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ABSTRACT
Contract-based design is emerging as a unifying composi-
tional paradigm for the specification, design and verifica-
tion of large-scale complex systems. Yet, different contract
frameworks are currently available, without a clear under-
standing of the relations between them. In this paper, we
investigate the relation between interface theories (specif-
ically, relational interfaces) and assume-guarantee (A/G)
contracts, revealing some of the subtleties involved. We
show that the natural transformation of interfaces to A/G
contracts represented by LTL formulas preserves refinement,
but does not generally preserve serial composition, and we
present an assumption-projection operator to remedy the
latter issue. We also discuss the properties of our trans-
formation with respect to conjunction. Finally, we provide
illustrative examples that shed light on the effectiveness of
both frameworks for requirement formalization, early detec-
tion of integration errors, and principled use of abstraction-
refinement.

1. INTRODUCTION
Designing large and complex embedded and cyber-physical

systems (such as “smart” buildings, “smart” transportation,
energy, security, and health-care systems), cannot be done
in a monolithic manner. Instead, designers naturally use
compositional methods, which allow to assemble a large and
complex system from smaller and simpler components (e.g.,
pre-defined library blocks or subsystems). Methodologies
such as component-based design [1] and contract-based de-
sign [2] (CBD) are emerging as unifying formal composi-
tional paradigms. They support requirement engineering by
providing rigorous formalisms to capture the correct tran-
sition between different abstraction levels in system design.
Moreover, they offer mechanisms for early detection of inte-
gration errors, e.g., by checking compatibility between the
components locally, before performing global system verifi-
cation.

Yet, different formal theories of components and contracts
have been proposed in the literature, and there is currently
no clear understanding of the relations between them. This
paper aims to fill this gap.

We focus in particular on the relation between the so-
called interface theories [1], such as interface automata [3]

and relational interfaces [4], on the one hand, and the assume-
guarantee (A/G) contract framework proposed in [5, 6], on
the other hand. Examining the relation between these two
frameworks is interesting because, while having the same
overall objectives, they are supported by quite different math-
ematical theories. For instance, in an A/G contract the
assumptions made on the environment and the guarantees
provided by the system are modeled as separate sets of be-
haviors, whereas in interface theories the two are “merged”
into a single model, called an interface.

In addition, interfaces generally rely on the distinction be-
tween inputs and outputs. The fact that an interface may
not be input-complete (i.e., accept any input at any time) is
essential and leads to game-theoretic definitions of composi-
tion and refinement. On the other hand, A/G contracts cap-
ture assumptions and guarantees as sets of behaviors over
a common set of variables, in general with no distinction
between inputs and outputs (e.g., for composition).

These differences result in different definitions of key ele-
ments of the theories, such as composition and refinement.
This paper aims to shed light on the subtle differences be-
tween the two frameworks. To be concrete, we start from the
theory of synchronous relational interfaces [4]. We choose
stateless relational interfaces rather than other, more gen-
eral interface theories, such as interface automata, as the
former are simpler and can offer more intuitive support to
our investigation. We provide an operator which transforms
a relational interface into an A/G contract, in the natural
way. In particular, a relational interface represented as a
formula φ on inputs and outputs is mapped into a set of be-
haviors representing the safety property that φ holds at ev-
ery (synchronous) step. This can be concretely represented
by the LTL formula �φ.

We then study the preservation properties of the above
transformation. We show that, perhaps surprisingly, the ba-
sic operation of serial composition of interfaces is not pre-
served. Specifically, composing two interfaces I1 and I2,
and then transforming the result to an A/G contract, is not
equivalent to first transforming each of I1 and I2 to an A/G
contract, and then composing the contracts. The reason for
this is that the interface compatibility check is “built into”
the interface composition operator, so that if the interfaces
are incompatible, the result of the composition is False. On
the other hand, A/G contracts have no a-priori notion of
compatibility during composition. Although compatibility
can be checked a-posteriori on the composite contract using
the notion of c-receptiveness [5], the latter provides a yes/no



answer and does not infer new environment assumptions, as
in the case of interface composition.

To remedy this, we introduce an assumption-projection
operator for A/G contracts. The latter eliminates (“hides”)
a given set of variables (only) from the assumption, using
universal (i.e., game-theoretic) rather than the usual exis-
tential quantification. We show that with this hiding oper-
ator the transformation preserves the semantics of interface
composition. Unfortunately, LTL formulas are not generally
closed under variable elimination (projection). It is there-
fore unclear how to implement this hiding operator at the
A/G contract level.

We also show that our transformation preserves refine-
ment, that is, interface refinement between interfaces I1 and
I2 is equivalent to A/G contract refinement between the
corresponding A/G contracts. However, another interest-
ing operator, that of conjunction (called shared refinement
in [4]) is not preserved. The reason is another crucial dif-
ference between the two frameworks. While A/G contracts
reason about global behaviors of components, possibly span-
ning infinite sequences of reactions, relational interfaces can
also capture punctual relations between the inputs and out-
puts of a component, at the granularity of a single reaction
index. Therefore, computation of conjunction as the great-
est lower bound (GLB) with respect to the refinement order,
generates a smaller set of allowed environments and a larger
set of guaranteed behaviors for A/G contracts, which trans-
lates into a tighter, less conservative, bound. As a result, the
contract associated with the conjunction of interfaces I1 and
I2 refines, but is generally different than, the conjunction of
the contracts associated with I1 and I2.

Related Work: Despite the proliferation of work on
compositional theories in general, and interface and contract
theories in particular, there is little work that attempts at
drawing links between the existing frameworks. The au-
thors in [6] propose a general “meta-theory” of contracts,
expressed in terms of sets of implementations and environ-
ments, and from which both interface theories and A/G con-
tracts can be instantiated. Following a similar approach, the
work in [7] attempts at providing an abstract formalization
of the notion of contracts by relating “specification theories”
to “contract theories”. In this paper, instead of recurring to
a common, more abstract, meta-theory, we aim to directly
map interfaces to A/G contracts and, as a result, reveal
some of the subtle differences in the two frameworks.

Another theory of A/G contracts is proposed in [8] to
support rich component interactions by replacing the no-
tion of parallel composition with the one of circular reason-
ing. However, compatibility and conjunction are not ad-
dressed in this framework. On the other hand, in [9], an
interface model similar to relational interfaces is proposed,
except that assumptions on input variables and guarantees
on output variables are separated in two different formu-
las. This type of “assume-guarantee interfaces” are a strict
subclass of relational interfaces, since the latter can model
relations between input and output variables, which cannot
be captured in the former.

The rest of the paper is organized as follows. We
briefly summarize relational interfaces and A/G contracts
in Section 2. In Section 3, we present the main results of
the paper together with several illustrative examples. Fi-
nally, in Section 4, we draw some conclusions.

2. BACKGROUND
We recall the salient parts of the relational interface and

A/G contracts frameworks.

2.1 Synchronous Relational Interfaces
For simplicity, we restrict ourselves to stateless interfaces.

A (relational) interface is a tuple I = (X,Y, φ) where X and
Y are finite sets of input and output variables, respectively,
and φ is a logical formula on the variables in X∪Y . The sets
of input and output variables must be disjoint: X ∩ Y = ∅.
To relate to A/G contracts, we assume that all variables in
X ∪Y range over the same set of values U . A valuation over
V is a function v : V → U where U is the set of possible
values for the variables. A valuation v over V satisfies a
formula φ over the same set of variables V , written v |= φ, if
replacing free variables in φ by their value as specified by v
yields a formula that evaluates to True. A formula φ defines
the following set of behaviors:

[[φ]] := {v0v1v2 · · · | ∀i : vi |= φ}.

Note that [[φ]] is a safety property.
Given interface I = (X,Y, φ), the input assumption de-

fined by φ is the formula in(φ) := ∃Y : φ, where ∃Y : φ
is ∃y1 : ∃y2 : · · · ∃yn : φ when Y = {y1, y2, ..., yn}. in(φ)
characterizes the legal inputs. An input is considered illegal
if there is no output which can satisfy φ for that input. Note
that in(φ) is a formula on X only, as variables in Y have
been eliminated by existential quantification. For example,
if X = {x}, Y = {y}, and φ is x ≥ 0 ∧ y = x, then in(φ) is
x ≥ 0. If φ is x ≥ 0→ y = x, then in(φ) is True.

Composition: Serial composition of two interfaces I1 =
(X1, Y1, φ1) and I2 = (X2, Y2, φ2) can be defined provided
all sets X1, Y1, X2, Y2 are pairwise disjoint, except possibly
the pair Y1, X2. Let Vc = Y1∩X2. The interpretation is that
variables in Vc are outputs of I1 which are connected to in-
puts of I2. Note that we allow Vc to be empty, in which case
serial composition reduces to parallel composition (where
no connections between the two interfaces exist). Then, the
composite interface I1  I2 is defined to be the interface

I1  I2 := (X1 ∪X2 \ Y1, Y1 ∪ Y2, φ)

where

φ = φ1 ∧ φ2 ∧ ∀Y1 :
(
φ1 → in(φ2)

)
.

I1 and I2 are said to be compatible interfaces if φ is satisfi-
able, i.e., if φ is not equivalent to False.

Refinement: Given two interfaces I1 = (X1, Y1, φ1) and
I2 = (X2, Y2, φ2), we say that I1 refines I2, written I1 v I2,
iff X1 ⊆ X2, Y1 ⊇ Y2 and the following formula is valid (i.e.,
true under all valuations):

in(φ2)→
(
in(φ1) ∧ (φ2 → φ1)

)
.

Shared refinement: Two interfaces I1 = (X,Y, φ1) and
I2 = (X,Y, φ2) are said to be shared-refinable if the following
formula is true:

∀X :
((

in(φ1) ∧ in(φ2)
)
→

(
∃Y : (φ1 ∧ φ2)

))
If I1 and I2 are shared-refinable, their shared refinement,
denoted I1 u I2, is defined to be the interface I1 u I2 :=
(X,Y, φu), where

φu :=
(
in(φ1) ∨ in(φ2)

)
∧
(
in(φ1)→ φ1

)
∧
(
in(φ2)→ φ2

)



It can be seen that I1 u I2, when it exists, is guaranteed to
refine both I1 and I2, which, as argued in [5,9], is important
for component reuse (see also [10]).

2.2 Assume/Guarantee Contracts
Following [5], [6], an assume-guarantee (A/G) contract

is a pair (A,G) where A and G are sets of behaviors. A
represents the assumptions that a system makes on its envi-
ronment, and G represents the guarantees provided by the
system under the environment assumptions. The A/G con-
tract framework is abstract in the sense that it does not
predefine the type of behaviors. Behaviors can be of differ-
ent kinds (e.g., discrete or continuous, finite or infinite in
length) and they can be concretely represented using differ-
ent formalisms, e.g., automata, temporal logic, differential
equations. For the purposes of this paper, we consider a
specific type of behaviors, in order to establish our results.
We therefore equip a contract with a finite set of variables
V . A behavior over V is an infinite sequence of valuations
over V , ρ = v0v1v2 · · · . In the sequel, an A/G contract will
be a triple (V,A,G) where A and G are sets of behaviors
over V .

Often contracts are assumed to be in saturated (canon-
ical) form, meaning that they satisfy A ⊆ G, where A is
the complement of A. In the sequel we assume that con-
tracts are given in saturated form. This is not a restrictive
assumption as we can always transform a contract (V,A,G)
into its saturated form (V,A,G′) where G′ := G ∪A.

Satisfaction: A contract is to be realized by an imple-
mentation, modeled as a set of behaviors M over the same
set of variables. A set of behaviors M over V satisfies a
contract C = (V,A,G), written M |= C, when it satisfies its
guarantee subject to the assumption; formally, M ∩A ⊆ G.
Similarly, a contract admits a set of legal environments,
each modeled as a set of behaviors E over the same set of
variables. A set of behaviors E over V satisfies a contract
C = (V,A,G) as an environment, written E |=E C, when it
satisfies its assumption; formally, E ⊆ A.

Composition: Composition of contracts can be used
to construct composite contracts out of simpler ones. Let
C1 = (V,A1, G1) and C2 = (V,A2, G2) be contracts (in satu-
rated form) over the same set of variables V . The composite
contract C1⊗C2 is defined as the triple (V,A,G) where [6]:

A = (A1 ∩A2) ∪ (G1 ∩G2) (1)

G = G1 ∩G2. (2)

Note that contract composition preserves saturated form,
that is, if C1 and C2 are in saturated form, then so is C1⊗C2.
Moreover, ⊗ is associative and commutative and generalizes
to an arbitrary number of contracts. We therefore can write
C1 ⊗ C2 ⊗ · · · ⊗ Cn.

In order for composition to be defined, contracts need to
be over the same set of variables V . If this is not the case,
then, before composing the contracts, we must first extend
their behaviors to a common set of variables using an inverse
projection type of transformation. We call this process al-
phabet equalization. Formally, let C = (V,A,G) be a con-
tract and let V ′ ⊇ V be the set of variables on which we want
to extend C. The extension of C on V ′ is the new contract
C′ = (V ′, A′, G′) where A′ and G′ are sets of behaviors over
V ′, defined by inverse projection of A and G, respectively.
In the sequel, we freely compose contracts C1 = (V1, A1, G1)
and C2 = (V2, A2, G2) over arbitrary sets of variables V1, V2,

by implicitly first taking their extensions to V = V1 ∪ V2.
Compatibility: A saturated contract C = (V,A,G) is

called compatible if there exists a legal (non-empty) envi-
ronment E for C, i.e. if and only if A 6= ∅. This definition
can then be lifted to pairs of contracts, so that two contracts
C1 and C2 are compatible iff C1 ⊗ C2 is compatible.

Some works (e.g., [2, 5]) present versions of the A/G con-
tract theory which distinguish between input (uncontrolled)
and output (controlled) variables. The definition of contract
composition is not changed in that case, but a new notion
of contract compatibility can be defined. Let c ⊆ V be the
subset of controlled variables of C. Then C is compatible iff
A is c-receptive, i.e. iff for all behaviors ρ′ restricted to vari-
ables in c, there exists a behavior ρ ∈ A, such that ρ′ and ρ
coincide over c. Intuitively, an environment has no control
on the variables set by an implementation, and therefore A
accepts any history offered to the subset c of its variables.

Consistency: A saturated contract C = (V,A,G) is
called consistent if there exists a non-empty implementation
M for C, i.e. if and only if G 6= ∅. As with compatibility,
consistency can also be lifted to pairs of contracts, so that
C1 and C2 are consistent iff C1 ⊗ C2 is consistent.

Refinement: We say that contract C1 = (V,A1, G1) re-
fines contract C2 = (V,A2, G2) (with C1 and C2 both in
saturated form), written C1 � C2, if and only if A1 ⊇ A2

and G1 ⊆ G2. Refinement amounts to relaxing assumptions
and reinforcing guarantees, therefore strengthening the con-
tract. Clearly, if M |= C′ and C′ � C, then M |= C.
On the other hand, if E |=E C, then E |=E C′. In other
words, contract C′ refines another contract C, if C′ admits
less implementations than C, but more legal environments
than C. This is a standard concept inspired by the notion
of behavioral subtyping [7].

Conjunction: The conjunction of two contracts C1 =
(V,A1, G1) and C2 = (V,A2, G2) is defined to be the con-
tract C1 ∧C2 = (V,A1 ∪A2, G1 ∩G2). Conjunction of A/G
contracts is similar to shared refinement in interfaces. Note,
however, that shared refinement of interfaces is not always
defined, whereas conjunction of A/G contracts is always de-
fined.

2.3 LTL A/G Contracts
To work with A/G contracts, we may concretely express

the sets of behaviors A and G as formulas in linear temporal
logic (LTL) [11]. An LTL A/G contract is then a triple
(V, ϕa, ϕg), where ϕa and ϕg are LTL formulas over the
set of variables V . For instance, if V = {x, y} and x, y
are both integer variables, a possible LTL A/G contract is
(V,�x ≥ 0,�y ≥ 0). An LTL formula represents a set of
behaviors. For example, the formula �x ≥ 0 represents the
set of all behaviors where x is never negative.

Most operations on contracts can be implemented as op-
erations on LTL formulas in a straightforward way. For in-
stance, saturation of (V, ϕa, ϕg) can be achieved by setting
ϕg := ϕa → ϕg; checking that (V, ϕa, ϕg) refines (V, ϕ′a, ϕ

′
g)

amounts to checking that ϕ′a → ϕa and ϕg → ϕ′g are both
valid.

3. FROM SYNCHRONOUS RELATIONAL
INTERFACES TO A/G CONTRACTS

Definition 3.1 (Contract Associated with an Interface).
An interface I = (X,Y, φ) can be transformed into a contract



True!I1! I2!

y!x! y ≥ 0!

(a)!

y ≥ x!I3! I2!

y!x! y ≥ 0!

(b)!

Figure 1: Pictorial representation of the relational
interfaces in Example 1 (a) and Example 2 (b).

C = F(I) = (V,A,G) where

V := X ∪ Y, A := �in(φ), G := �in(φ)→ �φ.1

We call C the contract associated with I under the trans-
formation F.

Even though in(φ) is a formula over only the set of input
variables X, when we define A we choose to interpret in(φ)
over the entire set of variables V = X ∪ Y . In fact, both A
and G in a contract are defined as behaviors over the same
set of variables. Moreover, we conveniently express the sets
of behaviors in A and G as LTL formulas, where �φ de-
notes the set of behaviors [[φ]]. By definition, contract F(I)
is in saturated form. In what follows, we analyze the be-
havior of the proposed transformation with respect to serial
composition, refinement and conjunction.

3.1 Serial Composition and Compatibility
We would expect that F preserves serial composition, i.e.,

for the interfaces I1 and I2, F(I1  I2) = F(I1) ⊗ F(I2)
holds. However, this is not true in general, as shown by the
following example.

Example 1. Consider the interfaces I1 = ({x}, {y},True)
and I2 = ({y}, ∅, y ≥ 0), shown in Fig. 1(a). We have
F(I1) = ({x, y},True,True) and F(I2) = ({x, y},�(y ≥
0),True). Moreover, since I1  I2 = ({x}, {y},False), we
have F(I1  I2) = ({x, y},False,True). On the other hand,
we also obtain F(I1) ⊗ F(I2) = ({x, y},�(y ≥ 0),True),
which is clearly not equal to F(I1  I2).

The difference highlighted by Example 1 can be intuitively
explained by the incompatibility of I1 and I2. This is cor-
rectly expressed by φI1 I2 being False and reflected into the
assumptions of F(I1  I2), which are also False, meaning
that the contract F(I1  I2) is also incompatible, i.e. any
component satisfying F(I1  I2) cannot be hosted by any
environment. On the other hand, such incompatibility is
not immediately detected using F(I1)⊗ F(I2), which seems
to indicate that any sequence yn satisfying yn ≥ 0 for all
n ∈ N is admitted. Only after observing that y is a con-
trolled variable, we can finally conclude that F(I1) ⊗ F(I2)
is incompatible, since its assumptions are not y-receptive.

As a second attempt, we may try to prove that serial com-
position is preserved provided the interfaces are compatible.
Example 2 shows that this is not the case either.

Example 2. Consider the interfaces I3 = ({x}, {y}, y ≥ x)
and I2 = ({y}, ∅, y ≥ 0), shown in Fig. 1(b). We have
F(I3) = ({x, y},True,�(y ≥ x)), F(I2) = ({x, y},�(y ≥
0),True), I3  I2 = ({x}, {y}, x ≥ 0 ∧ y ≥ x), and

F(I3  I2) = ({x, y},�(x ≥ 0),�(x ≥ 0)→ �(y ≥ x)).

On the other hand, we also obtain

F(I3)⊗ F(I2) = ({x, y},�(y ≥ x)→ �(y ≥ 0),�(y ≥ x)),

1� takes precedence over →, so �in(φ) → �φ means(
�in(φ)

)
→ �φ.

which is clearly not equal to F(I3  I2). In fact, the se-
quence (xn, yn) where xn = −1 and yn = −3 for all n ∈ N
satisfies the assumptions of F(I3)⊗F(I2) but does not satisfy
the ones of F(I3  I2).

Again, we see that the assumptions refer to output vari-
ables, and do not contain the important new assumption
x ≥ 0 induced by interface composition, and which is crucial
to guarantee interface compatibility. Note that we can still
conclude that F(I3) ⊗ F(I2) is indeed compatible, since its
assumptions are y-receptive. However, we are also interested
in inferring the largest set of environments, with respect to
set inclusion, that is allowed by the composite contract, cap-
tured by the new assumption �x ≥ 0. To obtain this, we
introduce a new projection operation on contracts, which we
call assumption projection (AP).

Definition 3.2. Given a contract C = (V,A,G), and a
subset W ⊆ V , the assumption projection of C with respect
to W (APW ) returns the new saturated contract

APW (C) = (V, ∀W : A, (∀W : A)→ G).

We use the fact that the universal quantifier is commu-
tative and associative to lift it to sets of variables in Defi-
nition 3.2, so that ∀W : A := (∀w1 : ∀w2 : . . . : ∀wn : A)
when W = {w1, w2, . . . , wn}. We are now ready to state
the following theorem, which relates serial composition of
interfaces with serial composition of contracts.

Theorem 3.3. Given two relational interfaces I1 and I2
with sets of output variables Y1 and Y2, respectively, we have

F(I1  I2) = APY1∪Y2(F(I1)⊗ F(I2)). (3)

Moreover, I1 and I2 are compatible iff APY1∪Y2(F(I1) ⊗
F(I2)) is compatible.

Before proving Theorem 3.3, we introduce the following
lemma, which will be used in the proof.

Lemma 3.4. Given the interfaces I1 = (X1, Y1, φ1) and
I2 = (X2, Y2, φ2), let ψ = �(∀Y1 : φ1 → in(φ2)), and ψ′ =
(∀Y1 : �φ1 → �in(φ2)). Then, if �(in(φ1)) is True, we
have ψ ↔ ψ′.

Proof (Lemma 3.4). Suppose first that ψ is True, and
suppose that on all sequences y1,n of valuations over Y1, �φ1

holds. Then, for all n, for all valuations (x1,n, x2,n, y1,n)
over (X1, X2, Y1), we have (x1,n, x2,n, y1,n) |= φ1. Hence,
by ψ, we also have that for all n, for all the valuations over
(X1, X2, Y1), (x1,n, x2,n, y1,n) |= in(φ2). This implies that
�in(φ2) is also valid for all sequences of valuations over Y1,
and ψ′ is True. Therefore, we conclude that ψ → ψ′.

To prove that ψ′ → ψ, we now assume that ψ is False,
and prove that ψ′ must also be False. In fact, if ψ is
False, then there exists a sequence (x1,k, x2,k) of valuations
over (X1, X2), an index i ∈ N and a valuation y∗ over Y1

such that (x1,i, x2,i, y
∗) |= φ1 and (x1,i, x2,i, y

∗) 6|= in(φ2).
Consider such a sequence (x1,k, x2,k). Then, since �in(φ1)
holds by hypothesis, we know that, for all k, it is pos-
sible to find ŷ1,k such that (x1,k, ŷ1,k) |= φ1. Therefore,
starting from (x1,k, x2,k), we can construct a new sequence
sk = (x1,k, x2,k, y1,k) such that ∀k 6= i, y1,k = ŷ1,k, and
for k = i, y1,i = y∗. By construction, sk |= �φ1 but
sk 6|= �in(φ2), i.e. sk falsifies ψ′. We can therefore con-
clude ¬ψ → ¬ψ′, which is what we wanted to prove.



We can now prove Theorem 3.3.

Proof (Theorem 3.3). Both the left and right-hand side
contracts CL and CR in (3) are in saturated form by defi-
nition of F and of AP. To prove that CL and CR are equal
we need to prove that they have the same assumption and
guarantee sets. We first compute assumptions and guaran-
tees for CR. By applying (1) and (2) and the definition of
F we obtain:

G⊗ = (�in(φ1)→ �φ1) ∧ (�in(φ2)→ �φ2) (4)

A⊗ = (�in(φ1) ∧�in(φ2)) ∨ ¬G⊗
= �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1)

∨ (�in(φ2) ∧ ¬�φ2)

(5)

where A⊗ and G⊗ are the assumptions and guarantees of
F(I1) ⊗ F(I2). Finally, after assumption projection, we ob-
tain:

AR = ∀Y1∀Y2 : A⊗

= ∀Y1 : �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1)

∨ (∀Y2 : (�in(φ2) ∧ ¬�φ2))

= ∀Y1 : �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1)

= ∀Y1 : �in(φ1) ∧ (�in(φ2) ∨ ¬�φ1)

= �in(φ1) ∧ (∀Y1 : �φ1 → �in(φ2))

(6)

GR = AR → G⊗

= �in(φ1) ∧ (∀Y1 : �φ1 → �in(φ2))

→ (�φ1 ∨ ¬�in(φ1)) ∧ (�φ2 ∨ ¬�in(φ2))

(7)

Consider now the assumptions of CL. We obtain:

AL = �in(φ) = � [∃Y1∃Y2 : φ1 ∧ φ2 ∧ (∀Y1 : φ1 → in(φ2))]

= � [(∀Y1 : φ1 → in(φ2)) ∧ (∃Y1 : φ1 ∧ in(φ2))]

= � [(∀Y1 : φ1 → in(φ2)) ∧ in(φ1)]

= �(∀Y1 : φ1 → in(φ2)) ∧�in(φ1)

(8)

while for GL we obtain

GL = �(∀Y1 : φ1 → in(φ2)) ∧�in(φ1)

→ �(φ1 ∧ φ2 ∧ (∀Y1 : φ1 → in(φ2))).
(9)

The equivalence of the assumptions AL and AR directly
descends from Lemma 3.4. To prove the equivalence of GL
and GR it is enough to prove that, if AL or AR is True, then

(�in(φ1)→ �φ1) ∧ (�in(φ2)→ �φ2)↔ �(φ1 ∧ φ2). (10)

Clearly, if the formula on the left side of the double impli-
cation in (10) is True, the formula on the right side is also
trivially True when AR and AL are True. Suppose now that
the left-hand side of (9) is True. Since AL and AR are True
then �in(φ1) is True, which implies �φ1 is True. On the
other hand, by AL and AR being again True, we also have

�(∀Y1 : φ1 → in(φ2)) ∧�φ1 → �in(φ2).

This allows us to conclude that �φ2 is also True and fi-
nally (10) holds. We have therefore proved (3).

Let now φ = φ1 ∧φ2 ∧ (∀Y1 : φ1 → in(φ2)) be the formula
associated with I1  I2. I1 and I2 are compatible if and
only if φ is satisfiable. On the other hand, APY1∪Y2(F(I1)⊗
F(I2)) is compatible if and only if its assumptions AR are

satisfiable. Then, to prove the last statement of the theorem,
we need to prove that φ is satisfiable if and only if AR is
satisfiable. This can be directly inferred from the fact that
AR = AL = �in(φ). In fact, �in(φ) is satisfiable if and
only if in(φ) is satisfiable, i.e. if and only if φ is satisfiable,
which concludes our proof.

Assumption projection hides the controlled variables of
the composite contract from its assumptions, thus enabling
preservation of serial composition and compatibility between
interfaces and their associated contracts. However, we ob-
serve that this operator is not straightforward to implement,
since LTL is not closed under projection [12]. For instance,
consider the LTL formula φ over two Boolean variables s
and p:

φ := p ∧�(s→ p) ∧�(s→ #¬s) ∧�(¬s→ #s)

It can be shown that there is no LTL formula over p that
characterizes exactly the set of infinite traces obtained by
projecting the traces characterized by φ onto the p variable.

3.2 Refinement
While F does not generally preserve serial composition, it

preserves refinement, as the following theorem shows.

Theorem 3.5. Given two relational interfaces I1 and I2,
then I1 v I2 if and only if F(I1) � F(I2).

Proof. Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2). By
definition of refinement, we recall that I1 v I2 if and only
(in(φ2)→ in(φ1) ∧ (φ1 → φ2)) is valid or, equivalently, the
following two formulas

in(φ2)→ in(φ1) (11)

in(φ2) ∧ φ1 → φ2 (12)

are both valid. Moreover, by definition of F, we have

F(I1) = (Y1 ∪X2,�in(φ1),�in(φ1)→ �φ1)

F(I2) = (Y1 ∪X2,�in(φ2),�in(φ2)→ �φ2).

We first prove that I1 v I2 → F(I1) � F(I2). Let Ai and
Gi be, respectively, the assumptions and the guarantees of
F(Ii). We need to show that formulas (11) and (12) imply
A2 → A1 and G1 → G2. Assume A2 = �in(φ2) is True,
then, by (11), A1 = �in(φ1) is also True; therefore, A2 →
A1. Assume now that G1 is True, i.e. either �in(φ1) is False
or �φ1 is True. If �in(φ1) is False, then from A2 → A1,
�in(φ2) is also False, which makes G2 True. If �φ1 is True,
then, by (12), we conclude �in(φ2) → �φ2, hence G2 is
again True. We therefore conclude that G1 → G2.

We now prove that if F(I1) � F(I2), i.e. A2 → A1 and
G1 → G2, then (11) and (12) are valid. To do so, we assume
instead that I1 6v I2 and show that F(I1) 6� F(I2). In fact,
if (11) is not valid, then we can create a sequence xn of
valuations over X2 and an index i such that xn |= in(φ2)
for all n, and xi 6|= in(φ1). Then, for such a sequence,
�in(φ2) is True while �in(φ1) is False, which means that
A2 → A1 is not valid. Similarly, assume (12) is not valid;
then we can create a sequence of valuations (xn, yn) for the
variables in X2 ∪ Y1 and an index i such that (xn, yn) |=
in(φ2) and (xn, yn) |= φ1 for all n, while (xi, yi) 6|= φ2.
However, this implies that �φ1, hence G1 is True while G2

is False, since �in(φ2) is True without �φ2 being True.
Therefore, G1 → G2 is also not valid, which allows us to



(a)! (b)!

True!IA!

x!
z!

y!
x ≠ y!IB!

x!
z!

y!

True!IA!

x!
z!

y!
x ≠ y!IB!

x!
z!

y!

True � (x=y)!

κ(IA)!

x!z! y! (x ≠ y)�(x=y)!

κ(IB)!
z! y!

x!

Figure 2: Configurations considered in Example 3.

conclude (I1 6v I2) → (F(I1) 6� F(I2)), as we wanted to
prove.

To enable compositional methods in system design, it is
useful to investigate whether refinement is preserved by com-
position. For both relational interfaces and A/G contracts
refinement is preserved by parallel composition and serial
composition [4, 5]. However, this is not always the case for
feedback composition. In relational interfaces, feedback pre-
serves refinement only if the interfaces are “Moore” with re-
spect to the input variables involved in the connection, i.e.,
when the fed-back output only depends on state variables
but not on current inputs [4]. In A/G contracts, refinement
is instead preserved by feedback composition [5].

An in-depth investigation of the properties of feedback
composition is out of the scope of this paper. In what fol-
lows, we discuss just one property of interest. First, we
provide a definition of feedback for A/G contracts.

Definition 3.6 (Feedback Composition of A/G Contracts).
Given a contract C = (V,A,G) and a feedback connection
κ = (x, y) ∈ V 2 on C, let Cid be the contract defined as
Cid = ({x, y},True,�(x = y)). Then, κ defines a new con-
tract κ(C) := C ⊗ Cid.

Theorem 3.7 (Refinement under Feedback Composition).
Let I1 = (X,Y, φ1) and I2 = (X,Y, φ2) be two relational
interfaces and κ = (x, y) ∈ X × Y a feedback connection on
the associated contracts F(I1) and F(I2), then

(I1 v I2)→ (κ(F(I1)) � κ(F(I2))) , (13)

provided that κ(F(I2)) is compatible.

Proof. By Theorem 3.5, we know that if I1 v I2 then
F(I1) � F(I2). By definition of κ, we also have κ(F(I1)) =
F(I1)⊗ Cid and κ(F(I2)) = F(I2)⊗ Cid, Cid being the con-
tract ({x, y},True,�(x = y)). Then, by Property 3 (in-
dependent implementability) of the parallel composition of
contracts in [6], if κ(F(I2)) is compatible, we can conclude
that κ(F(I1)) is also compatible and κ(F(I1)) � κ(F(I2)),
as we wanted to show.

We observe that (13) holds even if I1 and I2 are not
Moore with respect to x, in which case κ(I1) v κ(I2) is not
guaranteed. As illustrated by the following two examples,
κ(I1) v κ(I2) may not hold either because φκ(I1) is False
(Example 3) or because (φκ(I1) → φκ(I2)) is False (Exam-
ple 4).

Example 3. Consider IA = ({x, z}, {y},True) and IB =
({x, z}, {y}, x 6= y) as in Fig. 2 (a). IA does not make any
assumptions on the inputs and any guarantee on the out-
puts, while IB guarantees that the value of the output is dif-
ferent from the value of the input. We have IB v IA since

in(φA) = in(φB) = True and φB → φA. However, given
κ(IA) = ({z}, {y, x}, x = y) and κ(IB) = ({z}, {y, x},False),
obtained as shown in Fig. 2 (b), is clearly κ(IB) 6v κ(IA)
since φκ(IB) is False. Consider now the associated con-
tracts A = (V,True,True) and B = (V,True,�(y 6= x))
on variables V = {x, y, z}. We have B � A, κ(A) =
(V,True,�(y = x)), κ(B) = (V,True,False), and κ(B) �
κ(A). Therefore, refinement is preserved by feedback compo-
sition, even if κ(B) is inconsistent.

Example 4. Consider now IA = ({x}, {y}, (x 6= 0)∧ (xy =
1)) and IB = ({x}, {y}, (x 6= 0) → (xy = 1)). We have
IB v IA since in(φA) = (x 6= 0), in(φB) = True and (φB →
φA) = (x 6= 0). However, given κ(IA) = (∅, {y, x}, (x2 =
1) ∧ (x = y)) and κ(IB) = (∅, {y, x}, (x 6= 0 → x2 =
1)∧(x = y)), we obtain κ(IB) 6v κ(IA). In fact, in(φκ(IB)) =
in(φκ(IA)) = True; however, φκ(IB) → φκ(IA) is False. Con-
sider now the associated contracts A = (V,�(x 6= 0),�(x 6=
0)→ �(xy = 1)) and B = (V,True,�((x 6= 0)→ (xy = 1))
on variables V = {x, y}. Since κ(A) = (V,�(x 6= 0) ∨
¬�(y = x), (�(x 6= 0)→ �(x2 = 1)) ∧�(y = x)) is compat-
ible, κ(B) is also compatible and κ(B) � κ(A). In this case,
however, κ(B) is also consistent.

3.3 Conjunction
Even if F preserves refinement, it does not preserve con-

junction. First, conjunction (shared refinement) is not al-
ways defined for relational interfaces. For A/G contracts,
conjunction can always be defined as the GLB of the refine-
ment relation, but it can still generate inconsistent contracts,
as illustrated by the following example.

Example 5. Consider I00 = ({x}, {y}, x = 0 → y = 0)
and I01 = ({x}, {y}, x = 0 → y = 1). As discussed in [4],
they are not shared refinable, since it is not possible to guar-
antee y = 0 and y = 1 at the same time. However, con-
junction can still be defined for their associated contracts
F(I00) = ({x, y},True,�(x = 0 → y = 0)) and F(I01) =
({x, y},True,�(x = 0→ y = 1)), although it only generates
the inconsistent contract ({x, y},True,False).

When conjunction is well-defined in both frameworks, the
contract associated with the conjunction of two interfaces is,
in general, a refinement of the conjunction of the contracts
associated with the interfaces, as stated by the following
theorem.

Theorem 3.8. Let I = (X,Y, φ) and I ′ = (X,Y, φ′) be two
shared-refinable relational interfaces. Then we have

F(I u I ′) � F(I) ∧ F(I ′), (14)

with F(I u I ′) 6= F(I) ∧ F(I ′) in general.

Proof. We recall that I u I ′ = (X,Y, φu), where

φu = (in(φ) ∨ in(φ′)) ∧ (in(φ)→ φ) ∧ (in(φ′)→ φ′),

where in(φu) = in(φ)∨in(φ′) by Lemma 8 in [4]. Therefore,
by transforming IuI ′, we obtain F(IuI ′) = (X∪Y,Au, Gu),
where

Au = �(in(φ) ∨ in(φ′))

and

Gu = �(in(φ)∨in(φ′))→ (�(in(φ)→ φ)∧�(in(φ′)→ φ′)).



Moreover, by definition of conjunction, we obtain F(I) ∧
F(I ′) = (X ∪ Y,A∧, G∧), where

A∧ = �in(φ) ∨�in(φ′)

and

G∧ = (�in(φ)→ �φ) ∧ (�in(φ′)→ �φ′).

It is straightforward to see that A∧ → Au. On the other
hand, we also notice that Au 6→ A∧. In fact, any sequence
xn such that x1 |= in(φ), x1 6|= in(φ′), and xn |= in(φ′) for
all n > 1, satisfies A∧ but does not satisfy Au.

We also observe that Gu → G∧. In fact, G∧ is triv-
ially True if both �in(φ) and �in(φ′) are False. If �in(φ)
is instead True, then, because Gu is True, �(in(φ) → φ)
is True, which implies that �φ is also True. Similarly, if
�in(φ′) is True, �φ′ will also be True. Therefore, in all
cases, both the implications in G∧ will be True under the
assumption that Gu is True. On the other hand, we also
notice that G∧ 6→ Gu. In fact, any sequence (xn, yn) such
that x1 |= in(φ), x1 6|= in(φ′), xn |= in(φ′) for all n > 1,
and (x1, y1) 6|= φ, would certainly satisfy G∧ but not Gu.

Therefore, the contract associated with the shared refine-
ment of I and I ′ is indeed a refinement of the conjunction
of the contracts associated with I and I ′, and equality does
not generally hold.

4. CONCLUSIONS AND FUTURE WORK
This paper has established a link between the theory of

relational interfaces and the one of A/G contracts, shed-
ding light on some of their key features for system design
specification, early detection of incompatibilities, and prin-
cipled use of abstraction-refinement. Future extensions of
this work include studying the properties of the proposed
transformation with respect to feedback composition, as well
as its generalization to the theory of interface automata. We
are also interested in investigating a reverse transformation
that maps A/G contracts into relational interfaces, which re-
quires extending the latter with liveness properties. Finally,
the implementation of the assumption-projection operator
on LTL contracts will also be considered as future work.
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