for group 1

:	Variance for group 2



When the obtained value from Equation 11 is greater than the critical value from a standard ‑table, then the null hypothesis can be rejected. Looking up the critical value  from a ‑table requires knowing the degrees of freedom , the chosen level of significance  and whether a one or two-tailed test is being used. The ‑test for independent means defines degrees of freedom as follows (Carlberg, 2011):



	.	(12)

This allows the computed ‑score to be referenced as .



The following example illustrates applying a ‑test to data obtained from two groups (Salkind, 2008).

A programme has been designed to help Alzheimer’s patients remember the order of daily tasks. Group 1 was taught using visuals while group 2 was taught using visuals and intense verbal rehearsal. The data below counts the number of words remembered by each group.







Here, , , , ,  and n2 = 30. The null and research hypotheses are as follows:

:	



:	



 is in the form of a two-tailed non-directional research hypothesis. The level of  (measuring accepted risk / Type 1 error / level of significance) is chosen to be . Here, the appropriate test is a ‑test for independent means rather than one for dependent means because the groups are independent of one another while degrees of freedom :



	



For this problem, there is a requirement to identify the critical value where  and  for a two-tailed ‑test. Unfortunately, the standard tables for ‑values do not give values for , only  or . Salkind (2008) suggests choosing a degrees of freedom closest to that desired, in this case being . For this example, the obtained value to reject the null hypothesis needs to be equal or exceed . The obtained value of  is less than  so the null hypothesis cannot be rejected. That is, the null hypothesis is the most attractive explanation.





[bookmark: _Toc387404580][bookmark: _Toc387821919]Paired -Test

Also referred to as the repeated measures ‑test, the paired ‑test is used when data has been collected from a single group of participants who are tested twice: before and after a treatment. While similar to the standard -test, the availability of pre and post intervention data for each subject allows the two sets of results to be aggregated by subtracting one from the other. Here, the null hypothesis is demonstrated by showing that both sets of results come from the same population:  while assuming that . As with the standard ‑test, assumptions for the paired ‑test include:

1. the two populations compared should both be Normally[footnoteRef:8] distributed [8:  Tested using the Kolmogorov-Smirnov or Shapiro-Wilk test.] 


2. the two populations should have the same variance.



The test statistic for the paired ‑test is (Salkind, 2008):

[bookmark: _Ref383604660]	[image: ]	(13)

where:

:	Sum of all differences between groups of scores

:	Sum of all differences squared between groups of scores

:	Numbers of pairs of observations



As with the standard ‑test, the paired ‑test is also referred to by degrees of freedom  although  in the following is referring to the pairs of observations (Carlberg, 2011):



[bookmark: _Ref361205949]		(14)

allowing the computed ‑score to be referenced as . When the obtained value from Equation 13 is greater than the critical value obtained from a standard ‑table, the null hypothesis can be rejected. The critical value is obtained from the cut-off for a ‑statistic corresponding to a  value for some chosen level of significance  using a one or two-tailed test.



The following example from Salkind (2008) demonstrates hypothesis testing using a paired ‑test:

Twenty-five participants were each tested before and after a treatment with the scores given in the table below.







The null and research hypotheses are as follows:

:	

:	



as a one-tailed, directional research hypothesis. For this experiment, the level of significance or risk is chosen to be  for a paired -test. Testing the null hypothesis here is equivalent to testing whether .



The difference and squared difference values between the two sets of scores are given below:









Here, , , . Applying the ‑test given in Equation 13 gives the following result:



	

The critical value for the ‑test for a one-tailed test,  and  is  using a standard ‑table. Here, the null hypothesis can be rejected since the obtained value  is greater than the critical value . That is, the result is extreme enough according to our level of accepted risk that the difference between the pre and post-treatment results occurred not by chance but was due to the treatment.





[bookmark: _Ref361992618][bookmark: _Toc387404581][bookmark: _Toc387821920]ANOVA

Previously, we examined the two-sample ‑test used to compare two population means  and . Analysis of Variance (ANOVA) is a hypothesis testing technique testing the equality of two or more population means. Often known as one-way ANOVA for comparing the means of more than two groups or levels of an independent variable, the analysis involves comparing the variances of samples taken due to differences between individuals within groups and between groups (Salkind, 2008). The same assumptions for the ‑test apply to ANOVA and include (Smith, 1993):

1. normally distributed data

2. independent samples taken from each of the treatments

3. the population standard deviation σ is common to each treatment.



ANOVA generalises the standard ‑test to enable comparisons of  population means. As a result, the null hypothesis becomes (Smith, 1993),

:	



against an alternative hypothesis that at least two of the population means differ. Central to a  comparison of means is the following total sum of squares ():



		(15)

Here,  denotes the grand mean of all samples,  references a particular observation given by  in treatment  while  gives the total number of observations in treatment . Adding and subtracting  does not affect the final sum but allows  to expand to[footnoteRef:9], [9:  K. McIntyre (2005) Notes on ANOVA, http://ww2.mcdaniel.edu/Bus_Econ/mcintyre/ANOVA.PDF, accessed April 2013] 




		(16)

The middle term here can be crossed off because deviations from the mean always sum to zero. Since the third term makes no references to ,  can be written as follows (Smith, 1993),



	.	(17)

If  gives the sample standard deviation of the  sample, then  can be expressed as,



		(18)

while



	.	(19)

SStreatments measures the differences between groups while SSresiduals captures the differences between individuals within groups. The following provide two choices of two unbiased mean square estimators of :



		(20)

where,



		(21)

and



		(22)

where,



	.	(23)

where n gives the total number of measures,



		(24)

The total degrees of freedom,



		(25)

An F‑test is used to check whether the variance between treatments is the same as the variance between individuals within treatments are equal. Using ANOVA,



		(26)

The ‑value indicates how far the data doesn’t support the null hypothesis as a deviation from . A large value of  implies that the effect of the treatment is relevant because the variability between samples is much larger than the variability within each sample.

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]The critical value for the ‑test can be found from an ‑table and requires knowing the Type 1 error rate ,  and . The null hypothesis is rejected when the obtained ‑value is larger than the critical value . The computed values are then summarised in an ANOVA table:

[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Table 6: Composition of a one-way ANOVA table





The following example from Smith (1993) illustrates applying the one-way ANOVA to support hypothesis testing:

Samples of  kg packs of PVC powder were selected from  batches coming off an assembly line. The discrepancy between the label weight and its weighed value was noted in units of  kg. It is assumed that the  samples were independent, normally distributed with a common variance. The recorded data is as follows:

Table 7: Measurements from batch example.





The terms referred to as  are the means calculated over a single sample,



	

such that for example,



	.

The grand mean () is given by,



	.

The standard deviation referred to in the table as  are calculated over a single sample,



	

such that for example,



	.

The ANOVA table for this example is,

Table 8: ANOVA table for batch example.





 and  are computed as follows,



	

and



	.

 is therefore,



	

The degrees of freedom are calculated as follows,



UNCLASSIFIED

34

UNCLASSIFIED

33















with mean squares,











.



The obtained value for the ‑value is,



	

 for Type 1 error of ,  and  is .



Since the obtained value of  is larger than the critical value of , then the evidence supports rejecting the null hypothesis – at least two of the batches are significantly different. The box plot in Figure 6 shows the quartiles of each sample with the whiskers representing the smallest and largest values observed (Coakes and Ong, 2011). The diagram shows that batch 1 is the likely cause of the rejection of .

[image: ]

[bookmark: _Ref361924172]Figure 6: Box and whisker plot of the batch data produced with SPSS.

A closer look at Figure 6 shows that batch 2 is highly skewed and requires a further assessment of normality. With  (less than ) a test involving the Kolmogorov-Smirnov and Shapiro-Wilk statistics is used to confirm this requirement (Coakes and Ong, 2011). Employing SPSS produces significance values of  and  respectively, both exceeding  and thus confirming the assumption of normality.





[bookmark: _Toc387404582][bookmark: _Toc387821921]Two-Way ANOVA

Section 4.5 detailed the one-way ANOVA for observations of a single dependent variable influenced by a single independent variable (the treatment). Cases involving multiple independent variables affecting a single dependent variable involve factorial analysis of variance (factorial ANOVA). The two-way ANOVA is the simplest kind of factorial ANOVA and is used when there are two independent variables (Salkind, 2008). The two independent variables typically comprise of a factor and treatment producing an outcome measured by the dependent variable. A two-way ANOVA firstly applies a one-way ANOVA on the independent variables, followed by an analysis of whether both factors together affect the outcome. The total sum of squares for a two-way ANOVA with independent variables  and  is (Moore and McCabe, 2003, Sparks, 2011),



[bookmark: OLE_LINK15]	.	(27)

Here, we have avoided labelling  and  as treatments because often just one variable is a treatment while the other represents a factor. Consider factors  and  as having  and  levels respectively, and  observations for  and . The total number of observations is therefore,



	.	(28)

,  and  and  in Table 9 are computed as by ignoring the unfocussed variable and performing a one-way ANOVA on the data on  and  respectively as follows



	,	(29)



	,	(30)



		(31)

and



		(32)

where  denotes the standard deviation within group , .

[bookmark: _Ref362346037]Table 9: Composition of a two-way ANOVA table





To simplify the calculations, the statistics package SPSS has been used to work through the following two-way ANOVA example from Salkind (2008).



A study involves studying the impact of gender and exercise program (two independent variables) on weight loss (the dependent variable). The experimental design is as follows:





The data collected from the experiment is as follows:





A two-way ANOVA produces three null hypotheses. The first assesses the impact of the exercise program on the outcome of weight loss,

:	

:	.

The second assesses whether gender has an impact on weight loss,

:	

:	.

The third hypothesis assesses whether there’s an interaction effect of exercise program and gender on treatment on weight loss,

:	

:	.

The application of SPSS on the data produces the output 

[bookmark: _Ref362334595]Table 10: Applying a two-way ANOVA in SPSS on the data.

[image: ]

The first hypothesis is tested as though the data excludes gender information and a one-way ANOVA performed on the treatment of exercise program. From Table 10, SPSS returns a ‑value of  (under the Sig. column) which is larger than , meaning we fail to reject the null hypothesis. That is, the choice of exercise program (either high or low impact) by itself has no effect on weight loss.



The second hypothesis is tested on the data while ignoring treatment information by performing a one-way ANOVA on gender. The analysis results in a ‑value of  for gender being larger than , meaning we fail to reject the null hypothesis. We conclude that gender (being either male or female) in isolation has no effect on weight loss.



The third hypothesis is tested by considering whether both independent variables of gender and exercise program have an effect on weight loss. The ‑value of  under the final column of the row indicated by Treatment * Gender is less than , thus indicating that both factors affect the outcome. In other words, an interaction exists between the explanatory variables (Seltman, 2013) and we conclude that the effect of changes in the exercise program depends on the gender (the other factor).





[bookmark: _Toc387404583][bookmark: _Toc387821922]MANOVA

Multivariate analysis of variance (MANOVA) extends ANOVA by enabling the analysis of multiple dependent variables (DVs). Remember that ANOVA tests for the truth of the null hypothesis that the means of  treatments are equal:



	.	(33)

MANOVA tests for the truth of the null hypothesis that  treatments with a -dimensional vector of population means are equal (Bray and Maxwell, 1985):



	,	(34)

allowing relationships between DVs to be assessed. Whereas ANOVA only uses the ‑test to form a test statistic, MANOVA uses several including:

· Wilks’ lambda

· Pillai-Bartlett trace

· Roy’s greatest characteristic root

· Hotelling-Lawley trace.



These statistics are derived from the full and reduced models of errors associated with the data  for trial  in treatment . For the full model, the individual error estimate is given by,



		(35)

and is applied to each DV. The sum of squared errors given by,



		(36)

is also referred to as the sum of squares within treatments . Similarly for the reduced model, the individual error estimate given by,



		(37)

is also applied to each DV. The sum of squared errors given by,



		(38)

is also called the total sum of squares, . The sum of squares between treatments,



		(39)

where  represents the number of trials in treatment .

For simplicity, the remainder of this section will focus on the two DV based MANOVA. Table 11 illustrates computing the errors for full and reduced models for such a problem. For simplicity, errors associated with  are labelled under  and those related to  labelled under  for both models.



[bookmark: _Ref365371107]Table 11: Errors for Full and Reduced Models for two-way MANOVA data





The ‑test is the basis of the univariate test of significance, comparing  against  for  and separately for all other DVs. MANOVA also considers the relationship between DVs by also comparing  against . These sums of cross-products is closely related to the correlation between the two variables where,



		(40)

and



	.	(41)

The inclusion of cross product terms for MANOVA results in the following error matrix for the full model,



		(42)

and the following error matrix for the reduced model,



	.	(43)

The hypothesis sum of squares and cross-product matrix is given by, . The four multivariate test statistics for MANOVA referred to above are all based on eigenvalues  of  where . The test statistic for Wilks’ lambda is, 



	.	(44)

The formula for the Pillai-Bartlett trace is given by,



		(45)

while the test statistic for Roy’s greatest characteristic root is,



	.	(46)

The formula for the Hotelling-Lawley trace is,



	.	(47)

Determining whether the null hypothesis should be rejected requires comparing the observed value of the test statistic to the sampling distribution of the statistic under the null hypothesis. This requires a transformation of each test statistic to a variable approximating the ‑distribution with the intention of deriving a ‑value. As SPSS produces the desired outputs automatically, we won’t be detailing the calculations. However, Bray and Maxwell (1985) summarise the transformations from the  and ‑statistics to those approximating an ‑variable for those interested in the calculations. The resulting ‑values are compared to the chosen significance level  for accepting or rejecting the null hypothesis.





[bookmark: _Toc387404584][bookmark: _Toc387821923]Mann-Whitney ‑Test / Wilcoxson Signed-Rank Test

The Mann-Whitney ‑test is considered the non-parametric equivalent of the independent samples ‑Test and can be performed on ordinal (ranked) data. The Mann-Whitney ‑test is well suited to Likert item data as it cannot be presumed that the underlying population fits a normal distribution and the Mann-Whitney ‑test is included in most modern statistical packages. The analysis of individual Likert items will be in terms of determining if there is a statistical difference in responses between the two treatments. 



Although the Mann-Whitney test does not require normally distributed data it does require that the data from each population must be an independent random sample, and the population distributions must have equal variances and the same shape. Equal variance can be tested through the application of a non-parametric version of the Levine’s test for homogeneity of variance. This test can also be used to support required assumption that the two samples come from the same distribution shape. In addition, a visual inspection of the probability plot may help in determining if the distributions look similar.



Testing the Likert item results consist of creating a null and alternative hypothesis. The null hypothesis,  is: The samples come from the same distribution, or there is no difference in ranks between the treatments. The alternative hypothesis,  is: The samples come from different distribution, or there is a significant difference, typically .

The Mann Whitney ‑statistic is defined as[footnoteRef:10]: [10:  Stats Direct, Mann Whitney U‑Test, www.statsdirect.com/webhelp/#nonparametric_methods/mann_whitney.htm, accessed April 2014] 




		(48)

where  are the rank values.

The ‑test can be calculated by hand for small data sets. The calculation procedure is conducted as described below:

1. Rank the results, where there is a tie use the average value.

2. Add up the ranks for the observations which came from sample 1 () and use the expression bellow to calculate :



		(49)

For sample size  and sum of ranks  in sample 1.

3. Use the expression below to calculate ,



		(50)

Use the smaller value of  and  when consulting significance tables. Note: The Mann-Whitney ‑statistic follows a ‑distribution when the sample size is greater than . For values less than  refer to the Mann-Whitney Critical Value table.



[bookmark: _Toc387404585][bookmark: _Toc387821924]Summary

A hypothesis has to be capable of being tested by an experiment. Well-designed experiments provide a systematic approach to observe relations among variables while ruling out alternative explanations. This report has examined a number of experimental designs including the simple experiment, matched-pairs, repeated-measures and the single group design. While uncontrolled experiments such as those conducted in the field do not mitigate all confounding factors, they provide external-validity to support the results from controlled experiments.



A difficulty with human-in-the-loop experiments is the requirement to gauge behaviours, characteristics, attitudes and opinions. An approach to generate quantitative data from such responses is to use Likert scales. Once collected, the data can be analysed using descriptive statistics or compared using a number of approaches to visualise results. These approaches reveal differences between the specific groups but to generalise the results to a larger population requires inferential statistics.
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