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ABSTRACT

The problem of wavefront reconstruction is important in high precision optical systems,

such as astronomical telescopes, where it is used to estimate the distortion of the collected

light caused by the atmosphere and corrected by adaptive optics. A generalized orthogo-

nal wavelet wavefront reconstruction algorithm is presented in this research for use with

gradient measurements from a Shack-Hartmann wavefront sensor. This algorithm can be

implemented using a number of different wavelets for improved performance in the pres-

ence of noise. An extension of this algorithm is also presented to provide wavefront es-

timation in the presence of isolated branch points where the phase is undetermined. The

wavefront is obtained by augmenting the wrapped observations with a filtered curl of the

vector field. The wavefront estimation can then be used for surface control of a deformable

mirror. A third contribution is in deformable mirror surface control. The control signals

to a deformable mirror are computed that minimize the wavefront error using constrained

optimization to ensure that the hardware actuator voltage limits are satisfied. A sequence

of optimal solutions is used to verify the linear model of a deformable mirror. A multigrid

approach to the optimization problem is shown to improve computation efficiency.
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❊①❡❝✉t✐✈❡ ❙✉♠♠❛r②

Optical systems, such as astronomical telescopes and laser weapons, are highly affected by

perturbation from the propagating medium. The key problem addressed in this dissertation

is how to estimate this perturbation of the optical waveform and compensate for its effects.

In addition, optical wavefront reconstruction is used in many modern applications of engi-

neering and science to provide insight into the performance of optical systems that can be

used for correction and improvement.

Wavefront reconstruction can estimate the atmospheric distortion on the propagating wave

of light. Adaptive optics (AO) uses information about the wavefront to correct the distor-

tion and results in improved system performance. This technique can also detect optical

manufacturing defects, thermal fluctuations of components, gravity sag of the components,

and optical alignment of the components that also affect the wave. These defects are cor-

rected with active optics. While AO corrections are usually small relative to the wavelength

of light and rapidly changing, active optics corrections are large and slowly change.

Both AO and active optics systems commonly use a deformable mirror (DM) as the device

to apply the correction. A DM has a reflective surface with actuators along the back struc-

ture that apply forces causing the mirror surface to adapt to a desired shape. A control law

determines the individual voltages for each actuator that cause the mirror to take the desired

shape. The common practice is that the mirror forms the conjugate of the wavefront, then

the light reflecting off the mirror is a planar wavefront.

In this research we address the problems of phase reconstruction and control of the DM

to compensate for phase distortions. The results are a number of algorithms which are

efficient and scalable to systems with a larger number of sensor measurements and also

robust in the presence of phase singularities due to high levels of atmospheric turbulence.

To address the research objectives, this dissertation has three contributions in AO. The first

is wavefront reconstruction for a large number of sensor measurements. An algorithm for

wavefront reconstruction is presented that uses orthogonal wavelet filters in a tree structure

to estimate the relative phase of the wavefront from gradient measurements. The tree struc-

ture is implemented with two-dimensional quadrature mirror filters (QMFs), which yields

xvii



a computationally efficient approach. The measurements contain noise from the sensor and

it is desirable for the algorithm to mitigate the impact of noise on the resulting wavefront.

The noise filtering properties of this algorithm depend on the chosen wavelet filters used

in the QMF. A modification for the Haar wavelet filters is presented that removes all de-

pendencies on the boundary. The algorithm is designed to reconstruct a square wavefront

of size 2N ×2N for integer N. Although there are applications of AO systems with square

apertures, an additional modification is proposed to handle realistic apertures with other

shapes. The wavefront reconstruction algorithm is tested using simulated wavefront sensor

data.

This algorithm has been designed for irrotational vector field gradient measurements, where

there is no phase ambiguity and the phase is well defined at every point. This is, in gen-

eral, the case of distortion generated by low atmospheric turbulence. Under more severe

turbulence conditions, the intensity of the optical field might be zero at isolated points, thus

causing phase uncertainties. In this case, the measured phase gradient becomes rotational

and it is characterized by phase uncertainty, and branch points, which cause problems in all

standard least-squares algorithms.

The second contribution is in wavefront reconstruction in the presence of significant atmo-

spheric turbulence causing degradation of the optical beam. In this case, the measurements

contain a rotational vector field component. An approach using a non-orthogonal decom-

position to modify the rotational vector field to be irrotational is presented. The wavefront

reconstruction algorithm operates on the irrotational measurements and estimates the phase

that is consistent with the original measurements with rotational components. Our results

show the wrapped phase measurements to make a comparison between the simulated phase

and reconstructed wavefront phase. The algorithm is tested with simulated measurements

of wavefronts. This approach can be applied to any wavefront reconstruction algorithm as

the measurements are modified before the algorithm.

A third contribution is in DM surface control. The commands are calculated as the solu-

tion of a constrained optimization problem. The optimizer uses a linear influence function

model for each actuator and determines a set of voltages that matches a desired surface

shape. Although the model is linear, we expect nonlinear performance on laboratory hard-

ware. An experiment performing mirror surface control using optimization is presented

xviii



where a sequence of optimal problems are used to verify the linear model of a DM. The

hardware configuration uses a sensor which has many more measurement values than ac-

tuators. To decrease computation time, a multigrid approach to the optimization problem

is used, which results in the same optimal solution and is 2.5 times faster. This research

verified the control approach using mathematical optimization on laboratory hardware.

The research in this dissertation can be applied to a variety of AO systems. Wavefront

reconstruction and mirror surface optimization are relevant to many military applications

of precision optical systems. This research supports military capabilities in information

dominance and directed energy weapon development.
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❈❍❆P❚❊❘ ✶✿

■♥tr♦❞✉❝t✐♦♥

Precision optical systems, such as high-resolution imaging or laser weapons, are highly

affected by perturbation from the propagating medium. The key problem addressed in this

dissertation is how to estimate this perturbation of the optical waveform and compensate

for its effects. Wavefront reconstruction is used in many modern applications of engineer-

ing and science to provide insight into the performance of optical systems that can be used

for correction and improvement. Wavefront reconstruction is particularly important in as-

tronomy to estimate the distortion of the collected light caused by the atmosphere [1], [2].

In modern telescopes, this information is used to correct for the distortion using adaptive

optics (AO) to reduce the distortions detected by wavefront reconstruction and gather high-

quality observations of celestial objects. The AO corrections occur on a small time scale

with updates faster than ten times a second. Wavefront reconstruction can also sense distor-

tions from a variety of other sources, such as manufacturing defects, thermal fluctuations,

gravity sag, and optical alignment. These corrections are performed by active optics [3]

and occur on a longer time scale with corrections only once a second or slower.

An AO or active optics system contains three common components: a wavefront sensor,

a computer, and a deformable mirror (DM) [1]. The computer uses measurements from

the sensor to perform the wavefront reconstruction and then commands the DM actuators.

The actuators cause forces along the back of the mirror structure and the mirror surface

deflects to form the conjugate shape of the wavefront. The incoming light reflects off the

DM surface and the wavefront becomes planar. The planar wavefronts improve the optical

performance of the system, and the collected images have improved angular resolution to

distinguish fine details on the distant object. The AO computer must estimate the wavefront

in a short time period and calculate the actuator commands for the DM. If either procedure

takes too long, the distortion may change, and the intended correction may reduce optical

performance.

Another application of wavefront reconstruction is in laser weapon systems, which require

AO for long horizontal distances to targets. As the laser beam propagates from the telescope

1



through the atmosphere to the target, the beam quality degrades from atmospheric effects

and the weapon loses effectiveness. AO is used to apply a correction before the beam is

emitted to reach the target and retain the high-energy laser performance.

Large telescopes are placed high on mountains that have excellent atmospheric “seeing”

conditions. The Fried parameter (or Fried coherence length) quantifies the quality of the

“seeing” and the best locations on Earth may have a Fried parameter value of 20 to 40 cen-

timeters. If the telescope aperture diameter is larger then the Fried parameter, the telescope

is limited by the atmospheric turbulence; incorporating AO into the telescope can overcome

the limitation imposed by the atmosphere. Science missions require larger primary mirrors

to increase the angular resolution and gather more light from the science objects of distant

stars and their orbiting planets. Large monolithic mirrors are limited in maximum surface

dimensions and may take years to correctly manufacture, polish, and test [4], [5]. This lim-

itation has led to segmented mirror telescopes, where many smaller mirrors are combined

to fill the large aperture [3]. These technologies are used in existing telescopes such as the

Gran Telescopio CANARIAS (GTC) and the W. M. Keck observatory, as shown in Fig-

ure 1.1. A thorough historical perspective on segmented mirrors can be found in [6]. These

telescopes are able to observe faint science objects using the highest fidelity in large-scale

optics, active control, and sensor technology.

❋✐❣✉r❡ ✶✳✶✳ ▲❡❢t✿ ❚❤❡ ●❚❈ ♣r✐♠❛r② ♠✐rr♦r ❧♦❝❛t❡❞ ✐♥ ▲❛ P❛❧♠❛✱ ❙♣❛✐♥✱ ✐s ❞✐s♣❧❛②❡❞ ✭❝♦✉rt❡s②
♦❢ ●❚❈ ❉✐❣✐t❛❧✱ ❢r♦♠ ❬✼❪✮✳ ❘✐❣❤t✿ ❚❤✐s ✐s ♦✈❡r❤❡❛❞ ✈✐❡✇ ♦❢ t❤❡ ❲✳ ▼✳ ❑❡❝❦ t❡❧❡s❝♦♣❡s ❛t
t❤❡ ♦❜s❡r✈❛t♦r② ♦♥ ▼❛✉♥❛ ❑❡❛✱ ❍❛✇❛✐✐✱ ✐s ❞✐s♣❧❛②❡❞ ✭❝♦✉rt❡s② ♦❢ ◆❆❙❆ ❏P▲ ❛♥❞ ❲✳ ▼✳ ❑❡❝❦
❖❜s❡r✈❛t♦r②✱ ❢r♦♠ ❬✽❪✮✳

Future telescope designs incorporate technology advancements to expand the state-of-the-

art science capabilities in celestial formations and fundamental physics. The Thirty Meter
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Telescope (TMT) and Giant Magellan Telescope (GMT) will each be larger than 25 me-

ters in diameter [9], [10]. Current artistic renderings of these observatories are shown in

Figure 1.2. The designs require a combination of optics, structures, and controls to make a

functional telescope.

Space-based telescope designs now incorporate segmented mirror technology. For exam-

ple, the James Webb Space Telescope (JWST) consists of 18 mirror segments to form a 6.5

meter primary mirror [11]. A conceptual rendering of the JWST is shown in Figure 1.3.

Current rocket launch vehicles and fairings can support a stowed telescope configuration

that deploys the primary mirror on orbit. After deployment, the mirror segments are posi-

tioned precisely to form the primary mirror.

In addition to segmented mirror technology, space-based telescopes incorporate active op-

tics for on-orbit conditions that cause mirror deformations. Active optics are desired by

program managers for risk mitigation of manufacturing processes that result in an unno-

ticed defect until operation. For these reasons, active optics are highly desirable for space-

based telescopes, as they balance performance risk and system cost.

To mature the segmented mirror with active optics technology for spacecraft, the Segmented

Mirror Telescope (SMT) was built for the Segmented Mirror Demonstrator (SMD) pro-

gram. Its lightweight, segmented primary mirror was constructed by sophisticated manu-

facturing processes to meet the size, weight and power (SWAP) requirements imposed on

3
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satellites [12]. The mirrors were not of high enough quality for an operational mission.

The manufacturing processes have matured since the SMD program finished and industrial

methods are capable of producing excellent mirror surfaces. The SMT is now located at

the Naval Postgraduate School (NPS) for research and shown in Figure 1.3.

Another important application in AO and segmented mirrors with active optics for the

Department of Defense (DOD) is rapidly fielded imaging systems in support of military op-

erations. Segmented mirrors with active optics technology can field an imaging spacecraft

much faster than conventional imaging spacecraft by decreasing the payload manufactur-

ing schedule. An individual segment can be produced in a few months time and multiple

segments can be produced concurrently. Many mirrors can be manufactured and the mir-

rors with the best optical surfaces can be determined by wavefront reconstruction. Active

optics reduce risk on the primary mirror fabrication by reducing polishing rework since the

system can compensate for manufacturing defects. The most compelling justification for

this technology is the cost savings from reduced schedule dedicated to the primary mirror.

1.1 Research Objectives
The first objective of this dissertation research is to develop a wavefront reconstruction al-

gorithm that can be applied to large telescopes. A generalized orthogonal wavelet phase

reconstruction algorithm is described. This approach is appropriate for AO systems with

larger aperture size and increasing the number of sensor measurements. The increase in

4



number of measurements causes issues for the least-squares solvers which rely on matrix-

vector multiplications. The approach presented in this dissertation is comparable with least-

squares algorithms but has lower computational cost. The generalized orthogonal wavelet

approach allows for filters that have improved noise-rejection properties compared to other

existing algorithms. The phase reconstruction algorithm is tested using simulated wave-

front sensor data.

The second objective of this dissertation research is to address wavefront reconstruction for

significant wavefront distortion. Although many applications of phase reconstruction are

used for weak disturbances on the wavefront, there are applications where the wavefront

may experience significant distortion. Strong distortion of the wavefront can occur in long,

horizontal paths through the atmosphere, such as in the maritime environment. Least-

squares algorithms degrade with measurements from the significant distortion such that the

wavefront estimate does not represent a meaningful quantity. The work presented in this

dissertation allows for a correct wavefront to be reconstructed. The modification is tested

with simulated measurements of wavefronts.

The final objective of the dissertation research is the control of a DM using wavefront

sensor data and a mathematical optimization algorithm. The optimizer result selects the

actuator commands to the DM that matches a desired mirror surface shape. The approach

relies on a linear model of actuator influence and the validity of this control approach

is investigated. Prior to this work, the technique has only been validated using computer

simulation. This dissertation research verifies the control approach on laboratory hardware.

1.2 Dissertation Organization
In Chapter 2, the fundamentals of two-dimensional signal processing are presented. The

signal representation notation and transforms that are used throughout the dissertation are

explained. The wavelet phase reconstruction algorithm is presented in Chapter 3. The

algorithm is an approach that recursively operates on gradient measurements to form an

estimated wavefront. In Chapter 4, the branch point modification is presented for wave-

front reconstruction algorithms. Mirror surface control using optimization is discussed in

Chapter 5 and an experiment is conducted to verify the linear influence model of a DM.

Concluding remarks and future research opportunities are given in Chapter 6.
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A signal conveys information about a process of interest and usually is represented as a

function of an independent variable, such as f (t). Although in most applications the in-

dependent variable t is a scalar indicating time, in a more general setting, it is a vector

t = [t1, t2, . . . , tn] indicating time, space, or a combination. This leads to the definition

of multidimensional signals f (t1, t2, . . . , tn). In this chapter, we present the fundamentals

of multirate and multiresolution signal processing as applied to multidimensional signals.

These concepts will be the basis of the phase reconstruction algorithms presented in subse-

quent chapters.

Although most physical signals evolve in a continuous domain of time and/or space, they

are usually processed numerically in the discrete (or sampled) domain using digital sig-

nal processing (DSP). We denote this signal by f (t1, t2, . . . , tM) in the continuous domain

and f [n1,n2, . . . ,nM] = f (n1∆t1,n2∆t2, . . . ,nM∆tM) in the discrete domain, where each ni

is an integer for i = 1,2, . . . ,M. The choice of variable name and brackets distinguish

the difference between continuous and discrete signals. The terms ∆t1,∆t2, . . . ,∆tM de-

note the sampling intervals in each respective dimension. Although general sampling of

multidimensional signals is not a straightforward extension of one-dimensional (1D) sam-

pling [14], in the case of simple sampling on a rectangular grid we can still use the well

know sampling theorem. In this way, the sampling frequencies Fi = 1/∆ti are chosen to be

larger than twice the maximum frequency associated to the respective variables.

Many important signals in imaging applications are represented as two-dimensional (2D)

signals. In this dissertation, we are dealing with 2D signals that represent the phase of an

optical field across a telescope aperture represented by two spatial coordinates, x and y.

For simplicity, sometimes multidimensional signals are abbreviated with vector notation as

f [n] for n = [n1,n2]. In some places in this dissertation, a signal is referred to only by its

symbolic letter name but no brackets for brevity. In these circumstances, a discrete signal

is implied.

By the well-known sampling theorem, there is no loss of information if the signal is sam-
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pled at a sufficiently fast rate Fs. Recovering the original band-limited continuous signal

from the discrete signal can be done using Whittaker-Shannon interpolation

f (x,y) =
∞

∑
n1=−∞

∞

∑
n2=−∞

f [n1,n2]sinc

(

x−n1∆x

∆x

)

sinc

(

y−n2∆y

∆y

)

=

(

∞

∑
n1=−∞

∞

∑
n2=−∞

f [n1,n2]δ (x−n1∆x,y−n2∆y)

)

∗∗sinc
( x

∆x

)

sinc

(

y

∆y

)
(2.1)

where the ∗∗ operator represents continuous time convolution, δ (t1, t2)≡ δ (t1)δ (t2) is the

2D Dirac delta function, and sinc(t)≡ sin(πt)/(πt) that is defined for all t ∈ R.

In the rest of the chapter we introduce the concept of frequency representation of 2D sig-

nals, followed by multiresolution decomposition. These signal processing concepts will

play a major role in the phase reconstruction algorithms presented in this dissertation.

2.1 Two-Dimensional Fourier Transform
We define the continuous 2D Fourier Transform (FT) as

F(κx,κy) = FT{ f (x,y)}=

≡
∫ ∞

−∞

∫ ∞

−∞
f (x,y)e− j2π(κxx+κyy)dxdy

(2.2)

with κx, κy having the appropriate units to ensure that the quantities κxx and κyy are dimen-

sionless.

Extension of the Fourier transform to the 2D sampled signal yields the 2D Discrete Shift

Fourier Transform (DSFT) defined as

F(ωωω)≡
∞

∑
n1=−∞

∞

∑
n2=−∞

f [n1,n2]e
− j(ω1n1+ω2n2). (2.3)

The units of ω1, ω2 are dimensionless expressed in radians or radians per sample, which

has a 2π periodicity in both dimensions of the DSFT; the two frequency variables are

usually constrained to the intervals

−π ≤ ωi < π (2.4)
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for i = 1,2. All other values of ω are associated to aliased frequencies from the sampling

process. If f [n1,n2] = f (n1∆x,n2∆y), then ω1 and ω2 are related to κx, κy as

ω1 = 2πκx∆x, ω2 = 2πκy∆y. (2.5)

2.2 Two-Dimensional z-Transform and Filtering

In this dissertation, we numerically process discrete signals. In the 1D discrete time case,

the z-transform is the tool which most conveniently describes linear shift-invariant (LSI)

operations. It is defined as

F(z) = Z{ f [n]} ≡
∞

∑
n=−∞

f [n]z−n, z ∈ ROC (2.6)

where z is a complex variable and is related to the frequency domain. In general, for signals

of infinite length, the Region of Convergence (ROC) has to be defined. However when f [n]

has a finite interval of definition, then convergence is guaranteed for 0 < |z| < ∞. When

z = e jω and z ∈ ROC, then (2.6) becomes the same as the DSFT. The inverse z-transform

is given by

f [n] = Z
−1 {F(z)} ≡ 1

2π j

∮

C
F(z)zn−1dz. (2.7)

In the above definition, C is a closed, counter-clockwise directed contour that encircles the

origin and is completely inside of the ROC.

The z-transform can be extended to the 2D case and its definition is given by

F(z1,z2) = Z{ f [n1,n2]} ≡
∞

∑
n1=−∞

∞

∑
n2=−∞

f [n1,n2]z
−n1

1 z
−n2

2 , z1,z2 ∈ ROC. (2.8)

One of the fundamental properties of the z-transform is that a shift in the domain of defi-

nition (time or space, accordingly), corresponds to an algebraic operation in the z-domain,

as

Z{ f [n1 +L1,n2 +L2]}= z
L1

1 z
L2

2 F(z1,z2) (2.9)

where L1, L2 are integers. By this respect, the variables z1, z2 can be viewed as shift
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operators. This leads to the use of z1, z2 as unit shift operators, for which we indicate

z1
L1z2

L2 f [n1,n2] = f [n1 +L1,n2 +L2]. (2.10)

By this interpretation, we will make minimal use of the z-transform and rather use the shift

operators.

Filtering is performed by using the convolution operation. For the 2D case, the convolution

of f and g is stated as

f (x,y)∗∗g(x,y)≡
∞
∫

−∞

∞
∫

−∞

f (c1,c2)g(x− c1,y− c2)dc1dc2 (2.11)

for continuous signals and for the discrete signals is

f [n1,n2]∗∗g[n1,n2]≡
∞

∑
m1=−∞

∞

∑
m2=−∞

f [m1,m2]g[n1 −m1,n2 −m2]. (2.12)

Convolution expresses many physical processes and applications arise where one of the

functions represents measured information and the other function represents a filtering ker-

nel that modifies the measurements. In this dissertation, convolution is used to apply filters

to the measured data of the AO system.

In order to efficiently represent convolution, throughout this dissertation we make frequent

use of operator notation. Using the definition of the shift operator z1, z2, and the fact that

x[n1 −m1,n2 −m2] = z
−m1

1 z
−m2

2 x[n1,n2], we write the convolution of two signals as

y[n1,n2] =
∞

∑
m1=−∞

∞

∑
m2=−∞

h[m1,m2]z
−m1

1 z
−m2

2 x[n1,n2]. (2.13)

Then by defining the transfer function of the LSI system

H(z1,z2)≡
∞

∑
m1=−∞

∞

∑
m2=−∞

h[m1,m2]z
−m1

1 z
−m2

2 , (2.14)
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we can write the convolution in operator form as

y[n1,n2] = H(z1,z2)x[n1,n2]. (2.15)

This representation is completely equivalent to the convolution in (2.12) and to its z-

transform correspondent in (2.8). We view (2.15) as a short-hand notation of the convo-

lution operator, which, when necessary, can be extended to the corresponding z-transform

with previous definitions of the correct ROC. Equation (2.15) is equivalent to the following

sequence of operations:

X(z1,z2) = Z{x[n1,n2]}
Y (z1,z2) = H(z1,z2)X(z1,z2)

y[n1,n2] = Z
−1{Y (z1,z2)}.

(2.16)

For ease of notation, we skip the indices n1, n2 and the variables z1, z2 when they are

apparent from the context. In this way, the following expressions are all equivalent:

y[n1,n2] = H(z1,z2)x[n1,n2],

y = H(z1,z2)x,

y = Hx.

(2.17)

Most of the operations in this dissertation are based on a combination of filtering and “re-

sampling” operations, leading to a multirate signals, described next.

2.3 Fundamentals of Multirate DSP
In this section, we review the major definitions and results of multirate DSP, as applied to

general multidimensional signals. Multirate DSP will be the basis of the proposed phase

estimation technique, which processes observed phase differences into a tree-like structure

at different scales and then recombines them into the final phase estimation.

In multirate DSP, there are two elementary resampling operations: downsampling and up-

sampling. By downsampling, we eliminate samples, which is equivalent to resampling the

signal at a lower rate. By upsampling, we interpolate between samples, which is equivalent

11
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to resampling the signal at a higher rate. Whether we do this in the time or space do-

main is immaterial. Although we define these operations in one dimension, they are easily

extendable to two or more dimensions.

Upsampling involves adding new samples between existing samples and all of the new

samples are zero valued. The upsampling of the signal x[n] as y[n] is expressed as

y[n] =

{

x [n/L] if n/L ∈ Z,

0 otherwise
(2.18)

where L is the integer upsampling factor (two or larger). Adding zeros between data points

is a fundamental signal processing tool to be used in conjunction with filtering. The length

of y[n] is now L times the length of x[n]. An example of upsampling a signal in Figure 2.1

(a) is shown in Figure 2.1 (b).

As previously stated, downsampling is the reduction of samples and is defined as

y[n] = x[Ln] (2.19)

where L is the integer downsampling factor (two or larger). Whereas upsampling retains

all original samples, downsampling loses information. An example of downsampling is

shown in Figure 2.1 (c).

In this dissertation, the resampling is always performed using a factor of two on multidi-

mensional signals, in which the operators are treated independently and operate only in
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their dimension. To simplify the notation, the upsampling operator is defined as

y1 =U1x ⇔
{

y1[2n1,n2] = x[n1,n2]

y1[2n1 +1,n2] = 0

y2 =U2x ⇔
{

y2[n1,2n2] = x[n1,n2]

y2[n1,2n2 +1] = 0

(2.20)

for each dimension. The downsampling operator is similarly defined as

y1 = D1x ⇔ y1[n1,n2] = x[2n1,n2],

y2 = D2x ⇔ y2[n1,n2] = x[n1,2n2],

y3 = D1D2x = D2D1x ⇔ y3[n1,n2] = x[2n1,2n2].

(2.21)

Both operations of upsampling and downsampling are always combined with filtering oper-

ations, as shown in Figure 2.2. A full treatment is given in numerous well-known references

(see [15], [16]), and not reproduced here for brevity. Just to give an idea, the reason we

filter before downsampling in Figure 2.2 is that lowering the data rate causes aliasing, thus

requiring an anti-aliasing filter. As far as upsampling, the interpolation of zeros is clearly

unsatisfactory. However, the addition of a filter is equivalent to interpolating the signal by

the impulse response of the filter. Again, it is always an advantage to represent all of these

operations in terms of operators, which we can easily and efficiently manipulate. Operator

notation is particularly important in the problem we have at hand, which, as we will see, is
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based on resampling in two dimensions and can lead to a fair amount of complexity.

The Noble identities [15], [16] are used in multirate signal processing to describe the equiv-

alence of swapping the ordering of downsampling-filtering to filtering-downsampling. The

Noble identities correctly establish the relationship in instances such as

y1 = D1H(z2
1)x = H(z1)D1x,

y2 = D2H(z2
2)x = H(z2)D2x.

(2.22)

The equivalence of (2.22) in block diagram form is shown in Figure 2.2. For example, let

H(z2
1) = z−2L

1 then the left-hand expression of (2.22) is

y1[m] = D1z−2L
1 x[n] = D1x[n−2L] = x[2m−2L] = x[2(m−L)] (2.23)

and the right-hand expression is

y1[m] = z−L
1 D1x[n] = z−L

1 x[2m] = x[2(m−L)], (2.24)

which are the same expression and equivalent. Similar expressions could be stated for

upsampling. Since these operators are linear, they can be applied to any linear combination,

thus to any arbitrary filter H(z).

2.4 Multiresolution Representation of a Signal in a Tree

Structure
A wavefront phase reconstruction algorithm that is based on multiresolution decomposition

is described in this dissertation. This concept is related to the wavelet transform, used in

a variety of applications. The discrete wavelets are a particular class of filter kernels and

they form a basis (rather than a Fourier transform basis or similar) for signal representation.

We use an implementation of discrete, multiresolution wavelets that are orthogonal for the

work presented herein.

This decomposition is used in a number of applications, such as signal compression. For

example, in computer image storage, the JPEG2000 standard uses the discrete wavelet

transform [17]. This compression is possible because most images are vastly oversampled
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relative to their content and can be compactly expressed at coarse sampling. A compression

algorithm can exploit the multiresolution signal structure for improved compression ratios

at very little computational cost.

In this dissertation, the AO wavefront sensor has a relationship to the low and high pass

filter nature of the wavelets. This relationship is exploited to apply the general orthogonal

wavelets to reconstruct a signal of interest in AO by using a tree structure.

The multiresolution decomposition of a signal is recursively obtained as a tree structure, by

successively dividing the signal into two components: low frequency (called the “approx-

imation”) and high frequency (called the “details”). Since each one of these components

retain half the bandwidth of the signal, the sampling rate can be reduced by a factor of two,

so that the overall data rate stays the same.

Multiresolution decomposition leads to the structure shown in Figure 2.3 called the quadra-

ture mirror filter (QMF). In particular the “analysis section” performs the decomposition

into the two channels (approximation and details), while the “synthesis section” recom-

bines them into the original signal. The approximation and details are given by

a[m] = DG̃(z)x[n],

d[m] = DH̃(z)x[n].
(2.25)

It is important to notice two things:
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1. There is no change in overall data rate between the given signal x[n] and the two

components a[m], b[m];

2. It can be easily shown by standard arguments that if the two low-pass filters, G̃(z),

G(z) and the two high-pass filters H̃(z), H(z) are ideal with bandwidth of Fs/4, then

there is no aliasing and perfect reconstruction occurs. We can express the output in

operator form as

y =
(

G(z)UDG̃(z)+H(z)UDH̃(z)
)

x (2.26)

with U and D indicating upsampling and downsampling by two, respectively.

When the filters are not ideal, such as Finite Impulse Response (FIR), then perfect re-

construction can still occur, provided that the filters are specially chosen to satisfy some

orthogonality conditions that preserve the perfect reconstruction property [16]. The filters

that are used in a QMF system are specifically designed in a manner to cancel out aliasing

effects due to non-ideal frequency response of the filters such that

G(z)UDG̃(z)+H(z)UDH̃(z) = z−L. (2.27)

The output y[n] is a perfect reconstruction of x[n] shifted by L, which can be thought of as

a processing delay of the filters. This arrangement is ideal for lossless compression.

As stated at the beginning of the section, the QMF can be replicated in a tree structure

as shown in Figure 2.4 where the low-frequency component (approximation) is further

decomposed by a similar QMF; the left half of Figure 2.4 depicts the discrete wavelet

transform (DWT) for two levels and the right half is the inverse discrete wavelet transform

(IDWT). After performing the DWT, the original signal x[n] is decomposed into a2[ℓ],
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d2[ℓ], and d1[m]; this representation contains the same number of samples as x[n] and each

component contains content at different frequency ranges.

In this dissertation, we will make use of the extension of QMF to the 2D case. The 2D

QMF is performed by decomposing each row of an N ×N 2D signal x[n1,n2], into the two

components: a low pass and high pass, as xL[m1,n2], xH [m1,n2], with m1 = 0,1, . . . ,N/2−
1. Then decomposing again each of the two signals xL, xH into xLL[m1,m2], xLH [m1,m2]

and xHL[m1,m2], xHH [m1,m2] again with the indices mi = 0,1, . . . ,N/2− 1. The result is

the QMF structure in 2D as shown in Figure 2.5.

The four output channels can be described similar to the QMF terminology where xLL is the

approximation and xLH , xHL and xHH are the details in the horizontal (LH), vertical (HL)

and diagonal (HH) directions. Each of the channels is now one fourth of the original in

size. This reduction in signal size scales with the dimensionality, and thus makes the tree

structure an excellent tool for high-dimensional problems. To perform the 2D DWT, we

take xLL and recursively decompose the low-pass component through a 2D QMF. Likewise,

the four components can be recombined into the original signal by the synthesis filters.

In Figure 2.6, each row of x[n1,n2] is processed independently. The resulting signals are

xL[m1,n2] and xH [m1,n2]. Following this, the next step is to process each column, as shown

in Figure 2.7. The four signals of the 2D QMF xLL, xLH , xHL, and xHH are constructed.

With large data sizes, it is appropriate to perform the 2D QMF recursively on the xLL

component. A second level QMF result is shown in Figure 2.8. The original signal is then

represented with seven signals, each of which contains signal content at different frequency
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ranges.

As an example of the usage of the 2D QMF, the decomposition of an image is shown in

Figure 2.9. The approximation is a lower-resolution version of the original sized image.

The details can be seen to be contain smaller features and a ghost-outline of objects can be

seen.

18



❋✐❣✉r❡ ✷✳✽✳ ❚❤❡ ✷❉ ◗▼❋ ❝❛♥ ❜❡ ♣r♦❝❡ss❡❞ r❡❝✉rs✐✈❡❧②✳ ❋✐❣✉r❡ ✐s ❝♦✉rt❡s② ♦❢ ❘♦❜❡rt♦ ❈r✐st✐✱
❢r♦♠ ❬✶✽❪✳

In this chapter, we discussed the signal processing fundamentals that are necessary to un-

derstand generalized orthogonal wavelet phase reconstruction. These concepts included the

Fourier transform, the unit shift operator z, convolution, resampling, and multirate signal

representation using quadrature mirror filters. With this knowledge, we can now explain

the importance of phase and our algorithm to estimate it using wavelet filters.
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Telescopes image distant objects by collecting collimated light and focusing it onto a sen-

sor. The sensor is usually a photographic camera, but can be replaced with a variety of

optical instruments, e.g., a spectrometer. The telescope pupil and sensor are located in two

different planes. The incoming light enters the entrance pupil plane and diffracts from

the aperture, and exits at the exit pupil plane as shown in Figure 3.1. The image plane is

where a sensor can be placed that would take measurements about the distant science ob-

ject under study. In telescope imaging, these are the important planes that define the system

capabilities and are shown in Figure 3.2. It is a standard convention to define a Cartesian

coordinate frame with the z axis defined to be the optical axis perpendicular to the two

planes. Consequently, any point in either plane is characterized by the x and y coordinates.

Telescopes collect collimated light, represented as waves propagating parallel to the optical

axis, and are expressed using complex scalar notation as

u(x,y,z, t) = A(x,y,z)e j(kz−ωt+φ(x,y,z)) (3.1)

where k is the wavenumber, ω is the angular frequency, A(x,y,z) is the amplitude, and

φ(x,y,z) is the phase shift of the wave. The wavenumber k = 2π/λ is defined by the

wavelength of the light, λ , and the angular frequency ω = 2πν is defined by the frequency

of the light, ν . For a wave propagating in a three-dimensional (3D) space, a wavefront

is a surface of the wave where the phase is constant. We call it a plane wave when the

wavefront can be represented as a planar surface. Most light emanates from a point source

and is described using spherical waves, but after propagating some large distance, these

waves appear planar over a small solid angle. Thus, plane waves are ideal for telescope

collection.

When the light wave is a plane wave propagating parallel to the optical axis, the field in

(3.1) can be simplified to

u(x,y,z, t) = Ae j(kz−ωt+φ) (3.2)

where we also assume constant amplitude. At the pupil, which by convention is placed at
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z = 0, the pupil function is defined as

P(x,y)≡
{

1 inside the aperture

0 otherwise
(3.3)

which can be used to describe the scalar field (3.2) directly inside the aperture as

u(x,y,0, t) = P(x,y)Ae j(−ωt+φ) =U(x,y)e− jωt (3.4)

where the complex-valued phasor

U(x,y) = P(x,y)Ae jφ (3.5)

represents the wave inside the pupil. Equation (3.5) is an idealization that the wave incident

on the pupil is planar with a constant phase throughout the aperture.

From Fourier Optics [19], it is common knowledge that the optical field in the image plane

is proportional to the Fourier transform of the field in the pupil plane indicated in (3.5).

If the phase in the pupil plane is constant, the resulting image plane field is then propor-
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tional to the Fourier transform of the pupil function, which indicates best possible system

performance. However, because of atmospheric inhomogeneities in the index of refraction,

the plane wave is disrupted and the phase can vary as a function of spatial coordinates as

φ(x,y). Additional phase disturbances can occur due to the manufacturing tolerances of

optics such as alignment, prescription defects, and vibration. The nonuniform phase across

the aperture caused by the system optics is called aberration [20]. To consider the combi-

nation of these effects, we substitute φ(x,y) into (3.2) and determine the pupil field to be

of the form

U(x,y) = P(x,y)Ae jφ(x,y). (3.6)

The effect of the phase in (3.6) when compared to (3.5) on the resulting image plane field

causes diminished system performance.

Phase must be measured indirectly using sensors that can make scalar measurements of

the irradiance, I[n1,n2], which is proportional to the electric field amplitude squared [21].

23



Some sensors, like interferometers, use the superposition of two waves to determine a

relative phase between the two waves [22]. Other sensors, such as a Shack-Hartmann,

perform a centroid operation on irradiance measurements to determine a local wavefront

gradient relative to the unperturbed centroid location [23].

Wavefront reconstruction is a mathematical formulation that uses sensor measurements and

outputs an estimate of the wavefront surface, which can be used for optical characterization

or feedback control. The goal of wavefront reconstruction algorithms is to estimate the

wavefront φ(x,y) from measurements of its gradient vector ∇φ(x,y), which is the focus of

Chapters 3 and 4.

3.1 Wavefront Reconstruction in Adaptive Optics
The main goal of AO is to compensate for the phase distortion of the incoming optical

field. Phase compensation is provided by a DM which properly adds optical path length

to the incoming light, thus equalizing the phase as desired. As shown in Figure 3.3, the

command to the DM is provided by a control system and a phase sensor; the DM makes

a mirror shape to match the conjugate of the phase, thereby making the wavefront more

planar. Closed-loop AO systems commonly estimate of the wavefront phase to command

the controllable DM actuators [3], [24]. Most implemented systems reconstruct the phase

at the phase points. The control of a DM will be discussed in a later chapter.

In some wavefront reconstruction applications, local phase differences are sensed, from

which the whole relative phase has to be estimated. To this goal, a number of algorithms

exist in the literature, mostly based on a least-squares solution. The AO community has

developed several algorithms for wavefront phase reconstruction. Ideally the approaches

would:

1. Be computationally efficient for a large number of data points;

2. Be robust to measurement noise;

3. Result in perfect reconstruction that is consistent with measurements and boundary

conditions of the wavefront using noise-free wavefront sensor data.

The first property is essential for future telescopes that increase the number of actuators or

sensor measurements seeking diffraction-limited system performance. The second property
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depends on the mathematical operations performed by the algorithm and in general depends

on the statistics of the measurements, including noise correlations. The final property was

discussed previously by Southwell [25] and Poyneer [26] and the difficulty arises from the

pupil geometry interaction with the algorithm.

The original wavefront reconstruction techniques used matrix-vector multiplies [25,27–29]

with computational complexity of O(n2) or higher with n the total number of samples of the

sensed gradient. Later, a Fourier transform technique was proposed by Freischlad [30] with

further refinement by Poyneer [26] that has O(nlog2n) complexity. The computational cost

of the algorithm is limited by the speed of the implementation of the fast Fourier transform

25



for the change of basis. The papers [26, 30, 31] treat the wavefront sensor measurements

as a filtering operation, which is similar to the concept of this dissertation, except that their

filtering operations occur on the global data set and solve the entire phase surface at once.

During the same time period as Poyneer, Gilles [32] produced a multigrid preconditioned

conjugate-gradient method with the same computational complexity.

The first accurate wavefront reconstruction algorithm with complexity O(n) was performed

by MacMartin, who developed a multi-resolution hierarchic reconstructor [33]. His work

addressed the issues of controlling an actuator by using only local measurements adjacent

to the actuator (rather than using all measurements). This “zonal” control can suffer from

degradation of “global” modes and his work improved the performance by combining local

and global estimates in a hierarchy. To significantly decrease computation, he downsam-

pled by factors of 4 or more and results show that the larger downsampling factor decreases

the relative performance and increases the noise multiplier (or noise propagator of [26]) of

the reconstructor. In his work, MacMartin averaged gradient measurements, solved ac-

tuator estimates at a coarse resolution, and solved for piston at the coarsest level using

interpolation and spatial averaging. Our work focuses on the global estimate only and uses

a downsampling factor of 2, which gives improved performance of the second property.

Additional O(n) complexity work followed, such as that of Gilles [34]. The work of Gilles

was a direct application of a multi-grid solver of a minimum-variance reconstructor based

on a sparse approximation of the wavefront inverse covariance matrix. Vogel also im-

proved sparse matrix methods [35] and a multigrid least-squares algorithm [36]. Another

minimum-variance solver that followed Vogel is the Fractal Iterative Method (FrIM) [37],

[38], which performs a change of basis (using a fractal preconditioner). Minimum-variance

reconstruction is an excellent choice, as it is optimal in the sense of maximizing the Strehl

ratio [39].

In the last few years, several new wavefront reconstruction algorithms have been proposed.

Rosensteiner has produced the Cumulative Reconstructor (CuRe), which is a direct integra-

tion reconstructor [40]. More recently, de Visser has shown the SABRE algorithm using

B-spline basis functions [41].

An approach based on the wavelet representation was first applied to wavefront reconstruc-
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tion by Dowla [42]. This original work did not fully exploit the features of the discrete

wavelet transform in a 2D QMF; rather it was an approximation of two iterations of the

low-pass filters and downsampling. Peter Hampton and colleagues developed an algorithm

that used the complete discrete wavelet transform in a 2D QMF and was able to perform re-

construction using the Haar wavelet [43–45]. This dissertation extends their work to allow

for the use of wavelets with the orthogonal property.

In this dissertation, we will further describe the benefits of the wavelet phase reconstruc-

tion. The wavelet technique offers a computational efficiency of O(n) using Finite Impulse

Response filters. Hampton’s derivation uses the Haar wavelet and then uses either a Poisson

smoother or recommends a de-noiser as a follow-on step [45]. Our approach in this disser-

tation is made to be robust to noise using wavelets that have a longer basis length, yielding

a smoother reconstruction without a follow-on step. Using noise-free data, the approach

also yields an exact reconstruction with a zero mean of the two-dimensional data. We also

extend on Hampton’s work to provide for a solution that requires no boundary conditions

for the Haar wavelet on a square aperture where the side dimensions are a power of 2.

The wavelets approach is based on a multi-resolution analysis solution type. As a conse-

quence of how the discrete wavelet transform is employed, the grid size must be a power

of 2. In a Cartesian coordinate frame, wavefront values are iteratively reconstructed first

on a 2×2 grid, then 4×4, then 8×8, and expanded as a power of two in size for each iter-

ation. Iteration in this context means that the two matrix dimensions of processed data are

doubled each cycle, not that the entire data is processed repeatedly. However, there is no

preconditioner or approximation required. The solution algorithm constructs the data for

each iteration entirely using the slope measurements provided from the Shack-Hartmann

wavefront sensor.

The outline of the remainder of the chapter is as follows: the sensor and model that the

wavelet phase reconstruction uses is described in Section 3.2. The wavefront reconstruction

2D QMF signals for each iteration of the analysis section is developed in Section 3.3.

The composition of the wavefront estimate using the QMF synthesis filters is shown in

Section 3.4. Discussion and simulated wavefront reconstruction examples for several cases

are given in Section 3.5. Additional steps to improve performance for data from a telescope

with obscurations are given in Section 3.6. The chapter is summarized in Section 3.7.
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3.2 Shack-Hartmann Sensor Geometry

A wavefront reconstruction algorithm is designed to work for a particular sensor geometry.

The algorithm presented here is designed to work with sensor data from a Shack-Hartmann

wavefront sensor (S-H WFS), which measures local gradients of the wavefront. The sensor

has an array of small lenses, or lenslets, and is placed in a relayed pupil plane of the

telescope. These lenslets focus the incoming light onto a focal plane detector (which is a

standard camera of sufficiently high resolution); the spatial sampling rate of the pupil plane

wavefront is determined by the grid of lenslets.

The two local gradient measurements are performed by a centroid algorithm using the

measured irradiance at the focal plane pixels, as shown in Figure 3.4. Most S-H WFS treat

the centroid operation internally and only provide the two measurement values for each

lenslet. The S-H WFS is calibrated so that with a planar wavefront, the centroid of each

lenslet yields zero-valued gradients.

This sensor is modeled mathematically by the Fried geometry [27]. In particular, each

lenslet is associated to four phase points in the rectangular grid. The model places mea-

surements that are centered on each lenslet so that every lenslet has the two measurements

of the vertical and horizontal components of the gradient, denoted as XF and YF , respec-

tively.
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The phase points are the locations where the wavefront reconstruction obtains phase values.

An array of 4× 4 lenslets is shown in Figure 3.5. These 16 lenslets are surrounded by 25

phase points and provide 32 slope measurements. The Fried model of a Shack-Hartmann

sensor is shown in Figure 3.6 and defines the relationship the slope measurements to the

phase point values as

XF [n1,n2]≡
1

2
(φ [n1 −1,n2]−φ [n1 −1,n2 −1]+φ [n1,n2]−φ [n1,n2 −1]),

YF [n1,n2]≡
1

2
(φ [n1,n2 −1]−φ [n1 −1,n2 −1]+φ [n1,n2]−φ [n1 −1,n2]).

(3.7)

Equation (3.7) was rewritten from its original form in [27] to appear in causal form. Close

observation of (3.7) reveals that the slope measurements can be written as a separable

filtering operation on the phase points. In order to rewrite (3.7) in operator form, we define

two filter functions:

g(z)≡ 1√
2

(

1+ z−1
)

,

g(−z)≡ 1√
2

(

1− z−1
)

,

(3.8)
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where the coefficient is chosen that splits the 1/2 in (3.7) evenly. The geometry involves

one low-pass filter and one high-pass filter and is stated in operator form as

XF = g(−z2)g(z1)φ ,

YF = g(−z1)g(z2)φ .
(3.9)

Figure 3.7 depicts the block diagram relationship of the Fried geometry to the wavefront.

The form of (3.9) was first stated in [43]. However, as we will see in Section 3.3.1, there is

not a direct solution to solve for φ based on (3.9) alone.

The Haar wavelet is the most simple and was introduced in 1909 [46]. As it turns out, its

two filters (low pass and high pass) are simple first-order filters which are identical to the

functions in (3.8) that were used for the operator form. Thus, the operator notation of (3.9)

is the connection of the Haar wavelet to the Fried geometry.

In order to reconstruct a smooth, continuous φ̂ [n] from the slope measurements, the tree

structure 2D QMF is employed. The signals XF and YF can be processed using multirate
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DSP to provide the necessary φLL, φLH , φHL, and φHH signals for the 2D QMF.

In a more general setting, it can be shown that the filters in Figure 2.5 that are associated to

the orthogonal wavelet families can be factored [47] as follows

G(z) = g(z)G0(z),

H(z) = g(−z)H0(z),

G̃(z) = g(z)G̃0(z),

H̃(z) = g(−z)H̃0(z)

(3.10)

where G0(z), H0(z), G̃0(z), H̃0(z) are transfer functions of FIR filters.

In the particular case of the Haar wavelet, G0(z) = H0(z) = G̃0(z) = 1; H̃0(z) = −1. The

factorization in (3.10) is at the basis of the phase reconstruction algorithm presented next.

3.3 Analysis 2D QMF Stage
The phase is reconstructed by the proposed algorithm in two stages: analysis and synthe-

sis. In the analysis, we determine the wavelet coefficients of the phase at different reso-

lutions, based on measured gradients. These coefficients are then used by the synthesis to

reconstruct the phase. The challenge is in creating the analysis signals from the measured

gradients, as the synthesis section is standard. In this section, we develop the mathematical

relationship between slope measurements and the QMF signals at each iteration.

3.3.1 Iteration for Level 1

From observation of the 2D QMF in Figure 2.5, we can write equations which relate the

phase points to the four channels of the 2D QMF, where we omit indices n1, n2 for conve-

nience, as

φ 1
LL = D2D1G̃(z2)G̃(z1)φ ,

φ 1
LH = D2D1H̃(z2)G̃(z1)φ ,

φ 1
HL = D2D1G̃(z2)H̃(z1)φ ,

φ 1
HH = D2D1H̃(z2)H̃(z1)φ .

(3.11)

We have swapped the order of the operators in (3.11) for a convenience of notation and use

the superscript 1 to denote the first iteration, not an exponent. Expanding (3.11) using the
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factoring of (3.10), we can make substitutions from (3.9) that result in

φ 1
LH = D2D1H̃0(z2)G̃0(z1)(g(−z2)g(z1)φ)

= D2D1H̃0(z2)G̃0(z1)XF ,

φ 1
HL = D2D1G̃0(z2)H̃0(z1)(g(z2)g(−z1)φ)

= D2D1G̃0(z2)H̃0(z1)YF .

(3.12)

The remaining two quantities, φ 1
LL and φ 1

HH , do not have a simple relationship to the slope

measurements XF and YF , because the filters of Equation (3.11) are both low-pass or high-

pass, whereas the slope definitions require one of each. The quantities are shown in the

frequency domain in Figure 3.8 with L and H corresponding to low and high frequencies,

respectively.

As seen in (3.12) the terms LH and HL have the proper mix of low-pass g(z) and high-pass

g(−z) filters to generate the measured gradients XF and YF . The terms LL and HH do not

contain a low-pass and high-pass filters, which indicates the need to further decimate these

signals as shown in the next subsection.

3.3.2 Iteration for Level 2

The arguments presented in what follows are based on two fundamental operations:
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1. the Noble identities, Equation (2.22) in Section 2.3, recalled here for convenience:

y1 = D1H(z2
1)x = H(z1)D1x,

y2 = D2H(z2
2)x = H(z2)D2x.

y3 = D1H(z2)x = H(z2)D1x,

y4 = D2H(z1)x = H(z1)D2x.

(3.13)

2. geometric sum identities, listed in (3.14), which are properties of the Haar high-pass

filter:

g(−zN) =

(

N−1

∑
ℓ=0

z−ℓ

)

g(−z) ∀N ≥ 1 (3.14a)

=





N
2 −1

∑
ℓ=0

z−2ℓ





√
2g(z)g(−z), if N is even. (3.14b)

Equation (3.14) reveals that high-order complexity filters can be implemented as a

delayed summation of first-order filters and its complete proof is shown in the Ap-

pendix. Equation (3.14a) is used when a high-pass filter is needed, whereas (3.14b)

is used when a low-pass filter is needed.

In this algorithm, when there is an unknown quantity, we apply the 2D DWT and break

apart the unknown quantity into 4 new channels. We now explore the second iteration

because we have two unknown quantities from the previous section; we must do this for

both the φ 1
LL and φ 1

HH channels. First we will only consider φ 1
LL; we start by writing out the

expressions for the four channels in the analysis:

φ 2
LL/L = D2D1G̃(z2)G̃(z1)φ

1
LL

= D2D1G̃(z2)G̃(z1)D2D1G̃(z2)G̃(z1)φ ,

φ 2
LH/L = D2D1H̃(z2)G̃(z1)φ

1
LL

= D2D1H̃(z2)G̃(z1)D2D1G̃(z2)G̃(z1)φ ,
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φ 2
HL/L = D2D1G̃(z2)H̃(z1)φ

1
LL (3.15)

= D2D1G̃(z2)H̃(z1)D2D1G̃(z2)G̃(z1)φ ,

φ 2
HH/L = D2D1H̃(z2)H̃(z1)φ

1
LL

= D2D1H̃(z2)H̃(z1)D2D1G̃(z2)G̃(z1)φ .

We are using the superscript 2 for the second iteration and add the /L subscript for the φ 1
LL

data. There is additionally a /H analysis for the φ 1
HH data. For brevity, we will only state the

HH results at the end of this section since their development follows the same analysis, but

we emphasize the resulting expression is not exactly the same. Examining Equation (3.15)

reveals that while φ 2
LL/L

is only comprised of low-pass filters, the remaining three channels

have a combination of low-pass and high-pass filters. If we factor the filters as in (3.10),

we will again find substitutions of (3.9) with the measured slope data. For φ 2
LH/L

we obtain

φ 2
LH/L =D2D1H̃0(z2)g(−z2)G̃(z1)

D2D1G̃(z2)G̃0(z1)g(z1)φ

=D2D1H̃0(z2)G̃(z1)

D2D1G̃(z2)G̃0(z1)
(

g(−z2
2)g(z1)φ

)

=D2D1H̃0(z2)G̃(z1)

D2D1G̃(z2)G̃0(z1)g(z2)
(√

2XF

)

.

(3.16)

Using the same procedure, we can also solve for φ 2
HL/L

as

φ 2
HL/L =D2D1G̃(z2)H̃0(z1)g(−z1)

D2D1G̃0(z2)g(z2)G̃(z1)φ

=D2D1G̃(z2)H̃0(z1)

D2D1G̃0(z2)G̃(z1)
(

g(−z2
1)g(z2)φ

)

=D2D1G̃(z2)H̃0(z1)

D2D1G̃0(z2)G̃(z1)g(z1)
(√

2YF

)

.

(3.17)
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The final channel, φ 2
HH/L

, yields two possible simplifications

φ 2
HH/L =D2D1H̃0(z2)g(−z2)H̃(z1)

D2D1G̃(z2)G̃0(z1)g(z1)φ

=D2D1H̃0(z2)H̃(z1)

D2D1G̃(z2)G̃0(z1)
(

g(−z2
2)g(z1)φ

)

or similarly

=D2D1H̃0(z1)H̃(z2)

D2D1G̃(z2)G̃0(z1)
(

g(−z2
1)g(z2)φ

)

.

(3.18)

The two possible substitutions arise from the flexibility of having two high-pass filters.

Either simplification is exact when using noise-free data. Rather than choose one definition

over the other, we take an average

φ 2
HH/L =

1

2
D2D1H̃0(z2)H̃(z1)

D2D1G̃(z2)G̃0(z1)g(z2)
(√

2XF

)

+
1

2
D2D1H̃(z2)H̃0(z1)

D2D1G̃0(z2)G̃(z1)g(z1)
(√

2YF

)

.

(3.19)

The averaging of (3.19) allows for some robustness against noise in the slope measure-

ments at very little computational cost. The 1/2 coefficient simply assumes additive white

Gaussian noise. Noise correlation statistics analysis may provide a better coefficient. Using
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the same process for the HH data, we now state the results as

φ 2
LH/H = D2D1H̃0(z2)G̃(z1)

D2D1H̃(z2)H̃0(z1)g(−z2)
(√

2YF

)

,

φ 2
HL/H = D2D1G̃(z2)H̃0(z1)

D2D1H̃(z1)H̃0(z2)g(−z1)
(√

2XF

)

,

φ 2
HH/H =

1

2
D2D1H̃0(z2)H̃(z1)

D2D1H̃(z2)H̃0(z1)g(−z2)
(√

2YF

)

+
1

2
D2D1H̃(z2)H̃0(z1)

D2D1H̃0(z2)H̃(z1)g(−z1)
(√

2XF

)

.

(3.20)

We have now completed the derivation of the second iteration and show it in Figure 3.9.

While the equations look complex on paper, actual implementations are straightforward

and efficient in processing performance. Every expression is simply a serial grouping of

the filter-filter-downsample-downsample block.

3.3.3 Further Iterations

We are able to generalize the formulation for additional iterations. After the second iter-

ation, there are two unknown quantities φ 2
LL/L

and φ 2
LL/H

. We now seek to generalize the

formulas for each level k ≥ 2. Until the final iteration, there will still be two unknown

quantities. We first write out the formulas

φ k
LH/L =

(

D2D1H̃(z2)G̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃(z2)G̃(z1)
)

φ ,

φ k
HL/L =

(

D2D1G̃(z2)H̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃(z2)G̃(z1)
)

φ ,

φ k
HH/L =

(

D2D1H̃(z2)H̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃(z2)G̃(z1)
)

φ .

(3.21)

36



φ1LH

φ1HL

φ2
HL/L

φ2
LH/L φ2

HH/L

φ2
LL/L

φ2
HL/H

φ2
LH/Hφ2

HH/H

φ2
LL/H

π

π

0

0 ω1

ω2

❋✐❣✉r❡ ✸✳✾✳ ❚❤❡ ✷❉ ◗▼❋ ❞✐❛❣r❛♠ s❤♦✇s t❤❡ ❝❤❛♥♥❡❧s ❛t t❤❡ s❡❝♦♥❞ ✐t❡r❛t✐♦♥✳ ❚❤❡ ✉♣♣❡r ❧❡❢t
❛♥❞ ❧♦✇❡r r✐❣❤t ❛r❡ ❡❛❝❤ ❞✐✈✐❞❡❞ ✐♥t♦ ❢♦✉r ❝❤❛♥♥❡❧s✳ ❖♥❧② t✇♦ ❜❧♦❝❦s r❡♠❛✐♥ ✉♥❦♥♦✇♥ ✭✐♥ r❡❞✮
t❤❛t r❡q✉✐r❡ ❢✉rt❤❡r ❞❡❝♦♠♣♦s✐t✐♦♥✳

The intent of the exponential notation is that the operations inside occur k− 2 times. We

choose to express these equations as three groups since the left group will be factored to

shift a filter to the right group. Again we will factor the H̃(z) on the left side, then move

the g(−z) to the right. As g(−z) is swapped position with the downsampling operators,

the Noble identities will apply, resulting in g(−z2k−1
). Then the high-order filter will be

simplified to a delayed summation of the first-order filter. The relationship to the slope

measurements can then be made. The end result for the LL data is

φ k
LH/L =

(

D2D1H̃0(z2)G̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃(z2)G̃0(z1)
)

((

2k−1−1

∑
ℓ=0

z2
−ℓ

)

XF

)

, (3.22)
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φ k
HL/L =

(

D2D1G̃(z2)H̃0(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃0(z2)G̃(z1)
)

((

2k−1−1

∑
ℓ=0

z1
−ℓ

)

YF

)

with a combination summation for the HH/L channel

φ k
HH/L =

1

2

(

D2D1H̃0(z2)H̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃(z2)G̃0(z1)
)

((

2k−1−1

∑
ℓ=0

z2
−ℓ

)

XF

)

+
1

2

(

D2D1H̃(z2)H̃0(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1G̃0(z2)G̃(z1)
)

((

2k−1−1

∑
ℓ=0

z1
−ℓ

)

YF

)

.

(3.23)

The HH data is again developed through the same manner and results in definitions with

some slight differences

φ k
LH/H =

(

D2D1H̃0(z2)G̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1H̃(z2)H̃0(z1)
)

((

2k−2−1

∑
ℓ=0

z−2ℓ
2

)

√
2g(−z2)YF

)

,

φ k
HL/H =

(

D2D1G̃(z2)H̃0(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1H̃0(z2)H̃(z1)
)

((

2k−2−1

∑
ℓ=0

z−2ℓ
1

)

√
2g(−z1)XF

)

,

(3.24)
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and the final channel, HH/H, is again defined as a combination

φ k
HH/H =

1

2

(

D2D1H̃0(z2)H̃(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1H̃(z2)H̃0(z1)
)

((

2k−2−1

∑
ℓ=0

z−2ℓ
2

)

√
2g(−z2)YF

)

+
1

2

(

D2D1H̃(z2)H̃0(z1)
)(

D2D1G̃(z2)G̃(z1)
)k−2

(

D2D1H̃0(z2)H̃(z1)
)

((

2k−2−1

∑
ℓ=0

z−2ℓ
1

)

√
2g(−z1)XF

)

.

(3.25)

The summations represent either a zero-padded shift or a circular shift of the data, and the

choice should match the preferred implementation of how the sequences are treated for

boundary conditions.

By developing this level k implementation, we are able to scale the algorithm for any 2N ×
2N sized data quickly. This algorithm is possible due to the high-pass filter simplifications

of (3.14). We are able to construct the multirate 2D QMF signals for both the LL and HH

channels using the measured quantities XF and YF .

3.3.4 Defining the Values for Unsensed Modes

At the final iteration, we have two sets of 2×2 matrices. Each one is of the form

[

φLL/L φHL/L

φLH/L φHH/L

]

,

[

φHH/H φLH/H

φHL/H φLL/H

]

(3.26)

and no further downsampling is possible because each entry is a 1×1. The upper-left scalar

value of the φLL/L channel and lower-right scalar value of the φLL/H channel have gone un-

determined for all prior iterations. Each value represents undetected modes of the Fried

geometry: the piston and “waffle” modes. The piston represents the mean of the entire φ [n]

data set. Since the S-H WFS only measures differences between phase points and not abso-

lute values, the mean value cannot be known and a separate sensor is required for measuring

piston. We can assign φLL/L = 0 and accept that we are within a constant value of the ac-

tual piston of the wavefront. The “waffle mode” represents a nuisance checkerboard pattern
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(same amplitude but alternating sign between adjacent values) along the phase points with

a mean of zero; it is the highest frequency component in κx, κy and we can set φLL/H = 0

by assumption. We show the completed 2D QMF analysis section structure in Figure 3.10,

where all values are known.

3.4 Synthesis 2D QMF Stage

Up until this section, all of the previous algorithm steps have been used to iteratively create

the four channel blocks of the analysis section. We separated each unknown channel into

four sub-channels. While we did not have the direct information for each channel, we were

able to substitute for it using the measurements that were available.

The analysis section is now complete and must now take the four channel blocks and per-

form the inverse discrete wavelet transform as shown in Figure 3.11. The result can be
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expressed in operator form as

φ k[n] =G(z1)U1

(

G(z2)U2φ k+1
LL [m]+H(z2)U2φ k+1

LH [m]
)

+H(z1)U1

(

G(z2)U2φ k+1
HL [m]+H(z2)U2φ k+1

HH [m]
)

.
(3.27)

Equation (3.27) is the standard form of the synthesis section of a 2D QMF and has not been

modified to fit the algorithm. For a given index k, both channels φ k
LL/L

and φ k
HH/H

must

be processed from their respective QMF signals. The index progresses from the largest

iteration index, k+1 = kmax and decrements down to k = 1. Thus, we recursively perform

this until we have no more four channel blocks; once k = 1, the four blocks φ 1
LL, φ 1

LH , φ 1
HL,

and φ 1
HH can be processed through the synthesis filters one final time that results in the

estimated solution of the wavefront phase surface, φ [n].

3.5 Discussion

3.5.1 Resampling Haar Wavelet

As previously discussed, the choice of wavelets has an effect on the phase reconstruction

and its sensitivity to noise and boundary conditions. Higher-order wavelets (such as the

Daubechies family) yield filters with longer impulse response and better filtering capabil-

ities. The drawback of filters with a longer impulse response is clearly the fact that they

have longer transient responses, thus extending the effects of the boundary conditions.

On the other hand, the Haar wavelet, which yields the simplest first-order filters at all the

stages, if properly implemented, is completely independent of the boundary conditions,
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provided the data matrix is square with dimensions as power of two. By adding a positive

shift at the analysis network (see Figure 2.3), the four filters become

G̃(z) = zg(z), H̃(z) = zg(−z)

G(z) = g(z), H(z) =−g(−z)
(3.28)

using g(z) defined in (3.8). With this choice of filters, the “approximation” and “details”

signals a[m] and d[m] in Figure 2.3 can be related to the input x[n] as

a[m] =
1√
2
(x[2m+1]+ x[2m])

d[m] =
1√
2
(x[2m+1]− x[2m]) ,

(3.29)

and the output becomes

y[2m] =
1√
2
(a[m]−d[m]) = x[2m]

y[2m+1] =
1√
2
(a[m]+d[m]) = x[2m+1].

(3.30)

This choice of filters yields perfect reconstruction y[n] = x[n], n = 0, . . . ,N − 1, provided

the data length N is even, regardless of boundary conditions. In other words, in the case

of the Haar wavelet, the effects of boundary conditions get discarded by the resampling

operations. If the data length is a power of 2, this will be true for all resolution levels in the

decomposition.

3.5.2 Effects of Filter Selection on Noise

The major contribution of this work compared to Hampton’s derivation [43] is the extension

to more general QMF filters. The Fried model is not always an accurate reconstruction of

the wavefront since it only relates neighboring sample points as seen in (3.7). In this section

we look at the Daubechies family of filters, namely dbn, with n positive integer and their

effects on the phase reconstruction. In particular, db1 corresponds to the Haar wavelet we

presented. The number n corresponds to different filter lengths (or equivalently polynomial

lengths). The number of filter coefficients in G̃(z), H̃(z), G(z), and H(z) are all twice the
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Daubechies number. For example, Daubechies 3 uses filters of length 6.

These factored polynomials of the wavelet factoring offer the same characteristics as the

other approaches while also fitting into the wavelet technique. Longer polynomials can

smooth the noise, but the choice of filter length should be considered against the dimension

length of the data. Having a large filter length but using fewer data does not yield better

results.

The frequency response for the Daubechies family is shown in Figure 3.12. These filters

are also known as “max-flat” since they are smooth at low and high frequencies. As a

consequence, as the order increases the filters become and more selective and provide better

attenuation of the aliased components of the noise. The noise has impact on each of the

four channels (LL, LH, HL, and HH). This improved noise rejection implies that the noise

will be diminished on a subset of the channels.

As AO systems increase in size and therefore also the density of actuators and sensors,
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the larger filters are less sensitive to noise than the Haar wavelet and are an appropriate

choice. For example, in Figure 3.13, we show the results of several reconstructions using

the Daubechies family wavelets with 10 dB and 3 dB signal-to-noise ratio (SNR).

Using only the Haar wavelet, the resulting reconstruction contains a 2× 2 checkerboard

pattern. The pattern is also apparent at larger resolution in Figure 3.13 (c) and (d). With the

longer wavelet lengths, we are able to have a smoothing effect on the result, as shown in

Figure 3.13 (e) through (h). In the paper by Hampton et al. [45], they perform smoothing

using an iterative Poisson solver which relies on having a previously reconstructed wave-

front as an estimate and gradient data that is independent from the estimate. In our work,

we are able to provide the smoothing effect from longer filter lengths; which can be seen

in comparing Figure 3.13 (e) to (g) or (f) to (h).

3.6 Telescope Apertures
The wavefront reconstruction algorithm presented in Sections 3.3 to 3.5 can be directly

applied to data from a telescope with a non-square aperture and other features such as
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segmented primary mirror and central obscurations from the secondary mirror and support

structure. There will, however, be errors near the boundary edges where the Fried model is

incorrect. For improved performance, this section explains how to correct for errors at the

boundary for masked data stored within a 2N ×2N matrix; however, the boundary correction

adds computational complexity, but still quite a bit lower than the standard least-squares

approach. The results presented here are a full theoretical explanation, and reductions in

operations would be used in an actual real-time implementation.

We begin by defining the mask, or window function, as

w[n] =

{

0 outside aperture

1 inside aperture
(3.31)

where n = [n1,n2]. As we did before, we define the Fried gradient operator as

∇F(z1,z2) =

[

g(z1)g(−z2)

g(−z1)g(z2)

]

(3.32)

which calculates the values XF and YF for (3.9).

With these two definitions, we can now define two sets of indices for the boundary and

inside the aperture as

B =
{

n | ‖∇Fw[n]‖ 6= 0

}

,

W =
{

n | ‖∇Fw[n]‖= 0 and w[n] = 1

}

.
(3.33)

For simplicity, let us define the entire reconstruction phase reconstruction algorithm pre-

sented in Sections 3.3 and 3.4 as an operator H such that

φ [n] =H (∇Fφ [n]) , (3.34)

provided the mean and high frequency modes are both zero. Since all operations in the

algorithm are linear, the entire algorithm is linear. By having this property, we can then
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write the expression

∇F (w[n]φ [n]) = w[n]∇Fφ [n]+ [∇F (w[n]φ [n])−w[n]∇Fφ [n]]

= w[n]

[

XF [n]

YF [n]

]

+E[n]
(3.35)

where the first term on the right shows the gradient XF , YF masked by the aperture w[n] and

we define the error, E[n] ≡ ∇F (w[n]φ [n])−w[n]∇Fφ [n]. Since it can be easily seen that

E[n] is identically zero outside the boundary, as

E[n] = 0 ⇔ n /∈ B, (3.36)

the error can be written as

E[n] = ∑
ℓℓℓ∈B

[

X̃ℓℓℓ

Ỹℓℓℓ

]

δ [n− ℓℓℓ] (3.37)

where δ [n] is the two-dimensional Kronecker delta function. The terms X̃ℓℓℓ and Ỹℓℓℓ are the

corrections we need to apply at the boundaries of the aperture. We can solve for X̃ℓℓℓ and Ỹℓℓℓ

by performing the Haar reconstruction operator to both sides of (3.35), which results in

w[n]φ [n] =H

(

w[n]

[

XF [n]

YF [n]

])

+ ∑
ℓℓℓ∈B

X̃ℓℓℓH

([

δ [n− ℓℓℓ]

0

])

+ ∑
ℓℓℓ∈B

ỸℓℓℓH

([

0

δ [n− ℓℓℓ]

])

∀n.

(3.38)

By taking the Fried gradient operator of both sides of (3.38) we obtain, for n ∈ W

[

XF [n]

YF [n]

]

= ∇FH

(

w[n]

[

XF [n]

YF [n]

])

+ ∑
ℓℓℓ∈B

ΓX X̃ℓℓℓ+ ∑
ℓℓℓ∈B

ΓY Ỹℓℓℓ. (3.39)

46



Using linearity, we define the impulse responses as

ΓX [n, ℓℓℓ] = ∇FH

([

δ [n− ℓℓℓ]

0

])

∈ R
2×1,

ΓY [n, ℓℓℓ] = ∇FH

([

0

δ [n− ℓℓℓ]

])

∈ R
2×1

(3.40)

for n ∈ W , ℓℓℓ ∈ B. These definitions can be precomputed, and have no dependence on the

slope measurements.

Using the impulse responses ΓX [n, ℓℓℓ] and ΓY [n, ℓℓℓ], for n ∈ W and ℓℓℓ ∈ B, we can solve for

X̃ℓℓℓ and Ỹℓℓℓ in (3.38) from a set of linear equations as

[

XF [n]

YF [n]

]

−∇FH

(

w[n]

[

XF [n]

YF [n]

])

= ∑
ℓℓℓ∈B

ΓX [n, ℓℓℓ]X̃ℓℓℓ+ ∑
ℓℓℓ∈B

ΓY [n, ℓℓℓ]Ỹℓℓℓ (3.41)

for n ∈ W . The left-hand side is known from the measured gradients and (3.41) yields

nW = 2|W | equations in nB = 2|B| unknowns, with |W | and |B| the number of sample

points inside the aperture and on the boundary respectively. It can easily be seen that (3.41)

can be written in matrix form as

z
W

= ΓΓΓz̃
B

(3.42)

with z
W

and z̃
B

are the corresponding nW × 1 and nB × 1 vectors on the left and right

hand sides of (3.41), and ΓΓΓ the corresponding nW × nB matrix. Equation (3.42) is under-

determined and therefore z̃
B

=
(

ΓΓΓTΓΓΓ
)−1

ΓΓΓTz
W

is solved by least-squares that can be re-

duced in operations due to many zero-value eigenvalues [21].

To give an idea of the dimensionality, for a 64×64 data matrix containing a circular aper-

ture with radius ρ = 29, the matrix ΓΓΓ ∈ R
4976×456. However, since all gradients on the

boundary yield redundant information, it turns out that the number of unknowns can be

considerably reduced. In this example, the matrix ΓΓΓTΓΓΓ can be decomposed as

ΓΓΓTΓΓΓ = UΛΛΛUT (3.43)

where λi = diag(ΛΛΛ), are the eigenvalues as shown in Figure 3.14. The first 283 eigenvalues
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are zero and only M = 173 eigenvalues are not zero. As a consequence, we can factor

ΓΓΓTΓΓΓ = U ΛΛΛ U
T

(3.44)

with ΛΛΛ = diag(λ1, . . . ,λM), λi > 0 and U ∈ R
nB×M orthonormal. Based on this decompo-

sition, the corrective term z̃
B

can be solved as

α = ΛΛΛ
−1

U
T
ΓΓΓ

T
z
W

z̃
B
= Uα

(3.45)

where the matrices ΛΛΛ
−1

U
T
ΓΓΓ

T
and U are M×nW and nB ×M respectively. In the example,

they would be 173× 4976 and 456× 173 respectively. All of these matrices are precom-

puted, since they depend on the aperture only.

Having solved for z̃
B

, we now can use X̃ℓℓℓ and Ỹℓℓℓ in (3.41), so that we have the corrected

gradients of w[n]φ [n] as

X [n] = XF [n]+ ∑
ℓℓℓ∈B

X̃ℓℓℓδ [n− ℓℓℓ],

Y [n] = YF [n]+ ∑
ℓℓℓ∈B

Ỹℓℓℓδ [n− ℓℓℓ].
(3.46)

Using the corrected gradients X and Y , we run the wavefront reconstruction algorithm (with

the option of a different wavelet for better results) to obtain the wavefront phase estimate.
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r❡❝♦♥str✉❝t❡❞ ✇❛✈❡❢r♦♥t ✉s✐♥❣ t❤❡ ❉❛✉❜❡❝❤✐❡s ✸ ✇❛✈❡❧❡t✳

In the previous section, we provide example results using a square aperture. We now con-

sider a realistic segmented mirror telescope scenario where there is an outer edge that is

non-square and central obscuration by a secondary mirror and its support structure. We

simulated this by generating data on a square aperture and then using zero value entries

outside of the telescope aperture mask.

In Figure 3.15, the algorithm is applied to simulated data for a notional segmented telescope

system. We do not use any boundary correction or modification of the measured wavefront

data and the result is still successful in reconstructing the wavefront. In Figure 3.16, we plot

the 256 pixels across a row for the original wavefront in comparison with two reconstruc-

tions using the Daubechies 3 and Daubechies 9 wavelets. The reconstruction has errors

near the boundary edges. Since the Daubechies 3 wavelet is shorter in filter length, it is

able to converge to the actual wavefront values closer to the edge than the Daubechies 9.

The Daubechies 9 wavelet also has more smoothing than the Daubechies 3 due to increased

filter length, and its result has less error in reconstruction when far from the edges such that

they have no influence.

In Figure 3.17, the corrected reconstructed wavefront can be compared to the original wave-

front and the wavefront reconstructed with the algorithm of Section 3.3 only. The improved

performance near the boundary edge is apparent. In addition, the correction also estimates

the wavefront hidden underneath the structural support of the secondary mirror.
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❜② s♦❧✐❞ ❧✐♥❡ ❢♦r ❉❛✉❜❡❝❤✐❡s ✸ ❛♥❞ ❜② ❞♦tt❡❞ ❧✐♥❡ ❢♦r ❉❛✉❜❡❝❤✐❡s ✾✳

3.7 Summary
In this chapter, we presented a wavelet phase reconstruction algorithm to estimate the phase

φ̂ [n]. This quantity is important for AO systems to achieve their goal of improved imaging

of science objects. With an estimate of the phase, a DM can be commanded to compensate

for atmospheric turbulence which degrades the performance of telescopes.

The algorithm presented in this chapter relies on the premise that the measurements XF and

YF are the gradients of the phase function φ [n]. In the next chapter, we discuss when this

is not the case and provide a means to estimate φ̂ [n] even when the measurements do not

satisfy this condition.
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In this chapter, we extend the algorithm of Chapter 3 to more general rotational vector

fields, where the irradiance may be zero at isolated points, thus making the phase undefined.

The phase can have discontinuities, as the wavefront may be severely degraded.

Strong atmospheric turbulence causes scintillation, which is the fluctuation of irradiance.

Regions of the telescope pupil can have non-uniform amplitude A(x,y), or apodization

of the light wave [20]. In some regions, the amplitude decreases significantly and nulls

form. A particularly difficult problem can occur for wavefront sensors that take gradient

measurements of the scalar φ(x,y) field near these nulls, as the irradiance measurement to

estimate phase will have poor SNR. This issue is referred to as the branch point problem of

adaptive optics [48].

The Rytov variance for a plane wave [49] is commonly used as a metric of the strength of

the scintillation and is defined as

σ2
R = 1.23C2

nk7/6L11/6 (4.1)

where C2
n is the refractive index structure parameter, k is the wavenumber, L is the path

length through the atmosphere. Some AO literature uses the measurements of the Rytov

number σ2
χ for the same purpose. The relationship between the two quantities can approxi-

mated by σ2
R ≈ 4σ2

χ ; for further details see Section 8.2 in [49] and Equation (2.111) in [50].

Although the literature for atmospheric beam propagation [49] establishes the weak scin-

tillation regime by σ2
R < 1, Barchers et al. [51] states that branch points form around a

Rytov number of σ2
χ = 0.08 (σ2

R ≈ 0.32), and the presence of branch points becomes sig-

nificant at σ2
χ = 0.2 (σ2

R ≈ 0.8) such that a Shack-Hartmann wavefront sensor has reduced

performance.

In this chapter, we develop a modification to the slope measurements that improves the

quality of the reconstruction. This modification is independent of the reconstruction al-

gorithm. In the next section, we introduce branch points. Phase wrapping is discussed
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in detail in Section 4.2. In Section 4.3, the vector field decomposition is explained. Sec-

tion 4.4 is the description and comparison of Fried gradients and wrapped Fried gradients.

Section 4.5 is one of the main results of this dissertation and has the least-squares phase

estimation from the wrapped Fried gradients. In Section 4.6, we provide several examples

of the algorithm. Finally, in Section 4.7, the conclusions are presented.

4.1 Effects of Branch Points on Phase Reconstruction

The branch point phenomenon was first observed by Nye and Berry in 1974 [52]. The

original work in phase reconstruction when branch points are present was done by Fried

and Vaughn [53]. Their analysis shows that branch points appear in areas of low irradiance.

Phase discontinuities form between branch points along branch cuts, which prevent path-

dependent phase unwrapping from traversing the cuts. Branch cuts are placed between

branch points of opposite signs or between a branch point and an edge boundary of the

surface. The path of a branch cut is not unique and they can be placed along areas of

low irradiance by taking irradiance (SNR) into account in the reconstructor. The issue

is how to pair branch points for branch cuts, which is not a trivial problem. Regions of

the wavefront may not be completely surrounded by branch cuts, as this prevents phase

unwrapping. Short branch cut lengths are desirable for AO systems with a continuous

DM that cannot form shapes with discontinuities. The branch cut selection algorithm must

also be computationally tractable for AO feedback control. Many branch cut selection

algorithms were developed for Synthetic Aperture Radar [54], and can be applied to AO.

Fried [48] continued the analysis of branch points in wavefront reconstruction. He noted

that if branch points are present, then the measured phase difference is not a gradient of a

scalar field. Instead, the measured phase differences have two components: a gradient of a

scalar potential and a curl of the vector potential. The rotational curl component leads to

“hidden phase,” as the least-squares reconstruction can only recover the irrotational scalar

potential. In order to recover the original phase, the curl component must be zero valued.

The vector potential is determined as the solution of a Poisson equation, which requires

the locations of the branch points. This analysis leads to a closed-form solution of the

hidden phase contribution from each branch point. The “total phase” is then the sum of the

least-squares reconstructed phase and the hidden phase.
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Tyler [55] performed an analysis of branch points by using the Fourier transform of the vec-

tor field. He decomposed the observed gradient phase field into irrotational and rotational

components. Both components are orthogonal to each other and the rotational component is

shown to be hidden in the null space of the standard least squares reconstructor. The “slope

discrepancy” was determined to be the difference of the gradient field of the least-squares

reconstructed phase and the original measurements. Tyler defines the slope discrepancy as

a matrix operator on the gradient measurements that can be used to reconstruct the correc-

tion to the least-squares wavefront reconstruction. The correction procedurally follows the

least-squares reconstructor.

In our approach, which is presented in this chapter and in [56], we interpret the 2D vector

field problem in terms of linear algebra and vector spaces. We begin with the Helmholtz

decomposition of the measured vector field in terms of orthogonal subspaces of the gra-

dient and curl components. Our approach is different from [48], [55] by changing to a

non-orthogonal decomposition and using least-squares. We can show that a family of wave-

fronts can be generated that match the measured gradients and our solutions can be adapted

to the desired branch cuts.

4.2 Phase Wrapping
A least-squares reconstructor cannot produce the discontinuities of the wavefront caused

by the presence of branch points, and incorrectly estimates the phase values across the

wavefront surface. Although a smooth phase function cannot be determined, there is a

family or ensemble of phase functions that all have the same gradient measurements and

different algorithms may result in different phase functions using the same measurements

for this reason. Unwrapped phase functions are also members of the ensemble.

There are several phase quantities to note. The true phase is φ [n1,n2]. This quantity can

never be known exactly, but it can be estimated as a relative phase. The only guaranteed

relationship between true phase and the estimated phase is that the wrapped quantities are

equivalent, as

W{φ [n]}=W{φ̂ [n]+C}, (4.2)

where C is a constant. Wrapped phase is always guaranteed to be contained in a 2π range;

for our work here we prefer the definition −π ≤W{φ [n]}< π . The difficulty imposed by
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the wrapping is that it is a nonlinear operator of the form

W{φ [n]}= φ [n]+2πk[n] (4.3)

where k[n] are integer values that ensure −π ≤ φ [n]+2πk[n]< π . It is impossible to know

the original true phase from the wrapped values; only relative phase values can be known.

Unwrapping algorithms can remove any sharp discontinuities by finding values for k[n]

that result in a continuous surface for the relative phase. Unwrapped phase is not restricted

to a particular range, but it is desirable that the surface is continuous and there are no sharp

transitions between adjacent phase points. Thus, neighboring phase points are kept to less

than a 2π difference to avoid any ambiguities. This definition means that the constraint for

unwrapped phase is on its difference as

|φ [n1,n2]−φ [n1 −1,n2]|< 2π

|φ [n1,n2]−φ [n1,n2 −1]|< 2π
(4.4)

Increasing the spatial sampling rate is one way to avoid a 2π or larger difference between

two adjacent phase values (or the limit imposed by the sensor).

In general, the estimated phase output from the wavefront reconstruction is not guaranteed

to be either a wrapped or unwrapped phase. In many cases, the estimated wavefront is

smooth and can be considered the unwrapped phase. However, there are instances where

this condition is not satisfied by the wavefront reconstruction algorithm, and the result

requires a phase unwrapping algorithm to yield a continuous wavefront surface. While

some reconstruction algorithms do perform unwrapping (such as the exponential recon-

structor [57–59]), we treat reconstruction and unwrapping as two separate operations. In

this dissertation, we are only presenting a novel reconstruction algorithm and not an un-

wrapping algorithm.
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4.3 Vector Field Decompositions

The Helmholtz decomposition states that a vector field in the three dimensional space is

represented by a gradient component and a rotational component as

ψ = ∇φ +∇×v (4.5)

where ∇ = [∇x,∇y,∇z]
T represents the gradient operator, φ(x,y,z) ∈ R is the scalar poten-

tial and v(x,y,z)∈R
3 is the vector potential, with the outer product ∇× defining the curl of

the vector. As we can observe in (4.5), vector fields are composed of a gradient of function

and a curl of a vector field. The gradient of a function is an irrotational (curl-free) vector

field; whereas the curl of the vector field is a rotational (divergence-free) vector field. In

particular, in the case of a two dimensional vector field in the x,y plane

ψ(x,y) =

[

ψx(x,y)

ψy(x,y)

]

(4.6)

where we assume the component along the z axis to be identically zero, the scalar potential

is φ(x,y) and the vector potential is along the z axis as v = [0,0,v(x,y)]T . These assump-

tions lead to a simple expression of the decomposition (4.6) in matrix form as

[

ψx(x,y)

ψy(x,y)

]

=

[

∇x ∇y

∇y −∇x

][

φ(x,y)

v(x,y)

]

. (4.7)

In the Fourier domain, equation (4.7) relates complex vectors as

[

Ψx(κκκ)

Ψy(κκκ)

]

=

[

j2πκx j2πκy

j2πκy − j2πκx

][

Φ(κκκ)

V (κκκ)

]

(4.8)

with Φ(κκκ) and V (κκκ) the 2D Fourier transforms of φ(x,y) and v(x,y) respectively, and

κκκ = [κx,κy]. Equation (4.8) corresponds to the decomposition of the complex vector Ψ(κκκ)

in terms of the orthogonal reference frame defined by the two columns of the matrix in
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(4.8). Simple matrix inversion yields the two potentials (scalar and vector) computed as

(

( j2πκx)
2 +( j2πκy)

2
)

[

φ(κκκ)

V (κκκ)

]

=

[

j2πκx j2πκy

j2πκy − j2πκx

] [

Ψx(κκκ)

Ψy(κκκ)

]

. (4.9)

The problem of phase reconstruction is to recover the overall phase we call φ0(x,y) from

observed gradients ψ(x,y). This problem is typical in adaptive optics [24] or Interferomet-

ric Synthetic Aperture Radars [60], where local phase differences are observed directly.

When the vector field is irrotational, i.e., the curl component v(x,y) is absent, the overall

phase φ0(x,y) is the same as the scalar potential φ(x,y) since by definition,

ψ(x,y) = ∇φ(x,y). (4.10)

When the field is irrotational, we have seen that the integral of the measured gradient is

independent of the path of integration. In practice, we do not integrate along a path, due to

noise and the fact that we want to use all the data we have rather than only the measurements

along the path.

Algorithms designed for this reconstruction are based on a matrix representation of phase

differences [26–28] as

vec(ψ[:, :]) = ΓΓΓvec(φ [:, :]) (4.11)

with vec(·) representing matrix-to-vector reshaping of sampled gradients ψ and potential

φ , and ΓΓΓ a matrix of appropriate dimensions with approximately twice the number of rows

then columns. Solving for φ in (4.11) yields an overdetermined set of equations solved by

least squares to estimate φ̂ as

vec(φ̂ [:, :]) =
(

ΓΓΓT ΓΓΓ
)−1

ΓΓΓT vec(ψ[:, :]). (4.12)

Although in the applications of interest, the observation vector ψ(x,y) is made of phase

gradients, the presence of singularities and the fact that all phase values are wrapped to lie

within the interval [−π,π), makes the vector potential v(x,y) to be nonzero. As a conse-

quence, the phase φ̂(x,y) to be estimated is not the same as the scalar potential φ(x,y). The

substitution of (4.5) into (4.12) shows that the vector potential information is lost in the

orthogonal frame. Therefore the computation in (4.12) yields a least squares approxima-
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tion for the scalar potential and cannot account for the orthogonal component (the “hidden

phase” in multiple references such as [48] and [55]) associated to the null space of the

matrix ΓΓΓ in equation (4.11).

A solution to this problem, proposed in this dissertation, is to use a different, non-orthogonal

reference frame. This frame will be shown in the next section to be well suited to the com-

putation of phase data in the presence of phase wrapping and singularities such as branch

points. In order to see this, we replace the representation in (4.7) with a non-orthogonal

frame as follows
[

ψx(x,y)

ψy(x,y)

]

=

[

∇x 0

∇y −∇y

][

φ0(x,y)

c(x,y)

]

(4.13)

or, equivalently,
[

ψx(x,y)

ψy(x,y)

]

=

[

∇x ∇x

∇y 0

][

φ1(x,y)

c(x,y)

]

. (4.14)

In this non-orthogonal frame, where the two basis vectors in the frequency domain are

given by

e1 =

[

j2πκx

j2πκy

]

, e2 =

[

0

− j2πκy

]

or e2 =

[

j2πκx

0

]

, (4.15)

the two components φ0(x,y) or φ1(x,y) and c(x,y) are given by the following:

Lemma. Let c(x,y) be the curl of the vector field ψ(x,y), i.e.,

c(x,y)≡ ∇yψx(x,y)−∇xψy(x,y) (4.16)

and let φ(x,y), v(x,y) be the scalar and vector potentials as in (4.7). Note that the sign con-

vention of our definition of curl in (4.16) is opposite of the standard mathematics definition;

we do this to simplify some signs in subsequent results.

Also define c(x,y) and v(x,y) in differential equation form such that

c(x,y)≡ ∇x∇yc(x,y),

v(x,y)≡ ∇x∇yv(x,y)
(4.17)
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with the boundary condition w(x,y). The integral form of (4.17) is

c(x,y)≡
∫ y

0

∫ x

0
c(λ1,λ2)dλ1dλ2 +w(x,y). (4.18)

Then the vector field ψ(x,y) can be expressed as in (4.13) or (4.14) with

φ0(x,y) = φ(x,y)+∇y
2v(x,y)+wy(y),

φ1(x,y) = φ(x,y)−∇x
2v(x,y)+wx(x)

(4.19)

with wx(x) and wy(y) depending on boundary conditions.

Proof. From the bottom equation in (4.9) and the definition of the curl c(x,y) in (4.16), we

obtain
(

∇x
2 +∇y

2
)

v(x,y) = c(x,y). (4.20)

Substitution of v(x,y), c(x,y) with v(x,y), c(x,y) as in (4.17) yields

(

∇x
2 +∇y

2
)

v(x,y) = c(x,y)+w(x,y) (4.21)

with w(x,y) such that

∇x∇yw(x,y) = 0. (4.22)

As shown in the Appendix, Equation (4.22) implies that we can write w(x,y) in the form

w(x,y) = wx(x)−wy(y). (4.23)

Substituting v(x,y) in (4.7) with ∇x∇yv(x,y), we obtain

[

ψx(x,y)

ψy(x,y)

]

=

[

∇x

∇y

]

φ(x,y)+

[

∇x∇y
2v(x,y)

∇y∇x
2(−v(x,y))

]

. (4.24)

Combine (4.24) with (4.21) and we can rewrite it as

[

ψx(x,y)

ψy(x,y)

]

=

[

∇x

∇y

]

(

φ(x,y)+∇y
2v(x,y)+wy(x,y)

)

−
[

0

∇y

]

c(x,y). (4.25)
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Call φ0(x,y) = φ(x,y) +∇y
2v(x,y) +wy(y) and the lemma is proven. This relationship

shows that φ0(x,y) contains information from the scalar and vector potentials. The model

in (4.14) follows immediately by adding the column vector [∇x,∇y]
T c(x,y) to both sides of

(4.13) which yields

φ1(x,y) = φ0(x,y)− c(x,y) (4.26)

and proves the result. �

The significance of this result is that, in certain cases, as addressed in the next section, the

term φ0(x,y) is the total phase and it can be computed from equation (4.13) as

[

ψx(x,y)

ψy(x,y)

]

+

[

0

∇yc(x,y)

]

=

[

∇x

∇y

]

φ0(x,y) (4.27)

using standard techniques. From this result, a rotational field in ψ(x,y) can be made irrota-

tional by combining it with its own curl. In this case, φ0(x,y), φ1(x,y) or any combination

thereof, becomes a possible scalar potential function. In the example below, where phase

wrapping causes the phase gradient to become rotational, it is shown that the scalar po-

tential φ0(x,y) coincides with the actual phase θ(x,y), which is sensed by the wrapped

gradients.

Based on the fact that any signal is equivalent to its own convolution with the impulse, as

c(x,y) = c(x,y)∗∗δ (x)δ (y), we can write

c(x,y) = c(x,y)∗∗u(x)u(y),

∇xc(x,y) = c(x,y)∗u(y),

∇yc(x,y) = c(x,y)∗u(x),

(4.28)

with u(·) the unit step function and the “star” operations indicating 2D convolution with

u(x)u(y) and 1D convolutions with u(x) and u(y) respectively. For clarity, we note that the

first line of (4.28) is equivalent to (4.18).

The following example illustrates the results in the Lemma presented above.
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Example. Consider the phase

θ(x,y) = phase(x+ jy), (4.29)

with the phase wrapped to the interval [0,2π). Simple differentiation yields the wrapped

gradient of θ and its Fourier transform, as computed in [55]

ψx(x,y) =− y

x2 + y2
⇔ Ψx(κx,κy) = j

κy

κx
2 +κy

2
,

ψy(x,y) =
x

x2 + y2
⇔ Ψy(κx,κy) =− j

κx

κx
2 +κy

2
.

(4.30)

The actual unwrapped gradient of θ(x,y) has to take the discontinuity at y = 0, x > 0 into

account as
[

∇x

∇y

]

θ(x,y) =

[

ψx(x,y)

ψy(x,y)

]

+

[

0

2πδ (y)u(x)

]

. (4.31)

From substituting (4.30) into (4.9), we can easily solve for the scalar potential φ(κκκ), vector

potential V (κκκ) and the curl C(κκκ) from (4.16) as

φ(κκκ) = 0,

V (κκκ) =
1

2π(κx
2 +κy

2)
,

C(κκκ) =−2π.

(4.32)

Now we can verify that equation (4.13) holds. We can substitute from (4.17) to solve

∇x∇y
2v(x,y) = ∇yv(x,y) = IFT

{

jκy

κx
2 +κy

2

}

. (4.33)

From (4.30), the right-hand side of the above equation is ∇xθ(x,y), and therefore

∇y
2v(x,y) = θ(x,y)+wy(y) (4.34)

with wy(y) accounting for boundary conditions. Substitution into (4.19) and using the fact
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that the scalar potential φ(x,y) is zero, we obtain

φ0(x,y) = θ(x,y)+wy(y). (4.35)

The quantity φ0(x,y) is the total phase we want to reconstruct, on the right-hand side of

(4.27). Substituting for c on the left-hand side of (4.27), we obtain

[

ψx(x,y)

ψy(x,y)

]

+

[

0

2πu(x)δ (y)

]

=

[

∇x

∇y

]

φ0(x,y). (4.36)

The left-hand side is ∇θ(x,y) from (4.31), which implies

θ(x,y) = φ0(x,y)+C (4.37)

where C is a constant. Equation (4.37) is consistent with (4.35) and wy(y) =C.

In the next section, where we address the sampled data implementation, we actually prove

analytically that φ0[n1,n2] and the phase sensed by the wrapped gradients differ by integer

multiples of 2π , thus yielding the same wrapped values. In other words the “hidden phase”

is included in φ0, and therefore no “slope discrepancy” is in the gradients of φ0.

4.4 Fried Geometry

In the sampled data case, we extend the concepts introduced in the previous sections by

defining the gradient operators on the basis of the Fried geometry.

To this extent, given the sampled phase φ0[n1,n2] = φ0(n1∆x,n2∆y) we define the gradients

in the two directions as

ψ1[n1,n2] =
1

2
(φ0[n1 +1,n2 +1]+φ0[n1,n2 +1])− 1

2
(φ0[n1 +1,n2]+φ0[n1,n2]) ,

ψ2[n1,n2] =
1

2
(φ0[n1 +1,n2 +1]+φ0[n1 +1,n2])−

1

2
(φ0[n1,n2 +1]+φ0[n1,n2]) .

(4.38)
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Using the shift operators z1, z2, we can write (4.38) in a more compact form

ψ1[n1,n2] =
1

2
(z1 +1)(z2 −1)φ0[n1,n2],

ψ2[n1,n2] =
1

2
(z1 −1)(z2 +1)φ0[n1,n2]

(4.39)

from which we define the discrete gradient operators as

∇1(z1,z2)≡
1

2
(z1 +1)(z2 −1) ,

∇2(z1,z2)≡
1

2
(z1 −1)(z2 +1) .

(4.40)

Substituting z1 = e jω1 and z2 = e jω2 into (4.40), we obtain the discrete frequency response

of the operators as

∇1(ωωω) = 2e− j
ω1+ω2

2 cos
(ω1

2

)

sin
(ω2

2

)

,

∇2(ωωω) = 2e− j
ω1+ω2

2 sin
(ω1

2

)

cos
(ω2

2

)

.
(4.41)

It is easy to see that both ∇1(ωωω) and ∇2(ωωω) are zero when ωωω = [0,0] (“piston” mode) and

ωωω = [π,π] (“waffle” mode). As a consequence,

∇x[n] = 0 ⇒ x[n] =C0 +C1(−1)n1+n2 (4.42)

for some constants C0, C1 that depend on the boundary conditions.

It is well known that Fried derivatives are good models for Shack-Hartmann sensors, which

measure local phase gradients. However, Barchers demonstrated that the Fried geome-

try performance degrades in high scintillation when compared to Hudgin geometry [51].

When branch points causing phase wrapping are present, it is imperative to properly embed

the wrapping operation within the Fried gradients computations. The development of the

wrapped Fried gradient presented here is sufficient for reconstructing the high turbulence

wavefront properly.

From Figure 4.1, the block diagram approach of the Fried geometry can be seen. In 4.1

(a), the standard Fried gradients are shown in terms of transfer functions in z1 and z2. The

first blocks (z1−1) and (z2−1) provide for phase differences in the vertical and horizontal
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directions, while the second blocks (z2 + 1)/2 and (z1 + 1)/2 provides simple averaging

(half the sum) in the opposite directions (horizontal and vertical).

When phase wrapping is present, the first blocks, which model phase difference measure-

ments, must be augmented with the phase wrapping operation W. Wrapping guarantees

that phase differences multiples of 2π are not sensed.

Call ∇W the wrapped Fried derivative gradient in Figure 4.1 (b) and ψ[n], the sensed

wrapped gradients, as

ψ[n1,n2] =

[

∇W1

∇W2

]

φ0[n1,n2]. (4.43)

From the definition of the wrapping operator W and the factor 1/2 in the averaging second

block we can relate the gradient and wrapped gradient by

∇Wφ0[n] = ∇φ0[n]+πℓ[n] (4.44)

with ℓ[n] having integer values only.

The wrapped Fried gradients are the basis of the phase estimation presented in the next

section.
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4.5 Least Squares Phase Estimation from Wrapped Fried

Gradients

Along the same lines as in the previous section, the vector field ψ can be represented in

terms of scalar and potential functions φ and v as

[

ψ1[n1,n2]

ψ2[n1,n2]

]

=

[

∇1 ∇2

∇2 −∇1

][

φ [n1,n2]

v[n1,n2]

]

. (4.45)

Equation (4.45) is the same as for the continuous case in the previous section, and in the

frequency domain this just becomes a matrix-vector operation

[

Ψ1(ωωω)

Ψ2(ωωω)

]

= e− j
ω1+ω2

2

[

c1s2 s1c2

s1c2 −c1s2

][

Φ(ωωω)

V (ωωω)

]

(4.46)

with ci = cos(ωi/2) and si = sin(ωi/2) for i = 1,2. We can easily verify that the two

columns of the matrix represent two orthogonal vectors.

The result of the previous section can then be extended to the sampled data case by defining

the curl of the vector field as

c[n1,n2]≡ ∇2ψ1[n1,n2]−∇1ψ2[n1,n2]. (4.47)

with ∇1, ∇2 the standard unwrapped Fried derivatives. Then the vector field ψ can be

expressed as
[

ψ1[n1,n2]

ψ2[n1,n2]

]

=

[

∇1 0

∇2 −∇2

][

φ0[n1,n2]

c[n1,n2]

]

(4.48)

with c defined as

c[n1,n2]≡ ∇1∇2c[n1,n2]. (4.49)

In order to obtain an expression for c, first notice that any signal can be represented in

convolution (double convolution in the 2D case) form

c[n1,n2] = c[n1,n2]∗∗ δ [n1]δ [n2] (4.50)
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with δ [n] the discrete impulse, being δ [0] = 1 and δ [n] = 0 for all n 6= 0. In equation (4.49),

the product of the two operators can be expressed as

∇1(z)∇2(z) =
1

4
(z1 −1)(z1 +1)(z2 −1)(z2 +1)

=
1

4

(

z1
2 −1

)(

z2
2 −1

)

.

(4.51)

Now if we define the sequence

u[n]≡ (1+(−1)n)u[n−2], (4.52)

plotted in Figure 4.2, we can verify that u[n+2]−u[n] = 2δ [n], and therefore

δ [n1]δ [n2] = ∇1(z)∇2(z)u[n1]u[n2] (4.53)

so that c can be written as

c[n1,n2] = c[n1,n2]∗∗ u[n1]u[n2]. (4.54)

With these premises, we can state the main result of this research.

Main Result. Let ψ[n1,n2] be the vector field of the wrapped Fried gradient of the phase

φ0[n1,n2], defined as
[

ψ1[n]

ψ2[n]

]

≡
[

∇W1

∇W2

]

φ0[n]. (4.55)

Also let its curl, c[n], be such that

c[n] = πℓ[n] (4.56)

i.e., it assumes values only integer multiples of π .

n

ū[n]
2

❋✐❣✉r❡ ✹✳✷✳ ❚❤❡ ❢✉♥❝t✐♦♥ ū[n] ✐s ✉s❡❞ t♦ ❝r❡❛t❡ c̄[n] ❢r♦♠ c[n]✳
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Let φ̂ [n] be such that

[

ψ1[n]

ψ2[n]

]

+

[

0

c[n]∗∗ q[n]

]

=

[

∇1

∇2

]

φ̂ [n] (4.57)

with ∗∗ denoting 2D convolution and q[n] defined as

q[n1,n2]≡
1

2
(z1 −1)(z2 +1)u[n1,n2]. (4.58)

Then there exist constants C0, C1 for which

φ0[n] = φ̂ [n]+C0 +C1(−1)n1+n2 +2πℓ[n] (4.59)

with the rightmost term a sequence assuming only integer multiples of 2π .

Proof. By exactly the same arguments as in the previous section, equation (4.57) holds for

some φ̂ [n]. What we need to show is that the estimated phase φ̂ [n] and the original phase

φ0[n] are the same apart from integer multiples of 2π , a piston mode C0 and a “waffle”

mode C1(−1)n1+n2 .

The argument is based on the fact that the curl sequence c[n1,n2] assumes values which

are all integer multiples of π . Also it is a simple exercise to verify that the sequence

q[n] = 0,±2 for all n. As a consequence, for all n,

c[n]∗∗ q[n] = 2πℓ[n]. (4.60)

where, again ℓ[n] denotes a sequence of integer values. Recall that the relation between

Fried and wrapped Fried gradients in (4.44) and the observed wrapped phase gradient ψ[n].

Then by substitution into (4.57) we obtain that the sequence

[

∇1

∇2

]

(

φ0[n]− φ̂ [n]
)

= π

[

ℓ1[n]

ℓ2[n]

]

, (4.61)
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i.e., it assumes values which are integer multiples of π for all n. Since for any sequence

ℓ[n] = ℓ[n]∗∗ δ [n1]δ [n2] (4.62)

and

δ [n1]δ [n2] = ∇1

(

2(−1)n1−1u[n1 −1]u[n2 −1]
)

= ∇2

(

2(−1)n2−1u[n1 −1]u[n2 −1]
)

,
(4.63)

we have that

ℓ[n] = 2∇1ℓ[n]

ℓ[n] = 2∇2ℓ[n].
(4.64)

In other words, a sequence of integers is the Fried derivative of a sequence of even integers.

Finally combine equations (4.61) and (4.64) to obtain

∇
(

φ0[n]− φ̂ [n]+2πℓ[n]
)

= 0, (4.65)

which proves the result. �

Estimation of φ0[n] based on sensed Fried gradients ψ[n] is then carried out by computing

φ̂ [n] from equation (4.57), using either standard least squares or (as is shown in the next

section) the multi-resolution algorithm presented by the authors in [61].

Then, from the result in equation (4.59), we obtain

φ0[n] =W
(

φ̂ [n]+C0

)

(4.66)

with C0 a constant determined by a reference value. The “waffle” term is usually neglected

since the data is assumed not to contain this term.

The algorithm for Fried geometry can be summarized as a procedural list:

1. Collect the sensor measurements ψ1[n1,n2] and ψ2[n1,n2].

2. Compute the curl

c[n1,n2] = ∇2ψ1[n1,n2]−∇1ψ2[n1,n2]. (4.67)
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3. Compute the quantity

∇2c[n1,n2] = c[n1,n2]∗∗q[n1,n2]. (4.68)

4. Modify the measurement

ψ2,new[n1,n2] = ψ2[n1,n2]+∇2c[n1,n2]. (4.69)

5. Use ψ1[n1,n2] and ψ2,new[n1,n2] in the standard least-squares reconstructor to solve

for φ̂ [n1,n2]
[

ψ1[n1,n2]

ψ2,new[n1,n2]

]

=

[

∇1

∇2

]

φ̂ [n1,n2]. (4.70)

The comparison of this algorithm with the traditional approach is given in Figure 4.3.

4.6 Application to Phase Estimation

The algorithm presented in Section 4.5 has been applied to a number of phase signals both

geometric and simulated wavefront phase functions.

In the following examples when noise is present, the Gaussian white noise is added to the
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phase difference measurement quantities as

[

ψx,noisy[n1,n2]

ψy,noisy[n1,n2]

]

=

[

ψx[n1,n2]

ψy[n1,n2]

]

+

[

αnx[n1,n2]

αny[n1,n2]

]

, (4.71)

where α is chosen to ensure the desired SNR for simulation. The noise source models the

uncertainty in the centroid operation of the S-H WFS. Unless stated otherwise, amplitude

is not used in the reconstruction and no noise added to the amplitude.

In addition, we provide a comparison with the proprietary SPhase algorithm in AOTools

and WaveProp, developed by the Optical Sciences Company [62], [63]. SPhase uses ampli-

tude and phase information for wavefront reconstruction and its goal is to place the branch

cuts in areas of low irradiance for a continuous DM. SPhase also performs phase unwrap-

ping. Thus, the goals of SPhase are different than the algorithm presented here.

4.6.1 Example 1: Geometric Signal

Let s = x+ jy and define φ0[n] as samples of the phase

φ(x,y) = phase(s) (4.72)

with sampling intervals δx = δy = 0.01, the number of data points N = 256× 256 and a

shift by δx/2 and δy/2 so that the singular point x = y = 0 is not in the sampling grid.

In Figure 4.4, the 3D plot of the wrapped phase Wφ0[n] is shown and in Figure 4.5 the

wrapped estimated phase Wφ̂ [n] is shown. The reconstruction is an exact match. The

significance of this is observable from Figures 4.6 and 4.7, where the large discontinuity

is not apparent. The lack of discontinuity in the measurements is the importance of the

wrapped Fried gradient model, otherwise the ridge would be in the gradient data that is the

input to the algorithm.

In this particular example, because the discontinuity is along the same dimension as our

non-orthogonal correction, the result is exactly the same as the input. If the input had a

discontinuity at a different angle relative to the origin (which would still result in the same

wrapped measurements), the resulting output would still be the same as the one shown in

Figure 4.5.
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4.6.2 Example 2: Geometric Signal

Similarly, in Figure 4.8 the samples of the phase for the function

φ(x,y) = phase

(

(s−b1)(s−b2)

(s−a)

)

, (4.73)

with b1 = 0.5150− j0.26, b2 = 0.0050+ j0.26 and a = 0.005+ j0.005 are shown. Two

estimates are shown: without noise in Figure 4.9 and with noise added to the observations

(with 40dB SNR) in Figure 4.10.

The comparison between Figures 4.8 and 4.9 along the top center shows two different

boundaries of maximum (red) and minimum phase (blue). In this example, we show that C0

from (4.66) is set to a constant that causes a slightly different wrapping than Figure 4.8. The

gradient measurements are the same and we show that the discontinuity can be positioned.

With this example, we are able to know the amplitude and phase. If we run SPhase with

the phase, but set the uniform amplitude to be unity, SPhase chooses a simple branch cut

scheme of connecting the two closest branch points to one another, and the third (closer

to the bottom) branch point straight to the bottom edge. Our algorithm connects the lower
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branch point to the right edge (due to the non-orthogonal basis). Wrapping the phase for

either result has the same output.

Using both the amplitude and phase information from (4.73), SPhase creates a slightly

more complicated branch cut between the upper two branch points that takes advantage of

the lower irradiance path between these singularities.

4.6.3 Example 3: High Turbulence Phase Signal

WaveProp was used to generate the algorithm input data for this example. We tried the

algorithm under a variety of operation conditions, but only present the highest turbulence

results here as other cases also were successful. WaveProp simulated a 1.0 meter diameter

circular aperture in a 2048× 2048 E-field grid. The simulation used λ = 1µm through a

4 km horizontal path. The atmospheric effects were assumed to be a constant turbulence

through 5 phase screens. The C2
n value is 7× 10−15 with a calculated Rytov number of

0.3051.

The phase signal is shown in Figure 4.11, with estimates in Figure 4.12 (no noise) and

Figure 4.13 (noise with 40dB SNR). For the noiseless case, the location of the detected
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branch points are shown in Figure 4.15, while the branch points of the original phase as

determined by WaveProp are shown in Figure 4.14.

SPhase only works on this example when the correct (original) amplitude is also supplied to

its input. Setting a constant amplitude results in a signal of little interest (even the wrapped

output did not match the original data). The wrapped output of SPhase (using the WaveProp

amplitude) is identical to the output of our algorithm. Thus, we can say that the amplitude

information is important in the SPhase algorithm, whereas the amplitude is not used by our

algorithm proposed here.

4.6.4 Example 4: Double Spiral

Our last example is the double spiral shear from [54]. Although this dataset, shown in

Figure 4.16, is used to test unwrapping, we decided to include it here. Ghiglia states that

this example has failed in unwrapping when there is noise on the measurements for all

unwrapping algorithms covered by their book. The actual spiral data has one arm ascending

(with, a positive n1 gradient) and the other spiral arm descending with a negative n1 gradient

of the same magnitude.
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Our algorithm results in Figure 4.17 for no noise, and in Figure 4.18 for 40 dB SNR. In the

case of noise, the noise can potentially cause the phase value to wrap and the horizontal

bar pattern can form. However, in the no noise case, the reconstruction is exact. The

determined branch point locations match Figure 3.10 in [54].

Since SPhase also includes unwrapping, it has difficulty on this data set. While its output

does show the double spiral pattern, the spiral arms are flat areas. The boundary pixels

between the spiral arms often do not fully resolve correctly and have discontinuities. The

wrapped output of SPhase is not a good match to the original surface. One spiral arm takes

on zero value for all pixels, and the other spiral arm has areas that are close to ±π . The

boundary pixels of the spirals in the wrapped output also have discontinuities.

4.7 Summary
In this research, we addressed the problem of estimating a phase signal based on observa-

tion of wrapped local variations. This approach is based on a particular representation of

the vector field in terms of a non-orthogonal basis which seems to be better suited than the
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standard orthogonal basis associated to scalar and potential field.

It was shown that by correcting the observed gradient with a filtered curl, the overall phase

(including what has been called the “hidden phase”) is estimated by standard least-squares

solver. A number of computer simulations support what has been stated based on math-

ematical analysis. A comparison with SPhase shows that our algorithm results in the

same wrapped phase measurements, which is expected since the algorithms output dif-

ferent phase functions of the ensemble of wavefront surfaces that have the same gradient

measurements. The examples show that the wrapped φ0 is equal to the wrapped total phase.

This approach is able to efficiently determine a wavefront surface that is a member of the
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ensemble of wavefronts that all have the same gradient measurements. The approach is

as computationally efficient as the least-squares or equivalent reconstructor chosen. The

approach does not unwrap the phase, as we leave that as a follow on step to the output of

our algorithm presented here.
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❈❍❆P❚❊❘ ✺✿
▼✐rr♦r ❙✉r❢❛❝❡ ❈♦♥tr♦❧ ❯s✐♥❣ ❖♣t✐♠✐③❛t✐♦♥

As mentioned in the introductory chapter, the goal of the AO system is to compensate for

phase distortion. To achieve this goal, the phase distortion determined by the wavefront

reconstruction, presented in the previous two chapters, has to be properly compensated. In

this chapter we address the problem of setting the control actuators of a DM to compensate

for the phase distortions detected by the wavefront reconstructor.

The phase distortion detected by the phase reconstruction algorithms presented in the pre-

vious two chapters, is at the basis of using mathematical optimization for mirror surface

control that was conducted in the SMT laboratory. Although the original mirror control

software determines actuator settings by using mathematical optimization routines, these

routines were never validated on the hardware. The DM behavior has nonlinear character-

istics; however, the original optimal control problem uses a linear model approximation of

the actual hardware performance. We sought to determine whether control using the lin-

ear model was valid, the range of operation where the linear assumption is true, and what

the resulting performance levels were as measured in root-mean-square (rms) error of the

wavefront surface.

SMT is an active optics system with surface parallel actuators. Applying a voltage across

the actuator causes the mirror surface to change. The goal of this technology is to al-

low larger variances in manufacturing tolerances. Deviations from the intended optical

prescription are removed by the actuators during operation. This design saves money by

reducing costly manufacturing rework.

The primary mirror of the SMT has six segments that are hexagonal-shaped mirrors, each

having 156 controllable actuators. Although in the previous chapters a S-H WFS was used

to estimate the wavefront, the SMT primary mirror is measured using an interferometer

sensor placed in front of the telescope as shown in Figure 5.1. The sensor choice allows for

high resolution sampling of the mirror surface that would not be available with the labora-

tory S-H WFS. A Stewart platform is used to position the interferometer along the optical

axis of the primary mirror. The interferometer and null corrector are mounted to remove the
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❛♥❞ ♠❡❛s✉r✐♥❣ s✉r❢❛❝❡ ❝✉r✈❛t✉r❡✳ ■♠❛❣❡ ✐s ❝♦✉rt❡s② ♦❢ ❏♦❤♥ ❇❛❣♥❛s❝♦✳

spherical aberration at the primary mirror center of curvature. Each interferometer sample

measures the mirror surface height in units of wavelength.

In the next section, we describe the original optimization problem developed by the SMT

manufacturers to control the mirror surface. In Section 5.2, we explain a hardware test

algorithm which solves a series of optimization problems and each result can be used to

control the mirror surface. In Section 5.3, we modify the algorithm to use a multigrid

approach for the optimization problems and reduce computation time. We summarize the

chapter in Section 5.5.

5.1 Original Optimization Problem
The original SMT control software solves a constrained optimization problem for each

primary mirror segment to determine the actuator voltages. The constrained optimization

problem is

minimize
x

J = 1
2
‖Cx−d‖2

2

subject to Ax ≤ b
(5.1)

where the vector x contains the actuator voltages that minimize the cost function J, C is the

linear influence function matrix, and the d vector contains the desired mirror shape. The

matrix A and vector b model the hardware voltage limits.
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The cost function is minimized when the actuators change the mirror surface to match the

desired mirror surface shape. When the mirror forms the conjugate shape of the wavefront

distortion as measured by the interferometer, the wavefront rms error decreases. The nota-

tion ‖ · ‖2 in the cost function identifies the L2 norm [21], or the Euclidean magnitude of a

vector.

The vector x consists of the M = 156 actuator voltage biases from the nominal operating

voltages. After solving the optimization problem, the software commands the actuator

voltages.

The linear influence matrix C has as many rows as the number of measured samples, P,

and as many columns as the number of actuators, M. The influence function for actuator m

is defined as

fm[n1,n2] =
OPDm(V1)−OPDm(V2)

V1 −V2
(5.2)

where OPDm(V ) is a discrete 2D optical path difference (OPD) for the applied voltage V

to actuator m. Each OPD is calculated from multiple interferograms collected by an in-

terferometer. Forming each influence function requires 2 measurements, one with positive

actuator voltage bias V1 and the other with a negative voltage bias V2. Both V1 and V2 are

chosen to have the same distance from the nominal voltage and represent the range over

which the actuators are assumed to have linear operating characteristics. Further details on

measuring influence functions are found in [6] and simulated influence functions can be

created by using integrated optomechanical analysis [64].

Although the interferometer collects approximately 1,000× 1,000 samples per OPD, a

segment only covers a fraction of the area. Each segment has a mask that identifies which

samples display the segment surface. As a result of the optical configuration, a particular

segment has P ≈ 60,000 samples that overlap the measurement. Each masked fm[n1,n2] is

formed into a column vector

cm = vector(masked( fm)) (5.3)

where masked(·) keeps the samples of the measured mirror surface and discards all others.
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After all of the influence functions are collected the C matrix is defined as

C =







| | | |
c1 c2 · · · cM

| | | |






. (5.4)

The process of creating C is shown in Figure 5.2 using simulated data with approximately

8,000 samples on the surface.

The vector d is the desired wavefront as measured by the interferometer and is of the same

dimensions as a single column of C. Immediately before running the optimization, these

data are collected. The optical system has alignment issues that cause large piston, tip and

tilt aberration. These modes are removed from the data, as they are not of interest to correct

in this study.
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❚❛❜❧❡ ✺✳✶✳ ❚❤❡ ❞✐♠❡♥s✐♦♥s ♦❢ t❤❡ q✉❛♥t✐t✐❡s ✉s❡❞ ✐♥ t❤❡ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ✇❤❡r❡ M = 156
❛♥❞ P ≈ 60,000✳

Variable Dimensions

A 2M × M

b 2M × 1

C P × M

d P × 1

x M × 1

lower M × 1

upper M × 1

❋✐❣✉r❡ ✺✳✸✳ ❚❤❡ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ❝♦♠❜✐♥❡s t❤❡ ❙▼❚ ✐♥✢✉❡♥❝❡ ❢✉♥❝t✐♦♥s t♦ ❝r❡❛t❡ t❤❡ ❞❡s✐r❡❞
♠✐rr♦r s✉r❢❛❝❡ s❤❛♣❡ ❜② tr❡❛t✐♥❣ ❡❛❝❤ xi ❛s ❛ s❝❛❧✐♥❣ ❢❛❝t♦r ❢♦r t❤❡ ✐♥✢✉❡♥❝❡ ❢✉♥❝t✐♦♥✳

The constraints Ax ≤ b can be used to form a convex hull [65] using A and b of the form

A =

[

I

−I

]

, b =

[

upper

lower

]

. (5.5)

The set of x values that satisfy the constraints is called the feasible set and the optimization

solution must be contained in this set. The dimension of A is 2M×M and dimensionality

of b is 2M×1, resulting in twice as many constraints as actuators. We use lower and upper

to signify bounds on each actuator. The implementation used by the SMT developers was a

constant vector that constrained each actuator to the same range used to calculate influence

functions in (5.2).

Table 5.1 summarizes the dimensions of the optimization problem. Since M ≪ P, the

optimization problem is a vastly overdetermined linear system of equations. As shown in

Figure 5.3, each actuator is commanded to achieve the desired surface using the obtained

optimal solution x∗.

To solve the optimization problem of (5.1), the control software uses the ▲❙◗▲■◆ optimizer
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function in the MATLAB Optimization toolkit. The algorithm details are documented

in [66], [67]; however, one significant limitation of the optimizer function is that it only

returns the final solution and the sub-optimal solutions of the trajectory are not available by

design. For the general use-case scenario of ▲❙◗▲■◆, intermediate sub-optimal solutions

are of little interest. Cohan and Miller state that control using an optimization problem so-

lution of a modeled segmented mirror matches to within 7% of NASTRAN finite element

model prediction [68]; however, we sought to test this on hardware and to determine if the

hardware response is similar to the linear influence function approximation. To do so, we

need more than just the final optimization solution.

The linear influence function model assumes that the actuators operate independently and

their combination follows the principle of superposition. In the actual hardware, we expect

that the system is not truly linear and that actuators have nonlinear coupling. With only a

single optimization solution to compare against the hardware, we cannot collect significant

data to make a determination as to whether the linear system model accurately represents

the hardware characteristics.

In order to produce more than one solution to test, we must create a trajectory, or sequence

of solutions. In the next section, we present our developed technique to create a trajectory

of actuator voltages to command the DM. We can determine the linear region from the

trajectory.

5.2 Trajectory Creation Algorithm
We developed an algorithm to generate a trajectory from the solutions of a sequence of

optimization problems with varying constraints. The solutions can be used to compare the

linear influence function model against the hardware performance. We wanted to generate

a series of solutions with a “small” step from the previous iteration along the trajectory

to the final result x∗. We define “small” steps as a combination of two constraints: a

norm constraint and a moving boundary constraint. First, the L2 norm of the actuator

change in value is forced to be less than or equal to a chosen constant. Second, each

actuator movement is individually constrained from the previous iteration value. Since

each individual actuator has a boundary constraint, placing a constraint on the L2 norm

limits the number of actuators that are on the boundary constraint. This combination of
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constraints allows all actuators to change value, but also have a new solution that is “local”

to the previous iteration. The algorithm form to create a trajectory is

iterate
j

minimize
x j

J =
∥

∥Cx j −d
∥

∥

2

subject to lower ≤ x j ≤ upper
∥

∥x j −x j−1

∥

∥

2
≤ α

−β ≤ x j −x j−1 ≤ β

stop condition
∥

∥x j −x j−1

∥

∥

2
≤ ε

(5.6)

where the first constraint enforces the hardware voltage limits and we add two new con-

straints. We use the threshold values α and β to limit the change of values between iter-

ations and ε to determine when the trajectory has “settled” and the algorithm is finished.

We initialize the problem with j = 1 and x0 = zeros(M,1) and the iterations cease when

the stop condition has been satisfied.

The form of the new constraints only affect the change per iteration and do not affect the

final optimal solution x∗ for our original problem; the final iteration solution is equivalent

to the solution of the optimization problem (5.1) to within numerical rounding.

To give an idea of how the combination of constraints work, an example trajectory is shown

as a projection into the 2D space of actuators x1 and x2 in Figure 5.4. For this example, each

vector xi contains variables x1 to xk (k > 2). The norm constraint prevents all of the variables

from moving beyond a “small ball” per iteration. The radius of the norm constraint when

projected in 2D space of x1 and x2 is a function of the orthogonal variables x3 to xk. Each

moving boundary constraint ensures that every actuator does not change by more than a

threshold value which forms a box shape. For solutions x1 and x2, the boundary constraint

was the active constraint that restricted the solution, whereas solution x3 was restricted by

the norm constraint.

The norm constraint is not compatible with the ▲❙◗▲■◆ solver, which is designed for equal-

ity and inequality constraints. For this reason, we use SeDuMi [69] as our solver for the

optimization problem. Although we could use the SeDuMi routines directly, we instead

choose to use YALMIP [70] to construct the optimization problem. YALMIP translates
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✐♥❞✐❝❛t❡ t❤❡ α ♥♦r♠ ❝♦♥str❛✐♥t ❛♥❞ ✐ts r❛❞✐✉s ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ ✈❛r✐❛❜❧❡s x3 t♦ xk ✭✇❤✐❝❤ ❛r❡ ♥♦t
s❤♦✇♥✮✳ ❚❤❡ r❡❞ sq✉❛r❡s s❤♦✇ t❤❡ ❝♦♥✈❡① β ❜♦✉♥❞✐♥❣ ❜♦① ❝♦♥str❛✐♥t✳

optimization problems into forms understood by solvers and can simplify implementation.

For each run of the optimization problem, SeDuMi returns a new solution that has a lower

cost function result. We then continue to iterate until the norm difference between xi and

xi−1 is less than threshold ε , which indicates that SeDuMi has settled near the optimal

solution x∗. With the combination of constraints, the correction begins with low spatial

frequencies. As the iterations progress, finer detail is possible in the result.

A drawback to this approach is that the computation time for SeDuMi is much longer

than ▲❙◗▲■◆ since many optimization problems are being solved. The computation time

was not an important factor to consider as this control software was not intended for real-

time feedback. However, as a means to decrease the processing time, we implemented the

optimization problem on multiple grids.

5.3 Multigrid Optimization Problem
The system of equations is overdetermined since P ≫ M by an factor of 400, and the

optimization algorithm must perform many linear algebra computations.

Adjacent OPD measurements are similar in value, which led to the idea of using the low-

pass filters of the Discrete Wavelet Transform to consolidate measurements. Since we are

using only the low-pass filters, this is considered a multigrid approach [71]. In Chapter

2, we discussed multiresolution analysis of signals. The significant difference between

88



multiresolution and multigrid is that multigrid methods discard the high-frequency content

whereas multiresolution methods do not [72].

In Section 5.1, we described the construction of the C matrix and d vector. For our multi-

grid technique, we create C at the multiple grids. We can use operator notation to express

the resizing of influence functions in (5.2) as

f i
m[m1,m2] = (D1D2g(z1)g(z2))

imax−i
f 0
m[n1,n2] (5.7)

where we use the same operators and g(z) definition from Chapter 2, i is the grid number,

and imax is the number of grids. The mask must also be redefined for each grid, which we

can do by downsampling without filtering. At each downsampled resolution, the number

of masked samples decreases by a factor of 4 and the masked(·) function is redefined. Each

column of C is still of the form

ci
m = vector(masked( f i

m)) (5.8)

so that the C matrix at grid i becomes

Ci =







| | | |
ci

1 ci
2 · · · ci

M

| | | |






. (5.9)

The trajectory creation algorithm begins at the coarsest grid. At this grid, the optimizer is

iteratively run until the stop condition is satisfied. The solution is used as the initial guess

on the next grid. This process continues until the optimizer is run at the highest resolution
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and its stop condition is satisfied. We write this in algorithm form as

iterate
i

iterate
j

minimize
x j

J =
∥

∥Cix j −di

∥

∥

2

subject to lower ≤ x j ≤ upper
∥

∥x j −x j−1

∥

∥

2
≤ α

−β ≤ x j −x j−1 ≤ β

stop condition
∥

∥x j −x j−1

∥

∥

2
≤ ε

(5.10)

where di is the matching data for grid i.

5.4 Experimental Results
To perform a hardware test, a modification was made to the optical arrangement to add

another DM into the beam path of the interferometer, which is shown in Figure 5.5. This

DM has 140 actuators that act locally on the mirror surface. This additional DM was added

because the primary mirror actuators do not have sufficient actuation range for the magni-

tude of wavefront error. Rather than command the primary mirror actuators, its actuators

are set to manufacturer voltages and we use the optimization problem to determine actuator

voltages for the small DM only. The optical configuration has M = 55 actuators near the

primary mirror segment under study; all other actuators were kept at their nominal flat-

mirror position. The allowable range of actuator values for the control software to the DM

is 0 ≤ x ≤ 100, which uses percentages and not voltages.

For the optimization problem, we set α = 10, β = 1, and ε = 10−4. These were chosen

arbitrarily and give a sufficient trajectory with the desired “small” actuator movement.

For the multigrid algorithm, the approximate number of masked samples for each grid is

given in Table 5.2. We stopped at the fifth iteration since the next level would result in

fewer equations than unknowns (P < M).

We show the process of (5.10) visually in Figure 5.6. The DM multigrid trajectory first

solves optimization problems on the coarsest grid. Once a solution has been determined
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❛r❡ ❝♦✉rt❡s② ♦❢ ❏♦❤♥ ❇❛❣♥❛s❝♦✳

❚❛❜❧❡ ✺✳✷✳ ❚❤❡ ♥✉♠❜❡r ♦❢ s❛♠♣❧❡s ✉s❡❞ ❢♦r ❡❛❝❤ ❣r✐❞ ♦❢ t❤❡ ♠✉❧t✐♣❧❡ r❡s♦❧✉t✐♦♥s✳

Grid level Number of samples

1 P ≈ 60,000

2 P ≈ 14,000

3 P ≈ 3,500

4 P ≈ 800

5 P ≈ 190

for a grid, the result is used as the initial condition on the next higher grid.

The multigrid trajectory algorithm was run on the same data as the single grid trajectory.

A comparison of the cost function as a function of time is shown in Figure 5.7 for each

approach. Although both approaches have the same final optimal solution, the multigrid

algorithm finished approximately 2.5 times faster. The rate of decrease of the cost function

is thirty times steeper for the initial two multigrid solutions compared to the initial two

single grid solutions (see the tick marks in Figure 5.7).

We expect that for each iteration, the cost function will decrease. The number of iterations

at each level i is shown in Table 5.3. In Figure 5.7, we see that while the single grid cost

function monotonically decreases, this is not the case for the multigrid. The cost function

increase is understood by examining Figure 5.8. The cost function is evaluated at each res-
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olution using Ci and di. We see that each segment of the plot is monotonically decreasing.

When switching to a higher resolution, the cost function has an increase. Thus at each grid

level, the optimizer is doing the best available solution for the influence functions at that

grid and cannot correct for higher resolution distortion. The rate of cost function decrease

at the coarse grid is significant compared to using the full grid, which implies that the mir-

ror is effectively controlled at the coarse grid. There is not a substantial improvement to

control the mirror at the full resolution. With much higher actuator density (M ≫ 55), we

would expect that the mirror surface would improve at higher resolution control.

Another feature to note in Figure 5.8 is the distances between the tick marks which indicate

an iteration of the optimization problem. At the high resolution, the tick marks are broadly

spaced because of the time required to perform the large-scale linear algebra. The multigrid

approach solves each iteration much faster, though it has to perform more iterations to

arrive at the same solution.
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❚❛❜❧❡ ✺✳✸✳ ❚❤❡ ♥✉♠❜❡r ♦❢ ✐t❡r❛t✐♦♥s ❢♦r ♠✉❧t✐❣r✐❞ ❛♥❞ s✐♥❣❧❡ ❣r✐❞ ❛❧❣♦r✐t❤♠s✳

Grid level Number of iterations

Multigrid 1 42

2 21

3 13

4 5

5 5

Single grid 22

The hardware response shown in Figure 5.9 is compared against the linear model prediction

using the multigrid solutions. Up until approximately 5 optimizer iterations, the agreement

between the linear model and hardware response is very close. After about 10 optimizer

iterations, the model does not accurately predict the hardware response, which is due to the

expected nonlinear behavior of the mirror [73], [74]. Despite this, the mirror surface does

not see a significant change in the wavefront rms error as it levels off. However, while we

can see that the hardware response has small oscillations in the wavefront rms error, the
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overall wavefront rms error is fairly constant. The changes in the wavefront rms error can

be attributed to nonlinearities in the mirror surface and measurement noise in the interfer-

ometer. The optical alignment is moving due to mechanical vibration. Each interferometer

measurement takes a duration of time and the motion has an effect on the result. In some

cases, small areas of the mirror surface experience a different phase unwrapping result from

the interferometer software. All of these effects attribute to the oscillations in wavefront

error rms.

In Figure 5.10, we show the mirror surface results from the final iteration of each grid. In

each case, the rms wavefront error is consistent despite the changing the actuator settings.

Although the DM has nonlinearities, the performance did not degrade due to them.

For our optical configuration, we verified the performance of the ▲❙◗▲■◆ solution by gen-

erating a trajectory of solutions to test because we did not see the wavefront error increase

as the iterations progressed. The linear range is shown to be about ±10 percentage points
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of the actuators nominal setting. Past this range, the linear system model and hardware

response differ due to the nonlinearities. The difference did not have a significant impact

on the wavefront rms error. We also showed that the rms error was not influenced by using

the full resolution interferometer image. For our system, the same level of wavefront error

performance was possible from using a coarse grid of measurements.

5.5 Summary
In this chapter, we sought to experimentally test whether an optimization problem effec-

tively controlled a DM. We sought to understand the hardware response of using optimiza-

tion for mirror surface control and developed a trajectory creation algorithm to generate

solutions to test on the hardware. To improve the computational efficiency, we used a

multigrid approach and the optimizer solves the trajectory algorithm on several grids. The

multigrid approach resulted in the same optimal solution at reduced computational cost

when compared to the original trajectory creation algorithm. We verified the performance

of a linear influence function model and determined the valid linear range of the DM. We
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would expect further reductions in the wavefront rms error by using a DM with higher

actuator density.
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6.1 Main Contributions

This dissertation presented three contributions to AO. The first is a wavelet approach to

wavefront reconstruction. The algorithm uses local gradient measurements from a Shack-

Hartmann wavefront sensor to estimate the wavefront phase. The 2D QMF tree structure

and Noble identities are used to decompose the wavefront into the spatial frequency com-

ponents. The inverse discrete wavelet transform is performed using these components to

estimate the phase. Our method allows for the use of orthogonal wavelet filters and using

longer filter lengths has improved noise-rejection performance for the estimation compared

to the Haar wavelet used by Hampton et al. [43], [44]. He later proposed a Poisson solver

to improve the noise performance [45]. For the high SNR data case, a modification was

shown to make the resulting wavefront estimate not depend on the boundary condition.

This algorithm has been designed for irrotational vector fields, where there is no phase

ambiguity and the phase is well defined at every point. This is, in general, the case of

distortion generated by low atmospheric turbulence. Under more severe turbulence condi-

tions, the intensity of the optical field might be zero at isolated points, thus causing phase

uncertainties. In this case, the measured phase gradient becomes rotational and it is char-

acterized by phase uncertainty, and branch points, which cause problems in all standard

least-squares algorithms.

The second contribution adapts the proposed algorithm to work when branch points are

present from significant atmospheric turbulence. An analysis of vector spaces shows that

the branch points cause the rotational components in the measured gradients. An approach

using a non-orthogonal decomposition to modify the rotational vector field to be irrota-

tional is presented. The wavefront reconstruction algorithm operates on the irrotational

measurements and estimates the phase that is consistent with the original measurements

with rotational components. Our results show the wrapped phase to make a comparison

between the simulated phase and reconstructed phase. This approach can be applied to any

wavefront reconstruction algorithm as the measurements are modified before the algorithm.
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A third contribution is made in segmented mirror with active optics. The control signals

to a DM are computed that minimize the wavefront error using constrained optimization

to ensure that the hardware actuator voltage limits are satisfied. The optimization problem

uses a linear influence function model for the actuators to determine the voltages that form

the desired mirror surface. The best results in terms of efficiency and convergence are

obtained with a multigrid approximation of the influence functions.

An experiment verified the performance of the mirror surface control using constrained

optimization. A trajectory creation algorithm solved a sequence of optimization problems

which forms a sequence of actuator values. Each solution has small changes from the previ-

ous voltages and results in the same final optimal solution. The trajectory provides insight

into the validity of the linear influence function model when compared to the hardware re-

sponse. An OPD is collected for each iteration and used to evaluate the residual wavefront

error. The multigrid approach is shown to have a rapid decrease in the cost function when

compared to the single grid solution and results in the same final solution as the single grid

2.5 times faster. Using a large amount of interferometer measurements did not significantly

change the residual wavefront error, as the residual wavefront error for the optimal solution

at the coarsest grid was comparable to the residual wavefront error for the fine grid. For the

linear influence function model, the number of OPD measurements only needs to be on the

order of the number of DM actuators. Analysis determined the range of linear operation

for the DM, which for the particular DM used in the experiment, is small over the entire

range of operation. Mirror surface control using optimization of a linear influence model

has similar performance to other tested linear control methods [75] to decrease the wave-

front error of a segmented mirror. For large corrections, a nonlinear controller can obtain

better performance for the DM [76].

6.2 Future Work

The wavelet phase reconstruction algorithm was applied to a Cartesian lattice. Other lat-

tices, such as the hexagonal lattice, are also used in AO. Sensors use hexagon shaped

lenslets which can be packed tightly together and use all of the collected light for measure-

ments. The wavefront reconstruction algorithm can be extended to work on measurement

data taken in this lattice.
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Any orthogonal wavelets can be used for the phase reconstruction algorithm. One may

develop specialized filter functions for the purpose of wavefront reconstruction that uses the

statistics of the atmosphere to determine filter coefficients. Choosing wavelet coefficients

may also be done in an adaptive manner to improve performance.

In the study of the algorithm performance with noisy measurements, only Gaussian noise

was used. This noise model is appropriate for the the case of AO sensor centroid measure-

ments. For using this algorithm on RADAR data, a noise analysis should be conducted

with other noise models.

The wavefront reconstruction algorithm and branch point modification were studied exten-

sively in computer simulation. The phase reconstruction can be studied in the laboratory to

understand the estimation error for different wavelets given simulated atmospheric condi-

tions. The branch point modification can be studied experimentally to verify performance

for laboratory or atmospheric branch points.

The wavefront reconstruction algorithm operates on a set of measurements independently

from previous estimations of the wavefront. Successive estimations of the phase can be

smoothed or blended to analyze AO performance and understand how the wavefront evolves

temporally. The branch cuts can significantly change paths for each estimation due to noise

but this is undesirable for hardware performance. Future work may use previous estima-

tions try to smooth the evolution of branch cut placement.

Following wavefront reconstruction, phase unwrapping may be necessary if the estimated

phase contains large discontinuities. Some wavefront reconstruction algorithms (such as

the complex exponential reconstructor [58], [59]) also perform phase unwrapping. Addi-

tional work may be done to analyze which phase unwrapping algorithm works best with

the wavelet wavefront reconstruction algorithm.

For the segmented mirror with active optics contribution, the analysis of the mirror surface

optimization can be extended by using a DM with higher actuator density. Our conclusions

showed a small linear range of operation over which the linear approximation model can

be used. Work can be done to extend the cost function to the nonlinear influence case.

One possible approach is to redefine the influence function matrix to vary as a function of
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actuator settings as C(x). After each iteration of the optimization problem, new influence

functions can be generated for actuators to create a new linear influence matrix. Each

optimization problem is treated linearly and the same approach can be applied with the

new C matrix on the next iteration of the optimization problem.

We converted the optimization problem to modal basis by transforming C and d, which

changes the number of rows for each. For the Zernike polynomial basis, the result was not

satisfactory due to having fewer equations (number of polynomials used) than number of

actuators. Most Zernike decompositions only use ∼ 50 polynomials, so for high actuator

density, this basis is undesirable as there are more unknowns than equations. We also

explored other techniques to decrease the number of rows of C and d, such as compressed

sensing. Random sets of samples (at least as many as number of actuators) were kept for

each OPD. The estimated wavefront surface was usually a good match for compressed

sensing but would miss features of the wavefront that occurred away from the random

samples. The best performance of a reduced system of equations we observed was from

the multigrid approach, but any technique that can exploit the vastly oversampled wavefront

may provide further reduction in wavefront error.

One nonlinear control approach from the manufacturer is a lookup table to determine the

actuator settings for a desired mirror surface. The use of a lookup table in a mirror surface

control optimization problem has not been studied.

In the iterative optimization problem, only one value for ε was used at every grid level.

Changing this value to be larger for coarser grids may reduce the number of iterations and

result in faster convergence to the optimal solution.

The cost function can be adjusted for multiple deformable mirrors to be installed in the

AO system. The optimization problem can then choose the actuator commands for each

mirror. Adjusting the constraints can result in a variety of techniques to split the necessary

correction among the multiple mirrors.
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High-Order Wavelet Simplification Proof

This proof shows how the results of (3.14) are determined. We start with the definition

g(−zN),
1− z−N

√
2

(A.1)

and the definition of the geometric series

N−1

∑
ℓ=0

z−ℓ ,
1− z−N

1− z−1
. (A.2)

We immediately observe that Eqs. (A.1) and (A.2) can be combined:

g(−zN) =
1− z−N

√
2

=

(

N−1

∑
ℓ=0

z−ℓ

)

(

1− z−1
)

√
2

=

(

N−1

∑
ℓ=0

z−ℓ

)

g(−z). (A.3)

We have now shown the first result. The second result takes some manipulation similar to

the concept of polyphase decomposition where we split the sequence up into an even and

odd component. We proceed from the result of (A.3) in

(

N−1

∑
ℓ=0

z−ℓ

)

g(−z) =

(

N
2 −1

∑
ℓ=0

z−2ℓ+ z−2ℓ−1

)

g(−z)

=

(

(1+ z−1)

N
2 −1

∑
ℓ=0

z−2ℓ

)

g(−z)

=

(

N
2 −1

∑
ℓ=0

z−2ℓ

)

√
2g(z)g(−z). � (A.4)

The first simplification is the realization that the sum of the two sequences can be factored

to 1+ z−1. The final factoring swaps with the Haar scaling function and needs a
√

2 to

cancel the denominator.
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Branch Point Boundary Condition Proof
Let w(x,y) be such that

∇x∇yw(x,y) = 0 (A.5)

for all x,y real. Then w(x,y) can be written as

w(x,y) = a(x)+b(y). (A.6)

To show this, define

g(x,y)≡ ∇xw(x,y) (A.7)

Then ∇yg(x,y) = 0 and therefore,

g(x,y) = g(x,0), (A.8)

i.e., independent of y. Substitute in (A.7) to obtain

w(x,y) = w(0,y)+
∫ x

0
g(λ ,0)dλ , (A.9)

which shows the result. �
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