
A Method to Represent Multiple-Output Switching Functions by

Using Multi-Valued Decision Diagrams

Tsutomu Sasao Jon T. Butler

Department of Computer Science Department of Electrical and

and Electronics Computer Engineering

Kyushu Institute of Technology Naval Postgraduate School

Iizuka 820, Japan Monterey, CA 93943-5121, U.S.A.

February 19, 1996

Abstract
Multiple-output switching functions can be simu-

lated by multiple-valued decision diagrams (MDDs)
at a signi�cant reduction in computation time. We
analyze the following approaches to the representa-
tion problem: shared multiple-valued decision dia-
grams (SMDDs), multi-terminal multiple-valued deci-
sion diagrams (MTMDDs), and shared multi-terminal
multiple-valued decision diagrams (SMTMDDs). For
example, we show that SMDDs tend to be compact,
while SMTMDDs tend to be fast. We present an al-
gorithm for grouping input variables and output func-
tions in the MDDs.

1 Introduction
Various methods exist to represent discrete func-

tions. Among them, graph based representations
such as BDDs (binary decision diagrams) are exten-
sively used in logic synthesis, test, and veri�cation
[4]. Multiple-valued decision diagrams (MDDs) are
multiple-valued extensions of BDDs, and have been
used to design logic networks [14, 8, 5, 9, 10]. Recently,
McGeer et al. developed a logic simulator based on
MDDs [12]. They showed that the MDD based simu-
lator is orders-of-magnitude faster than a conventional
one. Their method is summarized as follows:

1. Represent a given logic function by a BDD.

2. Group k variables into a single 2k-valued variable
forming an MDD from the BDD. Each node in the
MDD has 2k children. We assume that n = rk is
the number of input variables, where k � 2 is a
constant.

3. Translate the MDD into a table on which function
evaluation is performed by a sequence of address
lookups.

An advantage of the MDD is a reduction in memory
accesses needed to evaluate it compared with the BDD
from which it was derived. Indeed, grouping k binary
inputs together to form a single MDD variable reduces

computation time by a factor of k. However, there is
a tradeo�. Since each group of k binary variables can
assume 2k possible values, the size of the MDD tends
to increase by a factor approaching 2k. [12] claims that
k = 5 gives the best performance for their prototype
simulator. However, they did not show any theoretical
or experimental justi�cation.

To represent a logic function e�ciently, it is essen-
tial to reduce the number of nodes in its MDD. Three
methods exist.

1. Group binary variables to form multiple-valued
variables.

2. Order the multiple-valued variables in the MDD.
3. Group the outputs.

In this paper, we consider a method of represen-
tation for multiple-output functions by MDDs, where
k = 2, i.e., each MDD variable is 4-valued. Speci�-
cally, we consider a method for pairing input variables
and pairing output functions to reduce the number of
nodes.

We considered the case k = 2 for the following rea-
son:

1. When k = 2, a node for a 4-valued MDD is re-
alized by a \4 to 1 multiplexer," which is avail-
able in a CMOS gate array library. Its cost is
4 times that of a 2-input NAND gate [7]. Also,
a node for a 4-valued MDD is realized by a 6-
input LUT (look-up table) [3, 9]. FPGAs (�eld
programmable gate arrays) with such LUTs are
produced by AT&T [2].

2. k = 2 is the simplest case, and the design and
analysis are easier than for the general case.

Strategies for grouping output functions are also use-
ful for reducing the memory requirement of MTTDDs
(Multi-Terminal Ternary Decision Diagrams) that are
indispensable in the optimization of AND-EXOR ex-
pressions [8, 11]. Other methods to represent multiple-
output functions using BDDs are developed for fast
logic simulation [1].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 FEB 1996 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
A Method to Represent Multiple-Output Switching Functions by Using
Multi-Valued Decision Diagrams

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Multiple-output switching functions can be simu- lated by multiple-valued decision diagrams (MDDs) at a
signi cant reduction in computation time. We analyze the following approaches to the representa- tion
problem: shared multiple-valued decision dia- grams (SMDDs), multi-terminal multiple-valued deci- sion
diagrams (MTMDDs), and shared multi-terminal multiple-valued decision diagrams (SMTMDDs). For
example, we show that SMDDs tend to be compact while SMTMDDs tend to be fast. We present an al-
gorithm for grouping input variables and output func- tions in the MDDs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 De�nitions and Basic Properties
De�nition 2.1 Let P = f0; 1; . . . ; p � 1g and B =
f0;1g. A mapping f : Bn ! B is a switching function.
A mapping f : P n ! P is a p-valued logic function.
A mapping f : Pn ! B is a p-valued input two-valued
output function.

De�nition 2.2 Let S � P . XS is a literal of X,
where

XS =

�
0 (X =2 S)
1 (X 2 S):

When S contains only one element, Xfig is denoted by

Xi. A product of literals XS1
1 XS2

2 � � �X
Sn
n is a product

term that is the AND of all literals that compose it.
The expression _

(S1;S2;...;Sn)

XS1
1 XS2

2 � � �X
Sn
n

is a sum-of-products expression (SOP), whereW
(S1;S2;...;Sn)

denotes the inclusive-OR of products
terms.

Lemma 2.1 An arbitrary p-valued input two-valued
output function can be expanded as

f(X1;X2; . . . ; Xr)

= X0
1f(0;X2; . . . ;Xr) _X

1
1f(1;X2; . . . ;Xr) _

� � � _X
p�1
1 f(p� 1;X2; . . . ;Xr):

This is the Shannon expansion with respect to X1.

In the derivations that follow, it is convenient to
let xi represent a two-valued variable and to let Xi

represent a 2k valued variable corresponding to k two-
valued variables. For example, consider a switching
function f(x1; x2; . . . ; x2r), which can be written as
f(X1;X2; . . . ; Xr), where Xi is either 0, 1, 2, or 3
if (x2i�1; x2i) = (0; 0), (0; 1), (1; 0) and (1; 1), respec-
tively. We use the notationXi = (x2i�1; x2i) to denote
the relationship between Xi and x2i�1 and x2i.

Example 2.1 The switching function shown in
Fig. 2.1(a) can be converted into a four-valued input
two-valued output function as shown in Fig. 2.1(b),
where X1 = (x1; x2) and X2 = (x3; x4).

(End of Example)

De�nition 2.3 Let f be a function. The set of input
variables on which f depends is the support of f , and
is denoted as Support(f).

Example 2.2 Let f(x1; x2; x3; x4) = x1x2 _ x3�x4 _
x3x4. Then, Support(f) = fx1; x2; x3g, since f is
also represented as f = x1x2 _ x3. (End of Example)

De�nition 2.4 A multi-valued decision diagram
(MDD) is a generalization of a binary decision di-
agram (BDD). Speci�cally, an internal node of an
MDD may have more than two children (Fig. 2.2). An
MDD having more than two kinds of terminal nodes
(e.g., 0; 1; � � � ; p � 1) is called a multi-terminal MDD
(MTMDD).

1 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

00 01 10 11

00

01

10

11

x1 x2,()

x3 x4,()

1 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

0 1 2 3

0

1

2

3

X2

X1

(a) A switching function. (b) A four-valued input
 two-valued output function.

Figure 2.1: Example 2.1.

f

0 1 p-12

f0 f1 f2 fp-1

Figure 2.2: Node for an MDD.

For a given BDD, we can group the binary vari-
ables, and obtain an MDD.

Example 2.3 Fig. 2.3 shows a BDD for f = x1 �
x2 � x3 � x4. Let X1 = (x1; x2) and X2 = (x3; x4)
represent logic value in the range f0; 1; 2; 3g. By this,
we have a 4-valued input two-valued output function

F (X1;X2) = X
f0;3g
1 X

f1;2g
2 _X

f1;2g
1 X

f0;3g
2 :

Fig. 2.4 shows an MDD for F . (End of Example)

3 Grouping Input Variables
The number of nodes in an MDD depends on the

method of grouping input variables as well as the or-
dering of the multiple-valued variables.

0

x1

10

1

1 10 0

1 10 0

1 10 0

x2

x3

x4

Figure 2.3: BDD for f = x1 � x2 � x3 � x4.

10

X1

X2

=(x1, x2)X1

=(x3, x4)X2

0,3 1,2

1,2 1,2 0,30,3

Figure 2.4: MDD for X
f0;3g
1 X

f1;2g
2 _X

f1;2g
1 X

f0;3g
2 .

Example 3.1 Consider the function f = x1x2(x3 �
x4) _ �x3�x4.

1) When the input variables are grouped as X1 =
(x1; x2) and X2 = (x3; x4), the MDD for f has
three non-terminal nodes as shown in Fig. 3.1(a).

2) When the input variables are grouped as X1 =
(x3; x4) and X2 = (x1; x2), the MDD for f
has only two non-terminal nodes as shown in
Fig. 3.1(b).

3) When the input variables are grouped as X1 =
(x1; x3) and X2 = (x2; x4), the MDD for f has
four non-terminal nodes as shown in Fig. 3.1(c).

Thus, for this function, the grouping of 2) is the best
among the three. (End of Example)

Suppose that the input variables are partitioned
into X1 and X2, where X1 = (xi; xj). By re-
naming the input variables, we can represent f as
f(X) = f(X1;X2). Next, consider the sub-functions:
f(0; 0;X2), f(0; 1;X2), f(1; 0;X2), and f(1; 1;X2).
Let � be the number of distinct non-constant func-
tions among these four functions. Let the BDD rep-
resenting f have xi as the highest variable and xj
as the second highest. Since f depends on xi, the
root node representing f has two children nodes rep-
resenting fxi=0 and fxi=1. Since there are � non-
constant subfunctions associated with assignments of
values to xi and xj , the number of non-terminal nodes
in the lower level is �. As an example, consider
f(x1; x2; x3; x4) = x1�x2�x3�x4, and let (x1; x2) =
(xi; xj). Among the four subfunctions, f(0; 0; x3; x4),
f(0; 1; x3; x4), f(1; 0; x3; x4), and f(1; 1; x3; x4), are
two distinct ones, x3 � x4 and x3 � x4 � 1. Thus,
� = 2, and there are two non-terminal nodes at the
second level. This is shown in Fig. 2.3. Further, in the
multiple-valued version of a function f , represented as
f(X1;X2; . . . ; Xr), whereX1 = (xi; xj), there will also
be � nodes. In our running example, there are two
nodes at the X2 level in Fig. 2.4, which is an MDD
representation of the BDD in Fig. 2.3. This shows
that a grouping in the BDD that reduces nodes tends
to reduce nodes in the equivalent MDD. If � � 3,
then (xi; xj) is a candidate pair. It is clear that if f
is partially symmetric with respect to xi and xj , then
� � 3.

10

0,1,2

30,1,2

0 3
1,2,3

= (x1, x2)X1

=(x3, x4)X2

10

3

0,1,2

0

3

1,2

= (x3, x4)X1

=(x1, x2)X2

10

3

0,2

0

1

1 2

20,1,3

0,2,3
1,3

= (x1, x3)X1

=(x2, x4)X2

(a)

(b)

(c)

Figure 3.1: MDD for f = x1x2(x3 � x4) _ �x3�x4.

4 Representation of Multiple-Output

Functions
Practical logic networks have, usually, many out-

puts. In this section, we consider various methods to
represent multiple-output functions by MDDs.

4.1 Shared MDD
Fig. 4.1 shows the general structure of a shared

MDD (SMDD), where each function fi (i =
0; 1; . . . ;m � 1) has its corresponding MDD. These
MDDs may share sub-graphs. Above the root nodes,
the output selection variables are used. The advan-
tage of this data structure for use in a simulator is
that the sizes of MDDs are relatively small. The dis-
advantage is that we need to evaluate MDDs m times.
This is because the MDD produces only one output
for each assignment of values to the output selection
variables. Its use in a simulation package requires the
production of all outputs sequentially, and this results
in a slow response time.

Example 4.1 Fig. 4.2 shows the shared BDD
(SBDD) for the two-input two-output function in Ta-
ble 4.1. (End of Example)

4.2 Multi-Terminal MDD
Fig. 4.3 shows the general structure of a multi-

terminal MDD (MTMDD), where the terminals are

f0 f1 fm-1

Output
selection
variables

Variables
for
inputs

0 1

Figure 4.1: General structure of an SMDD.

f0

10

x1

x2

f1

1 0

0
1

0
1

10

Figure 4.2: SBDD for 2-input 2-output function.

m-bit binary vectors. In a conventional MDD, an as-
signment of values to the variables corresponds to a
path that terminates on a single binary value. This
value is the function value for that assignment. How-
ever, in an MTMDD, a path terminates on a vector
of m-bits corresponding to m functions. The merit of
this data structure is that the values of all the outputs
can be evaluated simultaneously. This is because the
MDD produces all the output values for each assign-
ment of values to the input variables. The demerit is
that the size of the MTMDDs tends to be larger than
that of SMDDs, when m is large.

Example 4.2 Fig. 4.4 shows an MTBDD for the
two-input two-output function in Table 4.1.

(End of Example)

The above example shows a case where an MTBDD
represents functions e�ciently. However, the next ex-

Table 4.1:

Input Output

x1 x2 f0 f1
0 0 1 1
0 1 1 1
1 0 1 0
1 1 0 1

Output
vectors

Variables
for
inputs

Figure 4.3: General structure of an MTMDD.

1

0 1

1
1
0

0
1

0 1

x1

x2

Figure 4.4: MTBDD for 2-input 2-output function.

ample shows a case where an MTBDD is quite ine�-
cient.

Example 4.3 Consider the three-output function:
f0 = x1, f1 = x2, and f2 = x3. As shown in Fig. 4.5,
the SBDD is simple, but the MTBDD is the complete
tree for three variables. (End of Example)

The above example suggests that a conversion from
an SBDD to an MTBDD may increase the size of
the structure exponentially. Note that, on the other
hand, a conversion from an MTBDD to an SBDD can
increase nodes by at most m times, where m is the
number of outputs. Experimental results show that,
in many cases, whenm is large, the size of an MTBDD
is larger than the size of the equivalent SBDD. The
number of nodes tends to be larger than the equiva-
lent SMDD.

4.3 MDD with Output Selection Vari-
ables

Fig. 4.6 shows the general structure of an MDD
with output selection variables. This data structure
is the same as the SMDD, except that the output se-
lection variables are interchanged with the input vari-
ables. Also, in this case, we need additional time to
select the output functions. However, the time to eval-
uate m outputs can be less than that of the equivalent
SMDD, if we use a special technique in a simulation
program.

4.4 Shared MTMDD
Fig. 4.7 shows the general structure of a shared

MTMDD (SMTMDD). This data structure is a com-
bination of an SMDD and an MTMDD. In an SMT-
MDD, the output selection variables select a set of
outputs (in this example, two), and each MDD for gi
(i = 0; 1; . . . ;m=2) represents the set of outputs. Its

x1

f0

x2

0

f1

1

x3

f2

10

10

10

(a) SBDD

0
0

x1

x2

0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

x3

10

10

10

10

10 10 10

(b) MTBDD

Figure 4.5: SBDD and MTBDD.

Output
selection
variables

Variables
for
inputs

0 1

Figure 4.6: General structure of an MDD with output
selection variable.

merit is that several (in this example, two) functions
are evaluated simultaneously. Also, the functions can
be grouped so that the size of the resulting MDD re-
mains moderate.

4.5 Strategies for Grouping Output Func-
tions

Consider an MTMDD for two-output function
(fi; fj). In general, the MTMDD has (0; 0), (0; 1),
(1;0), and (1; 1) as terminal nodes. However if fifj =
0, then (1; 1) never appears as a terminal node in the
MTMDD for (fi; fj). Thus, this grouping of the out-

0
0

1
0

0
1

1
1

g0 g1 gm/2

Output
selection
variables

Figure 4.7: General structure of an SMTMDD.

x2 x1 x0
+) y2 y1 y0

z3 z2| {z }
G1

z1 z0| {z }
G0

Figure 4.8: Three-bit adder (adr3).

put functions tends to produce a smaller MDD, since
the number of terminal nodes is at most three. Simi-
larly, if fi �fj = 0, �fifj = 0, or �fi �fj = 0, then fi and fj
is also a candidate pair. On the contrary, if fi and fj
have disjoint supports, then they should not be paired,
but represented by separate MDDs.

Example 4.4 Consider the three-bit adder (adr3)
shown in Fig. 4.8. Assume that the input variables and
output functions are paired as follows: X1 = (x2; y2),
X2 = (x1; y1), X3 = (x0; y0), G1 = (z3; z2), G0 =
(z1; z0). Note that

Support(z0) = fx0; y0g;

Support(z1) = fx0; y0; x1; y1g;

Support(z2) = fx0; y0; x1; y1; x2; y2g; and

Support(z3) = fx0; y0; x1; y1; x2; y2g:

Fig. 4.9 shows the SMDD: Four MDDs for z3, z2, z1,
and z0 are realized. In this case, the number of nodes
is small. However, the simulation is slow since we
have to evaluate MDDs four times, once for each of
the four output functions. Fig. 4.10 shows the MT-
MDD: A single MDD with 4-bit terminal nodes. In
this case, the number of nodes is large. However, the
simulation is fast, since four outputs are evaluated si-
multaneously. Fig. 4.11 shows the SMTMDD, a pair
of MDDs with 2-bit terminal nodes. In this case, the
number of nodes is moderate. The simulation time
is one-half that of the SMDD, since two outputs are
evaluated simultaneously. (End of Example)

5 Optimization Algorithm for MDDs
For simplicity, we assume that n = 2r, and m is

an even number, where n denotes the number of in-

1

z0z1z2z3

0

Figure 4.9: SMDD.

0
0
0
0

0
0
0
1

1
1
1
1

z3
z2
z1
z0

Figure 4.10: MTMDD.

G1 G0

0
0

1
0

0
1

1
1

Figure 4.11: SMTMDD.

put variables, and m denotes the number of output
functions.

5.1 Grouping and Ordering of Input Vari-
ables

Algorithm 5.1 (Group the Input Variables)

1. Construct an SBDD from the given speci�cation.

2. Find a good initial ordering of the input variables
for the BDD, by interchanging adjacent variables.

3. Count the nodes in the MDD. This is done in a
BDD data structure: If the BDD contains dis-
joint subgraphs, Fig. 5.1(a), (b), or (c), then the
numbers of the corresponding nodes in the MDD
are counted as one, two, or three, respectively.
In Fig. 5.1(a), three BDD nodes are replaced by
one MDD node. However, in Fig. 5.1(b), the
BDD nodes are replaced by two MDD nodes. In
Fig. 5.1(c), we need three MDD nodes. Thus, the
number of nodes in an MDD is more than one
third of that for the corresponding BDD.

Algorithm 5.2 (Order Input Variables in the MDD)

1. Construct an SMDD by Algorithm 5.1.

2. Reduce the number of nodes in the MDD by in-
terchanging the adjacent variables.

(a) (b) (c)

Figure 5.1: Enumeration of MDD nodes.

Table 6.1: Number of MDD nodes of represent adder.

Name in out SBDD SMDD MTMDD SMTMDD

adr3 6 4 25 11 26 15
adr5 10 6 46 18 120 26
adr7 14 8 65 25 502 37
adr9 18 10 87 31 2036 49

5.2 Grouping of Output Functions
Algorithm 5.3 (Group the Output Functions)
Let f0; f1; . . . ; fm�1 be the output functions. Let m
be even.

1. Construct an SBDD from the given speci�cation.

2. For (0 � i � m � 1), construct the BDD repre-
senting fi. Calculate wi, the number of nodes.

3. For (0 � i < j � m � 1), construct an SBDD
representing fi and fj. Count wij, the number of
nodes.

4. Let Wij wi + wj � wij. Note that Wij is the
reduction in nodes achived by pairing fi and fj.

5. Consider the complete graph G with m nodes
whose edges have weight Wij. Obtain the max-
imum matching for G. That is, choose a set E of
m=2 edges such that each node is incident to ex-
actly one edge, and

P
i<j Wij is maximum, where

the sum is over all possible edges in E. We use a
branch and bound algorithm.

6. Group the output functions according to the max-
imum matching of G.

6 Experimental Results
[12] did not show the number of MDD nodes, so the

comparison with their method is not made.

6.1 Representation of Adders
n-bit adders (adr n) for n =3, 5, 7, and 9 are repre-

sented by SBDDs (shared BDDs), SMDDs, MTMDDs,
and SMTMDDs. Table 6.1 compares the number of
nodes. Note that the number of terminal nodes for
SBDDs, SMDDs, MTMDDs, and SMTMDDs are 2,
2, 2n+1 � 1, and 4, respectively. SMDDs require the
fewest nodes among the three types of MDDs, and
MTMDDs require the most number of nodes. The
number of nodes in SMTMDDs is not so large, but
the simulation time is half that of SMDDs, since two
functions are evaluated simultaneously.

Table 6.2: Number of MDD nodes of represent various
functions.

Name in out SBDD SMDD MTMDD SMTMDD

alu2 10 8 82 44 174 63
apla 10 12 123 67 85 90
bc0 26 11 624 363 209 378
clip 10 5 138 56 95 91
dc2 8 7 74 41 136 41
dk17 10 11 82 44 54 67
dk27 9 9 37 22 39 25
f51m 8 8 83 43 341 51
in1 16 17 580 322 188 437
in2 19 10 301 164 189 226
inc 7 9 89 46 44 48
misex1 8 7 45 26 19 33
misex3 14 14 580 322 1773 351
misj 35 14 59 35 3492 54
mlp4 8 8 151 79 170 92
radd 8 5 35 15 57 21
rd53 5 3 27 14 15 15
rd73 7 3 47 24 24 24
rd84 8 4 64 33 25 31
rot8 8 5 85 42 47 39
sao2 10 4 99 49 36 52
sex 9 14 63 40 105 50
sqr8 8 16 272 132 341 150
tial 14 8 774 380 388 624
ts10 22 16 177 73 240297 79
x6dn 39 5 263 149 148 188
z5xp1 5 10 82 41 213 55

6.2 Representation of Other Functions

Other benchmark functions are represented by SB-
DDs, SMDDs, MTMDDs, and SMTMDDs. Table 6.2
compares the number of nodes. Each MDD (BDD)
was optimized by a heuristic program independently.
Thus, MDDs (BDDs) for the same function may use
di�erent ordering of the input variables. In many
cases, SMDDs required the fewest nodes among three
MDDs. MTMDDs sometimes required excessive num-
ber of nodes, although they sometimes require the
fewest nodes. SMTMDDs were not as large as MT-
MDDs, but were usually larger than SMDDs.

7 Conclusion and Comments

In this paper, we considered various methods to
represent multiple-output functions by using MDDs.
We presented algorithms for grouping input variables
and output functions to reduce the number of nodes
in MDDs. These methods are useful for fast logic sim-
ulation. The technique in 5.2 can be also used as a
BDD data structure for representing multiple-output
logic functions.

Acknowledgments

This work was supported in part by a Grant in Aid
for Scienti�c Research of the Ministry of Education,
Science and Culture of Japan, and by a JSPS Fellow-
ship. Mr. M. Matsuura developed the program and
did the experiments.

References
[1] P. Ashar and S. Malik, \Fast functional simu-

lation using branching programs," in Proc. of
the International Conference on Computer-Aided
Design, Nov. 1995.

[2] AT&T, AT&T ORCA (Optimized Recon�gurable
Cell Array) Series FPGA, Product Brief, April.
1993.

[3] S. D. Brown, R. J. Francis, J. Rose, and
Z. G. Vranesic, Field Programmable Gate Arrays,
Kluwer Academic Publishers, Boston 1992.

[4] R. E. Bryant, \Graph-based algorithms for
Boolean function manipulation," IEEE Trans.
Comput. Vol. C-35, No. 8, Aug. 1986, pp. 677-
691.

[5] D. M. Miller, \Multiple-valued logic design
tools," Proc. of International Symposium on Mul-
tiple Valued Logic, May 1993, pp. 2-11.

[6] S. Minato, \Graph-based representation of dis-
crete functions," in T. Sasao and M. Fujita, (e.d.)
Representations of Discrete Functions, Kluwer
Academic Publishers, 1996 (to be published).

[7] NEC Corporation, CMOS-8 Family Ver. 3.0
Block Libaray, User's Manual, 1994.

[8] T. Sasao (ed.), Logic Synthesis and Optimization,
Kluwer Academic Publishers (1993-01).

[9] T. Sasao and J. T. Butler, \A design method for
look-up table type FPGA by pseudo-Kronecker
expansion," Proc. of International Symposium on
Multiple Valued Logic, Boston, MA, May 25-27,
1994, pp. 97-106.

[10] T. Sasao and J. T. Butler, \Planar multiple-
valued decision diagrams," Proc. of International
Symposium on Multiple Valued Logic, Blooming-
ton, Indiana, May 23-25, 1995, pp. 28-35.

[11] T. Sasao and F. Izuhara, \Exact minimization
of �xed polarity Reed-Muller expressions using
multi-terminal EXOR ternary decision diagram,"
in T. Sasao and M. Fujita, (e.d.) Representations
of Discrete Functions, Kluwer Academic Publish-
ers, 1996 (to be published).

[12] P. C. McGeer, K. L. McMillan, A. Saldanha,
A. L. Sangiovanni-Vincentelli, P. Scaglia, \Fast
discrete function evaluation using decision dia-
grams," International Workshop on Logic Syn-
thesis, Lake Thahoe, May, 1995, pp. 6 1-6 9.
Also, in Proc. of the International Conference on
Computer-Aided Design, pp. 402-407, Nov. 1995.

[13] M. Davio, J-P. Deschamps, and A. Thayse, Dis-
crete and Switching Functions, McGraw-Hill In-
ternational, 1978.

[14] A. Srinivasan, T. Kam. S. Malik, and R. K. Bray-
ton, \Algorithm for discrete functions manipula-
tion," in Proc. ICCAD-90, pp. 92-95, Nov. 11-15,
1990, Stanta Clara, CA.

