
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 

 

 

THESIS 
 

 

 

Approved for public release; distribution is unlimited 

MAXIMIZING WEAPON SYSTEM AVAILABILITY 

WITH A MULTI-ECHELON SUPPLY NETWORK 

 

by 

 

Brennan J. Kemper 

 

June 2014 

 

Thesis Co-Advisors:  Emily M. Craparo 

 Javier Salmeron 

Second Reader: Walter DeGrange 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
June 2014 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  

MAXIMIZING WEAPON SYSTEM AVAILABILITY WITH A MULTI-

ECHELON SUPPLY NETWORK 

5. FUNDING NUMBERS 

 

6. AUTHOR(S) Brennan J. Kemper 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 

Monterey, CA 93943-5000 

8. PERFORMING ORGANIZATION 

REPORT NUMBER   

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

N/A 

10. SPONSORING/MONITORING 

  AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy 

or position of the Department of Defense or the U.S. Government. IRB protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  

Weapon systems are comprised of parts that are subject to random failures. When a part fails, it must be replaced by 

an operable part that is provided by a supply network that supports the system. Supply networks consist of many 

locations where spare parts are held, known as “echelons.” Examples include depots, fulfillment centers, and 

customers. When many identical weapon systems operate in parallel and rely on a multi-echelon supply network for 

replacement parts, decision makers must choose where and how to invest their resources into the purchase of spare 

parts. This thesis uses stochastic optimization to leverage those decisions in order to maximize the expected number 

of time periods a set of weapon systems are available for use. Specifically, we develop a model that determines the 

optimal stock levels of spare parts to store at each echelon of the supply network. The formulation integrates part 

failure uncertainty, transit times, and monetary constraints. Model outputs also provide decision makers with a clear 

estimate of marginal availability gains for each dollar invested in purchasing spare parts.  

 

 

 

 

 

 

 

 

 

 

14. SUBJECT TERMS availability, multi-echelon, network, optimization, repairable part, stochastic, 

stock level, supply. 
15. NUMBER OF 

PAGES  
71 

16. PRICE CODE 

17. SECURITY 

CLASSIFICATION OF 

REPORT 
Unclassified 

18. SECURITY 

CLASSIFICATION OF THIS 

PAGE 

Unclassified 

19. SECURITY 

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  

 Prescribed by ANSI Std. 239-18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 

 

 

MAXIMIZING WEAPON SYSTEM AVAILABILITY WITH A MULTI-

ECHELON SUPPLY NETWORK 
 

 

Brennan J. Kemper 

Lieutenant Commander, United States Navy 

B.S., Duquesne University, 2002 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

 

 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

 

from the 

 

 

NAVAL POSTGRADUATE SCHOOL 

June 2014 

 

 

 

Author:  Brennan J. Kemper 

 

 

Approved by:  Emily M. Craparo 

Thesis Co-Advisor 

 

 

Javier Salmeron  

Thesis Co-Advisor 

 

 

Walter DeGrange 

Second Reader 

 

 

Robert F. Dell 

Chair, Department of Operations Research 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

Weapon systems are comprised of parts that are subject to random failures. When a part 

fails, it must be replaced by an operable part that is provided by a supply network that 

supports the system. Supply networks consist of many locations where spare parts are 

held, known as “echelons.” Examples include depots, fulfillment centers, and customers. 

When many identical weapon systems operate in parallel and rely on a multi-echelon 

supply network for replacement parts, decision makers must choose where and how to 

invest their resources into the purchase of spare parts. This thesis uses stochastic 

optimization to leverage those decisions in order to maximize the expected number of 

time periods a set of weapon systems are available for use. Specifically, we develop a 

model that determines the optimal stock levels of spare parts to store at each echelon of 

the supply network. The formulation integrates part failure uncertainty, transit times, and 

monetary constraints. Model outputs also provide decision makers with a clear estimate 

of marginal availability gains for each dollar invested in purchasing spare parts.  
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EXECUTIVE SUMMARY 

Weapon systems are comprised of parts that are subject to random failures. When a part 

fails, it must be replaced by an operable part that is provided by a supply network that 

supports the system. Supply networks consist of many locations where spare parts are 

held, known as “echelons.” Examples include depots, fulfillment centers, and customers. 

If the supply network does not provide replacement parts in a timely manner, weapon 

system availability suffers. When many identical weapon systems operate in parallel and 

rely on a single supply network for replacement parts, decision makers must choose stock 

levels—the most efficient quantities of spare parts to stock at each echelon in a supply 

network, given a limited budget, so that system availability is maximized. 

This thesis develops a stochastic optimization model that prescribes optimal 

investments in spare parts for a weapon system throughout a multi-echelon supply 

network. This model also provides decision makers with an estimate of expected system 

availability given such investments. Our formulation models the dynamic interactions of 

random part failures, transit times, and monetary constraints, all of which impact the 

supply network’s ability to maintain weapon system availability.  

Our model confronts the above problem in two steps. First, we incorporate 

uncertainty into our formulation by randomly generating scenarios of time-based part 

failures, which become input parameters for our stock level calculations. Second, we 

model the evolution of our inventory levels over time and incur a penalty in our objective 

function if a system is unavailable (i.e., if the supply network does not provide 

replacement parts in a timely manner for that system). Model outputs provide decision 

makers with optimal stock levels and a clear estimate of marginal availability gains they 

can expect for each dollar invested in purchasing spare parts.  

We implement our formulation and show that as supply network topology 

becomes larger and more complex, more investments in spare parts are needed to ensure 

high rates of weapon system availability. Also, we find that marginal availability 

increases faster with additional investments in retail budget than in wholesale budget. 



 xiv 

Moreover, we show that in some cases, we may obtain similar availability for different 

investment levels. For our specific example, a decision maker can expect 96 percent 

availability by optimally spending any budget between $80 and $95 on the procurement 

of spare parts for the system.  

Additionally, we examine the variation in our model’s output due to uncertainty. 

We show that increasing the number of part failure scenarios over which we optimize 

increases both solution quality and the amount of time required to find an optimal 

solution. We conclude that it is important to balance both aspects. For our particular 

example, we illustrate that modeling 25 part-failure scenarios per replication gives us 

results that reasonably balance objective value precision and solve time. Furthermore, we 

show that as the number of part-failure scenarios modeled increases, our model 

converges towards an optimal solution for our wholesale and retail stock levels.  

Lastly, we examine restriction and relaxation techniques that decrease the time 

required to find an optimal solution. We achieve moderate success with these techniques 

but conclude that further research in this area is needed. 
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I. INTRODUCTION 

A. BACKGROUND 

1. Problem Definition  

Weapon systems are comprised of parts that are subject to random failures. When 

a part fails, it must be replaced by an operable part that is provided by a supply network 

that supports the system. If replacement parts are not made available in a timely manner 

by the supply network, the weapon system becomes unavailable until replacements 

arrive.  

Supply networks consist of many locations where spare parts are held, known as 

“echelons.” Examples of echelons include depots, fulfillment centers, and customers. 

When many identical weapon systems operate in parallel and rely on a single supply 

network for replacement parts, decision makers must choose where and how to invest 

their resources into the purchase of spare parts in order to maximize the amount of time 

the systems are available for use. In particular, they must choose stock levels—the most 

efficient quantities of spare parts to stock at each echelon. Should decision makers choose 

stock levels that are too low, availability of the weapon systems suffers and unnecessary 

strain is placed on the supply network. Conversely, should decision makers choose stock 

levels that are too high, funds are wasted or inefficiently used (i.e., tied to parts in stock 

when they could be used for other purposes). As a result, decision makers face the 

problem of determining how to optimally choose stock levels. In particular, given a 

limited budget, a decision maker must determine how many spares of each part to buy, 

where in the supply network to stock these parts, and how much weapon system 

availability to expect.  

To address these questions, this thesis formulates a mathematical model that 

determines the optimal way to invest limited budgets into the procurement of spare parts 

to maximize the expected availability of a weapon system. Specifically, we use stochastic 

optimization to maximize the expected number of time periods a weapon system is 
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available for use. The key decisions in our model determine the optimal stock levels of 

spare parts at each echelon in the system’s supply network.  

Our approach differs from other research in that most supply network 

optimization studies ignore interactions among part failures, repair, transit times, and 

costs. Consequently, decisions made to improve one component of the supply network 

may adversely impact other components. Without taking a comprehensive view of the 

system and making decisions accordingly, one cannot hope to achieve full efficiency.  

The key contribution of our research is the integrated modeling of uncertainty, 

time, and monetary constraints on a multi-echelon supply network. We incorporate 

uncertainty into our modeling by randomly generating scenarios of time-based part 

failures for a particular weapon system. Then, we use those scenarios as input parameters 

for our stock level calculations while enforcing non-anticipativity. We also model the 

evolution of our inventory levels over time and incur a penalty in our objective function 

if the supply network does not provide replacement parts in a timely manner. Finally, we 

provide decision makers with an estimate of the weapon system availability they can 

expect given an optimal investment in spare parts for the system. To our knowledge, no 

other research incorporates these three aspects into a single mathematical model. This 

level of detail comes at the expense of lengthy solve times. Even for very small supply 

networks with few parts, the optimization solver requires a substantial amount of time to 

find an optimal solution. We view our research as the first step towards high-fidelity, 

multi-echelon modeling; perhaps future research can build upon our efforts and decrease 

the computational time required to solve our models.  

2. Weapon System 

Figure 1 illustrates a notional weapon system. The system is comprised of 

n different types of parts p1, p2,…, pn. These parts operate in series, that is, the system is 

only available for use during a particular time period if all parts are working during that 

period. Each part has a known probability of failing after operating for a given number of 

periods. We assume that failures for each part are independent events (i.e., failure of one 

part does not impact the probability of failure of other parts).  
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Figure 1.  Notional weapon system. 

a. Weapon System Availability 

A weapon system is only valuable when it is available for operational use. This 

occurs when the quantity of working parts installed and/or spares on hand is at least the 

quantity required to operate the system. Accordingly, our research maximizes the 

availability of a weapon system over a defined time horizon by finding optimal stock 

levels of each part for each echelon in a system’s supply network. We define availability 

of a weapon system as the fraction of time that system is available for use and calculate it 

as follows:  

 
 a  

available

available not vailable

t
availability

t t



 (1) 

where availablet  and  anot vailablet are the number of periods the system is and is not available 

for use, respectively. By construction, the availability metric always produces a value 

between 0 and 1, providing us with an unambiguous measure with which to compare the 

effectiveness of different solutions. 
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b. System of Systems Concept 

We further expand the scope of our availability metric to embody the “system of 

systems” concept, illustrated in Figure 2. We reason that many independent and identical 

weapon systems operate in parallel in one large, aggregate system. Accordingly, instead 

of measuring the availability of each individual system, our model makes stock level 

decisions that maximize availability of the aggregate system. This is defined as the 

average availability of the individual weapon systems that comprise the aggregate 

system. The system of systems concept applies to our problem in that each individual 

weapon system requires replacement parts from a single supply network that stocks spare 

parts for all weapon systems. When two weapon systems require the same part at the 

same time and the supply network only has one spare on hand, our model chooses to 

issue the spare to the entity that results in the largest average availability. If we 

considered each weapon system in isolation, we would neglect these types of interactions 

and improperly estimate the aggregate system’s availability.  

 

Figure 2.  System of systems concept. 

c. Mapping Investments in Spare Parts to Availability 

A key benefit of our model is that it informs decision makers of how much 

weapon system availability they can expect, given monetary investments in spare parts 

for that system. Figure 3 illustrates a notional investment versus availability curve. The 

horizontal axis corresponds to our total monetary investments in spare parts for a 

particular weapon system and the vertical axis corresponds to the estimated fraction of 
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time a weapon system is available for use. Each point on the curve is a notional output of 

our model corresponding to the maximum average availability value that can be achieved 

by making optimal stock level decisions given a particular level of investment. For 

example, should a decision maker choose to invest $20 into the purchase of spare parts 

for the modeled weapon system, the curve shows that the weapon system is expected to 

be available 60 percent of the time. Note that initial investments in inventory result in 

large availability marginal gains. However, as monetary investments in spare parts 

increase, these gains decrease as diminishing returns take effect.  

 

Figure 3.  Notional curve of investment in spare parts versus availability.  

3. Repairable Parts 

In general, parts are categorized as either consumable or repairable. Typically, 

consumable parts are simple, low-cost items that are discarded after failure. Conversely, 

repairable parts are expensive, complex items that may be discarded after failure, but are 
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often repaired by a servicing echelon and placed back into circulation within a supply 

network. Entities that operate weapon systems comprised of repairable parts prefer 

purchasing repaired ones, because their price is often a fraction of what it would have 

cost to purchase the parts as new. A drawback to such a heavy reliance on repairable 

parts is that their availability within a supply network is often scarce due to long repair 

times. Since most weapon systems are comprised of repairable parts, our analysis focuses 

solely on these parts. 

4. Multi-Echelon Supply Network 

Figure 4 displays a simplified multi-echelon supply network for a repairable part 

p. Starting at the bottom of Figure 4, the first echelon in this network is referred to as the 

customer. The customer installs working parts to operate its weapon system and 

maintains a stock of ready-for-issue spares to replace installed parts that fail. Moving 

upstream from the customer, the second echelon is referred to as the fulfillment center. 

This echelon is located within the same geographic region as the customer, and it 

maintains a stock of spares that are used to supply replacement parts to the customer. 

Finally, moving upstream from the fulfillment center, the third echelon is referred to as 

the depot. The depot receives failed parts from the customer, repairs them, stores them, 

and issues them as replacement parts to supply the fulfillment center. All events take 

place within discrete time periods we denote as t.  
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Figure 4.  Basic multi-echelon supply network for repairable parts. 

a. Multi-Echelon Supply Network Events 

When a failure of part p occurs at customer echelon e during time period t, the 

following events take place: 

 The customer checks to see if a spare p is on hand:  

 If so, the failed part is immediately replaced and the 

weapon system remains available for that time period. The 

customer’s quantity of on-hand spares is decremented 

accordingly. 

 Otherwise, the weapon system becomes unavailable for the 

number of time periods that elapse until a replacement is 

received from the supporting fulfillment center. 

 In either case, the customer ships the failed part to the 

supporting depot for repair. 

 If the customer requires a replacement part: 
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 If the supporting fulfillment center has a spare on hand, it 

supplies the part to the customer and its quantity of on-hand 

spares is decremented accordingly. The time interval 

between the customer’s part failure and the receipt of a 

replacement part from the supporting fulfillment center is 

denoted as transit_time. 

 Otherwise, the fulfillment center must await a replacement 

part from its supporting depot. The number of time periods 

it takes to transport a replacement part from the depot to the 

fulfillment center is also denoted as transit_time. 

 When the depot receives a failed part from the customer, it repairs 

the part and makes it available for issue to any fulfillment center 

that requires the part. The number of time periods required to 

repair the part is denoted as repair_time. 

b. Enhanced Multi-Echelon Supply Network 

Adding to Figure 4, we enhance the scope of our multi-echelon supply network to 

take the shape of Figure 5. In this network, multiple depots supply replacement parts to 

multiple fulfillment centers, which, in turn, supply replacement parts to many customers. 

We assume that each depot specializes in repairing particular parts. Consequently, not all 

depots can repair all parts. Fulfillment centers, on the other hand, can receive, store, and 

issue all parts. Lateral supply only exists between fulfillment centers, and each customer 

is assumed to be supported by only one (pre-specified) fulfillment center.  
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Figure 5.  Enhanced multi-echelon supply network for repairable parts. 

5. Budget 

If our budget were unconstrained and we had unlimited storage space, we would 

choose to purchase infinite quantities of spare parts to store at each customer echelon. 

This would ensure that aggregate weapon system availability would always be 100 

percent. Unfortunately, this is unrealistic. Therefore, we must constrain our model by 

restricting our monetary investments in spare parts (We ignore echelon capacity, which 

can easily be incorporated, if needed). Specifically, we include two constraints in our 

model, reflecting limits on our expenditures for the wholesale and retail echelons of the 

supply network. The wholesale budget represents the maximum amount of funding 

available to procure the initial quantity of spare parts to be stocked at depots and 

fulfillment center echelons. The retail budget represents the maximum amount of funding 

available to procure the initial quantity of spare parts to be stocked at all customer  
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echelons. We choose to model wholesale and retail budget constraints instead of a single, 

network-wide budget constraint so that our formulation aligns with real-world budgeting 

practices of weapon system support.  

B. LITERATURE REVIEW 

To establish a theoretical framework for our research, we build upon literature in 

the field of multi-echelon modeling. Work in this area dates back to the 1950s and has 

grown quite extensively in recent years due to advances in computing power. We 

categorize multi-echelon research into deterministic, stochastic, and simulation models, 

and borrow key ideas to guide our efforts.  

1. Deterministic 

We begin by examining research with deterministic parameters. Sherbrooke, often 

considered a pioneer in multi-echelon network modeling, formulates a nonlinear model 

that calculates stock levels by minimizing total backorders across all customers [1]. He 

uses a technique known as “marginal analysis” to arrive at optimal solutions. Muckstadt 

expands upon Sherbrooke’s formulation and uses Lagrangian relaxation to minimize 

expected backorders subject to a constraint on inventory investment [2]. From both 

authors we gain an understanding of the link between weapon system availability and 

monetary investments in spare parts. Chandra develops a dynamic distribution model 

with warehouse and customer replenishment requirements [3]. His efforts focus on 

minimizing transportation, holding, delivery, and order costs in a network. From his 

research, we gain insight on how to formulate inventory balance constraints over a finite 

planning horizon and how to model the evolution of a supply network over time. Lee 

develops a continuous review, multi-echelon model for repairable items when emergency 

lateral transshipments are allowed between customer echelons [4]. His efforts expand on 

lateral shipment work previously done by Sherbrooke. Finally, Pirkul and Jayaraman use 

mixed-integer programming to minimize total transportation, distribution, and fixed costs 

for opening and operating plants and warehouses in a multi-commodity, tri-echelon 

network [5]. Customer locations and their demand for products are assumed to be known 

in advance.  
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2. Stochastic 

To incorporate uncertainty into our modeling, we review research that 

incorporates stochastic processes. Schneider and Kirkpatrick introduce us to stochastic 

optimization and show us approaches for heuristic development [6]. Narrowing our focus 

to supply-specific research, we borrow ideas from Axaster on how to model lateral 

supply-determining when it is better for one or more supporting echelons to provide 

replacement parts to a supported echelon [7]. He develops decision rules for lateral 

supply in a single-echelon inventory system consisting of a number of parallel echelons 

with stochastic demand. His approach is to minimize expected costs. Graves determines 

inventory stock levels in a multi-echelon inventory system for repairable items [8]. His 

work presents an exact model for finding the steady-state distribution of net inventory 

levels for parts at each site as well as the distribution for the number of outstanding 

orders for a site at a particular time. From his work, we capture the events associated with 

modeling repairable parts.  

Tsiakis et al. formulate a mixed-integer program that determines the number, 

location, and capacity of warehouses and distribution centers to be set up, the 

transportation links that need to be established in the network, and the flows and 

production rates of material, subject to uncertain demands [9]. They seek to minimize 

total annualized costs over the network. From their work, we gain an appreciation for 

approaches on how to handle uncertainty including the use of stochastically-generated 

scenarios. Moreover, we align our objective function with theirs, in that we want to find 

robust solutions that perform well over all scenarios of uncertain demand, not for a single 

presumed outcome. Caggiano et al. describe and validate a practical method for efficient 

computation of time-based service level requirements in a multi-item, multi-echelon 

service parts distribution system [10]. They use channel fill rates to determine where to 

position inventory in order to satisfy customer service agreements. Ganeshan formulates 

a multiple-retailer, single-warehouse, multiple-supplier model that encompasses both 

inventory and transportation factors [11]. Furthermore, his research finds near-optimal 

stocking policies for reorder points and order quantities under stochastic demands and 

lead-time constraints, subject to customer service constraints. From his work, we gather 
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ideas on the interactions between inventory and transportation decisions. Neale and 

Willems provide ideas on how to accommodate situations where the rate of demand 

changes over time [12]. Their formulation determines inventory locations and levels in a 

supply chain facing stochastic, non-stationary demand. Iida considers a periodic-review, 

dynamic, multi-echelon inventory problem, with non-stationary demands [13]. Moreover, 

his work expands our knowledge base by showing us the impacts of non-stationary 

demands over time. Simchi-Levi and Zhao provide methods for evaluating stochastic, 

multi-echelon inventory systems, specifically, the queuing inventory method, the lead-

time-demand method, and the flow-unit method [14]. The queuing-inventory and lead-

time-demand methods advise us of system performance measures at random points in 

time, whereas our approach more closely resembles the flow-unit method in that it 

models the impacts of decisions on time-based events. Ettl et al. formulate a constrained 

nonlinear optimization problem that minimizes the total average dollar value of inventory 

in a supply network, subject to meeting the service-level requirements of customers [15]. 

Finally, Acimovic and Graves provide us with ideas on how to enhance the functionality 

of our model for future research. Specifically, they formulate a model that minimizes 

average outbound shipping costs in a two-echelon network where business rules 

determine what fulfillment centers service which customers [16]. From their work, we 

gather ideas such as incorporating different service speeds to ship parts from one echelon 

to another, and the possible implementation of business rules to determine which echelon 

service customers require replacements.   

3. Simulation  

To round out our perspective on modeling approaches, we examine a study that 

uses simulation. Niranjan and Ciarallo formulate capacitated, three-echelon, and four-

echelon systems with uncertainty in both demand and supply [17]. Their approach uses 

simulation-based optimization to determine optimal base stock levels for the components 

in the system, based on specified customer service levels. Their work gives us more 

insight on how to model the evolution of inventory levels over time.  
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Overall, our work differs from the cited literature in that our formulation 

comprehensively integrates uncertainty, time, and monetary constraints into a single, 

multi-echelon model, instead of looking at these aspects in isolation. Furthermore, we 

stray from the literature’s heavy reliance on the use of expected values, in favor of 

modeling more detailed, high-fidelity parameters and variables that change over time.  

C. PURPOSE 

The purpose of our research is to develop an optimization model that provides 

guidance on the optimal investment in spare parts for a weapon system in order to 

maximize expected system availability. This includes modeling dynamic interactions of 

random part failures, time, and monetary constraints on the supply network. Even with 

very small networks, the number of stock level decisions that must be evaluated ventures 

into the tens of thousands; too many for a human to comprehend. Accordingly, we seek 

to leverage the objectivity and power of mathematical programming to help decision 

makers with this complex problem. 

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

1. Scope 

To scope our model formulation and subsequent analysis, we focus on three key 

areas. First, we only model repairable parts in a closed-supply network. This approach 

aligns with a conclusion drawn by Sherbrooke that repairable parts most directly affect a 

weapon system’s availability, whereas, consumable parts do not [1]. Second, all of our 

echelons are in stationary locations. Third, we do not determine order sizes, reorder 

points, and safety stock levels with classic supply management formulas. Rather, we are 

concerned with calculating optimal stock levels that result in the best availability values 

over all randomly-generated part-failure scenarios. 

2. Limitations 

We limit the functionality of our model to only include the most essential features 

of a multi-echelon supply network. As formulated, the model may easily be modified to 

include many additional attributes such as more echelons and parts, implementing time-
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varying transit times to ship parts from one echelon to another, and modifying the 

network so that different fulfillment centers support different customers according to 

business rules. Similarly, we have limited our experiments to only a few echelons and 

parts using notional data.  

3. Assumptions 

To shape the context of our problem and accommodate our limitations, the 

following assumptions apply to our supply network’s policies and modeling logic. 

a. Policies 

 Our budget only pays for the initial number of parts stocked at each 

echelon. This excludes inventory management expenses such as ordering, 

holding, and transportation costs. Similarly, echelons incur no costs for the 

future receipt of replacement parts.  

 All failed parts are repaired by depots; none are discarded. 

 Depots immediately begin repair work on failed parts that they receive 

from customers. 

 Repair and transit times are deterministic. 

 Cannibalization of weapon systems is not allowed. 

 Replacement parts for each echelon must be satisfied by parts circulating 

within the network. No external sources of supply exist. 

b. Modeling Logic 

 If a customer begins a time period with insufficient part(s) on hand, and 

receives the necessary quantity of replacements during the same period, 

the weapon system is considered available during that particular period.  

 For the purposes of availability, part failures occur at the end of a time 

period. 

 A shipment supplying a particular replacement part to a customer may be 

initiated during the same time period that the installed part fails.  

 A maximum of one failure can occur per part, customer, and time period.  
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II. METHODOLOGY AND FORMULATION 

A. METHODOLOGY 

1. Map 

Figure 6 portrays a high-level overview of our research methodology. For any 

weapon system we choose to analyze, we define the identified sets and parameters as 

inputs, and in return, our model delivers outputs that answer our research questions.  

 

Figure 6.  Methodology map. 

2. Part Failures 

Uncertainty within the supply network exists in many forms (e.g., part failure 

uncertainty, repair time uncertainty, and transportation time uncertainty). We focus our 

efforts on modeling part failure uncertainty, as part failures are considered the most 

uncontrollable and detrimental random events that occur within a supply network. When 

a part installed on a weapon system fails, the supply network must respond to this failure 

by making a replacement part available for issue as soon as possible, or else availability 
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of the weapon system suffers. We incorporate part failures into our formulation and 

represent the evolution of our network over time by modeling random inter-arrival times 

between part failures for each part installed at each customer. We do this by deriving part 

failure probability distributions from historical data and using a random part failure 

generator to create many randomly generated part-failure scenarios. Both are explained in 

the following section. 

a. Part Failure Probability Distributions 

Figure 7 displays example probability distributions of the operational time 

between failures for notional parts 1p  and 2p . The horizontal axes correspond to the 

number of time periods after replacement that each part has been operating and the 

vertical axes give the probability that each part fails after operating for that number of 

time periods. Both parts have a 100 percent probability of failing after operating for 35 

time periods.  

 

Figure 7.  Probability distributions of the operational time between failures for notional 

parts p1 (left) and p2 (right). 
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b. Random Part Failure Generator 

We have developed a part failure generator tool that accepts part-failure 

probability distributions as input and generates part-failure scenarios as output. In 

particular, the output of this tool is the parameter
, , ,_ p e s ifail time , which describes the 

number of time periods during which echelon e has been operational when part p fails for 

the i
th

 time in scenario s. We use this tool to generate many scenarios of part failures, and 

in turn, use the scenarios as input parameters for our optimization model. Our model then 

employs robust optimization by calculating stock levels and expected availability over all 

input scenarios. This technique introduces variation into our metric calculations and 

ensures that we do not limit our results to deterministic solutions that are tied or 

subordinated to a specific scenario. The overall goal of our model is to choose stock 

levels for each echelon in such a way as to ensure that our supply chain performs well, on 

average, over all scenarios considered simultaneously. 

3. Part Failures and Availability 

Figure 8 illustrates the interactions between failures, transit times, and 

availability. Suppose we have a weapon system comprised of parts 1p  and 2p , and we 

seek to calculate the system’s availability over the course of eight time periods. We 

assume that  ,_ Fulfillment Center Customertransit time =2. For a particular scenario s, our random 

part failure generator calculates: 

1 , , 1, 1_ p Customer s ifail time   =2 

2 , , 1, 1_ p Customer s ifail time   =3 

That is, part 1p  is scheduled to fail for the first time after the system has been 

operational for two time periods, and part 2p  is scheduled to fail for the first time after 

the system has been operational for three time periods. Accordingly, we commence 

operations and use the system during periods 1t  and 2t . At the end of period 2t , part 1p  

fails. No replacements for part p1 are on hand, so the system becomes unavailable for 

periods 3t  and 4t  while awaiting a replacement from the fulfillment center. At the 
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beginning of period 
5t , a replacement for p1 arrives and is immediately installed; thus, 

the system becomes available again during that period. At the end of period 
5t , the 

system has been operational for three time periods, so part 2p  fails. Again, no 

replacements for part 2p  are on hand, so  ,_ Fulfillment Center Customertransit time  forces the system 

to become unavailable for time periods 6t  and 7t . At the beginning of period 8t , a 

replacement for 2p  arrives and is immediately installed; thus, the system becomes 

available again during that period. Overall, the weapon system has been available for four 

time periods out of eight. Per Equation 1, the system’s availability is 50 percent.  

 

Figure 8.  Illustration of weapon system availability calculation. 

Note that of our part failure scenarios do not prescribe the actual time periods in 

which failures occur; rather, they indicate the number of operational time periods that 

elapse before a part fails. The operational status of the system depends, in turn, on our 

stock level decisions. For instance, if a spare of part p1 had been present at time t2, our 
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system would have remained operational during period t3, and thus part p2 would have 

failed at the end of period t3, rather than at the end of period t5. This subtlety introduces 

modeling challenges not present in most robust optimization problems, but it is necessary 

in order to accurately model the evolution of a weapon system. 

B. FORMULATION 

We now describe our mathematical model, which uses stochastic optimization to 

maximize aggregate weapon system availability by calculating optimal stock levels for 

spare parts in a multi-echelon supply network. It is important to note that our stock levels 

account for variation in the time of failures because they are chosen as the most efficient 

values considering our randomly-generated part failure scenarios. All other variables are 

specific to each scenario.  

1. Sets and Indices 

p P    part types 

,e e E   inventory echelons 

D E    depots 

F E    fulfillment centers 

C E    customers 

M P E   set of part-echelon pairs ( , )p e , where echelon e can 

process part p 

A E E    set of arcs ( , )e e  joining echelons e  and e in the shipping  

   network 

t T    time periods 

i I    part failures 

s S    randomly generated scenarios of part failures 

2. Parameters [Units] 

,_ p erepair time  number of time periods required to repair part p at echelon 

e [time periods] 

,_ p epart required  minimum quantity of part p required to operate a weapon 

system at echelon e [parts] 
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, , ,_ p e s ifail time  operational time periods before part p fails at echelon e for 

the i
th

 time in scenario s [time periods] 

,_ e etransit time   number of time periods required to ship a part from echelon 

e to echelon e  [time periods] 

pcost  cost of part p [$] 

wholesale  budget to procure parts for depots and fulfillment centers 

[$] 

retail  budget to procure parts for customers [$] 

  relative weight on worst-case scenario of availability 

[unitless] 

3. Decision Variables [Units] 

, ,e t sAVAILABLE  binary; 1 if weapon system is available to operate at 

echelon e during time period t for scenario s, and 0 

otherwise 

, , ,p e t sINV  quantity of part p installed or on hand at echelon e during 

time period t for scenario s [parts] 

, , ,p e t sENOUGH  binary; 1 if 
, , ,p e t sINV  is greater than or equal to 

,_ p epart required , and 0 otherwise 

, , , ,p e t i sFAIL  binary; 1 if 
, , ,_ p e s ifail time  equals , ,e t s

t t

AVAILABLE 



 , and 

0 otherwise 

, , , ,p e e t sSHIP   quantity of part p shipped from echelon e to echelon e  

during time period t for scenario s [parts] 

,_ p eSTOCK LEVEL  maximum quantity of part p installed or on hand at echelon 

e at the beginning of the planning horizon [parts] 

_WORST CASE  worst-case system availability over all scenarios [fraction] 

4. Equations 
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5. Objective Function 

Our objective in Equation 2 is to maximize the weighted average of the 

availability of our weapon system over all part-failure scenarios and availability for the 

worst-case scenario. As calculated in Equation 3, use of _WORST CASE  allows us to 

limit overestimation of availability over extreme values. In our computational examples, 

we typically set   equal to 0.1. 

6. Constraints 

a. Inventory Levels 

Equation 4 initializes inventory levels of each echelon in the first time period. In 

accordance with Figure 8, Equations 5 through 7 use
, , ,_ p e s ifail time , 

,_ e etransit time  , and 

,_ p erepair time , to model the flow of parts through our supply network. Equation 5 

calculates current inventory levels for depots as failed parts are received from customers, 

repaired, and issued to fulfillment centers as replacements. Similarly, Equation 6 

calculates current inventory levels for fulfillment centers as parts are received from 

depots and subsequently issued as replacements to customers. Finally, Equation 7 

calculates current inventory levels for customers as part failures occur and replacements 

are received from supporting fulfillment centers.  



 24 

b. Shipping 

Equations 8 through 10 prevent our model from anticipating and preemptively 

responding to part failures that occur in future time periods. This guarantees that 

prescient decisions do not falsely inflate our availability values based on knowledge we 

would not have in a real situation. Specifically, Equation 8 ensures that no customer 

receives more of part p than the total number of failures they have had for part p as of 

time t. Equation 9 specifies that no fulfillment center can receive more of part p than the 

sum of failures their customers have had for p as of time t. Finally, Equation 10 states 

that the total quantity of shipments of part p out of all depots cannot exceed the total 

number of failures of p over all customers as of time t.  

c. Weapon System Availability 

Equations 11 through 14 determine whether our weapon systems have sufficient 

quantities of each part on hand for each customer. Specifically, in Equation 13, if the 

current inventory of part p is less than the quantity of p required to operate the weapon 

system, the ENOUGH variable records this shortfall. Equations 11 and 12 ensure that the 

system becomes unavailable until enough parts are on hand.  

d. Failure Events 

Equations 15 through 18 signal the time periods when failures occur for each part 

in operation at each customer echelon. The complexity of these equations involves 

ensuring that each part fails in accordance with our randomly-generated part failure 

scenarios. We accomplish this with the parameter 
, , ,_ p e s ifail time  and the binary variables 

, ,e t sAVAILABLE  and , , , ,p e t i sFAIL . Equation 15 prevents part failures from occurring when 

the sum of operational time periods up to time t is strictly greater than , , ,_ p e s ifail time . 

Conversely, Equation 16 prevents part failures from occurring when the sum of 

operational time periods up to time t is strictly less than , , ,_ p e s ifail time . Equation 17 

ensures that part p at echelon e cannot fail more than once for the i
th

 time over all time 
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periods in each scenario. Finally, Equation 18 forces , , , ,p e t i sFAIL  to signal a part failure 

when , , ,_ p e s ifail time  equals the sum of operational time periods up to time t.  

e. Stock Levels 

Equations 19 and 20 limit the values of our ,_ p eSTOCK LEVEL  decision variable. 

Specifically, Equation 19 ensures that , , ,p e t sINV  never exceeds ,_ p eSTOCK LEVEL , 

regardless of the scenario. Furthermore, ,_ p epart required specifies the quantity of each 

part that must be on hand in order for a customer to operate its weapon system. Similar to 

Equation 19, we use Equation 20 to ensure that ,_ p eSTOCK LEVEL  is always greater 

than or equal to this quantity. 

f. Budget 

Equations 21 and 22 set wholesale and retail budget limits.  
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III. ANALYSIS 

To conduct our analysis, we implement our formulation using the Generalized 

Algebraic Modeling System (GAMS) version 23.8.2 [18] and solve it as a mixed-integer 

linear program with the CPLEX 12.4.00 solver [19].  

A. RESULTS 

1. Investment versus Availability 

To gain insights similar to those discussed in Section I.A.2.c, we temporarily 

simplify our formulation and consider a single budget constraint instead of separate 

wholesale and retail budgets. That is, we combine Equations 21 and 22 and limit the total 

cost to purchase spare parts for all echelons by a given budget value. Table 1 displays 

part attributes we use as model inputs for our experiments, and we model the flow of 

these parts throughout the supply network shown in Figure 10(d), over 15 time periods 

and 15 scenarios. Each customer requires one of each part to operate their weapon 

system, and our investment budget ranges from $0 to $100 in $5 increments. Figure 9 

illustrates the resulting investment versus availability curve.  

 

Part Types 

Average Failure Time 

Poisson Distribution 

(Time Periods) 

repair_timep,Depot 

(Time Periods) 

costp 

($) 

p1 1 1 6 

p2 2 2 1 

p3 3 3 3 

Table 1.   Repairable part attributes for experiments. 
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Figure 9.  Investment versus availability curve. 

Intuitively, our model produces results as expected. As our investment budget 

increases, our model chooses to purchase more spare parts to stock at echelons that result 

in the best availability values. Accordingly, we have more spares on hand to 

accommodate part failures, so availability ultimately improves. Clearly, our model 

exhibits the investment versus availability relationship discussed in Chapter I. Note that 

if we choose to invest $0 into purchasing spare parts, we estimate that our system will be 

available 33 percent of the time. Conversely, if we choose to invest $85 optimally, we 

estimate that our system will be available 100 percent of the time. Any investment 

beyond $85 does not increase availability for the scenarios considered.  

Note that increasing the budget does not always result in availability gains. Recall 

that our formulation is based on the integrated modeling of uncertainty, time, and 

monetary constraints on a multi-echelon supply network’s ability to support a weapon 

system. During any given time period, failures occur, parts are repaired, replacements are 
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in transit, and our model must choose the best stock levels that accommodate all of these 

events over all time periods and scenarios. Purchasing many parts of one type may not 

result in as great of an impact on availability as purchasing one of another type of part. 

For each $5 increment in our investment budget, part types compete against each other. 

We purposely stagger our part costs from $1 to $6 to exaggerate this effect and ensure 

that our model cannot buy one more of each part with each budget increment. Thus, 

availability gains are not guaranteed each time the investment budget increases.  

2. Multi-Echelon Supply Network Experiments 

Next, we experiment with different sizes of multi-echelon supply networks to 

realize the impacts of topology and part types on availability. To do this, we 

reincorporate our wholesale and retail budgets and model part failure scenarios over each 

network shown in Figure 10. Table 2 itemizes initial conditions for our experiments. In 

order to reduce computational time, we increase the absolute tolerance (availability gap) 

for larger networks. Each customer is assumed to require one of each part to operate their 

weapon system.  
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Figure 10.  Multi-echelon supply networks for experiments. 

Network Topology   Time Periods Scenarios 

Absolute 

Tolerance 

(%) 

Four-Echelon Figure 10(a) 0.1 15 15 5 

Five-Echelon Figure 10(b) 0.1 15 15 5 

Seven-Echelon Figure 10(c) 0.1 15 15 10 

Eight-Echelon Figure 10(d) 0.1 15 15 15 

Table 2.   Initial conditions for experiments.  
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Figure 11 displays our estimated availability values for each combination of 

wholesale and retail budgets for weapon systems comprised of parts p1 and p2. Likewise, 

Figure 12 displays availability for weapon systems comprised of parts p1, p2, and p3. The 

horizontal axes indicate our retail budget and vertical axes indicate our wholesale budget. 

Availability values are shown at the intersection of each wholesale and retail budget 

combination.  

Looking at Figure 11, we conclude that as supply network topology becomes 

more complex, more investments in spare parts are needed to ensure high rates of 

availability. Furthermore, we see that regardless of network size, if we choose to invest 

$0 into purchasing spares for any echelon, our weapon system availability will never 

exceed 42 percent. The plots give us insight into the importance of having a sufficient 

retail budget. For example, if we choose to invest $0 into the purchase of spares for all 

customers, no matter how much we invest into stocking spares at depots and fulfillment 

centers, we estimate availability will never exceed 79 percent. This is because weapon 

systems requiring replacement parts will always be unavailable for at least 

 ,_ Fulfillment Center Customertransit time . 
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Figure 11.  Availability estimates modeling parts p1 and p2. 
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Figure 12.  Availability estimates modeling parts p1, p2, and p3. 

Our experiments with three part types also show that, as the network becomes 

more complex, more investment is needed to achieve a certain availability. Moreover, 

regardless of network size, if we choose to invest $0 into purchasing spares for any  
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echelon, at best, our weapon system availability will never exceed 38 percent. Comparing 

Figures 11 and 12, we see how modeling more part types results in visible trends of lower 

availability. 

The general insight displayed by all of these networks is that for any fixed 

wholesale budget, availability increases at a faster rate when we increase our retail 

budget than when we increase our wholesale budget. We reason that this is most heavily 

influenced by  ,_ Fulfillment Center Customertransit time . Recall that when customers have spare parts 

on hand, they can immediately replace failed parts and keep their weapon system 

operational, as opposed to waiting for replacement parts to arrive from a fulfillment 

center. Even though a customer’s availability suffers while the part is in transit, a proper 

balance of spare part stock must be struck between depots and fulfillment centers because 

they have the ability to supply multiple customers.  

To highlight efficiencies gained from multi-echelon modeling, we explore 

availability values from Figure 12(d), which corresponds to an eight-echelon network 

modeling the flow of parts p1, p2, and p3. Suppose we wish to partition a given total 

budget optimally into wholesale and retail budgets. From Figure 12(d), we note that each 

partition may result in a different availability value. Figure 13 illustrates an investment 

versus availability curve where each data point represents the availability achieved for a 

particular partition of the budget shown on the horizontal axis. 
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Figure 13.  Investment versus availability curve for an eight-echelon network modeling 

parts p1, p2, and p3. Each data point represents a particular division of the 

total budget indicated on the horizontal axis into wholesale and retail 

components. 

Table 3 lists the particular availability values that we examine. From the data, we 

see that if a decision maker chooses to optimally invest any budget between $80 and $95 

into purchasing spares, weapon system availability is expected to be 96 percent. Hence, a 

prudent choice is to only invest $80 and use the $15 savings elsewhere. Furthermore, if 

the decision maker chooses to accept a one percent reduction in availability from 96 

percent to 95 percent, an additional savings of $5 can be realized. Investing $70 or less, 

results in a large drop in availability. We generalize that by taking advantage of 

efficiencies gained from multi-echelon modeling, for a smaller investment in spares, we 

may obtain the same or a comparable level of weapon system effectiveness. 
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Table 3.   Availability for an eight-echelon network modeling parts p1, p2, and p3. 

B. SOLVE TIME 

Because we choose to model many of the detailed interactions that take place 

within a multi-echelon supply network, our formulation is challenged by lengthy solve 

time. To gain an appreciation for this, Table 4 displays the problem size of our 

experiments. Solve times for these instances are on the order of days. Clearly, even for 

our small experiments, finding an optimal solution is a substantial undertaking for the 

solver.  

 

Network Topology   
Part 

Types 
Variables Scenarios 

Discrete 

Variables 
Constraints 

Four-

Echelon 
Figure 10(a) 

0.1 p1, p2 7,399    15 5,328 15,167 

0.1 p1, p2, p3 10,205 15 7,273 20,723 

Five-

Echelon 
Figure 10(b) 

0.1 p1, p2 9,141 15 6,678 18,317 

0.1 p1, p2, p3 12,908 15 9,298 25,448 

Seven-

Echelon 
Figure 10(c) 

0.1 p1, p2 15,180 15 11,626 33,196 

0.1 p1, p2, p3 20,990 15 14,394 45,207 

Eight-

Echelon 
Figure 10(d) 

0.1 p1, p2 15,180 15 10,992 33,196 

0.1 p1, p2, p3 20,990 15 14,394 45,207 

Table 4.   Problem size of multi-echelon experiments. 

To overcome this challenge, we examine our formulation for improvements that 

may reduce solve time. The user specifies most of the input data (e.g., part types, part 

failure probabilities, network topology, time periods, and budgets), so we do not consider 

modifying those items. However, an aspect that we can easily change is the number of 
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part-failure scenarios over which we optimize. Conceptually, the more scenarios we 

consider simultaneously, the more accurate our availability estimate will be; however, 

more scenarios result in longer solve times. Accordingly, we seek to determine an 

adequate number of scenarios that strikes a reasonable balance between availability 

precision and solve time. 

C. AVAILABILITY AND SOLVE TIME VARIATION 

To gain an understanding of the variation in our output, we plot confidence 

intervals for availability and solve time with respect to the number of part failure 

scenarios over which we optimize. We accomplish this by conducting independent (i.e., 

different) replications for each experiment.  

We perform this analysis with the four-echelon supply network shown in Figure 

10(a) and model the flow of parts p1 and p2 over a horizon of 15 time periods. Table 5 

displays part attributes. Wholesale and retail budgets are fixed at $5 each, and we solve to 

an absolute tolerance of five percent availability. Furthermore, we run 100 replications 

for each scenario, and our scenario counts range from 1 to 50 in increments of five. 

Figure 14 plots 95 percent confidence intervals for availability and solve time, given a 

particular number of scenarios for each replication. The horizontal axes indicate the 

number of part failure scenarios used within each replication and the vertical axes 

indicate availability and solve time, respectively. 

 

Part Types 

Average Failure Time 

Poisson Distribution 

(Time Periods) 

repair_timep,Depot 

(Time Periods) 

costp 

($) 

p1 1 6 6 

p2 2 3 1 

Table 5.   Repairable part attributes for variation experiment. 
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Figure 14.  95 percent confidence intervals for availability and solve time. 

With respect to availability, we note that as the number of part failure scenarios 

used increases from 1 to 50, our confidence intervals narrow and our availability 

estimates become more precise. Noticeably, if we choose to model only one scenario, we 

expect our results will have a large range of variation and our availability estimates will 

be overly optimistic (i.e., subordinating our stock level decisions to that solution will be 

highly suboptimal). The confidence interval for one scenario is over twice the width of 
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that of five scenarios, yet the computational time to solve is approximately the same. 

Thus, optimizing over multiple scenarios simultaneously is recommended. Our mean 

availability estimates and confidence interval widths reach a steady state when we 

employ 25 or more scenarios per replication. This informs us that modeling more than 25 

scenarios would be an unnecessary use of computing resources.  

In stark contrast to our availability confidence interval plots, we see that the 

trajectory of the average solve time per replication resembles that of an exponential 

curve. Furthermore, as the scenario count per replication increases, so does the variation 

in the amount of time it takes to solve each replication. A drastic change in solve time 

variation occurs between 25 and 30 replications: the confidence interval for 30 scenarios 

per replication is nearly four times as wide as the interval for 25 scenarios per replication. 

Combining this observation with the fact that our availability confidence intervals reach a 

steady state at 25 scenarios per replication, we reason that modeling 25 scenarios per 

replication gives us outputs that reasonably balances availability precision and solve time 

for this particular experiment.  

We generalize these two notions and conclude that for any particular supply 

network, part types, time horizon, and budget combination we choose to model, there 

exists a scenario count that strikes a reasonable empirical balance between availability 

precision and solve time, making the modeling of more scenarios unnecessary.  

D. STOCK LEVEL CONVERGENCE 

In addition to balancing availability precision and solve time, we predict that the 

number of part failure scenarios used also plays a role in our convergence to an optimal 

solution for ,_ p eSTOCK LEVEL . Conceptually, we reason that as scenario count 

increases, our model should more frequently choose a specific stock level plan for each 

spare part at each echelon. To illustrate this concept, we conduct an experiment with the 

four-echelon supply network shown in Figure 10(a) and model the flow of parts p1 and p2 

with wholesale and retail budgets fixed at $5 each. We run 100 replications for each 

scenario where our scenario counts range from 1 to 50 in increments of five, and we 

solve to an absolute tolerance of one percent availability. Figures 15 and 16 display the 
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resulting wholesale and retail stock level histograms and corresponding plans. The 

horizontal axes indicate the number of part failure scenarios used within each replication 

and the vertical axes indicate the number of times a particular stock level plan is chosen 

as the optimal solution for each replication. Stock level plans accompany each histogram.  

 

 

Figure 15.  Wholesale stock level histogram and plans. 
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Figure 16.  Retail stock level histogram and plans.  

Per the figures, we can see that as scenario count increases, our model more 

frequently chooses a particular stock level plan (i.e., converges towards an optimal 

solution). Plans W-A and R-A are most frequently chosen as the plans that result in the 

best availability values when we optimize over one part failure scenario. However, recall 

that we anticipate it may be highly suboptimal to optimize over one scenario only; so, we 

focus our attention on results where scenario count is greater than one. Note that as we 
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increase the scenario count from 10 to 50, plans W-A and R-A steadily emerge as the 

most frequently chosen solutions while other stock level plans subside. Thus, we 

conclude that for this particular experiment, our model converges on stock level plans W-

A and R-A as the optimal solutions for ,_ p eSTOCK LEVEL . Note that for the 

experimental setup we have considered multiple optimal solutions are possible. 

E. VALUE OF STOCHASTIC MODELING 

To demonstrate the value of stochastic modeling, we now consider a simple 

system in which only 10 part failure scenarios are possible. In this simplified setting, we 

compare availability values resulting from optimization over a single scenario vice 

optimization over all 10 scenarios. We model the flow of parts p1, p2, and p3 throughout 

the supply network shown in Figure 10(b) over 15 time periods and solve to an absolute 

tolerance of five percent availability. Table 6 displays part attributes for our comparisons, 

and wholesale and retail budgets are fixed at $10 and $15, respectively. 

 

Part Types 

Average Failure Time 

Poisson Distribution 

(Time Periods) 

repair_timep,Depot 

(Time Periods) 

costp 

($) 

p1 1 6 6 

p2 2 3 1 

p3 3 1 3 

Table 6.   Repairable part attributes for stochastic modeling experiment. 

Let s and t denote part failure scenarios from the set  1 2 10, ,...,S s s s . 

Furthermore, let ,_ s

p eSTOCK LEVEL  denote the optimal stock level plan resulting from 

optimizing only over scenario s, and let ,_ ALL

p eSTOCK LEVEL  denote the optimal stock 

level plan resulting from optimizing over all 10 scenarios in S. If we optimize over only a 

single scenario s and implement the resulting stock level plan, we cannot be certain that s 

is sufficiently representative of all possible scenarios. Should a different scenario occur, 

we may experience a substantially different availability value than anticipated, and one 

that is much lower than could have been achieved with perfect knowledge. To quantify 
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this difference, let ,s tavailability  denote the availability value that results when we 

implement stock level plan ,_ t

p eSTOCK LEVEL , but scenario s actually occurs. Likewise, 

let ,s ALLavailability  denote the availability achieved when we implement 

,_ ALL

p eSTOCK LEVEL  and scenario s actually occurs.  

Figure 17 displays the results of our ten-scenario experiment. The horizontal axis 

indicates the scenario s that actually occurred, while the data points indicate 

,s tavailability  for all t S , as well as ,s ALLavailability . As the figure indicates, 

,s ALLavailability  is relatively high for all scenarios; in fact, for many scenarios, 

, ,s ALL s savailability availability . Furthermore, the risk of achieving a highly suboptimal 

availability value is much lower when using ,_ ALL

p eSTOCK LEVEL . As the figure 

indicates, for a single outcome s, we see an absolute difference in availability of up to 30 

percent depending on which scenario t was used in the optimization; in contrast, we have 

at most a 14 percent absolute difference between ,s ALLavailability  and ,s savailability  for 

all scenarios. Table 7 summarizes the results of our experiment. 
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Figure 17.  Availability plot for stochastic modeling experiment. 

Scenario 

s 
,s savailability  

Worst Case 

,s tavailability  

Average 

,s tavailability   ,s ALLavailability  

s1 0.97 0.67 0.75 0.83 

s2 0.93 0.67 0.79 0.93 

s3 0.83 0.63 0.73 0.83 

s4 0.77 0.60 0.71 0.77 

s5 0.77 0.67 0.72 0.77 

s6 0.73 0.57 0.66 0.73 

s7 0.70 0.63 0.67 0.70 

s8 0.70 0.53 0.61 0.60 

s9 0.63 0.53 0.58 0.60 

s10 0.63 0.47 0.55 0.53 

Table 7.   Availability results for stochastic modeling experiment. 
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F. TECHNIQUES TO REDUCE SOLVE TIME 

Because our formulation models detailed interactions within a multi-echelon 

supply network, we face challenges in terms of solve time. We implement restriction and 

relaxation techniques to help our solver find an optimal solution faster.  

For a restriction, we temporarily fix our ,_ p eSTOCK LEVEL  decision variables to 

obtain an initial solution, and then use the corresponding variable bounds as an input, to 

obtain a full solution for our mixed-integer program. We accomplish this by fixing 

,_ p eSTOCK LEVEL  to equal the maximum quantity of spares we could purchase for each 

part at each echelon, given our wholesale and retail budgets. By solving this restriction, 

we obtain an initial integer solution for our problem, which occasionally helps the 

solver’s optimization process.  

In terms of implementing a relaxation, we suspend our shipping constraints to 

establish an upper bound on our optimal objective value. Then, we use this upper bound 

to incrementally refine bounds on our decision variables so that the solver more quickly 

converges on an optimal solution. We accomplish this by conducting a preliminary solve 

that excludes Equations 8 through 10. We reason that by suspending the shipping 

constraints, we create an environment where we foresee exactly when and where part 

failures will occur. In response, our model takes preemptive action and ships replacement 

parts to customers where failures are about to occur. Conceptually, our availability 

estimate should never be greater than in situations where we can see the future and take 

action accordingly. The discussed approaches result in modest reductions to solve time. 
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IV. SUMMARY AND FUTURE RESEARCH 

A. SUMMARY 

When many identical weapon systems operate in parallel and rely on a multi-

echelon supply network for replacement parts, decision makers face the problem of 

determining how to optimally choose stock levels, given a limited budget.  

Our research confronts this problem by formulating a mathematical model that 

determines the optimal investment of limited budgets into the procurement of spare parts 

so that weapon system availability is maximized. Specifically, we use stochastic 

optimization to integrate the modeling of uncertainty, time, and monetary constraints 

onto a multi-echelon supply network. First, we incorporate uncertainty into our model by 

randomly generating scenarios of time-based part failures (for a particular weapon 

system), which become input parameters for our stock level calculations. Second, we 

model the evolution of our inventory levels over time and incur a penalty in our objective 

function if the system is unavailable (i.e., if the supply network does not provide 

replacement parts in a timely manner). Accordingly, we provide decision makers with an 

estimate of expected availability given an optimal investment in spare parts for the 

system.  

Rather than looking at supply network features such as part failures, repair, transit 

times, and costs in isolation, our formulation integrates their interactions in an 

optimization model that seeks maximizing overall expected availability. Our 

computational experiments show that, as supply network topology becomes more 

complex, more investments in spare parts are needed to ensure high rates of weapon 

system availability. We show the tradeoff relationship between solution accuracy and the 

time it takes to find an optimal solution as the number of scenarios considered increases.  

B. FUTURE RESEARCH 

We view our research as the first step towards detailed multi-echelon modeling 

that is not otherwise examined in the literature. Future research may build upon our work 

in terms of algorithmic refinements, technical enhancements, and further analysis. 
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1. Algorithmic Refinements 

We propose that future work build upon our efforts to decrease solve time. 

Although we have performed a preliminary investigation of techniques to improve solve 

time, we believe that more can be done to improve the model’s efficiency. Possible 

refinements may include reformulation of some constraints, especially those relating 

failures and availability, further experimentation with heuristic and exact solution 

methods, as well as decomposition approaches. 

2. Technical Enhancements 

Given that we seek to accurately estimate availability, we envision the addition of 

time-varying transit times and mobile customers as future technical enhancements to our 

model. As it stands, our model only accounts for part failure uncertainty and neglects any 

randomness associated with the number of time periods it takes to ship a replacement part 

from one echelon to another. In order to better estimate weapon system availability, we 

must account for this uncertainty. We foresee that the scope of our part failure scenarios 

should expand to include randomly generated transit times.  

Additionally, in our current model, each customer is supported by the same 

fulfillment center over all time periods. This assumption oversimplifies reality because 

customers and their weapon systems are not stationary: customers may spend a certain 

time in close proximity to one fulfillment center and then move closer to another 

fulfillment center. Future work may model mobile customers by partitioning the network 

into regions and implementing a region index that specifies where particular events 

occur. Building on this, we recommend that future work formulates business rules that 

specify which fulfillment centers provide replacement parts to which customer for each 

time period. 

3. Further Analysis 

In terms of further analysis, we foresee great utility in applying our formulation to 

larger multi-echelon supply networks. As it stands, our analysis only considers the 

notional experiments discussed in Chapter III. Real-world weapon systems and supply 



 49 

networks may encompass hundreds of echelons, thousands of repairable parts, and 

millions of investment dollars, far beyond what our research examines. Future work may 

model spare-part management of an actual weapon system from which additional 

operational insight can be gained. 
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