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ABSTRACT 

The design and optimization of higher efficiency Copper Indium Gallium Selenide 

(CIGS) solar cells are investigated in this thesis. Optimizing the thickness layers of a cell 

for various band gaps was conducted in order to design a cell that exceeds the current 

industry efficiency record of 20.8%. Silvaco provides a modeling program called ATLAS 

that is specifically designed to model semiconductor devices. ATLAS was used to model 

a CIGS cell that is currently being produced to verify the validity of the model. Various 

thicknesses were then swept to determine the optimum thickness for a given band gap.  

Solar spectrum intensity varies by location around the Earth. Optimizing CIGS 

cells for various band gaps yields higher overall power output when dealing with drastic 

climate and location variations. Cells for five band gaps ranging from 1.14 eV to 1.69 eV 

were optimized in this thesis. The highest achieved efficiency was for a band gap of 1.69 

eV with an overall theoretical efficiency of 22.4%. 
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EXECUTIVE SUMMARY 

As energy demand continues to rise, the need for renewable energy sources is 

increasingly evident. This need is even greater for expeditionary military forces which 

cannot rely on grid power for many of their systems. While technology and innovation 

continues to improve the lethality of military forces, it also presents an ever increasing 

energy demand. Logistical resupply has responded with more convoys supplying units 

with fuel for generators and non-rechargeable batteries. In the presence of improvised 

explosive devices and ambushes, these convoys represent unnecessary risk to friendly 

forces and supply lines. This presents a clear need for renewable energy sources. 

Solar cells, at present, are one of the most widespread forms of renewable energy 

in the civilian and military domains. Several solar projects have been commissioned by 

the Marine Corps for stationary units, mobile units, and patrolling Marines [1]–[3]. As 

technology advances, these systems have become smaller and more efficient. However, 

cost has not been shown to decrease proportional to technological advancement. In the 

face of decreasing budgets and cuts to military spending, the need for efficient and 

inexpensive solar cells is desired.  

Thin film solar cells present an attractive option due to their light weight and 

flexible nature. Leading the thin film market are cells constructed from copper indium 

gallium di-selenide (CIGS), a compound quaternary semiconductor alloy. The robust 

material properties of CIGS cells present many attractive features for both military and 

consumer applications, such as mechanical flexibility and durability. One of the most 

desirable traits is low cost of CIGS cell manufacture. Although CIGS cells currently lack 

the efficiency of silicon-based cells or more advanced multi-junction cells, continued 

research shows promise in closing this gap while still retaining all the desired qualities of 

CIGS. Optimization of the design parameters of CIGS structures is necessary to fully 

maximize the capabilities of cells which will be used in future systems. 

The objective of this research is to optimize the thickness of the semiconductor 

layers in CIGS cells for five band gaps. The goal is to increase solar cell efficiency for 
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CIGS cells designed for a specified location or climate. The sun produces light at varying 

intensities throughout the wavelength spectrum. As light passes through the Earth’s 

atmosphere, it is absorbed and reflected, resulting in reduced light intensity. This 

reduction is not uniform throughout the Earth. Regions close to the equator receive more 

intense and direct sun light, while the polar regions receive weaker, glancing rays. 

Manipulating the band gap of CIGS by varying the mole fraction of gallium allows us to 

target the most ideal wavelengths of light for a given region. The Marine Corps’ primary 

purpose is to be an expeditionary force in readiness. This requires Marines to deploy at a 

moment’s notice to austere environments where electrical power is at a premium. Having 

cells specifically designed for the climate or region of operations will result in higher 

power output and extend operational endurance. 

A CIGS cell is modeled in this thesis using the program called ATLAS provided 

by Silvaco. An initial cell was created based on published designs from [4]–[6] to 

validate the model. Cells with band gaps of 1.14 eV, 1.27 eV, 1.41 eV, 1.55 eV, and 1.69 

eV were created, and the baseline performance for each cell was recorded. The modeled 

CIGS cells contained three layers of semiconductor material; intrinsic zinc oxide (iZnO), 

cadmium sulfide (CdS), and CIGS. The basic cell design is displayed in Figure 1. 

 

Figure 1. Basic cell structure used. 
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Individual sweeps were first conducted by holding all variables constant and only 

varying the thickness of a single semiconductor layer. This method allowed for the 

examination of how a CIGS cell reacts to variations of a single parameter. The individual 

sweeps showed trends that were observed in every band gap cell tested. Cell efficiency 

decreased as iZnO increased; however, the efficiency proved to be very insensitive to the 

iZnO thickness. This is due to the fact that iZnO is used to aid in the manufacturing 

process and does not directly impact carrier generation. The optimum iZnO thickness was 

determined to be 0.05 µm. CdS showed a slight efficiency increase before an exponential 

drop. Increasing CdS beyond 0.06 µm thickness shadows the CIGS layer thereby 

reducing efficiency. The CIGS layer showed a continual increase in efficiency as 

thickness was increased. This can be contributed to more carriers being generated and a 

higher short circuit current. CIGS thickness exhibited a law of diminishing returns where 

increasing the thickness resulted in smaller and smaller efficiency gains. CIGS thickness 

was limited to 2.5 µm in order to retain the thin and flexible properties of the cell.  

A combined sweep was then required in order to evaluate how changing each 

layer affects the performance of the cell with regard to the others. To conduct the 

combined sweep, thicknesses from each of the individual sweeps needed to be chosen. 

The two thicknesses from each semiconductor layer that yielded the highest efficiencies 

were kept and swept against each other. This resulted in a combined sweep of eight trial 

runs to determine the semiconductor thicknesses that achieved maximum efficiency. 

The process of individual sweeps followed by a combined sweep was then 

repeated four times for the remaining band gap cells. Through this process, the five band 

gap cells all achieved higher efficiencies. A comparison of the control cell efficiency, the 

optimized cell efficiency, and the percent improvement achieved is displayed in Table 1. 

Table 1. Comparison of control cell efficiency with optimized cell efficiency. 

 
 

Ga content 0.1 0.3 0.5 0.7 0.9

Band Gap (eV) 1.14 1.27 1.41 1.55 1.69

Control Cell 14.25% 17.13% 18.63% 20.04% 21.90%

Optimized Cell 14.31% 17.28% 18.89% 20.40% 22.40%

% Increase 0.421% 0.876% 1.396% 1.796% 2.283%
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This simulation succeeded in increasing the efficiency of each cell with the 

highest band gap cell showing the most improvement and a total efficiency of 22.4%. 

Due to a limitation in ATLAS, only the solar spectrums of AM1.5 or AM0 could be used 

for this simulation. Nevertheless, the simulation did confirm that CIGS cells of varying 

band gaps responded differently to the spectrum of AM1.5. 

Recommendations for future work include: 

1. Physical Confirmation of Model 

Confirming the model is an important step in this research; however, it is not a 

sufficient substitute to physical confirmation. CIGS cells with varying band gaps need to 

be produced and tested in contrasting geographic locations or solar irradiance to confirm 

the concept presented in this thesis. 

2. Model Improvement 

Additional research is required in order to improve the ATLAS model used in this 

thesis. Research into how manufacturing defects affect the performance and how to 

model these characteristics will produce a more accurate model. Electron hole mobility 

and lifetime also need to be more accurately modeled for higher band gap CIGS material. 

3. Currently Manufactured Cell Parameters 

Parameters for CIGS cells that are currently being manufactured need to be 

attained and added to the model. The lack of these parameters is due to company’s 

reluctance to freely publish designs that required thousands of dollars and man hours to 

determine. By obtaining real world parameters, a more accurate model can be created and 

confirmed. 

4. Additional Solar Spectrums 

Designing solar cells that were specifically tuned to the solar irradiance of a 

region was the goal of this thesis. In order to fully validate this concept, additional solar 

irradiance profiles need to be entered into ATLAS. Currently Silvaco and ATLAS 

contain the standard spectrums of AM0 and AM1.5. By entering measured solar 

irradiance into the model, a true optimum band gap cell can be developed and tested. 
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5. Higher Efficiency CIGS concepts 

With CIGS ability to vary band gap, differing designs can be tested in an attempt 

to achieve higher efficiency cells. A dual junction CIGS cell can be attempted by placing 

a higher band gap CIGS material above a lower band gap one. Another concept is to 

design a CIGS layer that continually changes band gap with thickness. The top of the 

CIGS layer would be high band gap material and then gradually transition to lower band 

gaps towards the bottom of the cell. This gradient could present the benefits of a multi-

junction cell without the need for tunnel junctions between layers of different materials. 
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I. INTRODUCTION 

A. BACKGROUND 

As energy demand continues to rise, the need for renewable energy sources is 

increasingly evident. This need is even greater for expeditionary military forces which 

cannot rely on grid power for many of their systems. While technology and innovation 

continues to improve the lethality of military forces, it also presents an ever-increasing 

energy demand. Logistical resupply has responded with more convoys supplying units 

with fuel for generators and non-rechargeable batteries. In the presence of improvised 

explosive devices and ambushes, these convoys represent unnecessary risk to friendly 

forces and supply lines. This presents a clear need for renewable energy sources. 

Solar cells, at present, are one of the most widespread forms of renewable energy 

in the civilian and military domains. Several solar projects have been commissioned by 

the Marine Corps for stationary units, mobile units, and patrolling Marines. As 

technology advances, these systems have become smaller and more efficient. However, 

cost has not been shown to decrease proportional to technological advancement. In the 

face of decreasing budgets and cuts to military spending, the need for efficient and 

inexpensive solar cells is desired. 

Thin film solar cells present an attractive option due to their light weight and 

flexible nature. Leading the thin film market are cells constructed from copper indium 

gallium di-selenide (CIGS), a compound quaternary semiconductor alloy. The robust 

material properties of CIGS cells present many attractive features for both military and 

consumer applications, such as mechanical flexibility and durability. One of the most 

desirable traits is the low cost of manufacturing CIGS cells. Although CIGS cells 

currently lack the efficiency of silicon (Si) based cells or more advanced multi-junction 

cells, continued research shows promise in closing this gap while still retaining all the 

desired qualities of CIGS. Optimization of the design parameters of CIGS structures is 

necessary to fully maximize the capabilities of cells which will be used in future systems. 



 2 

B. RELATED RESEARCH AT NPS 

Many approaches have been attempted to increase the efficiency of CIGS cells. 

Consistent with all solar cells, CIGS performance parameters are highly influenced by the 

thickness, doping and the band gap engineering of each section of the cells, which are 

grown epitaxially upon a substrate. The work in this thesis relies on previous work at the 

Naval Postgraduate School (NPS) to build a base parameter cell. 

In 2012, LT Konstantinos Fotis of the Hellenic Navy developed a CIGS cell in 

ATLAS. By varying the mole fraction of gallium (Ga) in CIGS, he created cells with 

different band gaps. Placing a higher band gap CIGS layer on top of a lower band gap 

one, he created a rudimentary dual junction cell resulting in a higher efficiency [1]. This 

approach has not been attempted by industry and was, therefore, not investigated in this 

thesis. 

C. RESEARCH OBJECTIVE 

The objective of this research is to optimize the thickness of the semiconductor 

layers in CIGS cells for five band gaps. The goal is to increase solar cell efficiency for 

CIGS cells designed for a specified location or climate. The sun produces light at varying 

intensities throughout the wavelength spectrum. As this light passes through the Earth’s 

atmosphere it is absorbed and reflected, resulting in reduced light intensity. This 

reduction is not uniform throughout the Earth. Regions close to the equator receive more 

intense and direct sun light, while the polar regions receive weaker glancing rays. 

Changing the band gaps of CIGS allows us to target the most ideal wavelengths of light 

for a given region. The Marine Corps primary purpose is to be an expeditionary force in 

readiness. This requires Marines to deploy at a moment’s notice to austere environments 

where electrical power is at a premium. Having cells specifically designed for the climate 

or region of operations can result in higher power output and extend operational 

endurance. 

In this thesis, a CIGS cell is modeled using the program called ATLAS provided 

by Silvaco. An initial cell was created based on published designs from [2]–[4]. Cells 

with five different band gaps were then created and the baseline performance for each 
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cell was recorded. The modeled CIGS cells contained three layers of semiconductor 

material; intrinsic zinc oxide (iZnO), cadmium sulfide (CdS), and CIGS. Each layer 

thickness was individually varied to determine performance trends and optimum 

thickness. This process was repeated five times for the five different band gap cells. The 

cell performance, measured by the power conversion efficiency of the cell, was compared 

to the published values to verify the validity of the model. 

D. STRUCTURE OF THESIS 

This thesis is arranged into six chapters. Battlefield application of solar cells is 

covered in Chapter II. The theoretical background into the physics of solar cells and the 

solar spectrum is given in Chapter III. An in depth analysis of CIGS cells is given in 

Chapter IV. An introduction to Silvaco ATLAS and the results of simulation is given in 

Chapter V. The conclusion with recommendations for future work is given in Chapter VI. 
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II. BATTLEFIELD APPLICATIONS OF SOLAR CELLS 

A. INTRODUCTION 

The year 2009 marked a decisive shift in the way the United States Marine Corps 

views energy on the battlefield. On August 13, 2009, the Commandant of the Marine 

Corps (CMC) General James Conway held the first Marine Corps Energy Summit. The 

focus of this summit was to address the growing energy needs on the battlefield. The 

summit posed the question of how the Marine Corps as a whole could reduce the need for 

fossil fuels or grid power while still remaining expeditionary. Following the path laid by 

his predecessor, the current CMC, General James Amos, released the “United States 

Marine Corps Expeditionary Energy Strategy and Implementation Plan” in February 

2011. In this document General Amos states, 

As a Corps, we have become more lethal, yet we have also become 

increasingly dependent on fossil fuel. Our growing demand for liquid 

logistics comes at a price. By tethering our operations to vulnerable supply 

lines, it degrades our expeditionary capabilities and ultimately put Marines 

at risk. To maintain our lethal edge, we must change the way we use 

energy. 

The current and future operating environment requires an expeditionary 

mindset geared toward increased efficiency and reduced consumption, 

which will make our forces lighter and faster. We will aggressively pursue 

innovative solutions to reduce energy demand in our platforms and 

systems, increase our self-sufficiency in our sustainment, and reduce our 

expeditionary foot print on the battlefield. Transforming the way we use 

energy is essential to rebalance our Corps and prepare it for the future. [5] 

In response to this growing energy need, the Marine Corps has fielded three 

systems that rely on solar cells to help provide power to Marines in austere environments. 

Each system is briefly covered, and recommendations for the use of CIGS cells in 

battlefield applications are given in this chapter. 

B. GROUND RENEWABLE EXPEDITIONARY ENERGY SYSTEM 

The ground renewable expeditionary energy network system (GREENS) is a large 

system designed to power a command post. The eight solar cells are rated to produce up 
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to 1,600 W combined which then charge four, 80 pound batteries. The system as a whole 

is designed to provide Marines with 300 W of continuous power [6]. A picture of 

GREENS being utilized is shown in Figure 1. 

 

Figure 1.  GREENS being utilized by Marines in the field, from [7]. 

One of the main drawbacks of GREENS is that it is not particularly portable. The 

solar cells used in GREENS have a top layer of glass which increases the weight and 

makes the array brittle. This requires them to be transported in larger and heavier metal 

cases as seen in Figure 1. The size and weight of this system means that it is not man 

portable. Two complete GREENS can fit into a standard Marine Corps shipping 

container [8]. 

C. SOLAR PORTABLE ALTERNATIVE COMMUNICATIONS ENERGY 

SYSTEM 

The solar portable alternative communications energy system (SPACES) was the 

next solar program and focused on making a solar power system that was more light 

weight. The system contained a foldable solar panel, a battery, and a power converter. 
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The benefit of SPACES is that the system is significantly more light weight and portable. 

The relative size and footprint of SPACES is displayed in Figure 2. 

 

Figure 2.  SPACES being utilized by Marines in the field, from [9]. 

One of the main drawbacks of SPACES was the extremely low efficiency cells 

that were being used with the system. In previous thesis work at NPS, the efficiency of 

the SPACES solar array was measured; it was revealed that SPACES had a maximum 

efficiency of 7.8% in Monterey, CA, and a calculated efficiency of 8.8% under the best 

solar conditions [8]. 

D. MARINE AUSTERE PATROLLING SYSTEM 

The Marine austere patrolling system (MAPS) is a new system that combines 

solar cells with a battery pack as well as water purification. While MAPS has several 

unique features such as power management and distribution system, the focus of this 

thesis is solely on the solar array being used. The MAPS uses triple junction, high 
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efficiency photovoltaic (HEPV) solar cells provided by MicroLink Devices. The 

individual cells are capable of 31.1% efficiency with an average panel efficiency of 25% 

[10], [11]. These cells have undergone a process called epitaxial lift-off that allows the 

cells to be manufactured much thinner than traditional triple junction cells. MicroLink 

Devices advertises a thickness of less than 40 µm [10]. Manufacturing the cells using 

epitaxial lift-off does allow the cell to be lighter weight and somewhat flexible; however, 

due to the crystalline structure of the semiconductor layers used, the cells will never be 

truly flexible. The process of epitaxial lift-off also increases manufacturing cost. The 

flexibility of the MicroLink cell before it is encased in a panel is shown in Figure 3. 

 

Figure 3.  MicroLink Devices, Inc. triple junction solar cell, from [10]. 

From Figure 3, it can be seen that the cell flexibility is consistent with a credit 

card or piece of plastic. This means that when bent beyond a critical point, the crystalline 

layers of the cell begin to fracture and degrade the performance of the cell. The solution 

to this has been to design ruggedized housing that prevents the cells from flexing to the 

point of damage [11]. 

While flexibility in solar cells designed for combat is a desirable attribute, the 

main drawback of MAPS is the cost of these solar cells. These HEPV thin solar panels 

are expensive to manufacture, with initial panels costing upwards of $10,000 by using 

cells costing $300/W [11], [12]. This cost can mainly be attributed to non-recurring 
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engineering costs and product development. A target price point of $50/W is the desired 

end-state for production grade HEPV cells used with MAPS [11], [12]. 

E. CIGS PANELS 

CIGS cells have numerous benefits over traditional solar cells to include being 

truly flexible, light weight and inexpensive. The control cell used in this thesis was 2.75 

µm thick. In addition to being over 1/14th the thickness of the triple junction cell used in 

MAPS, the chalcopyrite structure of CIGS allows the cell to bend to extreme angles. A 

CIGS cell that has been rolled so that the ends of the cell are overlapping is depicted in 

Figure 4. 

 

Figure 4.  CIGS cell being rolled onto itself. 

This property gives a CIGS cell the consistency of a sheet of paper. A sheet of 

paper can be rolled and twisted without any permanent damage; however, if a crease is 

made paper does not return to its original form. The same is true for CIGS cells. They can 
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be rolled and flexed to extreme angles, but if a crease is made, the cell is damaged and 

efficiency is degraded. The properties that allow CIGS to be manufactured extremely thin 

also make them lightweight. 

The practicality of CIGS is not a result of their unique features but from their 

affordability. Current CIGS cells are being manufactured for approximately $1/W [13]. 

In the face of decreasing budgets and a push to acquire commercial-off-the-shelf items, 

CIGS cells offer a decent efficiency at a bargain price. Additional research has shown the 

potential for CIGS price to drop to as low as $0.34/W with improved manufacturing 

techniques and economies of scale [13]. 

The application of CIGS solar panels for Marine Corps application is explored in 

this thesis. The lightweight and inexpensive nature of CIGS aligns with the CMC’s goal 

of making our forces lighter and faster. CIGS cells can be made into a small blanket for 

patrolling Marines or fitted onto larger structures such as General Purpose tents or 

storage units. The truly flexible nature of CIGS allows the solar panels to be rolled up 

with a tent, thereby reducing any additional steps or concern. The lower efficiency of 

CIGS results in a lower power rating per panel; however, the cost savings allows more 

panels to be purchased. This efficiency cost trade off favors CIGS cells. On average a 

CIGS panel is 10% less efficient than current triple-junction panels but 1/300th the cost 

[12], [13]. Potential applications of CIGS in a battlefield environment are shown in 

Figure 5 and Figure 6. 

 

Figure 5.  General purpose tent covered with solar cells, from [14]. 
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Figure 6.  Solar panels mounted on a standard shipping container, from [14]. 

Due to the expeditionary nature of the Marine Corps, a clear need exists for a 

renewable energy system that can feed the energy demand of modern warfare. This 

system must be robust enough to withstand the rigors of combat while also being able to 

withstand the potential for decreasing budgets. 
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III. THEORETICAL BACKGROUND 

A. PHYSICS OF SOLAR CELLS 

1. Photovoltaic Effect in Semiconductors 

Solar cells are composed of materials known as semiconductors. Semiconductors 

are materials that have a band gap in their electronic energy structure. A band gap is the 

amount of energy that is imparted to an electron to free it from the valence band and 

move to the conduction band. When this electron is moved to the conduction band it 

leaves behind a positively charged vacancy known as a hole. The energy structures for 

conductors, semiconductors, and insulators are displayed in Figure 7. 

 

Figure 7.  Energy Structures of Conductors, Semiconductors, and Insulators, 

 from [15]. 

One way electrons can gain energy to overcome the band gap is by absorbing 

energy hv from photons. When an electric field is applied across a semiconductor which 

has carriers generated due to exposure to light, a net current and positive outflow 

of energy can be generated. This phenomenon is called photovoltaic effect. The flow of 

an electron and hole in a semiconductor with an electric field applied is illustrated in 

Figure 8. 
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Figure 8.  Flow of an electron and hole in a semiconductor with an electric 

field applied. 

Only photons with energy higher than that of the band gap can excite an electron 

into the conduction band; therefore, each band gap has a maximum wavelength that can 

free an electron. 

2. Solar Cell Operation 

a. Doping 

The first step in creating a solar cell is to dope the semiconductor. Doping refers 

to the process of introducing foreign atoms into the structure to alter the properties of the 

material. 

Semiconductors doped with donor elements are considered n-type with electrons 

being the majority carrier and holes being the minority carrier. A visual representation of 

crystalline Si doped with phosphorous is depicted in Figure 9. 
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Figure 9.  Crystalline Si doped with a phosphorous atom, from [16]. 

Semiconductors can also be doped with acceptor atoms to create the opposite 

effect. Acceptor atoms need to accept an electron to bond with a semiconductor. This 

type of doping is called p-type, where holes represent the majority carriers and electrons 

are the minority carriers [16]. A sample of Si doped with aluminum is represented in 

Figure 10. 

 

Figure 10.  Crystalline Si doped with an aluminum atom, from [16]. 

b. P-N Junction 

P-n junctions are how an internal electric field is created in a semiconductor. A p-

n junction is formed by joining a p-type semiconductor with an n-type semiconductor. As 
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stated before, p-type semiconductors have holes as the majority carriers while n-type 

semiconductors have electrons. When the two materials are joined, the majority carriers 

diffuse into the opposite material. From the n-type side, electrons diffuse into the p-type 

material and combine with the dopant atoms there to create a negative ion. From the p-

type side, holes diffuse into the n-type to create positive ions. These ions are bound in the 

material via the crystalline lattice structure and are, therefore, immobile. This region of 

positive and negative ions is known as the depletion region. The buildup of positive and 

negative ions on opposite sides of the boundary forms an electric field. This electric field 

opposes the diffusion of the majority carriers but remains small at first. As majority 

carriers cross the boundary and create more charged ions, the electric field grows in 

strength. This process continues until equilibrium is reached. Equilibrium is achieved 

when the diffusion force is equal and opposite of the electric field force [17]. The 

outcome of joining a p-n junction is depicted in Figure 11. 

 

Figure 11.  A p-n junction at equilibrium, from [18]. 
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This electric field is crucial for the operation of solar cells. The strength of the 

electric field is controlled by the concentration dopants in both p and n regions. While the 

electric field opposes the diffusion of majority carriers, it helps to sweep the minority 

carriers through the depletion region.  

c. Photo Current Generation 

When the solar cell is illuminated, some of the photons will have energy above 

the band gap of the semiconductor material. When a high energy photon strikes an 

electron, it frees the electron from its bond creating an electron hole pair. This pair is 

separated by the electric field created by the depletion region. Charge creation and 

separation is shown in Figure 12. 

 

Figure 12.  Charge creation and separation, from [19]. 

The result of illuminating the solar cell is a buildup of excess electrons in the n-

region and holes in the p-region. By connecting the terminals of the cell to a load, excess 

electrons and holes flow through the load to recombine and counteract each other. The 

maximum current that a solar cell can produce occurs when the terminals are shorted 

together. This maximum current is called short circuit current, ISC. Applying a load with a 

resistance creates a voltage in the cell and forward biases the p-n junction. This forward 

bias reduces the amount of current that the cell can provide to the load. The point at 

which no current flows with called the open circuit voltage, VOC [1]. 

3. Solar Non-Idealities 

There are several factors that can degrade the performance of solar cells. Primary 

losses can include reflection of photons off the surface of the cell, shading from the top 
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grid, photons that are below band gap, and recombination losses. Typical losses in solar 

cells are depicted in Figure 13. 

 

Figure 13.  Photoelectric affect in solar cells, from [15]. 

An in-depth explanation of solar cell losses is found in [20]. Optimizing solar cell 

efficiencies by targeting the correct band gap and optimum cell thickness for absorption 

is investigated in this thesis. 

4. Types of Solar Cells 

There are three broad categories of solar cells. The first is single crystalline Si or 

crystalline germanium (Ge). These cells were some of the first solar cells produced and 

still hold a large portion of the market share.  

The second types of solar cells are multi-junction cells. These cells stack higher 

band gap semiconductor material on top of lower band gaps. This process more 

effectively utilizes the solar spectrum resulting in higher efficiencies. One drawback of 

multi-junction cells is the increased cost associated with more complex manufacturing 

process. 

The third types of solar cells are thin film cells. These cells utilize direct band gap 

semiconductors with a high absorption rate. These attributes allow the cells to be 

manufactured with thin semiconductor layers when compared to the other type of solar 

cells. Thin film solar cells are discussed in depth in section C of this chapter. 
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B. SOLAR SPECTRA IRRADIATION ON EARTH 

The sun produces light at various intensities throughout the wavelength spectrum. 

These intensities are closely mimicked by a 6000 K black body radiation. As the light 

travels through space, its intensity decreases by a rate of 1/d
2
 where d is the distance from 

the sun [16]. The standard for measuring light intensity on earth is to describe by how 

many atmospheres the light has passed through. The intensity spectrum for satellites in 

space is labeled as AM0, since the light has not passed through any of the earth’s 

atmosphere. At sea level, near the equator, at noon on a cloudless day, the spectrum is 

labeled as AM1, since light has passed through one standard atmosphere. As not all solar 

cells are utilized on the equator at noon, the industry standard for measuring solar cell is 

AM1.5, or one and a half atmospheres. Intensity losses in this spectrum are due to photon 

absorption by particulates in the atmosphere. The most notable of these are ozone (O3), 

water (H2O), and carbon dioxide (CO2) [16]. These absorption losses are represented by 

deep troughs as seen in Figure 14. 

 

Figure 14.  Solar spectral irradiance versus wavelength for differing standards, 

 from [15]. 
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While absorption losses are represented as deep troughs in the spectrum, this does 

not account for the general loss of intensity. General intensity loss is due to reflection and 

scattering of photons by air molecules and dust particles in the atmosphere [16]. 

As stated earlier, the industry standard is AM1.5. This spectrum gives a relative 

baseline for which all solar cells are tested against. AM1.5 is not representative of the 

solar spectrum at all locations on the Earth; it is merely used for standardization. Besides 

atmospheric effects, spectrum intensity is most influenced by altitude, humidity, and 

latitude. Solar cells at higher altitudes are exposed to more intense radiation than those at 

sea level. An arid climate has less photon absorption by water molecules than a humid 

climate. Solar cells used near the equator have more direct sunlight than a cell used at 

higher latitudes with glancing rays. All of these effects can vary the solar spectrum 

intensity and change the performance of solar cells. By tuning the band gap of CIGS, we 

can optimize cells for a particular region or climate. A cell that is used in a high altitude 

desert might have a different optimum band gap than one used at sea level in 100% 

humidity. By using a cell with an optimized band gap, average power output can be 

increased without significant changes in the manufacturing process. 

C. THIN FILM SOLAR CELL 

Traditional solar cells based on Si and Ge formed the basis of all solar cells today. 

The early solar cell market was dominated by space applications, where power efficiency 

is given top design priority with price and large scale manufacturing being relatively 

neglected. This led companies to produce multi-junction solar cells that achieved record 

efficiencies at high cost. While solar cells of this caliber are within the grasp of 

government backed space programs, the average consumer can obviously not afford this 

solution. 

Due to this gap in the market, initiatives to produce cheap, reliable and efficient 

solar cells for consumer application have been widely researched over the last few 

decades. Various materials have been investigated to improve solar cell manufacture. 

There are three main types of solar cells that are leading the thin film market. They are 
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amorphous Si, cadmium telluride (CdTe), and CIGS. Amorphous Si and CdTe are 

discussed briefly in this section while CIGS cells are discussed in depth in Chapter IV. 

1. Amorphous Si 

Amorphous Si is a material used in thin film solar cells for its high absorption 

rate. Unlike crystalline Si, amorphous Si does not have a uniform crystal structure. It is 

rather a conglomeration of smaller crystals that are deposited onto a material. By 

avoiding the costly process of growing a single continuous crystalline Si structure, 

amorphous Si significantly reduces the manufacturing cost. “Amorphous silicon absorbs 

solar radiation 40 times more efficiently than does single-crystal silicon, so a film only 

about 1 micrometer…thick can absorb 90% of the usable light energy shining on it.” [21] 

A typical configuration of an amorphous Si solar cell is shown in Figure 15. More detail 

on higher efficiency amorphous Si cells can be found in [22]. 

 

Figure 15.  Layers of an amorphous Si solar cell, from [21]. 

2. CdTe 

A second thin film solar cell material on the market is CdTe. CdTe is a 

combination of a group II and group VI elements to form a crystalline structure. Like 

amorphous Si, CdTe possesses an extremely high absorption rate allowing it to be 

manufactured in very thin layers. A typical structure of CdTe is depicted in Figure 16. 

More detailed information on high efficiency CdTe solar cells can be found in [23]. 
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Figure 16.  Layers of CdTe solar cell, from [24]. 
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IV. CIGS SOLAR CELLS 

A. BASIC STRUCTURE 

Modern commercially produced CIGS cells consist of five layers, each with their 

own unique parameters and function. The typical design of a CIGS cell is shown in 

Figure 17. 

 

Figure 17.  CIGS basic structure, from [25]. 

The cells are “grown” beginning with the substrate. Each additional layer is then 

deposited via various commercially available means. The numerous manufacturing 

techniques for fabricating CIGS cells are not investigated in this thesis but some of their 

limitations are taken into account. 

1. Substrate 

The substrate is the starting point for the manufacture of CIGS and is what 

determines whether the solar cell is flexible or rigid. Glass is the most common substrate 

used in production solar cells due to its low cost and ability to resist corrosion. Soda lime 

glass (SLG) is often used in manufacturing for its contribution to increasing performance 

properties. It has been shown that during the manufacturing process, sodium particles 
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from the substrate diffuse into the back contact layer and increase efficiency [26]. While 

this phenomenon is still being investigated, it has been proven that, all things being equal, 

cells manufactured on SLG have higher efficiency than other commonly used substrates. 

The use of SLG as a substrate offers many benefits to CIGS solar cells but has 

one major drawback. Any glass substrate negates the ability of thin film cells to be light 

weight and flexible. Metals such as stainless steel or aluminum offer a suitable substrate 

that allow the solar cell to remain lightweight and flexible. Thin plastics and polymers 

can also be used as a viable replacement to SLG.  As stated in [27], “Typical thickness of 

metal, polymer, or ceramic substrate materials is generally between 25 and 400 um, about 

one or two orders of magnitude lower than standard SLG substrates.” By using certain 

metals as substrates, manufactures are able to retain the lightweight and flexible 

properties that are desired in CIGS cells. 

2. Back Contact 

The back contact of a solar cell is placed between the bottom of the absorber layer 

and the top of the substrate as seen in Figure 17. The back contact layer is designed to 

collect the carriers as they are produced in the absorber layer. The back contact in solar 

cells generally consists of a metal with low resistivity and serves as the positive lead or 

anode of the cell. For CIGS cells, molybdenum (Mo) is used for its compatibility in the 

manufacturing process [25]. 

3. Absorber Layer 

The absorber or CIGS layer is where the majority of carrier generation is 

accomplished. CIGS is an I-III-VI semiconductor known as a chalcopyrite [1]. CIGS is 

an alloy of the materials CuInSe2 (CIS) and CuGaSe2 (CGS). Both CIS and CGS are 

direct band gap materials, with band gaps ranging from 1.07 eV to 1.76 eV and a high 

absorption coefficient. The range of band gap levels covers the infrared and higher 

energies of the sunlight spectrum. This results in most of the incident sunlight being 

absorbed close to the p-n hetero-junction formed with the CdS layer. This property is 

what allows the absorber layer to be manufactured in CIGS cells with thickness orders of 

magnitude smaller compared to traditional Si cells [25]. By alloying these two 
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compounds, we can vary the band gap of CIGS. This property of the CIGS system, and 

how they influence the solar cell operation, is covered in this chapter under section B. 

4. Buffer Layer 

The buffer layer is critical to the operation of the CIGS cell, providing the n-type 

junction layer in the solar cell hetero-junction. A thin layer of CdS is used in CIGS cells 

to accomplish this. CdS has a band gap of 2.4 eV, which allows most of the usable 

photons to pass through. Photons below wavelength 520 nm are absorbed by the CdS 

layer and contribute to losses [25]. It has been shown that a CdS thickness of 40-50 nm is 

ideal for commercially produced CIGS cells [2]. While the use of Cadmium is not 

preferred in manufacturing due to its toxic nature, a suitable replacement has not been 

found that can match its performance. 

5. Window Layer 

A window layer is designed to function in a similar fashion to the back contact. 

The window layer’s purpose is to collect carriers as they are produced and transport them 

to the load. Since the window layer is on top of the solar cell, it needs to be transparent to 

the light spectrum that is required for photoelectric effect. To achieve this desired effect, 

a transparent conducting oxide (TCO) is often used for the window layer. A good TCO 

has a large enough band gap to allow a majority of photons to reach the absorber layer. It 

is also critical that the TCO has a low resistivity to reduce recombination losses. In 

common CIGS cells, zinc oxide (ZnO) is used for the TCO. ZnO has a band gap of 3.3 

eV [25]. In this thesis, two layers of ZnO are used. The first layer, placed directly above 

the buffer layer, is a thin layer of iZnO. This aids in the cell bonding together in the 

manufacturing process. The second layer is ZnO doped with aluminum to give it low 

resistivity and increase efficiency [3]. 

B. ADJUSTING THE BAND GAP 

Changing the band gap of a semiconductor changes what wavelengths of light can 

free an electron. This ability is needed to design a solar cell to be used in an environment 
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with a unique spectral irradiance. As stated earlier, CIGS is really an alloy between CIS 

and CGS. The correct representation of CIGS is 

 1 2( , )x xCu In Ga Se , (4.1) 

where x represents the mole fraction of Ga that is present in the alloy, 

 ( )

Ga
x

In Ga


 . (4.2) 

An x value of zero represents pure CIS and has a band gap of 1.07 eV. An x value of one 

represents pure CGS with a band gap of 1.76 eV [1]. By varying x from zero to one, a 

manufacture can adjust the band gap of CIGS to the desired value. Adjusting the band 

gap according to the Ga content does not follow a linear trend. The equation relating band 

gap to mole fraction for intrinsic CIGS at 300 K is [28] 

 

20.02 0.584 1.07gE x x  
. (4.3) 

From (4.3), the relationship between Ga content and band gap is slightly parabolic. This 

is due to the variation in size between the Ga and In elements when forming the 

chalcopyrite structure. 

Band gap energy is related to photon wavelength by [16] 

 

1.24
( )

( )
gE eV

m

   (4.4) 

where Eg is the band gap energy in electron volts and λ is the wavelength of light in 

micrometers. From (4.4), the relation between band gap and wavelength is inversely 

proportional. How higher band gap material can only effectively absorb shorter 

wavelength light is depicted in Figure 18. 
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Figure 18.  Quantum efficiency curves for CIGS solar cells with different 

relative Ga content giving band gaps of (a) 1.02 eV, (b) 1.16 eV, and 

(c) 1.4 eV, from [29]. 

Changing the band gap affects several performance parameters of solar cells. 

Cells with a higher band gap require high energy photons which in turn product higher 

energy electrons. The higher energy of each released electron causes the solar cell to have 

a higher VOC. The drawback of high band gap material is that there are fewer usable 

photons entering the cell. The decrease of usable photons means that fewer electrons are 

produced which reduces the ISC. The same logic can be applied to lower band gap cells. 

By allowing lower energy photons to create free electrons, the ISC is increased while VOC 

is decreased. Examples of current-voltage (IV) curves for CIGS cells with three different 

band gaps are displayed in Figure 19. 



 28 

 

Figure 19.  Current-voltage curves for CIGS solar cells with different relative 

Ga content giving band gaps of (a) 1.02 eV, (b) 1.16 eV, and (c) 1.4 

eV, from [29]. 

C. BENEFITS OF CIGS CELLS MANUFACTURING 

The use of CIGS solar cells has the potential to lead the market in thin film solar 

cells. This is due to the many benefits that CIGS cells offer both to the manufacturer and 

the consumer. As research continues into improving both the efficiency of the cells and 

reducing the manufacturing costs, CIGS cells have the potential to gain the majority of 

the thin film market share [30]. 

1. Inexpensive Manufacturing 

One of the main benefits of CIGS cells is that they can be commercially 

manufactured at a fraction of the cost of traditional Si cells. To start with, crystalline Si 

cells need to be manufactured from extremely pure Si. Once a manufacturer has bulk Si 

with high enough purity, the material must be heated to extremely high temperatures for 
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it to form in a crystalline structure. This block of crystalline Si is then cut into wafers that 

must undergo numerous rounds of etching and doping before a final product is achieved 

[31]. This process is very time consuming and expensive for the manufacturer.  

Thin film solar cells, such as CIGS can be produced in a much more efficient 

manner. The CIGS material can be deposited onto the substrate and back contact by a 

process called disposition. This essentially sputters the elements onto the substrate at high 

enough temperature to allow them to adhere. This process does not require the high 

tolerances of Si cells and is overall a more manufacture-friendly process [32]. In addition 

to the benefits of disposition, CIGS can be manufactured with a technique call roll-to-

roll. Roll-to-roll manufacturing is displayed in Figure 20. 

 

Figure 20.  Roll-to-roll processing of CIGS solar cells, from [33]. 

With roll-to-roll manufacturing, companies can produce solar cells on a mass 

scale. As the flexible substrate is unrolled, it undergoes several processes that deposit 

layer upon layer onto the substrate. The process significantly cuts down on the production 

time but also allows for a continuous production cycle. Rather than cutting individual 

wafers of Si, roll-to-roll manufacturing supports a continuous sheet of solar cells being 
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produced. This process is so effective that it has allowed companies like Miasolé and 

Solibro to offer CIGS solar cells for a price point of $1/W [33]. 

2. Flexible 

The flexibility of CIGS cells produced on a thin metal substrate is also a 

tremendous benefit. This flexibility gives CIGS an advantage over traditional Si cells 

with respect to mounting. A standard Si cell has properties consistent with a pane of 

glass. This makes a Si cell rigid and brittle, restricting the options for implementing solar 

arrays. The flexible nature of CIGS allows them to be mounted to structures that may not 

be perfectly flat. Research has shown the practicality of mounting CIGS cells on drone 

aircraft, thereby increasing their endurance [34]. 

3. Lightweight 

A byproduct of being thin and flexible is also being lightweight. Being 

lightweight has its advantages for people who wish to take their solar cells with them as 

they travel about. This means that the market for solar cells will be able to increase from 

the traditional home or industrial power production to more expeditionary ones. CIGS 

cells could be marketed from campers, backpackers, and general outdoorsmen to beach 

goers and picnickers. Being lightweight give CIGS cells a portability that remains out of 

reach for Si based cells. 

D. CURRENT STATE OF TECHNOLOGY. 

Research into CIGS cells continues to improve the efficiencies seen in 

manufactured cells. The National Renewable Energy Laboratory’s record efficiencies for 

numerous solar cell technologies versus the date that the efficiency was recorded is 

shown in Figure 21. 
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Figure 21.  NREL’s best research-cell efficiencies versus time, from [35]. 
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Comparing CIGS cells performance in Figure 21 to other single junction non-

concentrated cells, one can see that CIGS cells fall short. The current record for a CIGS 

cell is 20.8% efficiency, which leads the non-concentrated thin-film technologies. 

Compare this to a single crystal Si cell with an efficiency of 25.0% or a single crystal 

gallium arsenide cell with an efficiency of 26.4%, and CIGS cells are simply outpaced 

[35]. When consumers are looking to power their home with solar cells, efficiency is the 

driving factor. A cell that is light weight and flexible is of little concern if it has 5% lower 

efficiency. CIGS cells still have the advantage of being inexpensive. As manufacturers 

continue to improve the efficiency, CIGS will gain a larger foot hold on the market. 

While the industry standard is to measure cell efficiency against an irradiance of AM1.5, 

CIGS ability to have a variable band gap may give users in unique climates higher usable 

power than similar single junction cells. All these benefits point to an increase in CIGS 

demand with manufactures finding ways to increase efficiency and decrease production 

costs. 

E. CONCLUSION 

An in-depth look at CIGS solar cells was given in this chapter. The basic layers 

were discussed as well as the numerous benefits that CIGS possess over comparable 

cells. An explanation into how CIGS cells can be manufactured with various band gaps 

was given as well as the benefit that this offers to consumers. Finally, the current state of 

CIGS was discussed and compared to other solar cells that are on the market today. 
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V. SIMULATION AND RESULTS 

A. SILVACO BASICS 

Silvaco is a company that has specialized in many programs used for simulating 

engineering designs and testing them. More specifically, the ATLAS software provided 

by Silvaco is used to obtain the results discussed in this thesis. “Atlas provides general 

capabilities for physically-based two (2D) and three-dimensional (3D) simulation of 

semiconductor devices” [28]. ATLAS contains a comprehensive set of models and 

numeric integration techniques to accurately model semiconductor devices such as solar 

cells. The various inputs and outputs that ATLAS can accept and output are shown in 

Figure 22. 

 

Figure 22.  ATLAS inputs and outputs, from [28]. 

The basic format of ATLAS is to design a device using a grid of nodes. Several 

device parameters can be entered using various statements. ATLAS solves second order 

partial differential equations at each node to determine several characteristics of the 

device at equilibrium. These characteristics can include voltage, current, charge density, 

carrier concentration and so on. ATLAS solves these equations by using an iterative 
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method to attempt to converge on a solution. The art of using ATLAS is designing a grid 

that is fine enough to yield accurate results but not so fine that the simulation times out. A 

user can also encounter problems if their grid is so sparse as to not facilitate convergence 

of the model [28]. An in-depth look into the commands and functions used in ATLAS is 

available in Appendix A. 

B. SOFTWARE CONFIRMATION 

The first process of the simulation was to confirm the model against other 

documented CIGS cells and research. Confirming the model against experimental results 

is required in order to ensure that the model is feasible and realistic. Having a baseline or 

control cell is also critical with regard to optimization. By making only small changes to 

the confirmed cell, it can be inferred that the optimized cell still falls in the realm of a 

feasible and realistic solar cell. 

Confirmation of the model against present day manufactured devices was desired; 

however, due to corporate competition, many companies are reluctant to freely advertise 

their proprietary knowledge and manufacturing techniques. A combination of several 

documented research works were used in the confirmation of this model [2] – [4].  

1. Basic Cell Confirmation 

For this thesis, a CIGS cell that was comprised of five layers was constructed. 

Starting with the top of the cell, the layers are as follows; ZnO-0.2 µm, iZnO-0.1 µm, 

CdS-0.05 µm, CIGS-2.0 µm, and Mo-0.4 µm. The simulated cell had a top area of one 

centimeter squared, based on the industry standard for laboratory testing. A visual 

representation of the base cell structure is depicted in Figure 23. For the coding used to 

create this model and additional parameters of the cell refer to Appendix B. 
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Figure 23.  Control cells used as the basis of simulation. 

In researching the basic semiconductor parameters for CIGS cells, it was found 

that the parameters varied only slightly. By not hard coding these parameters into 

ATLAS, the values were calculated automatically according to material parameters and 

doping. The semiconductor parameters used in this thesis were relative permittivity Ɛr, 

band gap Eg, electron affinity χe, density of states in the conduction band Nc, density 

states in valence band Nv, electron band mobility µn, and hole band mobility µp. The 

values calculated by ATLAS are displayed in Table 1. These values come close to 

matching the values found in [36].  
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Table 1.   Semiconductor material parameters. 

 
 

The cell used as the base line was given a Ga content of 30%. This yielded a cell 

that had a band gap of 1.27 eV. After running the model it was determined that this cell 

had an efficiency of 17.13%. The efficiency measured from the model is consistent with 

cells of similar parameters. 

2. Band Gap Confirmation 

Continuing from the base cell, the method in which ATLAS calculated band gap 

needed to be verified. ATLAS allows the user to enter the mole fraction of Ga used in 

creating the CIGS region by the command x.comp. Five cells with different band gaps 

were modeled in this thesis. The amount of Ga used in the five cells was 10%, 30%, 50%, 

70% and 90%. Each Ga content was entered separately and readings of ATLAS’s 

calculated band gaps were taken. ATLAS’s calculated band gaps from lowest to highest 

were 1.14 eV, 1.27 eV, 1.41 eV, 1.55 eV, and 1.69 eV. Performing a quadratic regression 

on this data yielded a band gap equation of 

 
2( ) 0.024 0.667 1.07gE eV x x    (6.1) 

where x is the mole fraction of Ga used in the CIGS region. An extrapolated curve of this 

data is shown in Figure 24. 

iZnO CdS CIGS

Ɛr 8.49 10 13.6

Eg (eV) 3.37 2.48 varied

χe (eV) 4.5 4.18 4.58

Nc (1/cm
3
) 2.2x10

18
2.41x10

18
2.2x10

18

Nv (1/cm
3
) 1.8x10

19
2.57x10

19
1.8x10

19

µn (cm
2
/Vs) 100 340 100

µp (cm
2
/Vs) 25 50 10
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Figure 24.  Extrapolated graph of Ga content versus band gap. 

In addition to recording the calculated band gaps, IV curves for each of the five 

cells were created. Comparing the IV curves of cells with differing band gaps ensured 

that ATLAS was successfully modeling higher band gaps material. As stated in Chapter 

IV, higher band gap solar cells should produce a higher VOC but a lower ISC. The five IV 

curves of the control cell thicknesses are shown in Figure 25. A detailed breakdown of 

the data from Figure 25 is given in Table 2. 
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Figure 25.  IV curves of the control cells with varying Ga content. 

Table 2.   Measurements from IV curves in Figure 25. 

 

The final step to validate that ATLAS was correctly modeling the changing band 

gap was to produce a plot of the quantum efficiency of each cell. As the band gap of each 

cell increased, the wavelengths of light that could create an electron hole pair would 

decrease. This trait is depicted in Figure 26. 

Ga content 0.1 0.3 0.5 0.7 0.9

Isc (A) 0.0306 0.0293 0.0265 0.0244 0.0233

Voc (V) 0.61 0.74 0.88 1.02 1.15

Imax (A) 0.0273 0.0268 0.0242 0.0223 0.0211

Vmax (V) 0.52 0.64 0.77 0.90 1.04

Pmax (W) 0.0143 0.0171 0.0186 0.0200 0.0219

Fill Factor 76.38% 78.64% 80.00% 81.08% 81.29%

Efficiency 14.25% 17.13% 18.63% 20.04% 21.90%

Eg (eV) 1.14 1.27 1.41 1.55 1.69
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Figure 26.  Quantum efficiency versus wavelength for CIGS cells with five 

different band gaps illuminated with AM0. 

C. OPTIMIZATION 

We sought to optimize the thicknesses for the layers of iZnO, CdS, and CIGS in 

each of the five band gap cells. The entire process to optimize a CIGS cell with a Ga 

content of 30% and a band gap of 1.27 eV is covered in this section. This band gap most 

closely mimics cells that are currently being produced. The same process was followed 

for the four remaining band gap cells. The optimization sweeps for these remaining cells 

can be found in Appendix C. 

1. Individual Sweeps 

Individual sweeps were first conducted by holding all variables constant and only 

varying the thickness of a single semiconductor layer. This allowed for the examination 

of how a CIGS cell reacts to variations of a single parameter. 

The first step was to determine what range of values each semiconductor would 

be swept through. Current manufacturing limitations show that thicknesses below 0.05 

µm are below the tolerances that are achievable. The lower limit for both iZnO and CdS 
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was set at 0.05 µm. The upper limit for these two layers was set at 0.1 µm thereby 

doubling the thickness. The CIGS layer was swept from 1.0 to 2.5 µm. Capping the CIGS 

layer at 2.5 µm ensures that the cell remains lightweight and flexible while attempting to 

achieve optimum efficiency. 

The first individual sweep was that of iZnO and is displayed in Figure 27. 

 

Figure 27.  Sweep of iZnO thickness from 0.05 to 0.1 µm versus cell efficiency. 

From Figure 27, it is evident that as the iZnO layer increases, the cell’s efficiency 

decreases. The cell efficiency is not particularly sensitive to this change though. By 

doubling the iZnO layer, the efficiency only decreases by 0.02%. The cell is not sensitive 

to this change due to the fact that the iZnO layer is designed to aid in the bonding of the 

cell during the manufacturing and does not contribute to carrier generation. 

 The second individual sweep was that of CdS and is displayed in Figure 28. 
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Figure 28.  Sweep of CdS thickness from 0.05 to 0.1 µm versus cell efficiency. 

The CIGS cell efficiency is significantly more sensitive to the CdS thickness. Cell 

efficiency fell over 5% by doubling the thickness of CdS. As stated previously, CdS has a 

band gap of 2.4 eV. Increasing the thickness CdS creates a stronger electric field between 

the p-n hetero-junction at the cost of absorbing more of the usable photons from reaching 

the CIGS layer. From Figure 28, CdS reached peak efficiency at 0.06 µm before 

efficiency began to fall off. 

The final individual sweep was that of CIGS and is displayed in Figure 29. 



 42 

 

Figure 29.  Sweep of CIGS thickness from 1.0 to 2.5 µm versus cell efficiency. 

From Figure 29, is can be seen that cell efficiency continues to increase as the 

CIGS thickness increases. As the thickness of the absorber layer is increased, more 

carriers are generated. More carriers results in higher ISC and a higher current at the 

maximum power point. As the CIGS layer increases, carriers generated farther from the 

p-n junction are subjected to a weaker electric field and more subject to recombination of 

electrons and holes. This recombination results in a law of diminishing returns where an 

increase of layer thickness does not result in major efficiency gains. The thickness of 

CIGS was capped at 2.5 µm to prevent chasing higher efficiency at the cost of losing the 

lightweight flexible qualities. 

2. Combined Sweep 

 A combined sweep was required in order to evaluate how changing each layer 

affects the performance of the cell with regard to the others. Increasing a layer’s 

thickness could result in shadowing a lower region and contribute to losses. To conduct 



 43 

the combined sweep, thicknesses from each of the individual sweeps needed to be 

chosen. The two thicknesses from each semiconductor layer that yielded the highest 

efficiencies were kept. The optimization was run as three nested for loops, sweeping the 

thickness of iZnO first, then CdS, and finally CIGS. This resulted in a total of eight trial 

runs to determine the thicknesses of each layer that produces the optimum efficiency. 

Each trial run with corresponding thicknesses and the efficiency achieved is shown in 

Table 3. A visual representation of Table 3 with efficiency versus trial run is given in 

Figure 30. 

Table 3.   Optimization trial run with corresponding thicknesses and 

efficiency. 

 
 

Trial Run CIGS(µm) CdS(µm) iZnO(µm) Efficiency

1 2.25 0.05 0.05 17.220%

2 2.25 0.05 0.06 17.216%

3 2.25 0.06 0.05 17.232%

4 2.25 0.06 0.06 17.219%

5 2.50 0.05 0.05 17.271%

6 2.50 0.05 0.06 17.267%

7 2.50 0.06 0.05 17.283%

8 2.50 0.06 0.06 17.270%
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Figure 30.  Optimization trial run versus cell efficiency. 

From Figure 30 and Table 3, trial run seven achieved the peak efficiency of 

17.283%. Trial run seven corresponded to an iZnO thickness of 0.05 µm, CdS thickness 

of 0.06 µm, and a CIGS thickness of 2.5 µm. Compared to the control cell with an 

efficiency of 17.13%, the optimized cell was able to achieve a 0.876% improvement in 

efficiency. The IV curves for both the control and optimized cell are displayed in Figure 

31. 

 

Figure 31.  IV curves of Initial Cell and Optimized Cell. 
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D. FINAL RESULTS  

The process described in the previous section was then repeated four times for the 

remaining cells and band gaps. Each of the individual sweeps exhibited the same trends 

as previously described. By following the same process, all of the cell’s efficiencies were 

improved upon. A comparison of the control cell efficiency, the optimized cell efficiency, 

and the percent improvement achieved is shown in Table 4. From Table 4, the higher 

band gap cells achieved a larger efficiency increase than the lower band gap cells. 

Table 4.   Comparison of control cell efficiency with optimized cell 

efficiency. 

 
 

In optimizing the efficiency for each of the band gaps, it was found that the 

optimum thickness for each of the semiconductor layers remained the same. These 

thicknesses were 0.05 µm for iZnO, 0.06 µm for CdS, and 2.5 µm for CIGS. This was 

partially due to a limitation in ATLAS. The only solar spectrums that are preprogramed 

in ATLAS are AM0 and AM1.5, leading to each cell being illuminated with identical 

solar irradiance and no variation of the optimum points. Additional work is needed to 

input measured solar spectrums from various regions and climates on earth. 

Although one optimum point was reached, this research was able to increase the 

efficiency of all five cells and show that an optimum band gap exists for a given 

spectrum. The optimized IV curves of all five cells are displayed in Figure 32, while 

detailed values corresponding to Figure 32 are displayed in Table 5. 

Ga content 0.1 0.3 0.5 0.7 0.9

Band Gap (eV) 1.14 1.27 1.41 1.55 1.69

Control Cell 14.25% 17.13% 18.63% 20.04% 21.90%

Optimized Cell 14.31% 17.28% 18.89% 20.40% 22.40%

% Increase 0.421% 0.876% 1.396% 1.796% 2.283%
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Figure 32.  IV curves of the optimized cells with varying Ga content. 

Table 5.   Measurements from IV curves in Figure 32. 

 

Ga content 0.1 0.3 0.5 0.7 0.9

Isc (A) 0.0308 0.0297 0.0270 0.0250 0.0240

Voc (V) 0.61 0.74 0.88 1.02 1.15

Imax (A) 0.0275 0.0270 0.0245 0.0227 0.0215

Vmax (V) 0.52 0.64 0.77 0.90 1.04

Pmax (W) 0.0143 0.0173 0.0189 0.0204 0.0224

Fill Factor 76.08% 78.22% 79.48% 80.49% 80.71%

Efficiency 14.31% 17.28% 18.89% 20.40% 22.40%

Eg (eV) 1.14 1.27 1.41 1.55 1.69
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VI. CONCLUSION 

A. CONCLUSION 

The objective of this thesis was to design CIGS solar cells that were optimized for 

a specific climate or region. Silvaco ATLAS was used as a virtual fabrication and 

modeling tool. A base line cell was created by entering the parameters and characteristics 

of other known CIGS cells to verify the validity of the model. 

Continuing from the base cell, four additional cells were created in which only the 

amount of Ga used in the creation of the CIGS layer was varied. This yielded a total of 

five cells that with band gaps of 1.14 eV, 1.27 eV, 1.41 eV, 1.55 eV, and 1.69 eV. 

This research focused on optimizing the thicknesses of the semiconductor layers 

in each of the band gap cells. The semiconductor layers that were optimized were iZnO, 

CdS, and CIGS. For each of the band gaps, the three semiconductor layers were swept 

individually over a realistic range of thicknesses. Once the individual sweeps were 

complete, the two thicknesses that yielded the highest efficiency were kept. A combined 

sweep was then conducted with the two best thicknesses of each of the three layers. This 

resulted in a final optimization of eight trial runs. The highest efficiency was recorded 

along with the associated thicknesses of each of the semiconductor layers. 

This simulation succeeded in increasing the efficiency of each cell. The largest 

band gap cell showed the greatest improvement with a control cell efficiency of 21.90% 

and an optimized cell efficiency of 22.40%. As solar cells approach higher and higher 

efficiency, the ability to continue to increase efficiency becomes increasing difficult. The 

control cell in this thesis was based on high efficiency CIGS cell; therefore, the efficiency 

improvement of the optimized cell represents a significant improvement. As previously 

stated, the current record efficiency for CIGS is 20.8% [35]. While the efficiency in this 

thesis is only theoretical, it exceeds the current record efficiency by 1.6%. Due to a 

limitation in ATLAS, only the solar spectrums of AM1.5 or AM0 could be used for this 

simulation. Nevertheless, the simulation did confirm that CIGS cells of varying band 

gaps responded differently to the spectrum of AM1.5. 
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B. RECOMMENDATIONS FOR FUTURE WORK 

1. Physical Confirmation of Model 

Confirmation of the model was an important step in this research; however, it is 

not a sufficient substitute to physical validation. CIGS cells with varying band gaps need 

to be produced and tested in contrasting geographic locations or solar irradiance to 

validate the concept presented in this thesis. 

2. Model Improvement 

Additional research is required in order to improve the ATLAS model used in this 

thesis. Research into how manufacturing defects affect the performance and how to 

model these characteristics will produce a more accurate model. Electron hole mobility 

and lifetime also need to be more accurately modeled for higher band gap CIGS material. 

3. Currently Manufactured Cell Parameters 

As stated before, current manufactures parameters for high efficient CIGS cells 

were not available. This is due to company’s reluctance to freely publish parameters that 

required thousands of dollars and man hours to determine. By obtaining real world 

parameters, a more accurate model can be created and validated. 

4. Additional Solar Spectrums 

Designing solar cells that were specifically tuned to the solar irradiance of a 

region was the goal of this thesis. In order to fully validate this concept, additional solar 

irradiance profiles need to be entered into ATLAS. Currently, Silvaco and ATLAS 

contain the standard spectrums of AM0 and AM1.5. By entering measured solar 

irradiance into the model, a true optimum band gap cell can be developed and tested. 

5. Higher Efficiency CIGS Concepts 

With CIGS ability to vary band gap, differing designs could be tested in an 

attempt to achieve higher efficiency cells. A dual junction CIGS cell could be attempted 

by placing a higher band gap CIGS material above a lower band gap one. Another 

concept would be to design a CIGS layer that continually changed band gap with 



 49 

thickness. The top of the CIGS layer would be high band gap material and then gradually 

transition to lower band gaps towards the bottom of the cell. This gradient could possess 

the benefits of a multi-junction cell without the need for tunnel junctions between layers 

of different materials. 
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APPENDIX A. DEVICE BASIC CONSTRUCTION AND LAYOUT 

To build a device in ATLAS from scratch, the user must use a program called 

DeckBuild. DeckBuild requires a very specific set of instructions to accurately design the 

device you wish to model. Both formatting and order matter when designing a device. 

There are five major categories that statements can fall under. Statements that specify the 

structure, material properties, numerical method for solving, statements to specify the 

solutions desired, and how to display the results. Within each of these categories are 

several statements used to finely tune each desired input parameter. A graphical depiction 

of major and minor statements in DeckBuild is displayed in Figure 33. 

 

Figure 33.  Categories of statement used in DeckBuild, from [28]. 

A. STRUCTURE SPECIFICATION 

Under Structure Specification are several statements that allow the user to define 

the environment in which simulations will be run. These statements include Mesh, 

Region, Electrode, and Doping [28]. 
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1. Mesh 

The MESH statement is used to define the mesh of nodes that ATLAS will use 

during integration. The user can define x and y positions along with desired spacing 

between these locations. By defining the spacing between major locations, the user saves 

time from having to enter hundreds of x and y lines. For example, the following code 

creates 20 vertical lines from x= −1 to x= 1. 

MESH AUTO WIDTH=10000 

X.MESH LOCATION= −1.0 SPACING=0.1 

X.MESH LOCATION= 1.0 SPACING=0.1 

The results of this code with vertical grid lines every 0.1 µm are displayed in Figure 34. 

 

Figure 34.  Mesh with vertical lines every 0.1 µm from x= −1 to x= 1. 
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ATLAS’s primary method for creating and simulating devices is in two 

dimensions. The user can enter the statement width which mimics a three-dimensional 

device without additional calculations. For solar cells this means that the ISC reflects a 

device with a top area defined by the user. A one centimeter squared cell, the industry 

standard for laboratory testing was simulated for this thesis. 

The use of auto following the mesh statement is also a very useful tool provided 

by ATLAS. This command allows the user to skip specifying the y locations of the grid. 

ATLAS automatically defines these locations based on the layers and thicknesses of 

materials defined later. Auto was particularly useful in automatically creating the y mesh 

while sweeping various thicknesses [28].  

2. Region 

The REGION statement is used to fill the mesh with regions of material. Each 

region is assigned a number and material. The regions must also be bounded or defined in 

the mesh. Below is a structure of the region statement  

REGION NUMBER=<integer> MATERIAL=<material type> <position>. 

When using the auto meshing function of ATLAS, the position portion of the 

REGION statement consists of multiple parts. Top or bottom is used to define the 

position of the new layer with respect to the existing structure. ATLAS automatically 

places this new region either on the top or bottom of the stack. The thickness of the 

region must be defined next. When using the auto mesh function there are two ways to 

specify the y grid. The user can enter ny or sy at the end of the region statement to specify 

either the number of y lines or the spacing of the y lines, respectively. An example of auto 

meshing region statement is given below: 

REGION number=1 material=CIGS thickness=2 top ny=10. 

This statement places a CIGS layer of material on the top of the structure and 

define it as region one. This region has a thickness of 2 µm with ten gridlines in the y 

direction. The number defined in the region statement can be referenced through the 

remainder of the code [28]. 
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3. Electrode 

The ELECTRODE statement specifies the location and name of the electrodes 

being used. The electrodes can be bounded according to the mesh or can be placed along 

the top or bottom of the cell. The following statement defines the top of the structure as 

the cathode [28]: 

ELECTRODE NAME=cathode top. 

4. Doping 

The DOPING statement is used to add dopants to the various regions of the 

structure. The DOPING statement can define the type of dopant, the distribution type, 

location, and the concentration [28]. An example of a doping statement is displayed: 

DOPING uniform region=1 n.type concentration=1e17. 

This statement specifies that region one, as defined in the REGION statement, will be 

uniformly doped with donor material to a concentration of 10
17

 per cm
3
.  

B. MATERIALS MODELS SPECIFICATION 

The Material Models statements must follow the Structure Specification 

statements. In this section, the user can change various default material parameters and 

choose which physical model ATLAS uses during device simulation [28]. 

1. Material 

The MATERIAL statement divides materials into three categories, 

semiconductors, conductors, and insulators. Each category has its own parameters that 

can be specified. For semiconductor materials, these parameters include band gap, 

permittivity, affinity, electron and hole mobility, and density of states [28]. An example 

of a material statement is given by: 

MATERIAL MATERIAL=ZnO EG300=3.3 PERMITTIVITY=9 AFFINITY=4 

MUN=100 MUP=25 NC300=2.2E18 NV300=1.8E19 
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2. Models 

Physical models that the user desires to be present in the simulation are entered 

using the MODELS statement. ATLAS breaks physical models into five categories: 

mobility, recombination, carrier statistics, impact ionization, and tunneling [28]. Defining 

the recombination event as Shockley-Read-Hall (SRH) fixes the minority carrier lifetime 

to a predetermined value. ATLAS offers numerous additional model statements found in 

their manual [28]. 

C. NUMERIC METHOD SELECTION 

The numeric method is where the user chooses how ATLAS solves for the device 

at equilibrium. ATLAS offers three choices for numeric method; NEWTON, GUMMEL, 

and BLOCK. The NEWTON method is used for systems that have a strongly coupled 

system of equations. NEWTON attempts to solve the system as a whole. This method 

always gives the best convergence but can be time consuming and requires a good initial 

estimate. The GUMMEL method is used when the system of equations are weakly 

coupled. GUMMEL attempts to solve each unknown individually while keeping other 

variables constant. This yields the shortest calculation time but can become unstable if 

applied to the wrong system. The BLOCK method is a combination of the previous two, 

solving some equations as coupled while others are de-coupled. For this research, the 

NEWTON method was used in order to ensure that the system converged [28]. 

D. SOLUTION SPECIFICATION 

Once all parameters of the device have been defined and the numeric method 

specified, the user can enter the solution specification. The solution specification section 

allows the user to extract the data required from the device. ATLAS initializes each 

device with a zero bias on all the electrodes. The standard operation for this step is to 

have the user define the voltages at each of the conducting nodes. ATLAS then calculates 

the current through the electrodes as well as internal electric fields [28]. 
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1. Log 

Log files are used when only the terminal characteristics of a device are desired. 

The log file will store voltage and current of each electrode in DC simulations. The user 

specifies the command: 

LOG OUTFILE=<FILENAME>.log 

to open a log file with the name as defined by the user. The SOLVE statement that 

follows inputs all the recorded electrode data into this log file.  

2. Solve 

The SOLVE statement is where the user defines what voltages to sweep the 

device with. As stated previously, ATLAS initializes the device at zero bias on all 

electrodes. Using the SOLVE statement, the user can specify the final voltage to sweep to 

as well as the voltage step size. An example of a SOLVE statement is given by: 

SOLVE VSTEP=0.01 VFINAL=1.3 NAME=anode. 

This SOLVE statement sweeps the voltage on the anode from 0 V to 1.3 V in increments 

of 0.01 V [28]. 

3. Load 

The LOAD statement loads a previously saved file into DeckBuild. Loading a 

previous file can help with the initial guess that ATLAS must perform of the device or 

can allow the user to compare results of a previous simulation to the current simulation. 

Files are loaded into DeckBuild using: 

LOAD INFILE=<FILENAME>. 

4. Save 

The SAVE statement allows the user to save all node point information to an 

outfile [28]. Unlike the LOG statement that records only the terminal characteristics of a 

device, the SAVE statement records all the device parameters such as the mesh, 

materials, and doping. Since SAVE statements record every detail of the device, they take 
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up much more memory than a LOG statement. The command for using a SAVE 

statement is: 

SAVE OUTFILE=<FILENAME>.str. 

E. RESULTS ANALYSIS 

The results analysis statements allow the user to visually display details of the 

device. There are two commands that enable the user to do this, the EXTRACT command 

and the TONYPLOT command. The EXTRACT statement allows for the user to define 

which device parameters they specifically desire and how to calculate them. For this 

thesis, seven EXTRACT statements were used to solve for ISC, VOC, maximum power 

current, maximum power voltage, maximum power, fill factor, and efficiency. An 

example of an EXTRACT statement is: 

EXTRACT NAME=”Short Circuit Current” max(i.”cathode”). 

This statement finds the maximum current at the cathode and stores the value in the name 

“Short Circuit Current.”  

TONYPLOT is a separate command used to visually display the data of any saved 

file. For solar cells, we are mostly concerned with analyzing the IV curves, so 

TONYPLOT is most often used to display log files [28]. An example of the TONYPLOT 

command is given by: 

TONYPLOT <FILENAME>.log. 
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APPENDIX B. ATLAS SOURCE CODE 

A. BASELINE CIGS CELL FILE 

go atlas 

 

#DEFINE THE VARIABLE TO SWEEP 

set iZnO_thick=0.1 

set CdS_thick=0.05 

set CIGS_thick=2.0 

 

# DEFINING THE MESH (1cm2) 

mesh auto width=1e8 

x.mesh location=0.0 spacing=0.5 

x.mesh location=0.5 spacing=0.5 

x.mesh location=1.0 spacing=0.5 

 

# REGIONS 

region num=1 material=ZnO  bottom thick=0.2                 ny=50 conductor 

region num=2 material=ZnO  bottom thick=$iZnO_thick  ny=50 

region num=3 material=CdS  bottom thick=$CdS_thick    ny=50 

region num=4 material=CIGS bottom thick=$CIGS_thick ny=350 x.comp=0.3 

region num=5 material=Molybdinum bottom thick=0.4      ny=100 conductor 

 

# ELECTRODES 

elec num=1 name=cathode top 

elec num=2 name=anode   bottom 

 

# DOPING 

doping uniform region=1 n.type concentration=1e18 

doping uniform region=2 n.type concentration=1e18 

doping uniform region=3 n.type concentration=1e17 

doping uniform region=4 p.type concentration=2e16 

 

# MATERIAL PROPERTIES 

material TAUN=1e-7 TAUP=1e-7 COPT=1.5e-10 AUGN=8.3e-32 AUGP=1.8e-31 

 

material region=1 resistivity=167 

material region=5 material=Molybdinum resistivity=0.055 

 

trap material=CIGS donor e.level=0.635 sign=5e-13 sigp=1e-15 \ 

density=1e14 y.max=2.32 degen.fac=1 

trap material=CdS acceptor e.level=1.2 sign=1e-17 sigp=1e-12 \ 

density=1e18 y.min=0.33 degen.fac=1 
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# MODELS 

models srh temperature=300 bound.trap 

 

# SOLAR LIGHT (AM 1.5) 

beam num=1 x.origin=0.5 y.origin=-1 am1.5 wavel.start=0.285 \ 

wavel.end=1.655 wavel.num=137 

 

# SOLVE I-V CURVE 

solve init 

solve previous 

solve b1=1 

log outfile=CIGS_init.log 

solve previous 

 

extract name="Short Circuit current" max(i."cathode") 

solve vstep=0.01 vfinal=1.3 name=anode \ 

compliance=$"Short Circuit current" cname=cathode 

 

#PLOT THE RESULTS (anode voltage vs. cathode current) 

tonyplot CIGS_init.log –set IV.set 

 

#EXTRACT ADDITIONAL PARAMETERS 

extract name="Open Circuit Voltage" x.val from curve (v."anode", i."cathode") \ 

      where y.val=0 

extract name="Max Power Current" x.val from 

curve(i."cathode",((v."anode")*(i."cathode"))) \ 

      where y.val=max((i."cathode")*(v."anode")) 

extract name="Max Power Voltage" x.val from 

curve(v."anode",((v."anode")*(i."cathode"))) \ 

      where y.val=max((i."cathode")*(v."anode")) 

extract name="Max Power" max((i."cathode")*(v."anode")) 

extract name="FF1" $"Max Power"/($"Short Circuit Current"*$"Open Circuit Voltage") 

extract name="Eff1" $"Max Power"/0.001 

 

quit 

 

B. CIGS CELL SWEEP FILE 

go internal 

 

#LOAD THE FILE TO SWEEP 

load infile=”cellstructure”.in 

 

#DETERMINE WHERE TO SAVE THE FILE 
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save type=sdb outfile=sweep.dat 

 

#SWEEP THE PARAMETERS 

sweep parameter=iZnO_thick type=linear range=”0.05,0.06,2” \ 

parameter=CdS_thick type=linear range=”0.05,0.06,2” \ 

parameter=CIGS_thick type=linear range=”2.25,2.5,2” 

 

endsave 

 

#PLOT THE RESULTS 

tonyplot sweep.dat 

 

quit 
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APPENDIX C. ADDITIONAL BAND GAP CELL RESULTS 

A. GALLIUM OF 10% WITH BAND GAP OF 1.14 eV 

 

Figure 35.  Sweep of iZnO thickness from 0.05 to 0.1 µm versus cell efficiency. 

 

Figure 36.  Sweep of CdS thickness from 0.05 to 0.1 µm versus cell efficiency. 
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Figure 37.  Sweep of CIGS thickness from 1.0 to 2.5 µm versus cell efficiency. 

Table 6.   Optimization trial run with corresponding thicknesses and 

efficiency. 

 
 

Trial Run CIGS(µm) CdS(µm) iZnO(µm) Efficiency

1 2.25 0.05 0.05 14.268%

2 2.25 0.05 0.06 14.264%

3 2.25 0.06 0.05 14.282%

4 2.25 0.06 0.06 14.272%

5 2.50 0.05 0.05 14.296%

6 2.50 0.05 0.06 14.292%

7 2.50 0.06 0.05 14.310%

8 2.50 0.06 0.06 14.300%
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Figure 38.  Optimization trial run from Table 6 versus cell efficiency. 

 

Figure 39.  IV curves of initial cell and optimized cell. 
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B. GALLIUM OF 50% WITH BAND GAP OF 1.41 eV 

 

Figure 40.  Sweep of iZnO thickness from 0.05 to 0.1 µm versus cell efficiency. 

 

Figure 41.  Sweep of CdS thickness from 0.05 to 0.1 µm versus cell efficiency. 
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Figure 42.  Sweep of CIGS thickness from 1.0 to 2.5 µm versus cell efficiency. 

Table 7.   Optimization trial run with corresponding thicknesses and 

efficiency. 

 
 

Trial Run CIGS(µm) CdS(µm) iZnO(µm) Efficiency

1 2.25 0.05 0.05 18.763%

2 2.25 0.05 0.06 18.758%

3 2.25 0.06 0.05 18.800%

4 2.25 0.06 0.06 18.784%

5 2.50 0.05 0.05 18.849%

6 2.50 0.05 0.06 18.844%

7 2.50 0.06 0.05 18.886%

8 2.50 0.06 0.06 18.870%
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Figure 43.  Optimization trial run from Table 7 versus cell efficiency. 

 

Figure 44.  IV curves of initial cell and optimized cell. 
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C. GALLIUM OF 70% WITH BAND GAP OF 1.55 eV 

 

Figure 45.  Sweep of iZnO thickness from 0.05 to 0.1 µm versus cell efficiency. 

 

Figure 46.  Sweep of CdS thickness from 0.05 to 0.1 µm versus cell efficiency. 
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Figure 47.  Sweep of CIGS thickness from 1.0 to 2.5 µm versus cell efficiency. 

Table 8.   Optimization trial run with corresponding thicknesses and 

efficiency. 

 
 

Trial Run CIGS(µm) CdS(µm) iZnO(µm) Efficiency

1 2.25 0.05 0.05 20.212%

2 2.25 0.05 0.06 20.206%

3 2.25 0.06 0.05 20.277%

4 2.25 0.06 0.06 20.259%

5 2.50 0.05 0.05 20.334%

6 2.50 0.05 0.06 20.328%

7 2.50 0.06 0.05 20.398%

8 2.50 0.06 0.06 20.381%
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Figure 48.  Optimization trial run from Table 8 versus cell efficiency. 

 

Figure 49.  IV curves of initial cell and optimized cell. 
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D. GALLIUM OF 90% WITH BAND GAP OF 1.69 eV 

 

Figure 50.  Sweep of iZnO thickness from 0.05 to 0.1 µm versus cell efficiency. 

 

Figure 51.  Sweep of CdS thickness from 0.05 to 0.1 µm versus cell efficiency. 
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Figure 52.  Sweep of CIGS thickness from 1.0 to 2.5 µm versus cell efficiency. 

Table 9.   Optimization trial run with corresponding thicknesses and 

efficiency. 

 
 

Trial Run CIGS(µm) CdS(µm) iZnO(µm) Efficiency

1 2.25 0.05 0.05 22.132%

2 2.25 0.05 0.06 22.126%

3 2.25 0.06 0.05 22.244%

4 2.25 0.06 0.06 22.224%

5 2.50 0.05 0.05 22.292%

6 2.50 0.05 0.06 22.286%

7 2.50 0.06 0.05 22.404%

8 2.50 0.06 0.06 22.384%
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Figure 53.  Optimization trial run from Table 9 versus cell efficiency. 

 

Figure 54.  IV curves of initial cell and optimized cell. 
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