
INTELLIGENT DECENTRALIZED CONTROL

IN LARGE DISTRIBUTED COMPUTER SYSTEMS

A DISSERTATION

SUBMITTED IN PARTIAL SATISFACTION OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE
IN THE GRADUATE DIVISION

OF THE UNIVERSITY OF CALIFORNIA, BERKELEY

by
Joseph Carlo Pasquale

April 1988

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Intelligent Decentralized Control In Large Distributed Computer
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In very large distributed computer systems, there are significant problems when one considers
decentralization of control amongst agents managing resources. Probably the most difficult is that agents
must make good fast coordinated decisions based on uncertain and differing views of the global system
state. Our thesis is that despite such problems, effective decentralized control systems can be built based on
a set of seven design principles which we describe. We also apply these principles to the problem of
decentralized load balancing, and provide results based on trace-driven simulation experiments. Our
approach is knowledge-based, by which we mean that an agent will make use of heuristics and
domain-specific knowledge about the behavior of itself and other agents to make good decisions. A
powerful technique we present is one that agents use to quantify the uncertainty of information they have,
and, based on these quantifications, to make better decisions. Agents adapt their decisionmaking to
changing conditions by observing the system at infrequent (to minimize communication overhead) and
opportune times, and then relying on their inference capabilities between observations. To minimize the
occurrence of mutually conflicting decisions, we introduce a technique called SPACE/TIME
Randomization, which provides implicit coordination of agents and requires minimal communication. The
solutions we present are based on a combination of extensions of decision theoretic techniques and artificial
intelligence techniques.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

182

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright© 1988
by

Joseph Carlo Pasquale

Intelligent Decentralized Control
in Large Distributed Computer Systems

By

Joseph Carlo Pasquale
B.S. ~ssachusetts Institute of Technology) 1982
M.S. QMassachusetts Institute of Technology) 1982

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

OOCTOR OF PHILOSOPHY

in

m1PlTI'ER SCIENCE

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: 0 Ar!./~,-t.~ rs
airman 7 ') Date

....... a{,{ : ... !/.. ... i:!:~ :rf !fl .t:.J?

P'J ' I I I / I / ,' J..L 1/1 / f' ;'
/

1
: •""~ "-t..J (._, (,·'"' v-~-~ '/ · , c· C.

·.·.·.· Z .·.· d:M.~.~ .· .·.· .· .· .· .· .· .· (At/~.·.·

ABSTRACT

In very large distributed computer systems, there are significant problems

when one considers decentralization of control amongst agents managing

resources. Probably the most difficult is that agents must make good fast

coordinated decisions based on uncertain and differing views of the global sys­

tem state. Our thesis is that despite such problems, effective decentralized

control systems can be built based on a set of seven design principles which we

describe. We also apply these principles to the problem of decentralized load

balancing, and provide results based on trace-driven simulation experiments.

Our approach is knowledge-based, by which we mean that an agent will

make use of heuristics and domain-specific knowledge about the behavior of

itself and other agents to make good decisions. A powerful technique we

present is one that agents use to quantify the uncertainty of information they

have, and, based on these quantifications, to make better decisions. Agents

adapt their decisionmaking to changing conditions by observing the system at

infrequent (to minimize communication overhead) and opportune times, and

then relying on their inference capabilities between observations. To minimize

the occurrence of mutually conflicting decisions, we introduce a technique

called SPACE/TIME Randomization, which provides implicit coordination of

agents and requires minimal communication. The solutions we present are

based on a combination of extensions of decision theoretic techniques and

artificial intelligence techniques.

ACKNOWLEDGEMENTS

I have been most fortunate in having Domenico Ferrari as my thesis advisor; he

has been exceptional. Without his guidance and support, this dissertation would not

exist. His intellectual honesty and integrity has been a source of inspiration, and his

warmth as a human being, boundless. I will treasure all that he has taught me, and I

hope to continue to learn from him. I truly admire him.

I would like to thank Lotfi Zadeh for all his advice, guidance, and stimulating

conversation. I thank Ronald Wolff for introducing me to stochastic processes. I also

thank Luis-Felipe Cabrera who provided me with ideas, motivation, and encourage­

ment.

I thank my family for their love. and support. And, I thank Barbara; she has

been my source of strength.

I greatly appreciate the support given to me by IBM for the fellowship they pro­

vided, by DARPA contract N00039-84-C-0089, and by DEC for their donation of a

VAX 8600 on which I carried out my experiments.

To A1ama and Papa

11

TABLE OF CONTENTS

1 Introduction ... !

1.1 Motivations for Decentralized Control Systems ... 2

1.2 The Problems of Decentralized Control .. .4

1.3 Formula for a Solution ... 5

2 Past Related Work ... 6

2.1 Foundations: Decision Theory .. 6

2.2 Decentralized Control Applications .. 8

2.3 Review of Two Significant Past Studies ... 11

3 A Formal Model for Decentralized Control.. .. l4

3.1 Model Requirements .. 14

3.2 The Formal Model ... l4

3.2.1 The Agent Model. ... l5

3.2.2 The Influence Model ... l7

3.3 Utility and Objective ... 18

3.4 Theoretical and Practical Limits .. 22

3.5 Summary of Model Requirements .. 24

4 Principles and Techniques ... 26

4.1 Knowledge-based Solution .. 27

4.2 Knowledge Abstraction .. 29

4.3 Uncertainty Quantification ... 33

4.4 Directional Heuristics ... 35

4.5 Information Age Integration .. 37

4.5.1 Choosing the Right Abstract State Space 38

4.5.2 Abstract State Spaces with Slow Transition Rates40

4.5.3 Decisions and Utility42

4.6 Frugal Communication .. 49

4.6.1 Informal Analysis of Local Loss49

4.6.2 Decision Quality Loss Function .. 56

4.6.3 Observations and Simplifications .. 59

4.6.4 Approximations .. 61

4.6.5 Communication Loss Function ... 65

4.7 SPACE/TIME Randomization to Avoid Resonances 69

4. 7.1 Problem Formalization ... 70

111

4.7.2 The SPACE/TIME Randomization Technique i1

4.8 Towards a Unifying Framework for Intelligent Agent Design 73

4.8.1 Observe-Reason-Act Structure .. 73

4.8.2 Architectural Framework .. 75

4.8.3 The Observation/Interpretation Structure 76

4.8.4 Actions at Different Levels of Abstraction 78

4.8.5 How the Framework Incorporates Our Principles 79

4.9 Summary of Principles ... 80

5 Decentralized Load Balancing .. 82

5.1 Formal Description .. 82

5.2 Abstract State Space .. 82

5.3 Domain-specific Knowledge .. 85

5.4 Designing State-transition Models .. 86

5.4.1 Load Levels and Degree of Variability .. 86

5.4.2 The Agent State-transition Model .. 88

5.5 Measures for Comparing the Desirabilities of Agents 90

5.5.1 Computing an Agent's State Utility ... 91

5.5.2 Conditional Utility with Respect to Job Offioading 92

5.5.3 Expected Utility ... 94

5.5.4 Conditional Expected Utility .. 94

5.6 Making Rational Decisions ... 97

5.6.1 Problem Decision Rules .. 97

5.6.2 SPACE/TIME Randomization for Load Balancing 99

5.6.3 Decisionmaking Processes for Load Balancing 103

5.6.4 Communication Decision Rule .. 105

6 Experiments ... 110

6.1 Experimental Load Balancing .. 110

6.2 Experimental Setup .. 112

6.2.1 Processor Simulation Model.. .. ll2

6.2.2 Job Activity .. 115

6.2.3 Job Movement Between Machines .. 116

6.2.4 Operating System Overhead ... 116

6.2.5 Input Trace Description .. 118

6.2.6 Validation of the Simulator .. 119

6.3 Constants for State Transition and Utility Models 122

6.3.1 Abstract State Space ... 122

6.3.2 Load Level and Degree of Variability ... 124

6.3.3 State Transition Probability Matrix ... 126

6.3.4 Utility 11odels ... 129

6.3.5 Efficient Utility Computations .. 137

IV

6.3.6 Efficient Payoff Computations .. 138

6.4 Experimental Results ... 139

6.4.1 Types of Job Placement Strategies ... 140

6.4.2 Accounting for Costs ... 141

6.4.3 Number and Types of Experiments ... 142

6.4.4 Results .. 143

7 Summary and Conclusions .. 151

7.1 Summary .. 151

7.2 Conclusions .. 152

Bibliography .. 154

..

v

CHAPTER 1

INTRODUCTION

A distributed computer system [Davi81] [Ensl78] with decentralized resource con­

trol [Abra80] [Jens78] is a collection of agents which reside on a (geographically) dis­

tributed set of computers and which control resources so that work can be carried out

in an integrated fashion. In this dissertation, we investigate the problem of designing

such systems. A key feature is that control of all resources is, to varying degrees, dis­

tributed amongst the agents, i.e., decentralized. The goal is to find a way for the

agents to coordinate their actions to maximize some index of system performance.

(Our main interest lies in performance optimization.)

The systems we are exploring have special characteristics. Every resource belongs

to a particular agent, that is, it is directly controlled by that agent. An agent may

also accept requests from other agents for the use of its resources. So, in a sense, all

agents have an indirect control over all resources, by having (varying degrees of)

access to them. Although agents can act autonomow;ly, we are interested in making

them cooperate. In fact, we limit the scope of this research to cooperative systems

where agents will not act maliciously. The goal is to determine how to make agents

cooperate effectively, given that they are willing to do so.

The systems of interest have a large number of agents and resources, at least

tens, but more likely hundreds or even thousands of them. This means that, at any

point in time, it is likely that there will be many simultaneous requests for resources,

and that there will be many resources from which to select.

We are concerned with an agent's main activity, decisionmaking. Agents must

decide when to make use of resources, and which resources are most beneficial at that

time. Consequently, agents are interested in the states of resources, which they can

determine by observation through communication. Since communication takes time,

all received state information is delayed by transmission time. This situation is

acceptable because the state information which agents use to base their decisions does

not have to be perfect. In fact, bad decisions are tolerable, so long as they do not

occur very often. This is in contrast to database control problems, where data

integrity requirements are very stringent.

A major constraint is that the agents have real-time response requirements. The

time it takes to make a decision, along with its expected consequences, is a cost which

must be taken into account. This rules out solutions which involve mathematical pro­

gramming or exhaustive searches. Agents must make reasonably good decisions in a

reasonably short amount of time, where what is "reasonable" depends on the problem.

1

2 Introduction Chap. 1

Why is it important to consider decentralized control systems? The current

trend of computer systems is toward larger numbers of loosely connected processing

nodes [Ande87]. Much progress has been made in addressing the communication

problem in such systems, specifically, the establishment of network protocols for infor­

mation transmission [Tane80]. This has heightened the potential for the effective

sharing of all resources by all agents (for which there still remains much work in

establishing adequate protocols). To realize this potential, we need to develop good

solutions for the coordination problem, specifically for the harmonious interaction of

all agents in the sharing of all the resources.

There are significant problems when one considers decentralization of control.

Probably the most difficult is that agents have limited knowledge about the state of

other agents and resources. They must make decisions based on partial information,

which is often out-of-date and sometimes incorrect. Further, communication is not

free. Agents must be prudent in deciding when to request for updated state informa­

tion. Agents must also work within real-time constraints. They must realize the

tradeoffs between the quality of a decision and the time it takes to achieve that qual­

ity.

In developing solutions for these problems, the following philosophy will be

adopted. Agents will seek to infer state information about resources and other agents

rather than relying solely on explicit communication, which will be done frugally.

These inferences will be based on knowledge of behavioral models of the resources and

of the other agents. These models are either acquired by the agent's ability to observe

and summarize past behavior, or by the initial programming of a human expert, or by

both methods. Coordination will also be achieved through implicit communication

(e.g., information sharing and inference) rather than relying solely on explicit com­

munication. The reader will note that a major tenet of this philosophy is to replace

communication with local computation (e.g., inferencing) whenever possible. This is

of critical importance when the systems under consideration are very large, and the

number of messages required for global communication (e.g., broadcasting) is unrea­

sonably high, causing excessive overhead.

1.1. Motivations for Decentralized Control Systems

Let us consider more deeply the question of why the study of decentralized con­

trol systems is important. In particular, why should decentralized control be preferred

to a centralized scheme? We will argue that the potential benefit of decentralized

over centralized control is so great that it outweighs the difficult problems it poses.

And yet, these problems have caused many designers to resort to centralized schemes,

as they lacked methods for dealing with them. So, we shall now review the potential

benefits of decentralized control. Afterwards, we will consider in detail what are the

corresponding problems.

Sect. 1.1 Motivations for Decentralized Control Systems 3

Complexity Management

Consider a large distributed computer system, one with hundreds or thousands of

agents. It is clear that the global control of such a system in real time is too complex

for any single agent. There are just too many objects to monitor and control simul­

taneously. Since a single controlling agent must receive information from and send

commands to all other agents, bottlenecks are likely to occur on the communication

paths leading to this agent. Division of labor amongst many cooperating agents is one

way of managing this complexity. Ideally, control is distributed so that each agent

accepts part of the burden of control and contributes to the effective global control of

the system. Moreover, control-communication paths are short and uniformly distri­

buted throughout the system, minimizing the likelihood of communication

bottlenecks.

Speed

When control is distributed among many agents, multiple decisions are made in

parallel, which offers a potential increase in system performance. Control decisions

can be made near the objects they are to affect; thus, communication of state infor­

mation to the decisionmaker and communication of commands travel short distances,

thereby without appreciably reducing speed (i.e., system throughput and responsive­

ness).

Reliability

A major reason for designing distributed systems is the reliability they offer. By

using distribution and redundancy of control, single points of failure which are charac­

teristic of centralized control systems are avoided. The potential benefits in speed dis­

cussed above offer the possibility of using more sophisticated reliability (fault detec­

tion and recovery) algorithms.

Scalability

In a fully decentralized control scheme, all agents may follow the same control

algorithm; consequently, the distribution of control is symmetric amongst all the

agents. Scaling the system up to comprise a larger number of agents is indeed simpler

than if control were distributed asymmetrically amongst the agents. Asymmetric dis­

tributions of control (e.g., master/ slave relationships) force an a priori grouping of

agents, which must necessarily change when more agents are added. A symmetric dis­

tribution of control imposes no a priori grouping. Instead, natural groupings will

evolve out of necessity (i.e., an agent will be likely to impose more control on objects

in its immediate vicinity, than on those which are distant).

Autonomy

Finally, an important positive characteristic of decentralized control is that

agents can act autonomously. Each agent is in full control of itself, and need not

necessarily rely on other agents. Control is then shared, not by imposition, but rather

because it is in each agent's interest to do so. This is important in considering present

4 Introduction Chap. 1

(and, even more, future) distributed systems, whose parts are often owned by different

organizations. These organizations are generally not willing to give up power over

their machines, but find it reasonable to share power because it is in their best interest

to do so.

1.2. The Problems of Decentralized Control

Although decentralized control offers complexity management, speed, reliability,

scalability, and autonomy, there are associated problems which have no apparently

simple solutions; rather, they seem insurmountable.

Consider the mind-set of an agent taking part in a decentralized control scheme.

It is summed up succinctly in the phrase:

think globally, act locally.

An agent's control decisions should be based on the global system state. In turn,

an agent's local decisions, taken as a component of all the concurrent decisions made

by all participating agents, will affect the global system state. Clearly, these decisions

should be harmonious, and not mutually destructive.

And so, we encounter the first fundamental problem of decentralized control:

each agent is uncertain about the current global system state. Information about the

global system state is distributed. Since pieces of such information take varying

degrees of time to be received by any single agent, no agent can ever know, with com­

plete certainty, the current global system state. At best, an agent can determine a

past global state, but not the current one. And yet, agents must base their decisions

on what they believe to be the current global state.

There is a second fundamental problem of decentralized control: each agent is

uncertain about the current actions of all other agents. Since an agent does not know

what other agents believe, it cannot predict what they will do. And yet, a goal of all

the agents is to make harmonious decisions.

Finally, as if these problems were not difficult enough, there is the constraint

imposed on all agents that they make fast decisions. The time used to make decisions

has a cost, and must be minimized. These decisions, which are complex because they

must take decentralization into account, are generally more costly in time than deci­

sions under a centralized control scheme.

In summary, agents must make decisions based on global state information of

which they are uncertain; agents are uncertain of each other's actions and yet must

act harmoniously; agents are under time pressure to make their decisions, which must

therefore be not just good, but also fast. Thus, we are challenged with the question:

can the benefits of decentralized control really outweigh the difficulties'? Our thesis is

that this question can be answered in the affirmative. In the next section, we will out­

line a formula for the solution, which is the main subject of this dissertation.

Sect. 1.3 Formula for a Solution 5

1.3. Formula for a Solution

Underlying the solution we adopt to deal with the problems presented above is

the idea that, in all real systems, there are patterns in their behavior. If only these

patterns could be recognized and encoded, they could be used for predicting future

events. In the case of decentralized control systems, knowledge of these patterns and

knowledge of recent-past state information could be used to infer the current system

state.

The solution we present is a knowledge-based solution, by which we mean that an

agent will make use of heuristics and domain-specific knowledge about the behavior of

itself and other agents to make good decisions. A powerful technique we present is

one the agents can use to quantify the uncertainty of information they have, and,

based on these quantifications, to make better decisions. Finally, agents adapt their

decisionmaking to changing conditions by observing the system at infrequent (to

minimize communication overhead) and opportune times, and then relying on their

inference capabilities between observations. The solutions we present are based on a

combination of extensions of decision theoretic techniques and artificial intelligence

techniques.

We proceed as follows. In Chapter 2, past work in related areas is discussed. In

Chapter 3, a formal model of decentralized control is presented. In Chapter 4, the

principles and techniques for dealing with the problems of decentralized control are

introduced. In Chapter 5, we discuss the application of these principles to a particu­

lar decentralized control problem, namely, load balancing. In Chapter 6, we present

the results of load balancing experiments to illustrate the feasibility of our solutions.

In Chapter 7, we summarize our conclusions.

CHAPTER 2

PAST RELATED WORK

In this chapter, we first explore the theoretical foundations upon which this

dissertation is based. Next, we discuss a number of areas of research which are closely

related to our work. Finally, we review two relevant experimental studies which were

sources of inspiration for this dissertation.

2.1. Foundations: Decision Theory

According to Blackwell and Girshick, "decision theory applies to statistical prob­

lems the principle that a statistical procedure should be evaluated by its conse­

quences ... " [Blac54]. This principle is rooted in Neyman and Pearson's theory of

hypothesis testing [Neym33], and was extended to all statistical problems by Wald

[Wald50].

Decision theory attempts to provide a model for making optimal decisions based

on uncertain information. The uncertainty of information is quantified by a probabil­

ity measure on the possible values of variables, and optimality depends on the evalua­

tion of possible outcomes, as modelled by utility theory. The structure of a decision

theoretic problem is to select a decision which maximizes the expected utility over all

possible consequences.

One of the problems with a decision theoretic formulation is that the probability

distributions of all random variables are assumed to be known by all decisionmakers.

Most often, this is not the case. In fact, some of these distributions may not even

exist. Consequently, approximate forms of reasoning have been developed, such as

Zadeh's fuzzy reasoning and possibility theory [Zade77] [Zade79], and the Dempster­

Shafer theory of beliefs [Shaf76].

Game theory

Decision theory is really a special case of the earlier theory of games, first intro­

duced by Borel [Bore21], developed and generalized by von Neumann [Neum28], and

then appearing in the definitive work by von Neumann and Morgenstern, Theory of

Games and Economic Behavior [Neum47]. Game theory focuses on the problem of

dealing with adversaries, and predicting their actions in the absence of communicated

data. The structure of a game theoretic problem is similar to that of a decision

theoretic problem, except that there are now multiple decisionmakers (usually, but not

necessarily, two), and the nature of possible information uncertainty lies in the inabil­

ity to perfectly predict the outcomes of moves (i.e., of decisions) because they are

governed by chance, or because they are the moves of other decisionmakers, which

6

Sect. 2.1 Foundations: Decision Theory 7

cannot be anticipated (a constraint imposed by the structure of the problem), or both.

A concise treatment of game theory appears in [Blac54], and a more in-depth survey

and analysis appears in [Luce5 7].

Team decision theory

Team decision theory, first proposed by Marschak as an outgrowth of organiza­

tion theory [Mars55], and further developed by Radner [Radn62], combines game

theory's notion of multiple decisionmakers and decision theory's notion of optimal

decisionmaking based on uncertain information and utility. Team decision theory

stresses the distributed nature of the decisionmakers, in that the availability of infor­

mation is governed by constraints placed on their modes of interactions (e.g., limita­

tions on communications and observations). Decisionmakers often have different but

correlated information about underlying system dynamics. Decisionmakers are part of

a team: they are usually not adversarial (as is often, but not always, the case in game

theoretic problems) in that they work together to solve a single problem. Thus, there

is a need for coordinated actions to realize a positive payoff.

Witsenhausen [Wits68] describes a team-theoretic decision problem as having five

ingredients:

(1) states of nature: a vector of random variables;

(2) observations: functions of the states of nature;

(3) decision variables: functions of the observations;

(4). strategy: decision rules which must be determined by design;

(5) loss criterion: a function of decisions and states of nature.

A team decision problem is to select decisions which minimize the expected loss

over the possible states of nature. Consequently, the goal is to find strategies for

decisionmakers which carry out this minimization of loss. In [HoBO], Ho presents a

concise tutorial on the team decision problem with examples and a survey.

Distributed knowledge

The theories presented so far are all information based: decisions and their qual­

ity are based on the value of information, its reliability, and its availability. But

there is also the problem of how distributed agents acquire knowledge. An agent's

knowledge is not only concerned with the states of nature, but, because of the multi­

plicity of agents and because they do not share a common memory (i.e., they are dis­

tributed), it is also concerned with what other agents know. Halpern and Moses

explore this in [Halp84], where they develop the notion of knowledge hierarchies and

common knowledge in distributed environments. If a proposition p is common

knowledge, then pis known by all agents, and all agents know that all agents know p,

and all agents know that all agents know that all agents know p, and so on ad

infinitum. They show that common knowledge cannot be attained solely through

communication. This is important, as we will show that a perfect decentralized

8 Past Related Work Chap. 2

control system, one where all agents always make the best decisions, cannot be built if

the current states and current actions of all agents are not common knowledge.

2.2. Decentralized Control Applications

We now consider different areas of research concerned with decentralized control

problems. Within each area, we will discuss a number of research studies which

influenced our research.

Control-theoretic techniques

Research on control-theoretic techniques for decentralized control have focused

on optimization based on decomposition. A problem is decomposed into subproblems

with interactions modelled by interaction variables. In general, interaction is limited

due to constrained cooperation (by design) amongst the individual subproblem-solvers

in order to make the analysis tractable.

In [Jarv75), Jarvis presents an informative survey of adaptive control optimiza­

tion based on such decomposition techniques. He discusses a number of methods,

including gradient, correlation, random, stochastic automata, fuzzy automata, pattern

recognition, and mixed strategies. In [Sand78], Sandell, Varaiya, Athans and Safonov

present a fairly complete survey (up to 1978) of decomposition techniques for decen­

tralized and hierarchical control, and mathematical methods for analyzing large scale

systems. For a tutorial on distributed control theory based on decomposition tech­

niques, see [Lars79].

Many of the algorithms based on decomposition techniques sequentially solve a

(possibly infinite) number of subproblems, whose solutions are e>..1>ected to converge to

the optimal solution for the main problem. In [Cohe78], Cohen discusses the princi­

ples of such "decomposition-coordination (two-level) algorithms."

Another problem of interest is that of data fusion, the combining of data from a

distributed set of sources. In a decentralized control system, each agent may be both

a source of data (which is sent to other agents) and a combiner of data (which is

received from other agents); consequently, data fusion potentially occurs at each

agent. In [Tenn8lc], Tenney and Sandell present an extension of detection theory

(see [VanT68]) to problems requiring distributed sensors, which has applications to

data fusion. See [Draz78] for another data fusion application.

Formal models

In [Tenn81a], Tenney and Sandell present a formal model for distributed

decisionmaking agents. This is a refinement of the general team decision model found

in [Ho80], in that they transform the notion of state-space into one that is more distri­

buted, and knowledge of agent states is more compartmentalized. In essence, by res­

tricting the scope of each decisionmaker's knowledge of the underlying system dynam­

ics, the search for optimality becomes more tractable. In a companion paper

[Tenn81b], they present a formal model for distributed decisionmaking coordination

Sect. 2.2 Decentralized Control Applications 9

strategies based on communication, prediction, and abstraction. They analyze how

information uncertainty is reduced by considering various types of communication

and different organizational structures.

Casavant and Kuhl present a formal model of distributed decisionmaking in

[Casa86], based on graph and finite automata theory. Their model is novel in that

they explicitly account for message-passing. They also give an example of how the

model can be applied to the problem of load balancing.

Distributed problem solving

Distributed problem solving (DPS) is the activity of multiple agents seeking to

solve a single problem in a cooperative but decentralized fashion. The agents are gen­

erally high-performance loosely-coupled semiautonomous computers. The focus of

DPS research has been on developing effective methods of interaction for agents.

Specifically, this includes techniques for cooperation and coordination through selec­

tive information sharing with limited amounts of communication. A collection of

papers describing the current state of research in this area can be found in [Huhn87].

Early work in DPS research was done by Victor Lesser and Lee Erman [Less78],

which led to their model for distributed interpretation in [Less80]. We will review this

work in the next section. In [Less81], Lesser and Corkill describe an approach for

structuring distributed processing systems which they call functionally

accurate/cooperative. Agents in these systems cooperate and function effectively

despite inconsistent views of state information due to distribution-caused uncertainty.

In related research, Corkill and Lesser discuss the problem of attaining global

coherence [Cork83] through meta-level control for the coordination of agents. The

network organizational structure paradigm is presented, which specifies the control of

information and the relationships between nodes. Specifically, this paradigm is con­

cerned with allocation of tasks such that local activity within agents is encouraged,

and the need for inter-agent communication is reduced. In [Less83], Lesser and

Corkill describe an application of these techniques to the problem of vehicle monitor­

ing with information collected by a geographically distributed network of sensor

nodes.

In [Smit81], Smith and Davis also describe frameworks for DPS cooperation. In

particular, they discuss the contract net protocol (see also [Smit80] and [Davi83]), one

of the major cooperation paradigms developed by DPS research. In the contract net

paradigm, agents negotiate and make contractual agreements over tasks to be carried

out. This differs significantly from other forms of cooperation in that agents can back

out of the negotiation process at any time, rather than, say, submitting to majority

rule as in voting paradigms.

In [Stee86], Steeb, McArthur, Cammarata, Narain, and Giarla discuss coopera­

tion strategies for distributed problem-solving agents by analyzing organizational poli­

cies (task decomposition and assignment), and information-distribution policies (the

nature of inter-agent communication). They present a framework for DPS, and its

10 Past Related Work Chap. 2

application to the problem of air fleet control. See also [Camm83] for a more detailed

discussion of cooperation strategies for distributed air-traffic control.

Genesereth, Ginsberg, and Rosenschein propose in [Gene85] a different approach

to cooperation, using a metaphor for communication based on game theory.

Specifically, agents with differing goals try to produce better results than other agents

working on the same problem. In this approach, agents interact less, and conflict

dominates their activities.

Finally, in [Gins87], Ginsberg identifies the conflict between agents pursuing

purely local optimizations and the need for cooperation and coordination. He shows

the desirability of the common rationality assumption (equipping agents with match­

ing decision procedures). Under this assumption, one can precisely characterize the

communication needs of agents in the context of cooperation and coordination.

Job scheduling

We end this section with a discussion of decentralized approaches to job schedul­

ing, since we will apply in Chapters 5 and 6 our techniques to this problem to demon­

strate their feasibility. Although a great deal of research has been carried out on the

job scheduling problem (see [Casa88] for a taxonomy and a survey of job scheduling

in distributed computer systems), we focus on a small number of select works which

were relevant to our research in that they based their solutions on decision-theoretic

techniques or distributed problem-solving paradigms.

In [Chou82], Chou and Abraham propose a decision-theoretic approach to the

problem of assigning tasks to processors which have different speed and reliability

characteristics. Although their approach was static (i.e., it did not respond to chang­

ing loads), and it assumed the availability of a priori information about tasks (which

is generally not the case in practice), it was the first to make explicit use of decision

theory and attain good theoretical results.

In [Malo84], Malone, Fikes and Howard considered task allocation using the con­

tract net protocol. In their simulation experiments, they used the metaphor of a

marketplace in which the bids represented estimates by the bidding nodes of when

they could complete the processing of a task. Although they also had to assume the

availability of a priori information about task execution requirements, they were able

to achieve good performance with low communication overhead.

Stankovic has conducted significant research in decentralized job scheduling. In

[Stan84b), he presents three adaptive algorithms for decentralized scheduling which

assume no a priori knowledge about jobs. His simulation results show that decentral­

ized algorithms exhibit stable behavior and improve performance at modest cost. In

[Stan85], he successfully applies Bayesian decision theory to job scheduling. We will

review this research in the next section.

Sect. 2.3 Review of Two Significant Past Studies 11

2.3. Review of Two Significant Past Studies

We now consider two studies which were particularly relevent to this disserta­

tion. The first, by Victor R. Lesser and Lee D. Erman, describes an experiment based

on a model for distributed interpretation which allows for inconsistent and incomplete

views of the global system state [Less80]. The second, by John A. Stankovic, reports

on a simulation study of decentralized job scheduling based on an application of

Bayesian decision theory [Stan85].

Distributed Interpretation

Lesser and Erman [Less80] present a model of distributed processing which expli­

citly deals with the problems of distribution-caused uncertainty and errors in control,

data, and algorithm. In their study, they apply this model to the problem of distri­

buted interpretation. They define an interpretation system as a transformer of a set of

signals from some environment to higher level descriptions of objects and events in the

environment. A distributed interpretation system is one where sensors for signal

reception are widely distributed, interpretation requires data from multiple sensors,

and must operate in a distributed manner since communication of all information to a

centralized interpreter is undesirable (often due to real-time response constraints, lim­

ited communication bandwidth, and reliability).

Their model is based on interpretation techniques found in knowledge-based

artificial intelligence systems, which use the problem-solving paradigm of solution

search through the incremental aggregation of partial solutions. These techniques

handle, as an integral part of the interpretation process, the existence of uncertainty

in the input data (e.g., due to noisy channels), and the possibility of incorrect and

incomplete knowledge. In particular, they use speech understanding, based on the

Hearsay-II system [Erma80], as the vehicle for experimentation with their model.

Their distributed system consists of three nodes, each of which is a functionally

complete Hearsay-II system with access to one segment of the speech data of an utter­

ance. The nodes generate a single unified interpretation of an utterance by communi­

cating and resolving, in a cooperative and competitive fashion, partial tentative

interpretations based on their local views. Each node includes a number of

knowledge-sources, which are independent modules containing separate areas of

knowledge, such as acoustics, phonetics, syntax, and semantics. A hypothesize-and­

test problem-solving paradigm is used iteratively to arrive at partial solutions. Conse­

quently, control is decentralized: it is asynchronous and data-directed, and synchroni­

zation is obviated by the self-correcting nature of information flow between knowledge

sources. Their primary goal in the decomposition of the problem was to minimize

internode communication relative to intranode processing.

The results of this research are significant because of the techniques it proposes,

which we believe can be used as general structures for solving decentralized control

problems. These include:

12 Past Related Work Chap. 2

(1) structuring a problem-solving activity as a distributed, incremental, asynchro­

nous, and opportunistic process, in that solution paths are investigated in the

order of how promising they are, based on the reliability {degree of certainty) of

information;

(2) minimizing internode communication by exchanging high level, abstract informa­

tion, which is more succinct and more readily usable than low-level information

{e.g., raw inputs);

(3) arriving at the solution by incremental aggregation, which allows the system to

be self-correcting in spite of incorrect and incomplete information.

Decentralized Job Scheduling

In this work, Stankovic applies a heuristic based on Bayesian decision theory to

decentralized job scheduling [Stan85]; the main advantage of this approach is that the

heuristic dynamically adapts to the quality of state information. He considers a rela­

tively small distributed system of five nodes, where each node is a separate decision­

making agent, with the addition of two monitor nodes (only one is used, the other is a

backup), to compute the information necessary for the heuristic.

An agent's decision as to whether jobs should be offioaded depends on its view of

the load conditions on all nodes. An agent's view is based on periodic state informa­

tion updates from all other agents. Agents periodically send state updates to the

monitor node, which computes probability distributions and tables of "maximizing

actions," indicating the utility of all possible actions for all possible views. These

tables are periodically sent back to the agents. Consequently, an agent's job schedul­

ing function is to consult its table of maximizing actions: given its view of the global

state, the best action (the one with the maximal utility) is selected.

Simulation experiments were carried out where a number of characteristics and

their effects on performance were studied, such as: the state information update period

and the period for calculating maximizing actions; the mix of job arrival rates; the

delay in the subnet; the job scheduling interval; the loss of monitor nodes. The

results of these simulation experiments were analyzed and then compared with results

of analytic models which provided theoretical upper and lower bounds on average job

response time. Stankovic showed that his heuristic method based on Bayesian decision

theory not only performed well and incurred low overhead, but was robust given the

presence of out-of-date state information. The main limitation of this approach was

in the centralization of the probability distribution and utility computations: although

reliability is maintained by having a backup monitor node, the likelihood of

bottlenecks occurring on communication paths leading to the active monitor node

increases with the size of the distributed system.

Observations and Summary

We observe several common underlying themes in both approaches to the

activity of multiple agents working in a decentralized fashion cooperatively to solve a

Sect. 2.3 Review of Two Significant Past Studies 13

problem. The first observation is the importance of handling uncertainty of informa­

tion as an integral part of the decisionmaking proc~ss. The second observation is the

preference for using imperfect and uncertain information in decisionmaking over pos­

sibly better information which could only be acquired at a significantly higher cost.

The third observation is the avoidance of explicit synchronization by a somewhat

implicit coordination through information sharing. Consequently, errors will occur,

but they are tolerated by providing for self-correction.

We consider the ability to quantify and explicitly account for the goodness of

information on which decisions will be based to be of great importance in decentral­

ized control systems. When systems become very large (with hundreds or thousands

of agents), the problem of communication overhead and the importance of agents

relying on local views of the global state are dramatically accentuated. Although both

of the studies referred to above considered a very small number of agents, we

hypothesize that the three observations we made concerning their approaches only

become more relevant when larger systems are considered. One of our goals is to

extend their results by explicitly considering the following problems, and developing

techniques for solving them:

(1) how decentralized control can be structured in large distributed systems;

(2) how state information can be effectively shared;

(3) how not only the value of information, but also its age, can be incorporated m

decisionmaking.

CHAPTER 3

A FORMAL MODEL FOR DECENTRALIZED CONTROL

The purpose for creating and presenting a formal model for decentralized control

is mainly to establish a language for describing the objects of interest and their rela­

tionships. Our goal is to describe, in precise terms, what the limitations are in decen­

tralized control applications. There exist other models, which focus on different levels

of abstraction, and have correspondingly different goals [Ho80] [Tenn85a] [Tenn85b]

[Casa86]. This model was devised not to replace these, but rather to focus on the par­

ticular level of abstraction of interest here. In fact, this model freely borrows elements

and builds on the ideas developed from these existing models, in particular from that

of Tenney and Sandell [Tenn85a].

3.1. Model Requirements

The model should fulfill the following requirements.

• It should comprise the following basic objects of interest: machines which carry

out work; work, to be carried out; and information, to be communicated and

used in making decisions.

• It should allow for the system's distributed nature.

• It should capture the basic notion of system activity over time.

• It should allow machines to be both autonomous, having direct control over

themselves, and cooperative, allowing them to coordinate their activities.

• It should allow for the quantification of preferences for the various courses of

action a machine can decide to take.

• It should provide for objectives for machines to attain.

At the conclusion of this chapter, we will review whether these requirements are

indeed satisfied.

3.2. The Formal Model

A decentralized control system can be modeled as a directed graph G. Nodes N

represent agents, and links L represent inter-agent influences. Formal definitions of

these elements of a model are as follows:

14

Sect. 3.2 The Formal Model 15

G = (N, L) N = set of nodes, L = set of links

N = {Ai}, l~i~N A 1 = agent i, Ai E A,

L = {Zji}, l~;j~N, l~i~N Zji = influence of A J on A1

As mentioned briefly in Chapter 1, a distributed computer system with decentral­

ized resource control contains the following objects: agents, resources, and work. Each

resource belongs to, or is owned by, or is directly controlled by, one and only one

agent. With no loss of generality, we will limit each agent to own at most one

resource in the model. Consequently, an agent directly controls the resource it owns,

if it owns any. (Note that an agent may indirectly control a remote resource by send­

ing requests to the corresponding remote agent, and these requests may be accepted or

denied.) An agent which does not own a resource is limited to indirect control of

some other resources. Since for each resource there exists an agent, agents may sub­

sume the activity of resources, and therefore only agents are explicitly modeled.

When an agent wants to control a remote resource (indirectly), we will simply say

that the agent makes a request to the agent owning that remote resource. Resources

will no longer be mentioned explicitly. We first consider the modeling of agents, and

later that of inter-agent influences.

3.2.1. The Agent Model

The model of an agent is a structure with eight components (i.e., an 8-tuple).

The first component is the agent's state,

x1(t) E X 1 = {x,1, x12, · · · }.

The agent's state is a time-dependent variable, whose values are chosen from a local

state space Xi. The value of an agent's state is of general interest. Remote agents

will base their dec; is ions on whether to make requests based on what they believe this

value to be.

Each agent has its own source of tasks which are units of work to be carried out

by the agent, which are generated and submitted (e.g., by users):

si(t) E W = {w0, w 1, w2, · · · }.

The variable si(t) is the locally generated work arriving at the agent at time t, and

takes on values from the system-wide work space W. Each member of W represents

an atomic element of work. There is a special symbol, w 0 , that represents the null

element of work. If at time t no work arrives at agent Ai, then si(t) takes on the

value w 0 • Since this work is locally generated, we call s1(t) A,'s generated work.

An agent's generated work will be considered as a stochastic process over time.

At any point in time, the value taken on by si(t) is selected from the distribution

16 A Formal Model for Decentralized Control Chap. 3

defined over the work space W. In general, this distribution is time-dependent.

An agent is affected by other agents through what are called influences. Directed

links (discussed below) in the graph G represent influences; all incoming links to a

node represent all the external influences directly affecting an agent. This is modeled

explicitly as part of an agent's structure:

z,(t) = (zii(t), Zzi(t), ... , zNi(t)).

The variable Zji(t) is the influence of A 1 on Ai. The total influences on agent Ai are

represented by the vector z1 (t).

Influences come in two varieties: work and information. A work influence and an

information influence are given respectively by the vectors:

Wj(t) = (wli(t), Wzj(t), ... , WNi(t));

k,·(t) = (kii(t), kzi(t), ... , kNi(t)).

Agent Ai 's work influence at time t is made up of all the work requests (made by

remote agents) which arrive at A, at time t. We call wi(t) A/s transferred work at

time t. The information influence on Ai at time t is any information about the state

of the system originating from agents in A and present in Ai at time t. We call k,(t)

A/s information concerning the system state. Note that, after some time t, say, t +1,

wi(t +1) consists of only the work transferred between the times t and t +1 (or of null

work elements if no work is transferred), where as ki (t + 1) will be the same as ki (t),

unless new state information has arrived causing it to change. Thus, ki{ t) is per­

sistent, whereas wi(t) is not. Precise definitions of Zji• Wji, and kji will be given in the

next section.

A· most important concern about agents is their decisionmaking capability. At

any point in time, an agent can make a decision, which is represented by the decision

variable

di(t) E Di = {do,dip di2 , • • • }.

Each point in space Di is a distinct decision unique to agent A.i, except for d 0 , which

represents the null decision, and is common to every agent's decision space. Decision­

making is what allows an agent to {partially) control future values of its state, and, to

a lesser degree, the future values of the global system state.

Each agent has a next state function fi, where

The next state is a function of the current state, and of the current decision an agent

makes.

Sect. 3.2 The Formal Model 17

Finally, each agent has a decision rule, or strategy,

An agent's strategy takes into account influences (transferred work and state informa­

tion), and generated work, and produces a decision. Note that since decisions are a

function of influences and generated work, the next state x1(t +1) may be thought of

as a function of the current state x1(t), of the current influences zi(t), and of the

currently generated work s1 (t). Ultimately, the agent decides how it will allow itself

to be affected by influences and generated work. To emphasize this, the next state is

defined solely as a function of the current state and of the current decision.

In summary, the model M1 of agent A, is given by the 8-tuple:

1. x1 E X 1 = {x,1
, x,2 , • • ·}

2. s1 E W = {w0 , w 1 , w 2 , · · ·}

3. P1w:WxN-+ [0,1]

4. Wj = (w 11 , Wzj, ... , WNi)

5. k1 = (k 11, k 21 , ... , kNi)

Zj = (z 1 j, ••• ,ZNj), Zjj = (wji,kii)

6. d1 E D 1 = {d0 ,di1 , d1 2 , • • ·}

7. k XjXDj -+ x,
8. 11: ((W,Xr),W)x · · · x((W,XN),W)-+ Di

x,(t) = A,'s state

s1(t) = A;'s generated work

Piw(si(t),t), work distrib.

wi(t) = A;'s transferred work

k, { t) = A;'s global state info.

z1(t) =A's influence on A,·

di(t) = A1's decision

fi(xi(t),di(t)), next state

li(z,(t),si(t)), decision rule

It will be useful to consider vectors of the structures presented above for the

entire system, i.e., for all agents. This will be done by simply dropping the agent's

subscript. For example, the global system state is x(t) = (x 1 (t), .. . , xN(t)), the glo­

bal decision is d(t) = (d 1 (t), ... , dN(t)), and so on.

3.2.2. The Influence Model

The links of graph G, labeled zjj, represent inter-agent influences; the variable Zjj

models the influence of Ai on A 1. As previously mentioned, influences are of two

varieties: work and information.

Work influence, or work transferred from Ai to A 1 is given by the variable

Wji(t) E W = {w0 , w 1 , Wz, ... }.

The value of Wji(t) is a point in the space W.

Information influence, or A;'s information concerning A j's state, is given by the

variable

kj1(t) E Xj = {xit ,xiz, · • · }.

The value of kji(t) is a point in Aj's state space X 1. Together, wj1(t) and kj1(t) make

up A j's influence on Ai at time t, which is given by the variable

18 A Formal Model for Decentralized Control Chap. 3

What determines the values of w;1(t) and of k;1(t)? Since w;1(t) represents a

transfer of work from A j to A" A j must have made a decision, some time before t, for

the request to be present at agent A; at time t. This relationship between the arrival

of transferred work and the decision which caused the work to be transferred is given

by the work function g ji,

Wji(t) = Yji(d,-(r)), T < t.

The time r will generally depend on factors such as the transmission time between A J

and Ai, message processing delays, and so on. For our purposes, this value T need not

be made precise. We are only interested in the fact that the decision by A 1 must be

made at some timeT preceding the reception of the transferred work w,-;(t) by A,.

Similarly, A1's information concerning the state of A; is based on a past com­

munication by A j to A i, decided upon by A j. This relationship between the arrival of

information and the decision which caused the information to be sent is given by the

information function h;i,

k,-i(t) = h,-i(d;(r)), r < t.

Again, the important relationship is T < t. In particular, during the time interval

(T, t]' a state change in A j can occur. Thus, k,-; (t) may not accurately reflect the state

of A,- at timet. We will explore the ramifications of this shortly.

Summarizing the influence structures, link Zi1 in L, which represents the

influence of agent A,- on A;, is defined by the following 4-tuple:

1. w;; E W = {w0 ,w1 ,wz, · · ·} w ji (t) = work transferred from A j to A;

kj1(t) = A1's state information about Aj

Y;;(dj(r)), work function, r<t
2. kji E Xj = {xh ,xh, · · ·}

3.gj1:Di~w
4. hi1: D; ~X;

3.3. Utility and Objective

h;1 (dj(r)), information function, 7< t

All agents have a goal or objective. It is useful then to develop a notion of util­

ity, something for agents to maximize as their objective. Utility is defined to be a

real-valued function of an agent A/s state,

Uj (Xj (t)) E R' 1 :S; i :S; N

The utility function ui(x;(t)) maps each state of Ai to a real number. The magnitude

of a state's utility provides a measure of the degree of preference for it relative to

other states.

We also want a notion of global utility, which we denote by

Sect. 3.3 Utility and ObJectit'e 19

u(x(t)) E R.

u(x(t)) maps each global state x(t) EX to a real number, again indicating the degree

of preference of x(t) over other global states.

Utility has been defined as a measure of preference of a state at a single point in

time. Often, it is more interesting to consider the utility of a particular sequence of

states. Therefore, we extend the utility function to map distinct sequences of states to

real numbers.

A sequence of states for Ai between times t and t +r is denoted by

xi(t,t+r) = (x1(t), xi(t +1), ... , x,(t+r)), r > 0,

and denote the utility of x1(t, t +r) by

Uj (Xj (t, t + r)).

The utility of a state sequence might be defined by a simple formula, such as for

instance
T

Uj (Xj (t 0 , T)) = :E Ui (Xj (t)) .
t=to

More likely, however, it will be some complex function possibly not separable as in the

example above, of all the states in the sequence.

This extension will also apply to global utility. The utility of the global state

sequence x(t, t +r) is

u(x(t, t+r)).

We are now ready to consider possible obJective functions, which, like utility

functions, can be defined as local or global. The local objective function for each

agent is

find d1 E Di which maximizes

Thus, the goal of each agent in this case is to select a decision which will maximize

the expected local utility of its next state. It is an expectation because an agent's next

state is a function of a random variable, the generated work si(t).

For local state sequences, we would have

find d1 E Di which maximizes

Ji(t +1,t +r) = E[ui(xi(t +1,t +r))], T "?: 1.

In this formulation, an agent makes a decision at a particular point in time which

max1m1zes the expected utility of states for an interval of time in the near future.

Note that during this interval, the agent is free to make more decisions. Thus,

20 A Formal Model for Decentralized Control Chap. 3

although an agent's decision is made accounting for multiple possible future states, at

each future state the agent can correct for unpredictable events (e.g., due to the sto­

chastic nature of the system) by making more decisions. Consequently, we call this

objective a ste;;- wise probabilistic optimization.

For the global state case, the objective is:

find d E D which maximizes

J(t +1) = E[u(x(t +1))].

For the global state sequence case, the objective is:

find d E D which maximizes

J(t +l,t +r) = E[u(x(t +l,t +r))], T ~ 1.

Some assumptions must be made about the knowledge and activity of our agents.

The first is that the only items of information that agents do not know or cannot per­

fectly predict are those based on the non-deterministic elements of the system model.

For example, this would include what new work from the agent's private source of

work would appear in the future. Other items which are by nature static, such as the

agents' state spaces X 1 , · · · ,XN, can be known by any or all agents, since, it would

be possible to endow each agent with such information at the beginning of time. For

example, generated work si(t) is selected from the distribution P,w. Although an

agent cannot predict a future value of si(t), it may indeed know the distribution(s) of

the types of generated work arriving.

Finally, it is assumed that everything that can be known at the beginning of time

is common knowledge. The concept of common knowledge [Halp84] is defined con­

structively as follows. Consider a propositional modal logic, with propositions, formu­

las formed from propositions closed under negation and conjunction, and modal

operators K 1 , · · · , K N. The formula Kip has the semantics "agent Ai knows proposi­

tion p." Define Ep as the disjunction K 1 p 1\ · · · 1\ KNp, meaning "everybody

knows p." Extend this definition so that £ 1 p = Ep and Ei+I p = EEi p. EEi p means

"everybody knows Eip," thus, E 2 p means "everybody knows that everybody knows

p." Finally, define Cp = E 1 p V £ 2 p V · · · , meaning 11 p is common knowledge."

These assumptions allow us specifically to focus on purely cooperative systems,

which are most interesting when there is a common goal to be achieved, i.e., all agents

try to achieve a single global objective. Consequently, our interests lie in determining

how to achieve coordination amongst agents in the best practical way possible, given

their willingness to cooperate.

It is interesting to consider the theoretical question of whether the global objec­

tive of maximizing the utility of the next state or next state sequence can be achieved.

Therefore we end this section with the following theorem.

Sect. 3.3 Utility and Objective 21

Theorem: The global objective, "find dE D such that J(t +1) is maximized," cannot

be guaranteed unless x(t) and z(t) are common knowledge.

Proof: Let d" = (d;, · · · ,d~) be the global decision which maximizes J(t +1). If

x(t) and z(t) are common knowledge, then every agent A.i has the same information

to determine d *, can make the decision d;, and can assume correctly that every other

agent will do the same. (If there is more than one possible d •, then, by convention,

the first d" computed is selected, assuming each agent tests all dED in the same

order.) Of course, if any agent A.i does not know x(t) or z(t), it cannot uniquely

determine d • (and therefore, cannot determine d,", because this decision depends on

the decision of every other agent). Note that the theorem says that x (t) and z(t)

must not only be known by all agents, but that x(t) and z(t) must be common

knowledge. Consider the case where E 2 x(t) and E 2 z(t) are true, (i.e., everyone knows

that everyone knows x(t) and z(t)), but Ekx(t) and Ek z(t), for all k > 2, are false.

An agent A.i might say of some other agent A.;: "I know A.; knows x(t) and z(t), but

if A. j does not know that I know this, A. j may not make the decision I expect; I must

account for this in the decision that I make." Since A.i cannot count on A.1· making
• •

d j, it may be statistically better for A.1 to make a decision other than di . .

More precisely, let M) 1 be the maximum value such that

[A] (Ekx(t) V Ekz(t)) is true for all k~M.

If M exists (i.e., M < oo), then for any agent A.i,

[B] KiK;(EM- 1 x(t)/\ EM- 1 z(t)) is false for some i=fi,

but

[C] K;(EM- 1x(t)/\EM-1 z(t)) is true,

where [B] and [C] follow directly from [A]. (If M=l, then EM-1 x(t) and EM-1 z(t)

simply become x (t) and z (t) respectively, in both statements [B] and [C].) As d, (t)

and d;(t) are mutually dependent (in particular, the value of di(t) will depend on

whether dj(t) equals d;), and dj(t) will generally depend on [C], then, since A.i does

not know [CJ (from [B]), there may exist a decision d1' which A.i considers statistically

better than d,~ (i.e., the expected consequences of d1(t) =~',are better (the expected
i

future state utility is greater) than the expected consequences of di(t) = d1 , over all

possible decisions dj(t), but not as good as the consequences of di(t) = di• and

dj(t) = d;). But if di(t) = di', J(t+1) is not maximized, and therefore the objective

is not realized.

Note that if x(t) and z(t) are not common knowledge, but are known by all
•

agents, then if every agent A.i behaves such that it computes d and simply selects the

ith component as its decision d1(t), then this would achieve the objective! Where is

the trick? It lies in the implicit assumption that agents behave in the manner just

described, specifically, that they do not try to second-guess other agents but that they

all follow the same procedure, and that this rational behavior is common knowledge.

22 A Formal Model for Decentralized Control Chap. 3

Note that this assumption is not an unreasonable one; it could easily be built into

every agent's decision procedure. (This assumption is similar in spirit to Ginsburg's

"common rationality assumption" [Gins87].) However, it still requires that x(t) and

z(t) are known by all agents, which generally is an unreasonable assumption.

3.4. Theoretical and Practical Limits

In the previous section we saw that unless the current global state x(t) and the

current global influence z(t) are common knowledge, (or that unless x (t) and z (t) are

known by all agents whose rational behavior is common knowledge), agents in a

decentralized control system cannot perfectly achieve a global objective. It is most

unlikely that in a real system, because of communication delays and random

processes, either the current global state or the current global influences could be sim­

ply known by any agent, let alone be common knowledge. This is why the problems

posed by decentralized control systems have been so formidable. And yet, there must

be ways of structuring such systems so that global objectives can be achieved at least

near-optimally; human organizations seem to be able to do this (although their time

constants are much longer).

To explore possible techniques for solution, we must clearly understand the limits

of what can be done theoretically, and practically. Let us start with some general

observations about the model and its implications for coordinating agents.

• Observation 1: Each agent has direct control over itself, and only itself.

An agent's next state x1 (t + 1) is directly affected by that agent's decision d1 (t)

through its next-state function fi(xi(t), di(t)). Thus, each agent takes part in

determining the global system state in a decentralized control system, but does

that by local actions only.

Conclusion 1: If a global objective is to be achieved, coordination of agents is a

necessary condition.

• Observation 2: Agents can allow other agents to influence them.

Although an agent's next state xi(t +1) is directly affected only by that agent's

decision di(t), that agent can be indirectly affected by other agents' decisions.

Each agent can potentially affect remote agent states through communication.

Conclusion 2: Coordination is possible, but only through limited communication.

• Observation 3: Each agent cannot predict, with complete certainty, its future

states.
An agent's decision is a function of its influences and its generated work,

di(t) = '"Yi(zi(t), si(t)). Since si(t) is a random variable, the agent cannot predict

what its future actions, and therefore what its future states, will be. (Of course,

an agent can always decide to ignore its inputs, but this would generally go

against realizing reasonable objectives.)

Conclusion 3: Coordination is limited by random events, and therefore agents

cannot affect the global state deterministically.

Sect. 3.4 Theoretical and Practical Limits 23

• Observation 4: Each agent has limited indirect control over other agents.

The future states of remote agents cannot be directly affected by an agent; that

agent can only influence remote agents by communication.

Conclusion 4: Since any communication is not instantaneous, coordination is

limited by communication delays, limiting the control that agents have collec­

tively over the global state.

In summary, we see that, to achieve a global objective in a decentralized control

system, coordination is a necessary condition, and is possible (to a limited degree) in

our model through communication. But there are limitations to coordinating agents

since communication is delayed, and agents cannot predict the future because they

must respond to random events.

These observations and conclusions lead to what we call the two fundamental

problems of decentralized control:

1. No agent can know with certainty the current global state.

2. No agent can know with certainty the current actions of remote

agents.

Knowledge is attained either by computing it or by receiving it. (We can con­

sider innate knowledge to be received at the beginning of time.) Thus, the appropri­

ate question is whether an agent can obtain certain knowledge about the global sys­

tem state and remote agent actions either by computation or by communication.

Problem 1 results from the fact that, due to finite communication bandwidth, the

global state x(t) cannot be communicated to all agents instantaneously. And, since

inputs to the system are stochastic, the global state x(t) cannot be computed exactly

from previous information.

Problem 2 results from the fact that, due to finite communication bandwidth, the

global influence z(t) cannot be communicated to all agents instantaneously. And,

since inputs to the system are stochastic, the global influence z(t) cannot be computed

exactly from previous information.

It is clear that Problem 1 is indeed a fundamental problem; Problem 2 is more

subtle, but just as critical, and indeed a fundamental problem too. In fact, Problem 2

leads to the corollary that agents cannot simply optimize local objective functions and

expect a global objective function to be optimized. This is best illustrated in the fol­

lowing example.

Consider the decentralized load balancing problem. Agents (e.g., computers)

receive jobs from outside sources and must determine where the job should be exe­

cuted so that the average time a job spends in the system is minimized. Clearly, a

bad situation would be one where one agent has much work to do, while other agents

are idle. A good load balancing decision rule would be one where an agent, if it has

many jobs pending, offi.oads new jobs to less loaded agents. Say the state of each

agent is characterized by its load, the amount of work it has on hand. Let us now

24 A Formal Model for Decentralized Control Chap. 3

assume that Problem 1 is actually not a problem: all agents know the global system

state, they all know what each other's load is. Now, if each agent used the locally

optimal decision rule "offload a new job to the least loaded agent," notice what may

happen. At any point in time, there is one least loaded agent (assume there are no

ties). It is possible that new jobs arrive at each agent simultaneously, and they all

decide to offload to the least loaded agent, whose identity they all know perfectly.

This agent will therefore get swamped with work, turning what were locally optimal

decisions into a global disaster. A globally optimal decision would somehow cause

these jobs to be distributed over a number of agents so that no agent is overloaded.

This is difficult to do, exactly because of Problem 2, since agents do not know their

counterparts' current decisions because of the unpredictability of inputs.

There are some difficult practical problems also, such as that of measuring the

utility of a state in a real system. Just recognizing its own current state may be a

problem for an agent, not to speak of the state of a remote agent. Another problem is

the implementation of how an agent selects a decision which even approximately can

achieve the objective. This problem is aggravated by real-time constraints: the time

spent deciding is a cost which must be taken into consideration. Ultimately, the best

decision rules will be those that consider the tradeoff between decision quality and

decisionmaking cost.

3.5. Summary of Model Requirements

Let us review the requirements fulfilled by the model we have introduced in the

previous sections.

• The basic objects of interest modeled are: machines (called agents) which carry

out work; work, to be carried out; and information, to be communicated and

used in making decisions.

• The system's distributed nature is modeled. The model allows for a set of control

points or decisionmakers (the agents). It also allows for coordination through

inter-agent influences.

• The basic notion of system activity over time is modeled. Agents progress

through a sequence of states. These states can be described, and agents can com­

municate their states to each other.

• Machines are modeled as both autonomous and cooperative. Each agent is capa­

ble of controlling itself. Although it has direct control over itself, it can influence

remote agents. Furthermore, agents cooperate by allowing other agents to

influence them.

• Utility, the quantification of preferences for the various courses of action, is

modeled. States and sequences of states can be ordered from least to most prefer­

able, and the degree of preference of each can be described quantitatively.

Sect. 3.5 Summary of Model Requirements 25

• Objectives for agents to attain are modeled. This involves maximizing expected

utility, and dealing with the problems of delays in inter-agent influencing, i.e., in

communication of information and transfer of work.

The model focuses solely on how to achieve cooperation efficiently, assuming a

willingness to cooperate amongst agents. We note again that it does not include the

possibility that they may be adversaries, or that agents behave irrationally.

CHAPTER 4

PRINCIPLES AND TECHNIQUES

In this chapter, we present a number of principles to guide the design of large

decentralized control systems, and we describe a variety of general techniques (i.e.,

problem-solving methods based on our design principles), many from different discip­

lines, aimed at attacking the problems posed by decentralized control. These princi­

ples and techniques are presented in broad high-level terms, and their implementation

will depend greatly on the application at hand. In the following chapters, we look at

an application of these principles and techniques to a relevant decentralized control

problem facing operating system researchers and designers today, namely that of load

balancing.

The reader should be convinced by now that decentralized control poses formid­

able problems where the search for "perfect" solutions may simply be futile. But, of

course, this should not stop us from searching for approximate solutions, solutions

which come close to achieving what perfect solutions would provide. After all, doing

nothing (e.g., opting for centralized control solely because decentralized control seems

too hard) may be much worse than adopting an approximate solution to the decen­

tralized control problem. The central point of this research is that we can do better

than simply giving up. The question is, how?

We should first realize that other disciplines have had to deal with similar prob­

lems. Perhaps something could be learned from them. It should be encouraging to

observe that decentralized control systems, such as those where the agents are

humans, work, and work reasonably well; what is the secret of their success?

Since the problems mainly stem from decisionmaking with incomplete knowledge,

the following disciplines come to mind as potentially helpful: probability theory, sta­

tistical inference, decision theory, game theory, and a number of subareas within

artificial intelligence which are mentioned below. Probability theory teaches us how

to model stochastic behavior. Statistical inference teaches us how to make predictions

about future events using knowledge of the frequency of past events, and of patterns

within sequences of past events. Decision theory, along with utility theory or the

theory of preferences, shows us how to make the right decisions given probabilistic

information. In fact, since we are interested in multiple decisionmakers, the subfield

of team decision theory gives us insight about the structure and properties of our

problems. Game theory tells us how to make optimal probabilistic decisions (espe­

cially where optimal deterministic decisions do not exist), taking into account multi­

ple decisionmakers.

26

Sect. 4.1 Know/edge- based Solution 27

Research in artificial intelligence has also given us a wealth of knowledge about

using heuristics, dealing with uncertainty, searching large solution spaces guided by

constraints imposed by the problem, reasoning about distributed knowledge, reasoning

about the activities of multiple agents, and distributed problem solving. The develop­

ment of these techniques has been driven by the desire to solve extremely hard prob­

lems, and by the recognition that these problems, although they cannot be solved per­

fectly, can be solved in some near-optimal fashion.

Each of the disciplines discussed above have had an impact in our choice of

design principles and the problem-solving techniques based on these principles. In

this chapter, we will propose seven principles:

• knowledge-based solution;

• knowledge abstraction;

• uncertainty quantification;

• directional heuristics;

• information age integration;

• frugal communication;

• SP ACE/TL\1E randomization.

The first seven sections of this chapter are devoted to these design principles. In the

eighth section, we present a framework for intelligent agent design which is based on

our principles. Finally, the chapter concludes with a summary section.

4.1. Knowledge-based Solution

The first principle of designing large decentralized control systems is to construct

a knowledge-based solution. By this, we mean the adoption of a particular philosophy,

one that applies multiple pieces of case-specific knowledge rather than a single unified

model, to solve the problem.

In general, when one sets out to solve a problem, a model of the problem is for­

mulated, which tries to capture its essential features. That model is then analyzed,

manipulated, and eventually "solved." If the model is a good one, the results

obtained will also apply to the original problem, v,·hich in effect is then also solved.

Of course, this assumes that a model can be developed, but this is not the always the

case. Some problems are so difficult that we cannot reduce them to single sufficiently

accurate models. This is generally true of real-world problems where control is decen­

tralized amongst multiple agents.

Although a single general model cannot be devised, it is often the case that mul­

tiple special-case models, each applying to a specific set of circumstances the agents

would find themselves in, can be constructed. If such a set of special-case models

existed, we could solve the problem, perhaps not in the general case, but certainly in

some limited set of cases. This set of special-case models, or, more generally, this

28 Principles and Techniques Chap. 4

case-specific knowledge, would allow us to get at least an approximate solution, which

may be much better than nothing at all. In fact, this is the idea behind expert sys­

tems [Haye83], which have been very successful in problem domains where there is lit­

tle structure and no single concise model can be devised. (In the case of expert sys­

tems, case-specific knowledge is often in the form of rules: "under the circumstance x,

deduce y. ")

In our case, we make a great effort to identify any case-specific knowledge about

the specific decentralized control problem under investigation, and then use that

knowledge to make better control decisions. 'What kind of case-specific knowledge

might this be?

Consider a decentralized control system's activity in terms of state sequence reali­

zations: x(t), x(t + 1), · · · , x(t + T). Such a sequence would characterize the

system's activity in the time interval [t, t + T]. If we were modeling a real system, we

would generally expect there to be perceivable dependencies between successive states.

For example, if the system is in state x(t) = x, we would expect the probability that

the next state is x (t + 1) to depend on this state x. Although a single distribution

which does not change over time may not exist for (x (t + 1) I x(t)), we might be able

to identify a number of conditional distributions, each one applying under a set of

special conditions.

If the system can recognize these special conditions and therefore know which

conditional distribution to apply, then it can make statistical inferences about the

current state, or even future states, given the knowledge of a past state. Conse­

quently, knowledge which is specific to a particular system and to a particular situa­

tion, such as the structure of time-domain state dependencies indicated above, would

be used to make educated guesses and predictions about the current system and its

situation.

Case-specific knowledge of the structure of space-domain as well as time-domain

state dependencies is of value. Some states are close to each other in the sense that

they form a group in which they all share a set of interesting features (e.g., their utili­

ties are nearly the same). It would be useful if such groups of states could be

identified. This knowledge would allow the system to abstract a large number of

low-level states, perhaps too large to manage, into a small number of more meaningful

and manageable high-level states. This reduction could have a great impact on the

efficiency of decisionmaking, especially in decisions which are based on what possible

states the system is in, as we will see later. This reduction would also have a great

impact on communication efficiency since, communicating high-level (instead of low­

level) state knowledge increases the bandwidth of information flow, leading to less fre­

quent communication of messages.

In any knowledge-based solution, there is always the question about how the

knowledge is represented. There are three types of knowledge we are interested in:

states, inter-state relationships, and uncertainty. We must answer the following

Sect. 4.2 Knowledge Abstraction 29

questions: what aspects of the real system do states model, and how are they encoded?

\:Vhat do inter-state relationships model, and how are they encoded? What does

uncertainty about states and their relationships mean, and how is it modeled and

encoded?

As we will see in the next section, for problems of decentralized control, states

will generally represent ranges of the values of system variables, which measure some

relevant aspect (e.g., the amount of pending work) of each node. They may be

encoded in terms of a statistic about these state variables (e.g., the average value of

the range), or as abstract symbols representing higher-level concepts (e.g., the node is

overloaded with work). Inter-state relationships can represent causal properties

between states, or they can represent properties of similarity or dissimilarity between

states. These relationships can often be conveniently encoded in terms of rules, such

as

if the current state is Xi~; _, then the next state lS Xit·

As for uncertainty, it is the topic of Section 4.3.

4.2. Knowledge Abstraction

The second design principle is knowledge abstraction, and is concerned with how

an agent organizes knowledge so that it is most useful. By knowledge abstraction, an

agent transforms low-level information into higher-level symbols which are more

directly useful to the agent. The low-level information is derived from a state space

as given by the model in Section 3.2,

Xi is the state space of agent A.i. Although Xi is a local state space, this discussion

applies to the global state space as well.

Each state in the low-level state space identifies a possible configuration of an

agent at a given time instant. For example, if the agent is a computer, then its low­

level state uniquely identifies a possible configuration of values in all memory loca­

tions, registers, and so on. Knowing an agent's state at this level of detail is typically

unnecessary, and most likely unmanageable (as the possible number of states is

extremely large).

Now define an abstract state space simply as a set of symbols

where each element of Yi is a non-empty subset of Xi,

Yi~: ~ xj. (4.1)

The subscript i indicates that this is the abstract state space of agent A.i, and sub­

script k enumerates each state within the abstract state space. In general, an agent

may maintain a number of different abstract state spaces for different purposes. 'Y..fe

30 Principles and Techniques Chap. 4

will denote by Yi (t) an abstract state variable taking on a value from the abstract

state spaceY, at time t. (By convention, variables are printed in italic type, and con­

stants are printed in boldface type.)

Defining an abstraction, denoted by a symbol y ik, of a number of low-level states

{xi,, xi
9

, xi,, · · · }, means that the agent finds it more convenient to view any of

these low-level states in terms of a single abstract state y ik. The features which dis­

tinguish each of the low-level states may be unnecessary for the functions of the

agent.

Abstraction allows an agent to compress its knowledge into essential parts: a

small number of parts whose differences are interesting to the agent. This reduction

in the number of objects an agent has to keep track of is important for three reasons:

(1) the agent's knowledge base, the store where it keeps its knowledge (e.g., its data),

and its rule base, the store where it keeps its rules (e.g., its code), is finite;

(2) the time to search the knowledge base and rule base increases as number of

objects in it increases;

(3) communication between agents can take place at the right level of abstraction,

that is, at whatever the agents decide is most useful (e.g., most efficient).

Points (1) and (2) have to do with the practical space and time constraints in the

implementation of an agent's knowledge base and rule base. The agent's knowledge

base is the store where associations of state symbols and what their values are believed

to be, are kept. The agent's rule base is the store where associations of conditionals

and actions are kept. The conditionals are tests about whether a state symbol has one

of a number of given values (e.g., is Yi E {Yik' Yip Yim}?). Very simply, the less items

an agent has to manage, the less space it will need to store these items, and the less

time it will use, on the average, in searching for an item. Thus, points (1) and (2) say

that abstraction allows agents to make use of their own space and processing time

more e:fficien tly.

Point (3) has to do with the practical time constraints in the implementation of

inter-agent communication. Time spent communicating (e.g., constructing a message

and sending it, transmitting it over a network, receiving it, and interpreting its con­

tents) is a cost an agent must take into account. Thus, just the compression of infor­

mation due to abstraction reduces send, transmit, and receive times. Also, the receiv­

ing agent will ultimately use the information in some way; it may have to translate

the information to a more abstract form. If the information was already communi­

cated in the abstract form in which it will be used, then the time that would be lost in

translating it does not have to be consumed. Often, the sending agent will already

have the information needed by a remote agent in the desired abstract form, thus

requiring no extra abstracting by the receiver.

Practically speaking, an agent never even considers the low-level state space Xi,

as it is much too large, and its level of detail is unnecessary. An agent's knowledge

Sect. 4.2 Knowledge Abstraction 31

base and rule base will only contain abstract states of current interest. In theory,

since each abstract state y1EY, is a collection of low-level states (from (4.1)), there

exists some mapping of (generally many) low-level states in Xi to each y,. Yet it

would be unreasonable in practice to implement such a mapping as its specification

would be too large.

Ultimately, an agent needs to identify what the current abstract state of interest

is. Rather than implementing a mapping of low-level states to abstract states to do

this, the agent uses an indicator, denoted by I(x1), x1 EX,. An indicator is some

readily accessible portion of the low-level state, such as the value of a single memory

location in a computer or a small set of instructions which compute a value, which

will map to the abstract state that the low-level state would map to:

:Jg such that xi E Yi -+ g(I(xi)) = Yi• xi EX,, Yi E Y,

In a sense, the indicator is the abstract state identifier.

As an example, an indicator I(x,) may be a memory location storing a single

integer which is a function of the machine's state. Depending on whether this integer

is above or below a threshold T, one of two abstract states, Yihl' or y,10 , which

comprise the state space Y 1, is the current abstract state of the machine. Thus, the

agent's rule base would include the following two rules:

I(xi) < T -+ Yi := Yizo

l(xi) ?: T-+ Yt := Yihi

This operation classifies the low-level state information, summarized by the indicator,

into a higher level of abstraction, so that it is more convenient to use. (For instance,

the firing conditions of other rules may depend solely on whether I (xi) is a hove or

below the threshold, and not on its actual value.) These types of rules could be con­

strained to a fixed format (e.g., check if the state is within an interval, given by a

lower and upper bound), and would then be compiled for efficiency.

Note that the existence of an indicator implies that the agent can compute the

abstract state of interest and encode it as part of the low-level state. For some

abstract state definitions, however, this cannot be done efficiently. As an example,

suppose we wanted to characterize the state of a very large memory holding a con­

stantly changing number of objects, which in general are uniformly distributed

throughout the memory. Suppose also that we did not have available a running count

of the number of objects in existence; if we wanted to know exactly how many objects

were in the memory at a given point in time, we would have to count them at that

time. Let us also assume that the memory can hold a maximum of 2 million objects,

and that we want to determine whether the memory is more than half filled, or less

than half filled.

Consider an indicator which computes the total amount of used memory by

counting the total number of objects. The state is then determined by comparing the

32 Principles and Techniques Chap. 4

total count to the number 1 million. Counting every object though might be too time

consuming. A better indicator could make use of the fact that the objects are distri­

buted uniformly about memory, and therefore count the number of objects in a small

area. The state is then determined by comparing the count to half the number of

objects that could fit in the small area. From a practical standpoint, this second indi­

cator would work well. But it would not have the property of always indicating the

correct abstract state: more than half filled, or less than half filled.

What can we say about the second indicator? We can say that there is some

probability that it indicates the correct abstract state, and that, if the probability is

high, it may serve our needs. In the decentralized control systems of interest here,

this is certainly the case. Recall that we want agents which make good fast decisions.

Probabilistic indicators will allow bad decisions to be made once in a while, but these

bad decisions might be tolerable as long as they occur infrequently (unless of course

they could never be tolerated, such as when human lives depend on them). What is

important is that these indicators allow fast determination of that abstract state.

Since agents will use indicators rather than low-level states to determine the

abstract state, it is useful to view the relationships between indicator, low-level state,

and abstract state a little differently. Let us say that the correct state is the abstract

state Yi E Yi implied by indicator !(xi)· Thus, in this new formulation it is the lo·w­

level state Xi for which there is a probability in its correspondence to Yi:

(4.2)

Consequently, we call Y i a probabilistic abstraction of Xi. This formulation of

abstract states as sets of which low-level states have a probability of membership

closely parallels Zadeh's notion of fuzzy sets [Zade65] in that fuzzy set elements have a

degree of membership. The formulations differ though in that, unlike the relationship

given by (4.2), the degree of membership of a fuzzy set element is neither random nor

statistical in nature. This is not to say that fuzzy set theory is not applicable to the

principle of knowledge abstraction: on the contrary, it is extremely useful in the

human classification of states, even when the states are based on our probabilistic

indicators. For example, a probabilistic indicator of the busyness of a computer is its

CPU job queue length. A human may describe classes of busyness, such as idle, not­

to<rbusy, busy, very-busy, overloaded, (which collectively one might call a fuzzy

abstraction of the low-level state-space) in terms of fuzzy sets of values of the CPU

job queue length.

Probabilistic and fuzzy abstractions are very useful in systems which must deal

with uncertainty, as is the case of decentralized control systems. All state information

an agent has about remote agents will necessarily be uncertain in nature, since the

agent cannot acquire this information instantaneously. The relevant question,

though, is not whether the information is true or false (note that this question cannot

be answered by the agent), but rather, "to what degree is the information true?"

Note that this is really the case in all complex decisionmaking systems. For e.xample,

Sect. 4.3 Uncertainty Quantification 33

in a computer operating system, a decision is never made based on exact knowledge of

the actual low-level state (e.g., all the values in memory, in registers, and so on), but

rather on some indicator (e.g., the average CPU queue length) which in some sense

captures an interesting feature shared by a group of low-level states. The same is true

in economic systems: the level of employment may be considered an indicator of the

health of the economy. Of course, an increase in this indicator does not always mean

the economy is growing, and vice-versa, but its value does provide a rough estimate of

the growth. It is useful exactly because it is a concise piece of information, but has a

non-negligible correlation to the underlying economic growth.

4.3. Uncertainty Quantification

The third design principle is uncertainty quantification, the accounting for and

the quantification of underlying system uncertainties. In decentralized control sys­

tems, an agent's uncertainty about the system's state and about actions of other

agents is a fundamental problem, as we have seen. The main points we made in

Chapter 3 are that: first, uncertainty exists; second, it is the problem at the root of the

difficulties in building decentralized control systems; finally, it cannot be ignored, it

cannot be assumed to be out of the problem, it will not go away. Consequently one of

our major focuses is on defining uncertainty, on how to quantify it, and on how to use

it to make good control decisions.

First, what does uncertainty mean? The notion of uncertainty characterizes an

agent's beliefs about propositions (e.g., what state the system is in) dealing with itself

and its environment. Although a proposition, as an entity in itself, is either true or

false, an agent may believe to varying degrees that it is true or false. This is because

what a belief says about the state of the world, and what the state of the world actu­

ally is, need not be the same. Quantifying uncertainty simply means defining a meas­

ure of confidence for a belief.

Artificial intelligence researchers have recognized the value of qualifying informa­

tion with confidence measures ever since the pioneering work of MYCIN [Shor76J,

which used certainty factors [Shor75] to express uncertainty of propositions. Today,

there are many other methods in use: Bayesian probability methods [Pear86]; the

Dempster-Shafer theory of belief functions [Shafi6]; fuzzy logic [Zade83]; other multi­

valued logics [Gain78]. These methods differ in how uncertainty is represented, such

as the point probabilities used by Bayesian methods, the intervals of uncertainty used

by Dempster-Shafer theory, and the linguistic truth-values used by fuzzy logic.

We will argue that point probabilities meet our needs. As our goal is to find

ways of building decentralized control systems where agents make good fast decisions,

accounting for uncertainty will help in making good decisions, and its implementation

will determine whether fast decisions can be made. Note that we are not necessarily

interested in the development of a representation and of calculi for uncertainty; how­

ever, it is the realization that uncertainty is an integral part of decentralized control

decisionmaking which is central to our work.

34 Principles and Techniques Chap. 4

We choose to represent the measure of an agent's uncertainty as a conditional

probability density function (cpdf) over the space of possible beliefs, which are about

the states of remote agents. It is conditional on past state information, and on how

old the information is:

p(yi(t) I Yi(t-r),r).

This expression is simply the probability that the agent's abstract state is Yi(t), given

that the state r time units in the past was y1 (t- r).

For notational convenience, we will denote this probability by

leaving out the second r since the parameter t-r implies the age of the state informa­

tion, as long as the reader understands that, in general, this probability explicitly

depends also on the age of the information. There will be some instances where the

dependency on the information's age is not obvious; in those cases, it will be written

explicitly.

An agent can use the cpdf to make decisions which generally assume knowledge

of the current state. Knowledge of the cpdf also allows us to compute the expected

utility of the current (and, by simple extension, of the future) states:

E[u(yi(t)) I Yi(t-r)].

Note that point probabilities fit our needs for several reasons. First, probability

theory and statistics are disciplines which are well established and well understood.

Second, most events of interest in a distributed system occur with high frequency.

Most of the cpdfs we will use can be built by an expert who has observed the system,

or by the system after observing itself in real time. Although frequency data may not

exist for all points (e.g., for all states), we have observed in our experiments that, if

the abstract state space is properly defined, the resultant cpdfs have enough structure

that these unknown points can be acquired by interpolation (or extrapolation) of

other known points. The cpdfs can then be stored for efficient access as a 3-

dimensional array, addressed by integers k, l, and m, where k and I are the indexes of

Yi selecting Yik and Yip and mE {0,1,2, ... ,N} represents an interval of time

(mT, (m +l)T), where Tis a fixed period over which the cpdf changes insignificantly,

if at all. Expectations can also be tabulated, statically if the cpdfs are assumed not to

change, or whenever the cpdfs are modified. (There is an implicit assumption that, if

the cpdfs change, they change slowly in time, relative to period T. We shall address

this issue shortly.)

Since one of our goals is to integrate uncertainty in decisionmaking, we can make

use of decision theory and utility theory, as they are based on point probabilities

(which is another advantage of using them). A central question we have to answer

relates to how a scheme based on decision theory which will operate efficiently can be

implemented.

Sect. 4.4 Directional Heuristics 35

4.4. Directional Heuristics

The fourth design principle is the reliance on directional heuristics. In our for­

mal description of decentralized control, we defined the objective function in terms of

the utility of states. An agent makes the decision (a component of the global deci­

sion) which it believes will maximize the expected utility of the next global state, or of

the next sequence of global states. As we saw in Section 3.3, the objective can be for­

mulated as:

find dE D which maximizes

J(t +1, T-tr) = E[u(x(t +1,t+r))], r ~ 1.

The reason for maximizing the expected utility is that agents do not generally know

the next global state, or the next sequence of global states, but presumably they know

which states are possible, along with their respective probabilities. Note that it is not

enough for each agent to know the conditional probability density function (cpdf) of

the current state of every other agent,

P (X1 (t) I X1 (t - 1"1)) , 1 ~ i ~ N,

since in general, state transitions of multiple agents are dependent. Rather, agents

would have to know a joint cpdf of the form

p(xr(t), x2(t), · · ·, xN(t)i xt(t-rt), x2(t-r2), ... , xN(t-rN)).

Constructing a solution which requires each agent to know this joint cpdf would not

be at all realistic. In fact, the existence of a single cpdf valid for all times in real sys­

tems is doubtful, to say the least. And, even if agents had access to such a function,

computing expected values over the global state space for a number of points in time

would probably take an excessively long time. Agents need a better mechanism for

achieving the objective.

In dealing with such problems, one approach is the development of an approxi­

mate solution, one which uses a directional heuristic to guide the selection of a deci­

sion. The idea is simply to find decisions which will at least tend to increase the

expected utility of states in the near future. Thus, our very ambitious global objec­

tive is converted to something more reasonable, like

find di E Di such that

E[u(y(t +r))] > E[u(y(t))], T ~ 1.

Note that the states of interest are no longer low-level global states, but abstract glo­

bal states, and also that we only care about the positive direction of change in the

expected utility of a future state. This is a common technique used in artificial intelli­

gence applications, and is often referred to as "hillclimbing" [Wins84].

We therefore define a general heuristic for approximating the objective (in terms

still not accessible to agents, but this will be corrected with further development of

36 Principles a.nd Techniques Chap. 4

these ideas). The new objective can be summarized as:

find 1 E f that minimizes the following stepwise loss function:

L(t) = Ld(d(t),x(t)) + Lc(~k(t),x(t)) + Le(t,x(t),k(t)) + Lr(s(t),x(t),d(t))

The strategy or decision rule 1 (which belongs to the space r of all strategies) will be

sensitive to four types of loss, given by the four terms in the loss function L (t).

Ld(d(t),x(t)) is the loss due to decision quality degradation of d(t), given state

x (t). For each possible value of x (t), there are good decisions and there are bad ones.

Ideally, the decision rule should produce a good decision for a given x(t). Ld is a

measure of how far off the decision made is from the best possible decision, due to

uncertainty about the global state x(t). Note that agents will never base their deci­

sions on x(t), but rather on an abstract state y(t). A robust decision rule will still

select good decisions (i.e., decisions which are close to the optimal one, thus making

Ld small) even though what is believed based on k(t), and what is true (i.e.,

x(t) E y(t) or x(t) ¢ y(t)), may be different. How agents infer y(t) from k(t) \":ill

determine L d.

Lc(~k(t),x(t)) is the loss due to communication overhead, given the change in

information ~k(t), and given state x(t). \Vhen there is no communication, i.e.,

~k(t) = 0, there is no communication overhead, and therefore Lc is zero. When there

is communication, there will be a change in information, i.e., ~k(t) -=!= 0, and Lc will

depend on how much communication took place (the magnitude of ~k(t)), and under

what conditions (the value of x(t)). There is a subtle tradeoff between Ld and Lc:

decisions depend on inter-agent influences, which correspond to work requests and

information. If Lc is minimized by not communicating, then the decision function

will be using out-of-date information, potentially causing bad decisions and increasing

Ld· Or, Ld could be minimized by making sure that the global system state is known

with high certainty by all agents through a great deal of inter-agent communication.

Good decisions could then be made, but the communication overhead incurred may

be unacceptable. Clearly, the goal is to find the amount of communication bet~Neen

these extremes which allows fairly good decisions to be made but does not create a

great deal of over head. We will address this tradeoff shortly.

Le(t,x(t),k(t)) is the loss due to time spent evaluating the decision rule. There

may be many decision rules which provide very good decisions, but these decisions

take an unreasonably long time to compute, as in mathematical programming or

exhaustive search solutions. Le is a function of the decision rule (thus, Le is a func­

tional), the information influence k(t) available to it, and the state x(t).

Finally, Lr(s(t),x(t),d(t)) is the loss due to random effects because of the sto­

chastic nature of the system. The quality of decisions in distributed decisionmaking is

necessarily limited by the random input stream of generated work s(t), since this ran­

domness makes the system nondeterministic. Consequently, decisions must take the

unexpected into account; these decisions are ones which are designed to work well

Sect. 4.5 Information Age Integration 37

under many situations, but are not as good as decisions based on certain information.

Note that the first two terms, Ld and L0 are relatively more sensitive to system

dynamics (i.e., how the global state changes over time) than the last two terms, Le

and L,. This is because once a decision rule has been selected, its efficiency can be

analyzed under worst-case or average-case conditions, and Le will be sufficiently well

characterized to allow the evaluator to know whether the decision rule is good or not.

Also, L, is totally a function of the stochastic nature of the system, something v·:hich

cannot really be controlled. Consequently, focus is placed on Le and L, during in the

design phase of the solution (e.g., when algorithmic efficiency is evaluated; when

attempting to guard against improbable but possible worst case situations; and so on),

while Ld and Lc will play a more active role in the agent's dynamic decisionmaking

activity.

In summary, there are four characteristics for a good decision rule 1 which seeks

to minimize the total loss L (t). One is that 1 must provide a good decision based on

reasonable indicators of x(t). Furthermore, it should require little communication, to

be traded off with the quality of information needed to make good decisions. It

should require little computation; 1 must be efficiently computable. And it should be

robust, to account for the randomness of the inputs.

The next major task is to convert this notion of loss into functions which are

computable by agents using the limited and uncertain knowledge they possess about

the global state. Before we can do this, we must consider how to quantify the quality

of decisionmaking based on aging information. This is the subject of the next section.

4.5. Information Age Integration

The fifth design principle is information age integration. How does an agent

make the "best" decision using information which is not current? An agent's decision

rule produces a decision based on the agent's current knowledge, which is based on

communicated information, which in general will be old since communication cannot

occur continuously or instantaneously. This simple fact tells us that knowledge which

does not quickly become outdated is most desirable to an agent. Thus, in designing an

agent's knowledge space, the following four goals should be achieved:

(1) given a decision space Di, the level of abstraction of states should be chosen as

one which allows efficient selection of decisions from Di;

(2) abstract state spaces where states change slowly in time, relative to inter-agent

communication delays, should be sought;

(3) a measure of an agent's confidence in these state abstractions, as a function of

their "age," ought to be developed;

(4) these state abstractions and their confidence measures should be incorporated as

an integral part of decisionmaking.

38 Principles and Techniques Chap. 4

How to achieve these goals will usually require a careful study of the particular

application at hand. We will consider each goal in the abstract here, and look at a

concrete realization of these goals for a specific application in the following chapters.

4.5.1. Choosing the Right Abstract State Space

First, an abstract state space, appropriate for the decision space, must be defined.

Consider the decision space

D· = {d1, d 2 , d 3 , .•• , dx}.

For simplicity, we will assume that every agent has the same decision space D •.

What abstract state space would give the appropriate level of state differentiation so

that the selection of a decision is meaningful and efficient? In the previous section we

discussed the notion of a loss due to decision quality degradation, Ld(d(t),x(t)). The

loss Ld is a measure of the distance between the selected decision and the best possible

decision. Given x(t), the next-state function f(x(t),d(t)), and the utility function

u (x(t)), it should be possible, in theory, to determine for every state what the best

decision is. Thus, we could partition the state space X into K parts, each correspond­

ing to a decision which is best given that the state is in that partition. Figure 4.1

shows an example of such a partitioning where K =5.

Figure 4.1. State Space Partition

Sect. 4.5 Information Age Integration 39

In general, we can expect the state space X to be extremely large, not only in

absolute terms, but also relative to the decision space D •. Thus, a particular decision

may potentially be the best for many low-level states, and such a many-to-one map­

ping would eventually have to be implemented. It would be unreasonable to expect

each low-level state to be listed, followed by the decision to be taken, such as in a set

of rules like

xl -+ ds
x3 -+ dz
xs -+ d4
Xj -+ d1
Xg -+ d3
xu -+ d3

x 2 -+ ds
x4 -+ dz
x6 -+ d4
Xs -+ di
XIO -+ d3

Even if implemented with a data structure which could be efficiently searched,

the number of rules would take up too much space. More important, agents would

never deal directly with low-level states; rather, they would use an indicator whose

values correspond to abstract states. Therefore, what is the proper abstract space'?

Very simply, the proper abstract space would be one which allowed a

differentiation of low-level states similar to the partition imposed by the decision

space. Thus, abstract space Y should have the property that, if x -+ d, and x E y,

then V z E y, z -+ d, where x, z E X, y E Y, and dED. This says that the low-level

states which make up a single abstract state should all imply the same decision. Oth­

erwise, the abstract space does not differentiate low-level states properly.

It would be ideal if such an abstract space could systematically be constructed.

In practice, however, the partitioning of the low-level state space must be studied,

with the goal of finding underlying similarities among the states within a partition.

An indicator which captures these similarities must then be found. As we discussed in

Section 4.2, a perfect indicator, one which always maps the low-level state to the

correct abstract state, may not exist. Fortunately, our requirements are soft enough

to allow indicators that have a high probability of selecting the correct abstract state.

In the end, the indicator will define the abstract state space to be used. It will be a

good indicator if the abstract state space it defines reasonably differentiates low-level

states into groups which reflect the partitioning of the low-level state space by the

decision space.

In practice, the decision space, the abstract state space, and the indicator, are

often not difficult to design since our main focus is on decentralized resource control

problems. The decision space is made up of decisions mainly to transfer work as well

as information between agents, in such a way as to obtain a higher level of perfor­

mance than if no work or information transfers were allowed, i.e., if agents were

totally isolated. The abstract state space generally characterizes the agent's (for the

40 Principles and Techniques Chap. 4

local space) or the system's (for the global space) capacity to do work; each state

represents a different amount of available capacity, or, from the opposite viewpoint,

pending work. An indicator is simply an index of the amount of pending work, such

as a queue length or the utilization factor of some major resource controlled by the

agent.

4.5.2. Abstract State Spaces with Slow Transition Rates

Goal (2) in Section 4.5 was to select an abstract state space where states change

slowly in time, relative to inter-agent communication times. Decentralized control

implies affecting a system's global activity at a level controllable by a distributed set

of agents. An agent can only have an effect on a remote part of the system by (impli­

citly or explicitly) communicating something to it. Thus, the speed at which the sys­

tem responds to control commands (which are the consequences of decisions) issued by

agents is constrained, to a large degree, by communication times. We saw in the last

section that it is the decision space that drives the definition of the abstract state

space. The whole purpose behind obtaining state information is to make informed

decisions. Therefore, if states change rapidly (i.e., multiple times during a single com­

munication time interval between agents), then the level of activity captured by the

state changes is too detailed for adequate decentralized control.

In fact, one can argue that states must change slowly, so that a communication

time interval is a fraction of the time between state transitions, otherwise the com­

munication necessary to update state information in each agent would generate exces­

sive overhead. Of course, if we can take advantage of state transition dependencies,

so that an inference about a future state can be made based on past information, this

will help. But it will also help if we can design the abstract state space in such a way

that state transitions occur as slowly as possible, while maintaining the property of

differentiating low-level states for good decisionmaking.

One design guideline that follows from these considerations is that states should

be selected so that their minimum duration is larger than the communication time

interval. For example, consider the state transition sequence in Figure 4.2.

Sect. 4.5 Information Age Integration 41

f f t

communication time interval

Figure 4. 2. State Transition Sequence

The time spent in states y 3 and y 4 is significantly smaller than the communica­

tion time interval. Thus, the activity which they represent cannot be effectively con­

trolled by a remote agent, nor can a remote agent be effectively influenced by this

level of activity. One solution would be simply to disregard them, and consider the

previous state still to be in effect. This is similar to applying a low-pass filter, which

selectively removes high frequency components from a signal.

As previously mentioned, state spaces for decentralized control applications typi­

cally capture the notion of available capacity for doing work; for instance, each state

might correspond to a different degree of pending work (the greater the amount of

pending work, the less the available capacity). Say this degree was quantified by a

real-valued measure M(yi)ER defined on the state space Yi. We can then divide time

into small intervals, of equal duration T (where T is much smaller than any inter­

state transition time), sample the state at the end of e"ach such time interval, and pro­

duce a time-series of real numbers derived from the states. Time-series techniques

equivalent to low-pass filters such as those that produce moving-average or autoregres­

sive processes, can then be applied.

The N-order moving average of A1(yi(t)) is defined as:

N

mi(n) = 2:: wk · .M(y1 ((n-k)·T)),
k=O

and the N-order autoregression on M(yi(t)) as:
N

ri(n) = M(yi(n·T)) + 2:: wk' · ri(n-k).
k=l

(4.3)

(4.4)

In (4.4), n is the time interval index, and the coefficients wb wk ', O~k~l'{, are con­

stants. mi(n) or ri(n) could then be maintained by each agent.

42 Principles and Techniques Chap. 4

We can now define a new abstract state space Yi ', which corresponds to a parti­

tion of the real numbers into non-overlapping intervals, with each interval centered

about the points defined by M(y ..), for each Yi E Y 1 • The abstract state implied by

m 1 (n) or r1(n) would be the one which maps to the interval (defined by the partition)

containing m1(n) or r1(n). Thus, this abstract state space Y 1 ' has a close correspon­

dence to the original space Y 1 , and yet it has the desirable property that states of

small duration are filtered out.

Two final points are in order. The first is that, in practice, the measure M(y1),

Yi E Y, is unnecessary; the indicator I(x1), x1 E Yi, can be conveniently used in the

moving-average or autoregression formula instead. The second point is to realize that

Y 1 ' is a probabilistic abstraction of X 1 • As long as the agent's decision rules take into

account the probabilistic nature of the state information, good decisions can be made,

and communication overhead is reduced.

We are now ready to explore exactly how such probabilistic information is

accounted for in decisionmaking. This will allow us to achieve our goal of integrating

aging information in the decisionmaking process.

4.5.3. Decisions and Utility

We have concentrated on the characteristics of the abstract state space; let us

now focus our discussion on decisionmaking and utility. In decentralized resource

control problems, agent decisions have to do with transferring work and information,

and the abstract states have to do with an agent's capacity to accept work. Consider

a decision to transfer work. By this, we mean that an agent sends to another agent a

request to do work. This will require sending a message to communicate the request,

along with any data necessary to carry out the work. The type of message and data

that is communicated will depend on the application. For instance, in network rout­

ing, the message forwards an information packet, and the data is the information

packet to be forwarded; in load balancing, the message is to execute a job, and the

data is the job itself (or at least the name of the job, assuming the remote agent has a

copy of it) plus associated data files.

In general, we must consider three aspects for a decision to transfer work:

(1) when to transfer work;

(2) what work to transfer;

(3) to which agent to transfer work.

Consideration (1) is driven either by the input (e.g., the arrival of a packet, or a

job), or by a perceived change in conditions, causing an agent, which has pending

work not transferred in the past, to transfer some of it (e.g., store-and-forwarding of

packets, or job migration). In the first case, it is the environment which causes the

triggering of the work transfer. But in the second case, it is the agent which must

detect the change in the environment. This requires a decision of when the agent

Sect. 4.5 Information Age Integration 43

should observe the environment; this decision should be judicious, smce there will

most likely be a cost in observing.

Consideration (2) is something the agent must decide, but the decision about

what to transfer should not depend on the states of remote agents (assuming no spe­

cial dependencies between agents and work). In fact, this consideration depends

mostly on the application at hand rather than on peculiar properties or requirements

of decentralized control. For example, in load balancing, where at a given point in

time there are potentially many jobs within an overloaded machine to select for

offioading, the job to offload may depend on the job characteristics, like the expected

remaining execution time, and not on remote agent characteristics.

Consideration (3), to which agent to transfer work, is a decision which is driven

by the agents themselves, and the basis for the decision, unlike (2), should depend on

the states of remote agents. We will concentrate first on the selection decision, i.e., to

which agent to transfer work. In Section 4.6, we will consider the observation deci­

sion, i.e., when to observe the states of remote agents (e.g., when to communicate

with remote agents). As for consideration (2), it is best to deal with this in the next

two chapters which focus on a load balancing application.

How do we construct a good decision rule for selecting to which agent to transfer

work (which includes the possibility of keeping the work locally), given past state

information about remote agents? This state information will generally have the

form:

(Yl (t-ali), Yz(t-o:zi), · · ·, YN(t-o:Ni))

This is the information about remote agents that some agent Ai will have, namely

k,(t), except that, rather than low-level states as defined in the model of Section 3.2,

it is made up of remote agent abstract states. The value O:ji, l~j~N, represents the

age of the information about agent A/s state, known by Ai. (Maintaining our con­

vention that the ordering of subscripts, in this case j followed by i, corresponds to the

direction of influence, then it is A j that influences A1 concerning the age of informa­

tion about itself.) O:ji will increase with time until a communication from agent Aj is

received, at which time a: ji is set to the transmission time between the remote agent

and the receiving agent (which can be derived either from the timestamp on the mes­

sage, i.e., the time the message was transmitted by the remote agent, assuming syn­

chronized clocks, or simply by using a precomputed expected value). Later, we will

discuss when is the best time for this communication to take place. For now, let us

concentrate solely on how to use aging state information in the remote agent selection

decision.

Let

e = {00 ,01 , • · · ,810}

be the agent's abstract state space, where the higher the state subscript, the greater

the degree of pending work the agent has when in that state. State 00 represents the

44 Principles and Techniques Chap. 4

state where there is no work pending, and state 010 represents the state where there is

a maximal amount of work pending (and therefore the agent cannot receive any addi­

tional work). For simplicity of exposition, assume a homogeneous set of agents, so

that this abstract space is the same for all agents (i.e., Y 1 = 0, l~i~.l\l

Given this abstract state space, and noting that each agent has state information

with different ages about other agents, how is the selection decision made? The agent

which must select where to transfer work could simply disregard the age of its infor­

mation, and select the agent with the "best" state, the one corresponding to the least

amount of pending work. This would, of course, be naive, but it serves the purpose of

pointing out the pitfall of not taking age of information into account. The problem is

that the state information about a remote agent, if it is very old, may have no bearing

on its real current state, leading to a bad decision (i.e., the utility of the future state

goes down rather than up). What we need is a quantification of how much bearing

past information has on the current situation.

One thing that could be done is to provide every agent Ai with the set of condi­

tional probability density functions (cpdf) p(yj(t) I Yj(t-aj1)), one cpdf per value of

aji' for a large range of (discrete) values. We call this set a family of cpdfs. (If the

system of agents were not homogeneous, an agent would need a separate family of

cpdfs for each remote agent. Also, assume for the moment that the cpdfs depend only

on age aji, and not on the time t.) If an agent Ai knew a past state value

Yj(t-aji) = Ob it could then determine the probability of each state in 0 being the

current state.

At this point, it may seem reasonable for Ai to compute the mean amount of

pending work, using the expected value of M(yj(t)) given Yj(t-aji):

E[M(yj(t)) I Yj(t-aji)] = :E M(O)·p(yj(t) = 0 I Yj(t-aji))
OEYj

Ai can then compute E[M(yj(t)) I Yj(t-aji)] for all remote agents Aj, l~f~N, and

consider the agent with the minimum mean amount of pending work to be the

optimal agent for transferring work. Unlike the previous approach, this takes aging

information into account, but still has serious problems which are illustrated by the

following example.

Say the family of cpdfs P(Yj(t) I Yj(t-ai£)=05), for aji E {0, 20, 50, oc}, looks

like that shown in Figure 4.3.

..

Sect. 4.5 Information Age Integration 45

1

20
prob

d .. = 50
)1 OS/ oo

0
~0

Figure 4.3. Example of Condition Probability Density Function

To ease the visualization of each of the cpdfs, they are shown as continuous func­

tions, even though they are really discrete functions, with probability mass defined by

the the height of each curve at the points 01 , ... , 010 • The cpdfs illustrate a reason­

able hypothesis: as information ages, the number of possible states the remote agent

can be in increases.

For the purposes of our example, the actual values of the probabilities in Figure

4.3 are not important, but the shape of each curve is. In particular, as the informa­

tion age increases, the probability mass in the cpdf spreads symmetrically about

y1(t-aji) = 05 . Therefore, computing the mean amount of pending work produces

M(05), regardless of the information's age a ji. Yet, it is also a reasonable hypothesis

that, say, the negative consequences of transferring work to a remote agent A 1, if it is

in, say, state 010 (which means it already has reached its maximum capacity for pend­

ing work), outweigh the positive consequences if A1 is in, say, state 00 . Using the

mean amount of pending work for agent comparison ignores this asymmetry in state

utility.

What we need is a measured evaluation of the consequences of transferring work

to an agent A; whose state is YjEYj. We call this real-valued quantification the state

utility of agent A. j'

uj(Yj) E R, YjEY j

Utility is a measure (defined on the agent's state space) which corresponds to the per­

formance index to be optimized (e.g., average response time, average throughput).

For example, Figure 4.4 illustrates a likely state utility function for an agent

from our previous example, whose state space is 8.

46 Principles and Techniques Chap. 4

Utility j

Figure 4.4. Example of State Utility Function

The utility function indicates that, as the state number increases (i.e., as the

amount of pending work increases), not only does utility decrease, but the rate of

decrease increases, meaning that the severity of the negative consequences of transfer­

ring work to an agent in state Ok increases with k. Thus, transferring work to an

agent Aj whose state is believed to be 85 with probability 1, or transferring work to

another agent Ak whose state is believed to be either 80 or 810 , each with probability

.5, are two very different options, with the former being preferable. The concept of

state utility allows us to encode this difference.

Once uj(Yj) is defined, we are still left with the problem that since an agent A 1

does not know with certainty the state of agent Aj, it cannot know with certainty the

state utility of Aj· But now, A 1 can use the family of cpdfs to compute the expected

state utility, given past state information,

E[uj(Yj(t)) I Yj(t-aji)] = :E Uj(O). P(Yj(t) = e I Yj(t-aji))
9EYj (4.5)

This expectation tells us two important things:

(1) how desirable remote agents are, relative to each other, as destinations of work to

be transferred;

(2) how the value of information changes as a function of age.

Item (1) is related to the selection decision, and (2) is related to the observation deci­

sion.

We are now ready to consider the question of how E[uj(Yj(t)) I Yj(t-aji)]

behaves with increasing age aji· Let us continue the discussion of our example, with

Yj(t-a 1"i) = 85. Afterwards, we will generalize. First consider the extreme values

aji=O, and aji approaching oo. When aji = 0, all the probability mass in the cpdf is

Sect. 4.5 Information Age Integration 47

at 85 ; therefore, using formula (4.5), the expected utility is

u (() 5) • p (y j (t) = () 5 I y j (t- a jl) = () 5) = u (() 5) .

As a ji approaches oo, the probability mass in the cpdf is uniformly spread over each

possible state. Therefore, using (4.5) again, the expected utility will be

1 10

- :E u(Ok)·
10 k=O

Finally, the higher the value of a jl' the wider the even spread of the cpdf about state

() 5 . Therefore, we can think of the cpdf as selecting equal parts of the utility function

values to the left and to the right of u (85); how much of this function it selects grows

with aj1 • Since u(85+k) decreases more rapidly than u(85_k) increases (with k), we

must conclude that the expected utility decreases when the age of state information

increases, as shown in Figure 4.5.

Utility i Expected

Age »

Figure 4.5. Expected Utility as Information Ages

The astute reader will have noticed that our example was chosen very carefully:

the cpdf was defined as an even function about the given state 85 • Say that we condi­

tion on some other state, and that the cpdf about this state is not symmetric. This

may lead to situations where the expected utility does increase with aging informa­

tion. Could it possibly make sense that the expected utility of an agent's current

state should increase with the aging of the past information on which the expectation

is based?

Again, let us consider an extreme value, but this time, for the past state on

which the expectation is conditioned in (4.5). Suppose that agent A 1 knows that

agent A j is currently in state 810 , i.e., Yj(t) = 810 . Then the current expected utility

is the minimal possible utility. Now consider what happens after some time aji goes

by: how should A1 view agent Aj state Yj(t+aj1)? A 1 would reason that at worst,

48 Principles and Techniques Chap. 4

y1(t+a1i) is equal to y1(t) = 010 , But it is also possible that Aj's state has changed,

and since there are no worse states than 010 , it could have only changed for the better.

Therefore, it is reasonable that the expected utility of A j 's state has increased with

time, so that at time t+a:ji' it is a statistically better choice for Ai to transfer work to

A J than it was at time t.

If the utility function has a shape as indicated in Figure 4.4, and the family of

cpdfs have shapes as indicated in Figure 4.3, the shape of the expected utility function

based on (4.5) is illustrated in Figure 4.6.

Utility i Expected

Age)

Figure 4.6. Increasing Expected Utility with Age

Note that, in both examples of the behavior of the expected utility as the age of

information increases, it was implicitly assumed that the cpdf depended on age a: Ji,

but not on absolute time t. But it would be unreasonable to expect the same family

of cpdfs to model the state transitions of a real system accurately for all times,

although perhaps multiple families of cpdfs, each being an accurate model for different

periods of time, could be found. If an agent could know which cpdf family is the

correct model for any period of time, it could simply use the techniques presented so

far. Of course, we must next answer the question: "how does an agent know which

cpdf to use?" This will be answered in the next section, where we discuss the observa­

tion decision, "when should an agent observe the system?"

In summary, the expected utility of remote agent states gives an agent, who

wants to transfer work, a way of comparing the merits of remote agents as possible

destinations. This expected utility allowed past state information to be incorporated

in an agent's decisionmaking. Although an agent may be uncertain about whether

the past state information correctly reflects the current state, by quantifying this

uncertainty using conditional probability density functions, and using state utility, an

informed decision can be made.

Sect. 4.6 Frugal Communication 49

4.6. Frugal Communication

To observe the state of a remote agent, an agent must obtain information from it

through direct or indirect communication, which takes time. Further, communication

cannot go on continuously since it contributes to overhead. Thus, any information an

agent is sent about the state of a remote agent will experience a necessary and non­

trivial delay. Delay is the key factor contributing to an agent's uncertainty about the

global system state. (Of course, there may be other factors~ such as noisy channels,

inaccurate measurements, and so on, but these are secondary with respect to delay.

In fact, while there are methods such as error correction and repetitive sending to

solve these other problems which, incidentally, will tend to increase delay, we can

never completely eliminate delay.)

The question then becomes: when does an agent communicate state information

with remote agents, i.e., when does an agent observe the system? Clearly, there is a

tradeoff between communicating too often, thereby causing a great deal of overhead,

and communicating too infrequently, thereby making bad decisions due to out-of-date

information. We shall now analyze the characteristics of this tradeoff.

4.6.1. Informal Analysis of Local Loss

For illustrative purposes, let us focus on only two distinct agents, A, and A. 1, in .

the distributed system; Ai is the observing agent or the. observer, and Af is the

observed agent. The observer keeps track of the other's state by communication

updates and by inference between updates. In particular, Ai keeps track of the last

communicated value of A j's state, and the time that value was known to be true. (A j

can send the time it recorded its state, along with the value, and for simplicity, we

will assume that both agents' clocks are synchronized). When we speak of any loss

function, it is of a function computed by the observer.

Recall from Section 4.4 that the loss due to degradation in decision quality was

represented by the function Ld(d(t), x(t)), and the loss due to communication over­

head was represented by the function Lc(.6.k(tLx(t)). These are global functions:

Ld(d(t),x(t)) is the global loss which occurs when the global (or collective) decision

d(t) is made and the global low-level state is x(t); Lc(.6.k(t),x(t)) is the global loss

which occurs when there is a global change in information .6-k(t) and the global low­

level state is x(t). For now, we would like to focus our attention on local losses: the

losses an agent experiences directly, due to degradation in the quality of its own deci­

sions, and for the overhead it incurs due to its own communications. Also, rather

than using the low-level state as a parameter, we will use the abstract state. The

local loss functions for agent A.i will be denoted by Ld(di(t),Yi(t)), and

Lc(.6.ki(t),Yi(t)). Our notation implicitly distinguishes between local and global loss

functions by whether parameters are local or global variables. For example,

Ld(di(t),yi(t)) is a local loss since di and Yi are local variables of Ai, whereas

Ld(d(t),y(t)) is a global loss since d and yare global variables. (In general,

Ld(di(t),yi(t)) and Lc(.6.ki(t),Yi(t)) will not capture the total local loss experienced by

50 Principles and Techniques Chap. 4

Ai, since the local loss functions ignore influences by other agents. We will have to

correct for this later when we generalize our analysis. For now, we will simply assume

that an agent's local losses depend only on its local variables.)

These local losses are further refined by analyzing their behaYior as functions of

O.ji• the age of At's information about A1, and T11 , the period of communication

between A1 and A1 (which can vary over time). Although a.ji does not explicitly

appear as a parameter of Ld(d, (t), Yi (t)), it is the primary variable affecting the qual­

ity of decision di(t). The primary variable affecting b..ki(t) in Lc(b..k1(t),yi(t)) is the

period of communication Tji· In our analysis, we will explore the relationship

between Tji and a.ji· (We order the subscripts J followed by i in Tji because it is A;

that provides information to, and therefore influences, A 1 as to what value T 1, should

have.)

It will be convenient to consider different representations of the loss functions Ld

and Lc, with their explicit parameter being either O.ji or Tj1 • We will denote the

appropriate representation by superscripting either Ld or Lc with either (a.) or (T).

For instance, to make a statement about decision quality loss as a function of aging

information, we will use the notation L~a)(a. 1t). Other combinations will become clear

as we proceed. If we are making a general statement about decision quality loss or

communication overhead loss, we will continue simply to use Ld or Lc. (Note that,

since Ai needs to keep track of only a single remote agent, namely A 1, a. ji and T 11

appear in the loss functions as scalar values. Later, when we generalize these func­

tions, the age parameter will be a vector a.i representing the various ages of Ai 's state

information about all other agents, as in the global loss L~a) (a.i), and the period

parameter will be a vector Ti representing the various periods of communication

between A1 and all other agents, as in the global loss L ~ T) (Ti).)

Ld depends inversely on the quality of the information used as a basis for a deci­

sion; as the information gets better, the decisionmaking gets better, and the loss Ld

goes down. Since an agent's information is about the past states of remote agents,

and this information is used to predict their current states, we can say that the qual­

ity of information, and therefore the quality of decisionmaking, decreases monotoni­

cally with the age of the information. Thus, the loss L ~a) (a. ji) increases monotoni­

cally with a.ji· L~a)(a.j1) should eventually flatten as a.ji approaches infinity; as the

age of state information gets very large, the information becomes useless, since it offers

no clue about the current state. When this point is reached, further aging implies no

difference in the usefulness (or uselessness) of the information.

Therefore, we may conclude that L ~a) (a. Ji) is characterized by a curve with the

following properties:

(1) it is positive and monotonically increasing;

(2) its first derivative asymptotically approaches zero.

For example, we expect L~a)(a.ji) to have the general shape shown in Figure 4.7.

Sect. 4.6 Frugal Communication 51

0 o(..
Jt

Figure 4.7. Decision Quality Loss vs. Information Age

Let us assume that Ai communicates on a periodic basis with A 1, i.e., that there

is a definite inter-communication period between agents. Let this period be Tji·

(Later, we will relax the assumption by allowing T]i to vary.) Given periodic

updates, the age of information about a remote agent is a saw-toothed function of

time, age(t), like that shown in Figure 4.8.

age{t) i
I;

~--~

0
t-~)

Figure 4.8. Age of Information with Periodic Communication

Th the transmission time, is the minimal age of information from agent Aj·

Age(t) increases linearly with t until receipt of new information, replacing the old

information, causes the age to begin at Tt again.

52 Principles and Techniques Chap. 4

On the basis of the assumption we made about how the decision quality loss

function L~a)(aj1) varies with the age of information, we can now determine how

L~a)(age(t)) varies in time, assuming a communication period of length Tjl· This is

illustrated in Figure 4.9.

(c<) i
Ld (age(t))

0

Figure 4.9. Decision Quality Loss with Periodic Communication

The quantity Lt in Figure 4.9 identifies the minimum decision quality loss. Note

that, since the minimum age for information in the diagram of Figure 4.8 is Tt, the

decision quality loss is at least

Lt = L~al(age(n·Tjs)) = L~a)(Tt), nE{0,1,2, ... }.

Thus, there will always be some positive loss since information is not received instan­

taneously.

We can now compute the decision quality loss as a function of the communica­

tion period Tj1, which is a time-average of L~al(aj1), given by the formula

T;i+Tt

L~Tl(Tis) = ; .. (L~al(a)da. (4.6)
Jl +t

The general shape of this function is similar to that of L~a)(aji), except that it

increases more slowly. The reason for this is simple: L~a)(T·1) is the decision quality

loss due to using information which is Tfi time units old; L~T) (Tji) is the average loss

in the quality of decisionmaking due to the use of information which is between Tt

and TP + Tt units old, with the assumption that T1 << TP. This assumption is rea­

sonable: the transmission time between two agents should be much less than the com­

munication period.

Sect. 4.6 Frugal Communication 53

Now let us consider the communication overhead loss, Lr. Communication over­

head decreases monotonically with the period T1,. For very small periods, we expect a

large amount of overhead, and therefore a large loss. In fact, as the period approaches

zero, the loss goes to infinity since there will be no time to do useful work. As the

period approaches infinity, the rate of communication goes to zero, so the loss should

go to zero. Therefore, we may conclude that LV) (Tjd is characterized by a curve

with the following properties:

(1) it is monotonically decreasing;

(2) lim LVl(r) = oo and lim LV)(r) = 0.
T-+0 T__,OO

For example, we expect LV) (Tjd to have the general shape shown m Figure

4.10.

0 * 1Ji

Figure 4.10. Loss due to Communication Overhead

•
In Figure 4.10, we have identified a specific value for the period Tj1, Tji' which

we refer to as the optimal communication period between the two agents A.1 and A;.

Recall that our goal is to determine when an agent should observe the system. To do

this, we need to explore how to determine r;j·
We have two expressions, L~T)(Tji) and LV)(Tjt), which characterize the deci­

sion quality loss as a function of period T31 , and the loss due to communication over­

head as a function of Tji' respectively. The sum of these functions gives the total loss

due to degradation in decision quality and to communication overhead. The goal is
•

then to find the minimum of this sum; the corresponding period T ji is the optimal

communication period.

What insights about the existence of

analysis of the general shapes of LV) (Tji)

. .
T ji can we can draw from an mformal

and L~T)(Tji)? Since we are looking to

54 Principles and Techniques

minimize LV) (Tji) + L~T) (Tji), we need to solve the equation,

d~- [LVl(Tj,) + L~Tl(Tji)] = o.
]I

Chap. 4

(4.7)

If this equation has a solution (i.e., there exists a value for Tji for which this equation

is true), that would constitute a minimum point for LVl(Tji) + L~T)(Tji)· If there

are multiple solutions (multiple local minima), we want the one which produces the

global minimum value. To simplify our discussion, we will assume that there is only

one minimum p~int,_ and therefore, t~e~e is a si?gle solution to (4.7). (Note :}.hat if

(4.7) has a solutwn, 1t must be at a mm1mum pomt as the sum L~T)(T1i) + L~ l(T11)

cannot have a maximum point. This is because LV) (Tji) is infinite when Tji is 0.)

Let us consider the conditions for which (4. 7) will or will not have a solution.

Consider the first case:

dL~ T) (Tji)

dTii

dL(T)(T··)
C]I

dT··]I

>

<

dL~T) (Tji)

dTi1

dL~T)(Tji)

dTi1
T· > T Jl

In this case, when the communication period is below some threshold r, the rate at

which communication overhead loss decreases is greater than the rate at which deci­

sion quality loss increases. Above this threshold, the opposite is true. Under these

conditions, L Vl (r) + L ~T) (r) is a minimum value, and therefore T fi = T. This is illus­

trated in Figure 4.11.

-

0 ... * 1Ji 0

Figure 4.11. Case 1: Sum of Losses with Minimum Point

Sect. 4.6 Frugal Communication 55

Summarizing case 1, since there is a global minimum point for the total loss, the

period r;1 is the optimal communication period between A, and A J· That is the

point where the tradeoff of degradation in decision quality due to aging information

and overhead due to communication is optimized.

Now consider the second case: the sum does not have a minimum point, as shown

in Figure 4.12.

0

0

Figure 4.12. Case 2: Sum of Losses with no Minimum Point

This condition implies that, the longer the period of communication TJi• the

smaller the loss incurred by an agent. Therefore, in this case, it is simply better not

to communicate at all!

Case 2 arises in distributed environments where states change rapidly relative to

communication time. By the time an agent receives communicated state information

from a remote agent, that information is useless since the state has changed many

times during the transmission. The new state may depend very little on the past state

which was communicated. In such a case, it makes sense not to communicate at all,

since communication provides no useful information but does add overhead. Agents

should instead base decisions on the limiting probability distributions of remote agent

states, assuming that they exist and are known (e.g., the system's steady state

behavior can be modeled and analyzed).
•

The more interesting situation is case 1, where there is some optimal period TJi
•

for communication. Note that Tji may vary, depending on how the loss functions

vary with time. Thus, for any decentralized control application, these loss functions
•

must be determined so that the communication period T ji can be computed dynami-

cally.

56 Principles and Techniques Chap. 4

We make the final observation that L~T)(Tji) is a slow changing function, as it is

a time-smoothed average of L~al(a 11). Thus, the sensitivity of the optimal communi­

cation period

Tj1 = min[L~T) (Tii) + LV) (Tji)]
Tji

to variations in L~T) (T11) over relatively short time intervals is small. The point is

that we qm approximate L~a)(aj1) and know that, as long as the best communication

period 7'11 , as produced by this approximation, is close to t~e. theoretical optimal

value Tj1.' the actual difference between the loss using period T ji and the loss using

period T ji, will be small.

Up to this point, we have considered the tradeoff between decision quality and

communication overhead in general terms to gain insight about when communication

between agents should take place. We now analyze the loss functions themselves in

detail, first formalizing them, identifying their parameters, and then considering how

they may be evaluated efficiently through the use of approximations.

4.6.2. Decision Quality Loss Function

We begin by considering the global decision quality loss function. Our goal is to

develop a formula for it, using the formalism presented in Chapter 3. This formula

will be complete, but unusable due to its complexity. We then bridge the gap

between theory and practice by providing a much simpler approximate formula for

the local loss.

For any global state x(t), there is a best collective decision d'(t) that will optim­

ize some global objective function. But agent A1 does not know x(t); rather, it has its

own view of the global state, which is k1(t). Therefore, A 1 makes decision

d1(t) = li(zi(t),s1(t)) (see Section 3.2 for definitions of these variables), which is part

of the collective decision d(t) = (d 1 (t), ... ,dN(t)). To compare the quality of decision­

making, it would be desirable to quantify the goodness of decision d (t) relative to the

best possible d • (t). One way of doing this is to evaluate and compare the conse­

quences of these two decisions.

Given state x(t), decision d(t) causes the next state x(t+l) = f(x(t),d(t)), and

decision d • (t) causes the next state x • (t + 1) = f(x (t). d • (t)): the difference between

the consequences of d (t) and of d • (t) may be defined as the expected difference in the

utilities of the respective next states,

E[u(x(t+l))- u(x'(t+l))],

or as the expected difference in the utilities of the respective next sequence of states,

E[u(x(t +l,t +r))- u(x '(t +l,t +r))], r > 1.

This difference is the loss due to degradation in decisionmaking quality, and is due to

agents not knowing the global state x(t), and having different, possibly conflicting,

Sect. 4.6 Frugal Communication 57

views of the global state.

Although this definition of loss makes sense, no agent can compute it, since it

knows neither the current global state, nor the current actions performed by the other

agents. Note that we did assume that every agent knows the decision rules /j for all

J, which is reasonable in systems where agents are willing to cooperate, i.e., in the sys­

tems of interest here.

What agents can do is to compute expected losses over all possible global states,

influences, and private inputs, conditioned on the information they have. To develop

a formula for this, we need some additional notation. Recall from Section 3.2 that a

decision d1 is based on the decision rule / 1 (z1 , S1), where Z£ is the influence of other

agents on A£, and S£ is A/s generated work. Influence has two components: informa­

tion influence and work influence. A£'s information influence variable k1 , which con­

tains information about the states of other agents, takes on values from the global

state space,

x = X 1 x X 2 x · · · x xN.

Define the global information influence variable k (with no subscript) which contains

the information influence of every agent,

k = (kl, k2, kN),

and takes on values from the set

xN = x x x x · · · x x,

where there are N copies of X. If x is a particular global state (i.e., x E X), then the

product xN is xxxx · · · xx, where there are N copies of x. Let

k = XN

represent the situation where every agent's local information influence is set to the

same global state, namely x. Similar to information influence, A.£'s work influence

variable wi, which contains the transferred work from all other agents, takes on values

from the global work space,

W=W 1 xW2 x .. ·xWN,

and each W i is the work space of agent A.£. Define the global work influence variable

w, which contains the work influence of every agent, as

w takes on values from the product

WN = W X W X • • • X W,

where there are N copies of W. Finally, define the global generated work variable s,

which contains the newly generated work (not the transferred work) arriving at each

agent,

58 Principles and Techniques Chap. 4

and takes on values from W.

Continuing with the development of a formula for decision quality loss, agent Ai

can compute the expected maximum global utility U'(ai), defined as follows:

r' _ N N u (ai)- ~ ~ ~ u(! (x,1((w,x),s)))p(x,(w,x),sj ki)). (4 .8)

.xEX wEWN $EW

In (4.8), we are taking the expected value of the utility of the next state, over the glo­

bal state space, over the global work influence space, and over the global generated­

work space. Since k = xN, every agent's view of the global state is the same, and the

value of the global state as viewed by everyone (which, in general, is not the same as

the actual global state) is x. (Note that this does not automatically imply that x is

common knowledge (see Section 3.5). That xis common knowledge must be assumed

separately.) For each value of x, f(x,l((w,xN),s)) will produce the best possible next

state in terms of utility (since the decision is based on perfect knowledge of the global

state); therefore, U • (ai) is the maximum expected utility based on ki. Note that k1 (t)

will equal (x 1 (t-a1i), x2 (t-a2i), ... , xN(t-aNi)), where aji is the age of the most

recent communication from agent Aj to A 1 • Consequently, we use the vector of ages

ai = (ali, a2i• · · · ' aNi)
•

as the parameter to U .

Computation of (4.8) assumes that every agent A 1 knows the conditional proba­

bility density function (cpdf) p(x, (w,xN),s I ki), which, in general, is an unreasonable

assumption. We will elaborate shortly on how this cpdf can be simplified to be used

in a real system.

The expected maximum utility u'(a1) is then compared with U(ai), simply the

expected utility, defined as follows:

U(ai) = ~ ~ ~ ~ u(f (x,l((w,~~:),s)))p(x,(w,~~:),si ki) (4.9)

.xEX wEWN KEXN $EW

Again, we are taking an expected value over the global state space, over the global

work influence space, and over the global generated work space, but also over the glo­

bal information influence space (~~: is varied over this space). In contrast to d ', the

decision d is based on imperfect knowledge of the true global state. This will usually

produce a suboptimal decision, and consequently a suboptimal next state in terms of

utility. (More precisely, the next state will be statistically suboptimal, due to the sto­

chastic nature of the distributed system. For example, it is possible that, for a partic­

ular set of inputs for each agent (e.g., new work arrivals), which cannot be predicted

beforehand, what is a suboptimal decision in general, is actually optimal for this

specific case.)

There are two noteworthy properties regarding the relationship between U • (a 1)

of (4.8) and U(ai) of (4.9). The first property is that

Sect. 4.6 Frugal Communication 59

U(a 1) ~ u·(ai),

and therefore U(ai) - U • (ai) is a non-positive value, indicating an expected drop in

utility. This is because, for given values of x,w, and s, u(f(x,l((w,K),s))) is maximum

when K = xN, i.e., when every agent has the same global state information. Assuming

the optimal case, where for all possible values of x, w, and s, the probability that

K = xN is 1, then the value of U(ai) is maximal, and is exactly u·(ai)·

The expected drop in utility is what we define as the expected decision quality

loss
(4.10)

This is our first approximation to the exact global decision quality loss Ld(d(t),x(t)).

The second property is that

[u*(ai) - U(ai)] increases with ai,

as this difference should if it is to model decision quality loss. The reason is obvious:

as age increases, the probability of an agent successfully predicting the current global

state goes down, which increases the probability of making bad decisions. Indeed, the

decision rule 1 should be constructed so that the probability of selecting bad decisions

grows as slowly as possible with the age of information.

4.6.3. Observations and Simplifications

In theory, an agent can determine the expected decision quality loss L~a)(ai)

using (4.10). However, this cannot be done while maintaining our goal of fast

decisionmaking. (This is in contrast to the quantity we are trying to approximate,

Ld(d(t),x(t)), which cannot be computed, not because it would be computationally

inefficient, but because agents cannot know x (t) and cannot theoretically compute

d.(t).)

Recall the complete and exact global loss function as presented in Section 4.4:

L(t) = Ld(d(t),x(t)) + Lc(.6.k(t),x(t)) + Le(l,x(t),k(t)) + Lr(s(t),x(t),d(t))

'0/e have concentrated on Ld and Lc because they will change dynamically, whereas

Le will be relatively constant once the decision rule 1 is defined, and similarly Lr is a

fixed loss due to the inherent stochastic nature of the system. Requiring an agent to

compute L~a)(ai) as defined above would make Le extremely large, and consequently

the total loss would become extremely large. Since we want to minimize the total

loss, we need cheap ways to determine Ld and Lc dynamically during system opera­

tion so that Le is kept low.

To make L~a) (ai) cheap to compute, and yet a reasonable approximation to

Ld(d(t),x(t)) so that we can attain our ultimate goal of determining the vector of

near-optimal communication periods r: = (r;i, r;i, ... , T~i), we will now identify

the information we need, and the first order effects of Ld·

60 Principles and Techniques Chap. 4

As was made clear in the informal analysis of local loss presented in Section 4.6.1,

we are interested mainly in the shape of Ld, in particular its rate of increase relative to

the rate of decrease of L,, so that a minimum point in the sum of losses can be found.

There is the underlying assumption that such a minimum point exists, otherwise it

would not make sense for agents to communicate at all, contradicting the purpose of

computing these losses. The major factor contributing to the shape of Ld is the cpdf

p(x(t) I ki(t)). Specifically, the rate at which the probability mass spreads from the

known past state to other states provides a good indicator of the rate at which

L~cr)(ai) rises. The faster this spread occurs, the more uncertainty there is in the

current state based on past information, and therefore the faster the rise in the loss

due to decisionmaking quality.

U(ai) and u' (ai) in (4.8) and (4.9) depend on not only the global state variable

x, but also the work and information influence variables, w and k, and the generated

work s. We will argue that the effects of wand son the shape of Ld are secondary to

that of p(x(t) I ki(t)) for most situations, as the rates at which work is transferred and

new work arrives are expected to be much smaller than the inter-agent communica­

tion rate (otherwise, as we argued in Section 4.6.1, many state changes would take

place within one communication period, which goes against our assumptions). Like­

wise, the effects of most components of the global information variable k are secon­

dary in that most decisions are not based on the entire global state, but rather on a

small set of local states, particularly that of the decisionmaking agent and some

specific remote agent (e.g., if the decision is to transfer work, the state of the remote

agent who is to receive the work is of utmost interest).

Yet, there are some situations where w, s, and especially k, can have a major

effect on the shape of Ld· For some small collection of views which agents possess

about each other, the resulting decisions based on these views might conflict to such a

high degree that they will cause the system to go into very undesirable global states,

i.e., those with very low utility. In fact, this may result not only because of differing

views, but also from some collections of work transfers or new work arrivals. A typi­

cal example of this is when all agents happen to transfer work to a single agent, which

was viewed by each one as being the most desirable agent to whom work should be

transferred. The problem is that each agent does not expect that every other agent

also sees this single agent as the most desirable. (Actually, this may be the result no

matter whether agents have the same or differing views; the point is that, whatever

these views were, they led to all agents finding the same single agent as the most

desirable destination of work.) From a single agent's perspective, its decision to

transfer work to what it considers to be the most desirable destination agent may

make complete sense, except for the situation where every other agent comes to the

same unexpected conclusion (i.e., unexpected by each single agent). We call such a

situation a resonance, and will deal with it separately in Section 4.7.

Sect. 4.6 Frugal Communication 61

4.6.4. Approximations

The purpose of the discussion above is to provide guidelines for constructing

approximations based on simplifying (4.10) which is itself an approximation for

Ld (d (t), x (t)). We now offer four simpler approximations. Each successive approxi­

mation depends on a smaller number of factors, making it easier to compute, but

potentially introducing more error. Selection of the best approximation will depend

on the application, and particularly on the size of the distributed system and the

degree of dependence among the actions of agents.

First Approximation

The first approximation distinguishes between primary and secondary variables

in (4.8) and (4.9), replacing summations over secondary variables with average values,

and it considers only abstract states in Y = Y 1 x Y 2 x · · · x Y n• rather than low­

level states.

(4.11)

U(ai) = L u(f(t/J, 1((W, kt'),S))) p(t/JI ki)
t/JEY

(4.12)

Thus, the first approximation for L~0 l(o: 1) is,

L~a)(ai) ::::: u'(o:L·)- U(o:i) (4.13)

Formulas (4.12) and (4.13) differ from (4.8) and (4.9) respectively in that all factors in

the formulas deemed secondary in the discussion above, namely work influence w,

information influence k, and newly generated work s, have been replaced by expected

values. Thus, w is the expected amount of work to be transferred, which may be a

static value based on an analysis of complete past histories, or a value dynamically

recomputed on the basis of an analysis of recent past histories. Similarly, sis the

expected amount of newly generated work. For information influence, we use t/JN (i.e.,

every agent knows the same global state on which decisions are based) in (4.11), and

we use k{ (i.e., agent A 1 believes all agents share the same view, in particular the

view of Ai, but this may be different from what the global state really is) in (4.12).

Again, this ignores the problem of resonances where conflicting decisions are made,

arising from special combinations of values for w, s, and k, but we solve this problem

separately. Our main focus here is to establish a cheap way of determining the shape

of L~al(a:i), so that eventually a good communication period can be determined.

If the distributed system is very large, the loss approximation defined (4.13) is

still too time-consuming to compute because of the range of values over which the

summation variable t/J will vary. For example, if there are one hundred agents, and

the size of each agent's state space is two, t/J will range over 2100 possible values.

Thus, the approximation is useful only if the size of the distributed system is small

and each agent's state space is small. Otherwise, we must simplify our formulas

62 Principles and Techniques Chap. 4

further.

Second Approximation

In the second approximation, we will consider the loss due to information aging

on an agent-by-agent basis, as opposed to the previous approximation which was on a

system-wide basis and accounted for all agents simultaneously. The loss is still global,

however: it represents a degradation in decision quality for the entire distributed sys­

tem. In particular, this approximation is the global loss contributed by the conse­

quences of decisions made by an agent A 2 which directly affects a single remote agent

Aj·

Un;1(a.-) = ~ I: I: u(f('¢, d~- 1 ·di"d~-i)) p(t/11 kl)
fJ b;ED;j I,&Ef;(b;)

Thus, the second approximation for L~al(a 1) is,
'

L~al(o: 1) ~ Un,.
1
(ai)- Un;1(ai)

(4.14)

(4.15)

(4.16)

D1j is the set of all the decisions in agent A 1 's decision set which are considered to

have a direct effect on agent Aj· (Since these are decisions with which A 1 will

influence Aj, in the subscript i is followed by j.) Thus, Dtj ~ Dt, and, if 81 E D1j,

then g1j(81) =1- w 0 • Recall from Section 3.2 that gtj is the work function, mapping

decisions by A1 to work Wji appearing at agent A J' and that w 0 denotes "no work."

r 1(6;) is the set of all global states such that if k1 E r.-(6;), A 1 would make deci­

sion 81• Recall that a decision is a function of work transfers, state information, and

generated work. Thus, from another viewpoint, r 1 is 1i1 , the inverse of A/s decision

rule, for given values of w1 and s1•

Finally, recall that d 0 is the null decision, meaning that the agent decides to sim­

ply do nothing. Then the product d~·81 ·d~'-i is the set of decisions where agents Aj,

for j < i, make the null decision, agent A.1 makes decision 81, and agents Ab for k>i,

make the null decision. The product db·d(d~-i has the same meaning, except that

Ai makes the usual decision d1 based on k1, rather than 81 which is an element of Dij·
•

Let us analyze u9 .. 1
(ai) and Un,.1(ai) in (4.14) and (4.15). First, they are global

expected utilities since the next state function f is global (this is in contrast with the

next two approximations, which make use of local expected utilities). Second, the

expectations are only over global states that would trigger decisions affecting Aj· In

fact, since the expectations are only over these states, a normalization factor 1/ {3 is

necessary, where

Sect. 4.6 Frugal Communication 63

/3 = I; E p(t/11 k,) = Prob(y E u r .. ((\)).
6;ED;j ,PEf.-(61) 6.-ED,j

/3 is the probability that the current global state y is a member of the set of possible

states which vwuld trigger any decision in D1J.

The loss approximation defined by (4.16) is useful because it considers global

decision quality loss on an agent-by-agent basis, with the assumption that a decision

has a direct effect on only one remote agent. Given this, along with loss due to com­

munication overhead on an agent-by-agent basis, the optimal communication period

between each pair of agents can be determined. Thus, A,· can determine the fre­

quency of communication between itself and every remote agent AJ, for all j=j=i. Also,

the number of states to consider may be significantly less than the entire global state

space, which was a problem with the previous approximation.

Unfortunately, (4.16) requires knowledge of the global next state function f, and

of the cpdf p(t/11 k1), which are generally unavailable. Also, although the size of D1j

will be small, the number of global states in r 1(b..) may still be quite large.

Third Approximation

The third approximation considers local losses, the losses of the decisionmaker Ai

and the remote agent Aj affected by the decision, rather than an overall global loss.

First, we need some additional definitions.

Let c(u1,uj) be a real-valued averaging function of u1 and uj, which are real

numbers representing local utilities of the decisionmaking agent A1, and of some

remote agent A j· For example, c (ui, uj) may be the arithmetic mean (u1 + uj) /2, or

the geometric mean (ui · uj) 112 , or the root mean square (u; + u}) 1 /Z.

If t/1 is a global state, let [tP]j, the jth component of ¢, be the local state of Aj

corresponding to tjl. Let Wj be the expected work transferred to Aj; let Kj be the

expected information Aj has about the system; let 7;· be the expected generated work

arriving at Aj. Note that these are expected values as viewed (i.e., computed) by A,.

Most likely, they will be time-dependent, but it is assumed that they change very

slowly, and can conveniently be communicated when necessary with minimal over­

head.

Finally, recall that Yij(d1) is the work function indicating what work will appear

at A i based on the decision d1 made by A 1• Let w1i be the average work transferred

w··g .. (d·)
from Ai to Aj, and let J _:_J 1

be the same as the Wj defined above, except that its

Wjj

ith component, the work transferred to Aj from A1, is Yij(d1). (Consequently, we are

replacing wij with Yij(di) in Wj.) We are now ready to introduce the third approxima­

tion.

64 Principles and Techniques Chap. 4

(4.17)

(4.18)

1 W{YiJ·(di) _ _
a I: I: c(ui(fi(y1 ,di)), ui(!J([1P]j,/J((_ ,KJ),sJ)))) p(1PI ki)·
fJ DiEDij tPEfi(6i) Wlj

Thus, the third approximation for L~a)(a 1) is,
•

L~al(a:i) ~ tin,1 (a:i) - tinii(ai) (4.19)

The main difference between the third approximation given by (4.19) and the second

approximation given by (4.16) is that the next state functions are local rather than

global in (4.17) and (4.18). Further, we consider a combination of the local state util­

ities of Ai and Aj, not the global state utility. Notice that, since A/s state is known

with certainty (since Ai is computing these utilities), the local current state of A 1 used

in the next state function fi is Yi, Aj's true local state. Similar to the second approxi­

mation, the expectations are taken over all global states which could trigger decisions

affecting A i by Ai. Thus, the local state of A i used in its next state function fJ is

[1;&];'· The second parameter of f) is Aj's decision, computed by using its decision rule

lj with expected values, except for the transferred work which depends on A/s deci­

sion. This assumes that the global state 1;&, which triggered Ai to make its decision, is

still in effect up to the time when A i receives any transferred work. (Receiving work

does not mean that A 1 has been affected by the work transfer in any significant way,

at least according to the design of A/s abstract state space, which is much coarser

than its low-level state space Xi. In fact, when Ai does get affected, it will have

changed state because it decided to either accept the work, or to transfer it somewhere

else.)

Fourth Approximation

Using (4.19) as the loss approximation still poses the problem of knowing the glo­

bal state transition probabilities, p(1PI ki)· This leads us to the fourth approximation,

which is based on the expected local state utilities of Ai, taken over all possible local

states of A j (since it is A /s state of which decisionmaker Ai is uncertain):

Sect. 4.6 Frugal Communication 65

(4.20)

(4.21)

w ·g ·(d)
~ c(ui(fi(Yi,di)), uj(fj('I/J;,/j((1 ~J

1

,"K1);Bj)))) p('I/J;I kji)
t/J;EY i W 1J

Thus, the fourth approximation for L ~a) (a i) is,
t

L~a) (a j:) ~ uiJ(a Ji) - Uij(a;:) (4.22)

Let (diJ'I/Jj) denote the decision similar to di given by decision rule li((wi,ki),si),

except that the state information ki has its /h component substituted with 1./'j· Thus,

in (4.22) we are approximating the expected loss in utility of Ai 's and A ;'s next

abstract states, not by considering all possible decisions which will affect A i• but only

decisions triggered by A ;'s possible states. The conditional probability density of each

possible state 1/Jj given a past state kji is p('I/Jjl kji). (Recall that ki(t) equals

(y 1 (t-a 1i), ... ,yN(t-aNi)); therefore, kji(t)=yj(t-aji), which is used in the formula.)

We use this fourth approximation in our load-balancing experiments to compute deci­

sion quality loss as a function of aging information.

This concludes our discussion about approximating the loss caused by decision

quality degradation due to aging information. It is interesting to note that, in our

quest to simplify Ld in order to reduce Le, which is the loss due to evaluating the deci­

sion rule, we are effectively increasing Ln the loss due to random effects. A reason for

this is the statistical nature of our approximations, which are expectations over multi­

ple variables. Although it is beyond the scope of this dissertation to quantify Le and

Lr. we have introduced them to focus on the tradeoff between the ease and speed of

computing the decision rule, and the degree of error such a computation produces.

4.6.5. Communication Loss Function

Assume for a moment that the time devoted to the act of communicating, i.e., to

the construction of messages to be transmitted and to the interpretation of messages

received, is simply wasted time. Ultimately, we would like to say that, if an agent

wastes a certain percentage of its time, there will be a known or measurable degrada­

tion in performance, which will manifest itself as a loss in future state utility.

Of course, although communication overhead represents a loss in processing time

and therefore a decrease in utility, it is expected that the fruits of communicating

with other agents (i.e., the value of new information), will cause an increase in utility

larger than the decrease due to overhead. When this is the case, it pays to

66 Principles and Techniques Chap. 4

communicate.

Thus, the purpose of quantifying loss due to communication overhead is to deter­

mine the benefit vs. cost tradeoff of communication. For some rate of inter-agent

communication, the combined losses due to communication overhead and to the dec­

lining value of aging information are at a rmmmum. The goal is to find that

minimum point, and to communicate at the corresponding frequency between each

pair of agents.

Each agent must quantify its communication overhead as a function of its fre­

quency of communication. If an agent Ai communicates with a remote agent A
1

, let

Fji = frequency of communication of A, with A j·

In terms of intercommunication periods, let

1
Tji = T

)I

be the period of communication between Ai and A j· Define the average time between

all communications by A1 as

1
Ti = ~~~.,..., --

L: Fji
j=l

(4.23)

Note the difference between Ti defined by (4.23), and T1, which is the vector of inter­

communication periods (Tli, T 2i, ... , TNi) between Ai and Aj, for all J. \Ve

alluded to Ti in Section 4.6.1, and make use of it in this section. The communication

overhead loss for agent Ai will be a function of Ti since it depends solely on the total

rate of communication, without regard for the relative magnitudes of individual com­

munication rates between A 1 and any particular remote agent. Thus, the communica­

tion overhead loss is denoted by

On the other hand, the decision quality loss does depend on the relative ages of infor­

mation about remote agents on which A.1 will base its decisions, so the individual

intercommunication periods cannot be combined, but must remain as a vector:

L~T) (Ti).

Let hi be the average overhead in CPU time to support a single communication

between Ai and another agent. Thus, h1jT1 is the fraction of cycle time (on the aver­

age) spent by A1 communicating, and a necessary constraint is that h1/T1 < 1, other­

wise all time is spent communicating and nothing else gets done.

We need to determine how hi/ T1 affects the next state function, and ultimately

how it affects the expected utility of future states E[u(x(t+1,r+1))], for some r~l.

The reason for introducing the fraction of time h,/ Ti is that one can often

Sect. 4.6 Frugal Communication 67

conveniently express a loss of some measure of performance (one that relates to the

abstract state space, and consequently to utility) in terms of this fraction. For exam­

ple, if half of an agent's time is spent communicating, its effective rate of processing

tasks drops by at least a factor of two, and therefore the total time to complete a task

is at least doubled.

Our objective is to find values for periods Tj1 , for all j, which minimize

LV)(T1) + L~T)(Ts)·

Achieving this objective raises several problems, especially when the distributed sys­

tem has a large number of agents. First, all the T;1 's must be varied simultaneously

to find their optimal values; it may be difficult finding a way of doing this efficiently.

Second, the loss function L~T) (T1) will change dynamically, depending on the rate at

which the global system state changes. Third, as pointed out in Section 4.6.4, it is

often the case that the best an agent can do is to compute an approximation to Ld,

such as the pair-wise decision quality loss between two agents given by (4.22), from

which it can compute L~T)(T;i) using (4.6).

In light of these formidable problems, we propose the following method for deter­

mining the update period between two agents. This solution is based on preallocating

a maximum communication bandwidth between every pair of agents, and then

minimizing a local rather than global loss function.

The first step is to recognize that, for small values of T1,

L~Tl(Ti) >> L~T)(Ti)·

From (4.23), it is possible that T1 is small even though some T11 is large (this is true if

there is some Tik• k=j:J·, which is small). Yet, Lc can be much greater than Ld since

LV) (T 1) goes to infinity as T1 approaches zero, whereas, L~T) (Ti) has an upper bound

for large values of any component T1J of T1 (see Section 4.6.1). This simply means

that when the frequency of communication is very high (with any remote agent), the

loss due to communication overhead will dominate the loss due to decision quality

degradation. For small values of T1 we will approximate the sum of Lc and Ld with

just Lc, ignoring the relatively small contribution of Ld·

Next, we determine the minimum value of T1 such that LV) (Ti) is tolerable.

\Ve will call this value TiMIN' and the corresponding frequency

1
FiMAX = T·

1M IN

FiMAX corresponds to A/s maximum bandwidth used by Ai for communicating with

all remote agents (i.e., the sum of the communication frequencies between A1 and

every other agent must be at most FiMAX).

This maximum bandwidth is now divided into per-agent maximum bandwidths,

FJIMAX' 1~j~N. Of course, this distribution need not be a uniform allocation; rather,

68 Principles tmd Techniques Chap. 4

the amount allocated for a particular remote agent will depend on the expected needs

for communication with that agent. For example, an agent will expect to communi­

cate more frequently with a neighboring agent than with a very distant agent; thus,

more bandwidth should be preallocated for communication with neighboring agents.

To achieve such a distribution, we must define a measure of desirability on a

per-agent basis, as determined by agent Ai. Let a j1 be A/s measure of desirability for

A j· The definition of a ji will depend on the application. For example, a definition

based on proximity is,

1
(J = --------------

]! distance (A., A j) '

where distance(A,,Aj) the expected transmission time from Ai to A1. Or, aj1 may be

based on the relative computing power of the agents.

Once the a ji are determined for all j, let
N

(Jj = ~ (Jji·

j=l

Now, we can simply allocate maximum per-agent bandwidths as follows:

Once the FjiMAX 's are determined, an iterative algorithm such as the following can be

used to determine the Tjj's.
1. for all j, let Tji = 1/F]iMAX

2. for all j, in order of decreasing aji' find Tji~1/F]iMAX that minimizes

N

LF) (Ti) + L~T) (Tji) + ~ L~T) (Tik)

k=l,k#]

Step 1 initializes the Tji 's to their minimum values. Step 2 considers each Tji in

order of importance (based on aji), and may increase its value to minimize the objec­

tive function. In minimizing the objective function, only Tji is allowed to vary; the

Tik 's are kept constant.

The T1/s are then recalculated by Ai whenever there is a change in the A ;'s

cpdf, p(yj(t) I Yj(t-aji)) (which Aj must explicitly communicate to .4. 1-). There are

several optimizations possible here. In step 2, a recalculation of every Tik need not

occur. If the change in A;'s cpdf is such that the probability mass spreads more

slowly over the state space with increasing O:ji• then Tji can be increased, and any Tik

which is not at its minimum value 1/FikMAX can now decrease (to improve decision

quality). Again, the order of checking each Tik should be based on decreasing values

of aik· If the change in A/s cpdf is such that the probability mass spreads more

rapidly over the state space with increasing a fi• then Tji should be decreased, unless

Sect. 4.7 SPACE/TIA1E Randomization to Avoid Resonances 69

it was already at its mm1mum value in which case no recalculation is necessary.

Thus, recalculation only takes place when necessary (as opposed to doing it, say,

periodically). We use static preallocation of bandwidth in the experiments described

in Chapter 6.

A potential improvement with respect to static preallocation of bandwidth 1s

always to keep in reserve some bandwidth for dynamic allocation. Thus, let

FiMAX = F,SMAX FiRSR¥''

where FisMAX is the maximum bandwidth allocated statically, and F,RSRV 1s reserved

bandwichh allocated dynamically. Also, let

The Tj,, for all ;", are determined statically in a manner similar to the one described

above, except that FjisMAX is used in step 1 rather that FiiMAX" Reserved bandwidth

from FiiRSRV is allocated in step 2 whenever Tji needs to be decreased. Again, the

order of allocation is based on CJ ji.

4.7. SPACE/TIME Randomization to Avoid Resonances

The seventh design principle is to use SPACE/TIME randomization to avoid

resonances. In Section 3.4, we stated the second fundamental problem of decentral­

ized control: an agent is uncertain about remote agent actions. Even if all agents fol­

lowed the same decision rules, an agent could not predict the actions of a remote

agent since it would not know that agent's view of the system state, nor would it not

know that agent's influences. The situation where the concurrent local decisions made

by all agents (which make up the global decision) are mutually conflicting, thereby

causing the system to go into an undesirable global state, is called a resonance in the

system.

The decisions that can cause resonances have to do with work transfer. If the

decentralized control problem is, for example, load balancing, work transfer means

offi.oading processes from one machine to another. If the decentralized control prob­

lem is, for instance, network routing, work transfer means sending messages from one

machine, through intermediate machines, to a specific destination machine. One

characteristic of large distributed systems is that, in general, there are many potential

candidates for work to be transferred, e.g., many less-loaded machines for load balanc­

ing, many low traffic routes for network routing, simply because there are many

machines and many routes to start out with. There may be a best candidate, but

many others can be nearly as good.

To avoid resonances, a number of solutions might be proposed. For example, the

agents could coordinate their actions by making agreements on how to act. This

might involve taking Yotes, establishing contracts, and so on. In general, this may

70 Principles and Techniques Chap. 4

involve several rounds of communication among the agents, which incurs a cost m

time that we are generally not willing to pay.

Our solution is based on agents making decisions which take the possibility of

remote agent actions into account without explicitly communicating. Given its view

of the global system state, an agent can make reasonable inferences about the possible

actions of remote agents. Resonances can be avoided by randomly selecting one of the

many good candidates. Assuming that all agents randomize, and they will since our

model of agents assumes they are cooperative and not adversarial, the chances for

mutually conflicting decisions are reduced. We call this global coordination by impli­

cit communication since the coordination occurs based on past state observations,

inferences, and pre-established conventions programmed into the agents. Since expli­

cit communication is minimized, the time frame for making decisions is minimized,

and efficiency is likely to be higher.

4. 7.1. Problem Formalization

Let us first formalize the problem, and define what a resonance is in terms of util­

ity loss. Given it's current information ki(t) about the system state, and input si(t)

indicating newly generated work entering the system, an agent Ai must decide where

this new work must be performed. Thus, there will generally be multiple work­

transfer type decisions, which we will denote by a set of 6k 's, each representing an

agent Ai's decision to transfer work to a particular agent Ak· This set of possible

decisions will also include the null decision, d 0 , which means to keep the work locally

(either for performing it or for possible transfer at a later time).

To select which decision is best, the expected consequences of each decision must

be considered; this can be expressed as expected utilities of probable future states, or

by a directional heuristic providing an expected positive change in utility. With a

directional heuristic, a measure of the consequence of the decision 6k is given by a real

number b.b which is the change in utility expected if agent Ai selects the decision to

transfer work to Ak· Using game theory terminology, b.k is the decisionmaking

agent's payofffor selecting the decision 6b which will have to be maximized by Ai·

A major problem with this formulation is that any realistic payoff b.k will depend

not only on A/s selection of 6b but also on the decisions possibly made by all other

agents at that time. We have referred to this collective decision as d(t). Thus, b.k

generally depends on d(t), with the restriction that di(t) = 6k· The problem is that

the number of possible values d(t) can take on is very large, and further that an agent

must know k(t) = (ki(t),k 2 (t), · · · ,kN(t)) (along with a number of other things) to

compute d(t). So, for all practical purposes, the true value of payoff b.k cannot be

known.

We call b.k 's dependence on 6k a direct dependence, and the dependencies on

decisions by other agents indirect dependencies. Consider wh!l-t would happen if Ai

simply ignored indirect dependencies, and computed a payoff b.(6k), a function based

Sect. 4.7 SPACE/TIME Random£zation to Avoid Resonances 71

solely on bk. Assuming that the indirect dependence of any one particular d1(t), J=t=i,

on ~k is small, then either the combined effects of all the indirect dependencies will be

negligible so that
-
~(6k) ;::: ~b

or they will be additive or multiplicative such that the difference between ~(6k) and

~k is large. Define a resonance as the condition where

Thus, a resonance is where a seemingly optimal decision, based on an agent's

local information, becomes a global disaster due to indirect effects. We are then faced

with the problem that either an agent attempts to take into account indirect depen­

dencies, making the loss due to evaluating the decision rule Le large, or the indirect

dependencies are ignored, risking to make the loss due to decision quality degradation

Ld large.

We base our solution to this problem on an assumption about the likelihood of

resonances: this assumption is that of all the possible collective decisions made by all

agents at a given point in time, only a small fraction of them cause resonances. But

the probability that a decision will be selected from this small fraction of decisions is

high enough, and the consequent payoffs are bad enough, that care niust be taken to

avoid selecting such decisions.

Our solution then is to use the payoff ~(6k), which depends solely on the local

decision but ignores resonances, and to build into the decision rule a method for

avoiding resonances. This method must be cheap so that the decision rule is easy to

evaluate.

4.7.2. The SPACE/TIME Randomization Technique

We now present a technique, which we call the SPACE/TIME randomization,

for distributed decisionmaking, whose goal is to minimize the occurrence of reso­

nances, and yet achieve coordination with minimal communication. \Vith respect to

work-transfers, an agent would determine which decision, given state information

about remote agents (along with the associated measures of uncer_taintyL will produce

the highest payoff. First, in defining the payoffs, use a payoff ~ (bk) which depends

solely on the dec~sion bk._ Then, let the decision rule produce all the decisions 6P, 6q, ... ,

whose payoffs, ~(8p), ~(6q), ... , are positive. Included also is the null decision d0

(regardless of its payoff), which indicates no transfer of work. (Making the null deci­

sion provides an agent with a mechanism for delaying the transfer of work, as we will

see shortly.) Thus, the set of possible decisions is

D 6 = { 6 P, 8 q, ..• , d0 }

Once D 6 is determined, one decision must be selected. Since agents are to act

rationally, the best decision to select is the one which will produce the highest payoff.

72 Principles and Techniques Chap. 4

But the computed payoffs are only approximations to the real payoffs in that they

ignore indirect dependencies, thus increasing the probability of a resonance. A reso­

nance will occur when a large number of work-transfer decisions (made independently

of each other) cause work to go to an unexpectedly small number of agents (due to

their ignored dependencies: they all select the "best" agent, which may be the same

for all decisionmaking agents). To minimize this problem, a decision is randomly

selected from De.

The randomization is accomplished by building a probability distribution over

the possible decisio~ set in the following manner. Let Pk be the probability that deci­

sion bk with payoff .6.(bk), is selected, for each bk in De. Also, let Pdo be the probabil­

ity that the null decision is selected.

Define
-
.6.(bk)

Pk = (1- Pdo) · -------, for all bk E De,
~ .6.(bj)

(4.24)

ejEDo-do

and define

(4.25)

where f do is a function which produces a probability, which will be discussed shortly.

Note that the sum of (4.24) and (4.25) indeed comprise a complete probability

distribution:

~Pk + Pdo = 1.

The probability of choosing decision bk is proportional to the decision's payoff

relative to the other decisions. Thus, the "best" agent is not always selected. Rather,

one of a number of "good" agents is selected, with the idea that multiple decisionmak­

ers spread work amongst these agents in accordance with their degree of goodness.

This works well, provided the size of De is not small and the number of agents

which are likely to make work-transfer decisions is not large. \Vhat if this is not the

case? In this situation, we would like only a fraction of agents which desire to

transfer work to actually do so. The fraction should be large enough to take advan­

tage of agents which can accept work, but small enough to avoid a resonance. Thus,

there should be a mechanism for some agents to abstain from transferring work; this is

why the null decision d0 is part of the decision set D 0•

Since we are seeking a solution where agents need not have explicitly to coordi­

nate their actions to decide who should send and who should not, we resort again to

randomization. An agent will select the null decision with probability Pdo. It is

defined above as the function f do, whose range is [0,1], and is based on the decision­

making agent's decision set De and the current state information ki(t) (A.i is the

Sect. 4.8 Towards a Unifying Framework for Intelligent Agent Design 73

decisionmaker). Although the details of f do are application dependent and therefore

left open, we offer the following guidelines for its construction. It should decrease

when the size of D 0 increases, since a larger number of possible decisions imply a

higher probability of the spreading of work, and therefore a lower probability that a

resonance will occur. On the other hand, it should increase as the number of agents

likely to transfer work increases, as may be inferred from k1(t), since this implies a

higher probability that a resonance will occur. A more complicated f do would also

account for the distribution of payoffs in the decision set (e.g., if the payoffs are all

nearly equal, a resonance is less likely than if one decision has a very large payoff, and

the others have very small ones), and for the degree of uncertainty of state informa­

tion (e.g., the more uncertain is the state information, the harder it is to predict the

probability of a resonance, and consequently a conservative approach would be to

increase p do). An example expression for f do and how it is derived is given in

Chapter 5.

We now see that, to mm1m1ze the occurrence of resonances, a decisionmaker

selects its work-transfer decision by randomizing over the space of possible recipient

agents when it selects a decision 6k. The decisionmaker randomizes over time when it

makes the null decision, in a sense holding onto its work, possibly to transfer it at a

later time. The technique has the advantage of requiring no explicit coordination;

rather, agents implicitly coordinate by inferring what they can about the global state

through infrequent communication, and by acting on the common knowledge that all

agents will SPACE/TIME randomize their work-transfer decisions.

4.8. Towards a Unifying Framework for Intelligent Agent Design

We now propose the organization of our principles of decentralized control design

into a single unifying framework which imposes a structure on the reasoning and

decisionmaking processes of each agent. In particular, the framework facilitates the

management a hierarchy of beliefs and actions. We call this a framework for intelli­

gent agent design.

4.8.1. Observe-Reason-Act Structure

The operation of a classical control system is generally based on the simple and

logical observe-act loop, shown in Figure 4.13. The controller observes the environ­

ment through sensors, and then may issue a command (i.e., take action) to affect the

environment; this is done repeatedly. Actions are based directly and solely on obser­

vation; consequently, this assumes that the environment is sufficiently observable.

The notions of observability and controllability are the central concepts of classic con­

trol system design. (For a discussion of these and related concepts, see [Padu74].)

74 Principles and Techniques Chap. 4

Observe - ~ Act

... I"

'~

inputs commands

Figure 4.13. Observe-act control structure.

A decentralized control system \•.rith a large number of controllers (the agents, in

our terminology) suffers from severe observability and controllability limitations.

Consider again the two fundamental problems of decentralized control. Problem 1 is

that no agent knows with complete certainty the current global system state, and

Problem 2 is that no agent knows with complete certainty the current actions of other

agents. It is interesting to note that Problem 1 has to do directly with observability,

and Problem 2 with controllability; this confirms our intuition that they are funda­

mental problems.

Returning to the classical controller observe-act loop, we see that this simple

framework will not be sufficient for our purposes since both global observations and

global actions are uncertain. What is needed is the ability for agents to reason about

observations and about actions.

It then becomes reasonable to extend the classical control framework to an

observe-reason-act loop, as shown in Figure 4.14. After an agent has observed the

system, it can reason about the implications of the observations concerning the system

state, and then take action based on this reasoning. This reasoning is necessary since,

although the agent may not be able to observe everything, it may be able to

hypothesize (which is a reasoning process) on the basis of the observations it has been

able to make. Indeed, such a process will require agents to have powerful processors

and large memories, requirements which were not economically satisfiable in the past,

but are today, and will be even more in the future.

Sect. 4.8 Towards a Umjying Framework for Intelligent Agent Design

t
I

Observe

inputs

Reason

I

Act

'if

commands

Figure 4.14. Observe-reason-act control structure.

75

To be sure, "reasoning" does not necessarily imply a great cost in terms of

resources, but does imply a costly, time-consuming process. As efficiency is certainly a

major design objective, how can we propose to perform the reasoning step, which is a

potential bottleneck, in the middle of an agent's control loop? The key here is to real­

ize that not all actions need to be based on "reasoned observations." Therefore, we do

not want a hard design constraint stating that, in order for an agent to take actions,

it must do some type of reasoning. The solution is to have a framework which allows

reasoning to take place, but does not preclude a simple observe-act control path for

fast reactions.

4.8.2. Architectural Framework

The framework for an agent's control architecture must capture the observe­

reason-act control loop as discussed above. It must have components addressing each

of the three (observe, reason, and act) processes. Further, the interfaces between

these components must reflect their functional relationships. Such a framework is

displayed in Figure 4.15.

76 Principles a.nd Techniques

Belief

Manager

-----f---i--------- {Reason) -----------1

I

Sensory Input

Interpreter

{Observe}

inputs

Hypothesis

Generator

Reflex

-~ Gener.

I
I +
I
I Ex peri-
I
I ment
I
I Gener.
I

{A c
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

t)
I

commands

Figure 4.15. Agent framework.

Chap. 4

I ...,

Action

Gener.

Notice that the framework indeed has an observe-reason-act structure: observa­

tions enter the Sensory Input Interpreter, reasoning may then take place between the

Hypothesis Generator and the Belief Manager, and finally actions are issued by the

Action Generator, the Experiment Generator, or the Reflex Generator. Before going

on, the word "generator" in these logical blocks is used in the sense that their main

function is to produce something after a potentially elaborate processing of their

inputs, similar to the way a code generator produces machine code based on the inter­

mediate results of the processing of a higher-level program description. These genera­

tors may simply produce results through a simple table-lookup, or by applying a set of

rules. The word "generator" is not meant to mislead the reader into thinking that

some form of creativity, with all the nebulous connotations of this term, is required in

these logical blocks.

4.8.3. The Observa.tionjlnterpreta.tion Structure

The blocks called in Figure 4.15 the Sensory Input Interpreter, the Hypothesis

Generator, and the Belief Manager, make up the observation/interpretation structure.

A useful way to view these blocks is as a stratification of information inside an agent.

Sect. 4.8 Towards a Umjying Framework for Intelligent Agent Design 77

Raw input signals (i.e., observations) enter at the bottom, and through an interpretive

process are transformed into information which rises to higher levels, representing pro­

gressively higher degrees of abstraction. What form this information takes on, and

the definition of the appropriate degrees of abstraction, will depend on the applica­

tion.

Abstraction is useful because an agent's observations give only partial informa­

tion and indirect clues as to the real state of the distributed system. Sometimes, these

observations may even be misleading (e.g., the received state information from a

remote agent may not correspond to that agent's current state). Yet, this information

may imply a set of possible states, which constitute a single abstract state. This lim­

its what real states the agent needs to consider. The agent can decide to get more

information to reduce further the number of possible real states. At some point, the

agent's decision becomes insensitive to the distinction between these possible real

states, and so it can be made without any further ado, even though the real state is

not known with complete certainty. Thus, the production and the maintenance of this

stratification of information allow actions to take place at different degrees of abstrac­

tion; actions can be triggered by changes occurring at the different levels of reasoning.

Let us now look at each logical block in the framework in more detail. The Sen­

sory Input Interpreter accepts inputs from the environment. These inputs derive

either from the agent's private source of work (s1(t)), or from communications with

other agents (z1(t)). We use the name 11 sensory input interpreter" to denote the act of

sensing followed by a simple act of interpretation. Although more generally the term

"sensing" brings to mind probes sensing physical phenomena such as light or tempera­

ture changes, our sensing is purely information-based. (There is nothing, however,

that precludes using our framework for agents which interact more directly with a

physical environment). The simple interpretation of input may consist of updating

counts or statistics, detecting threshold crossings, or modifying a probability that

represents a measure of confidence about some piece of state information.

Up one level, the Hypothesis Generator produces hypotheses (e.g., about possible

states). The reception of a new observation from the Sensory Input Interpreter, and

the interpretation of this observation in light of current beliefs, will cause the produc­

tion of a particular set of hypotheses, where each hypothesis has an associated proba­

bility, a measure indicating the chances that the hypothesis is true. These hypotheses

explain the new observation in terms of its implications about the system state; in

fact, these hypotheses may be regarded collectively as a single super-state comprising

all the system states it implies along with a probability distribution function defined

over these possible states. The probabilities are defined by the past behavior of the

system (e.g., by the frequency counts of past states). Note, however, that new

hypotheses do not necessarily imply that new observations have been received; in fact,

the lack of a new observation (e.g., of an expected message from a remote agent which

does not arrive) may cause the generation of new hypotheses.

78 Principles and Techniques Chap. 4

Hypotheses go through a process of acceptance or rejection. This process is real­

ized through the modification of probabilities assigned to all hypotheses. As a

hypothesis gains more support, its probability is raised. Similarly, as a hypothesis

loses support, its probability is lowered. When a hypothesis's probability rises above

a high threshold (e.g., .8), it becomes a belief, and all competing hypotheses are

rejected. A number of experimental systems have been built which use different

methods for modifying credibility ratings for hypotheses based on the reception of new

pieces of evidence, such as MYCIN [Shor75], Prospector [Duda76J, Distributed Hear­

say II [Less80], AL/X [Reit81], and SPERIL [Ishi81], to name a few.

The uppermost level of Figure 4.15 contains the Belief Manager. In it reside

hypotheses which have been accepted over competing hypotheses which were eventu­

ally rejected. Beliefs must be managed in the sense that they must be stored in a

database, and they must be mutually consistent (i.e., there can be no contradictory

beliefs). Thus, every time a new belief is created, the Belief Manager must verify that

it does not contradict existing beliefs. If there are contradictory beliefs, they must be

removed from the database. This activity is commonly called truth maintenance

[Doyl79].

4.8.4. Actions at Different Levels of Abstraction

The framework in Figure 4.15 provides for different types of actions at different

levels of abstraction that an agent may take, based on observation and reasoning. An

action at a particular level of abstraction is triggered by a change in information

occurring at that same level of abstraction in the observation/interpretation structure.

At the lowest level is the Reflex Generator; it produces actions which are trig­

gered by changes occurring in the Sensory Input Interpreter. As the name implies,

reflexes are quick responses to a simple first-level interpretation of new observations,

such as the detection of a threshold crossing. These actions are not based on reason­

ing, thus establishing a simple and fast observe-act control path.

At the next higher level is the Experiment Generator, actions which are triggered

by the Hypothesis Generator. When a set of competing hypotheses are generated, it is

desirable for the agent to determine which is the correct one, or, at least to reduce

their number. The agent can passively wait for new information to arrive, or it can

take an active role by generating a simple test designed to rule out some of the

hypotheses. These tests are preprogrammed and attached to their corresponding set

of competing hypotheses so that, when that set is proposed, the test is invoked. The

test may cause actions at remote agents, through the sending of messages. This

causes new observations (or the lack of expected observations), providing further

information for modifying the probabilities of the competing hypotheses. The combi­

nation of the Hypothesis and Experiment Generator implement what is commonly

called the hypothesize-and-test problem-solving paradigm. (See [Less80] for an appli­

cation of this paradigm to the problem of distributed interpretation.)

Sect. 4.8 Towards a Umjying Framework for Intelligent Agent Design 79

At the highest level is the Action Generator, triggered by the Beliefs Manager.

At this level, calculated actions based on the agent's reasoning capabilities take place.

These are high-level heavy-weight decisions, in the sense that they have wide-ranging

effects, and therefore are not to be made lightly. From the point in time particular

inputs are received, an action at this level will occur after a relatively much longer

time than a reflex. Although reflexes occur on a frequent basis, and their effects are

quickly perceived and short-lived, the effects of high-level actions may not fully occur

or be perceived until a much later time, but are expected to be long-lasting. These

actions may be viewed as implementing global goals.

4.8.5. How the Framework Incorporates Our Principles

As the reader may have already noticed, our principles for constructing approxi­

mate solutions for decentralized control are present within our framework, whose pur­

pose is to unify them.

The framework encourages a knowledge-based solution through the use of rules

that transform information into more abstract information (i.e., control flowing up the

left-hand side of the framework), or rules by which new information causes different

types of actions (i.e., control flowing down the right-hand side of the framework).

The application of knowledge abstraction is present in the

observation/interpretation structure. Information is received by the Sensory Input

Interpreter, causing higher-level abstractions to be generated by the Hypothesis Gen­

erator and the Beliefs Manager.

Quantification of uncertainty initially takes place at the Sensory Input Inter­

preter, where an observation is given an initial measure of confidence. This measure

may depend on a number of factors, such as the transmission time between sender

and receiver, and the presence of noisy channels. The generation of hypotheses also

involves uncertainty quantification. For example, in computing a conditional

expected utility (i.e., a belief about the desirability of a remote agent), a number of

possible states (i.e., hypotheses) are considered with appropriate probabilities. In

other cases, it is desirable to consider the hypotheses more carefully by generating

experiments to acquire more evidence before arriving at a belief. Again, this involves

modifying a measure of confidence. Note thaL in all cases, the principle of integrating

information aging in decisionmaking is also involved, as the probabilities of

hypotheses will generally change over time due to the system's dynamic nature.

The use of directional heuristics is made manifest in the reason-act part of the

framework. In particular, the separation of actions into three different types is a

direct consequence of the principle of using directional heuristics. Consequently,

different actions can be triggered by different levels of reasoning depending on their

expected tendencies (which may be positive at some levels but negative at others) to

increase utility.

80 Principles and Techniques Chap. 4

The principle of frugal communication is present in the framework's emphasis on

reasoning about observations, and creating hypotheses and beliefs, before acting. The

idea is that hypotheses, and, to a greater degree, beliefs, are valid for longer periods of

time than observations; consequently, what can be inferred by hypotheses and beliefs

replaces the need for extensive communication. When information becomes too unc­

ertain, causing the generation of a large number of low-confidence hypotheses by the

Hypothesis Generator, it is the Experiment Generator which causes a request for a

state update from a remote agent. On the other hand, when a belief about the local

state changes (which may cause a number of hypotheses indicating that other agents

have incorrect information), either experiments can be generated (e.g., to inquire

whether remote agents do indeed have incorrect information), or a high-level action

can be generated (e.g., broadcasting the new information because of the assumption

that remote agents have incorrect information).

Finally, the principle of SPACE/TIME randomization is used to raise the

efficiency of hypothesis generation and belief management. It limits the number of

hypotheses which must be considered by minimizing the possibility of mutually

conflicting decisions. Since this also limits the possibility for what an agent may con­

sider a contradiction (e.g., a locally optimal decision creates a global disaster) the rate

at which truth maintenance of beliefs takes place is reduced.

4.9. Summary of Principles

In this chapter, we presented a set of seven design principles for constructing

approximate solutions to decentralized control problems. The principles are as fol­

lows:

• Adopt a knowledge-based solution: incorporate all special-case knowledge

about the problem as an integral part of the decisionmaking process.

• Apply knowledge abstraction: summarize information into a form which can

be utilized and communicated more efficiently.

• Quantify uncertainty: explicitly account for information uncertainty m

decisionmaking.

• Use directional heuristics: select decisions based on their tendencies to

increase utility.

• Integrate information aging m decisionmaking: condition expected state

utility on the age of information.

• Communicate frugally: communicate only when the cost of the consequences

of using out-of-date information in decisionmaking exceeds cost of communica­

tion overhead.

• Avoid resonances using SPACE/TIME randomization: randomize over

the space of good decisions and over the time during which these decisions can be

made to avoid mutually conflicting decisions between agents.

Sect. 4.9 Summary of Principles 81

We also presented a framework for the design of intelligent agents, which 1s

based on our principles.

CHAPTER 5

DECENTRALIZED LOAD BALANCING

In this chapter, we consider the general problem of balancing the load over multi­

ple computers. Although there are many formulations of the load-balancing problem

(see [Casa88] for a survey), we will limit ourselves to ones where control is decentral­

ized; all computers take part in making load-balancing decisions. This problem is

used as a vehicle for demonstrating the application of the principles and techniques

outlined in the previous chapter. We will use the formalism developed in Chapter 3

to describe the problem in more precise terms. The reader may wish to refer to the

model summary in Section 3.2 during the following discussion. This chapter is limited

to a discussion of applying our methods to the general problem of load balancing. In

the next chapter, we will present results of experiments for a particular load-balancing

environment.

The chapter is organized as follows. In Section 5.1, we give a brief description of the

load balancing problem using the formalism developed in Chapter 3. In Section 5.2,

we discuss the design of an abstract state space appropriate for load balancing and,

how the decision space affects the design. In Section 5.3, we present types of domain

specific knowledge which are useful. In Section 5.4, we discuss the design of state

transition models. In Section 5.5, we present measures for comparing the desirabilities

of agents. Finally, in Section 5.6, we discuss the rational decisionmaking process of a

load-balancing agent.

5.1. Formal Description

An agent A 1 E A is a computer system supporting the execution of ;"obs. A job is

some finite amount of work w E W. For each job it receives, an agent A.i makes a

load-balancing decision d1 E D 1 to execute the job itself, or to transfer it in a network

to some other agent A 1. The global objective is to minimize the average time a job is

delayed during its execution due to its contention with other jobs seeking execution

and due to its possible network transmission from one agent to another if offioaded.

\Ve will make this objective more precise after defining the abstract state spaces of

agents.

5.2. Abstract State Space

We mentioned in Section 4.2 that, in general, an agent's low-level state space X 1

is never used directly in decisionmaking. Rather, an abstract state space, where each

state represents a (possibly large) number of low-level states, is needed. The construc­

tion of this abstract state space is driven by the needs of decisionmaking. It must

82

Sect. 5.2 Abstract State Space 83

discriminate the possible situations which could trigger any of the agent's possible

decisions. Thus, let us identify these possible decisions.

We distinguish between two types of decisions an agent will make: problem deci­

sions and communication decisions. Problem decisions are those which have to do

specifically with the particular problem at hand, in this case, load balancing. The

decision to execute a job locally, or to transfer it to another agent, is a problem deci­

sion. An agent's decision rule li pertains to problem decisions.

Communication decisions are those having to do with maintaining global state

information for each agent. The decision to send an update of the local state to

remote agents, and the decision to inquire about a remote agent's state are communi­

cation decisions. These decisions are common for agents taking part in any type of

decentralized control (although parameters such as the update period '''ill be problem

specific). Thus, they are dealt with separately, using a mechanism independent of the

problem decision rule li·

Given the stated load-balancing decisions, an agent must be able to discriminate

among the following situations. It must recognize whether it is overloaded or not, to

decide whether it should execute a job locally. It must recognize whether remote

agents are underloaded or not, to decide where to transfer a job if it is overloaded.

Thus, we see there are at least three necessary abstract states: overloaded, under­

loaded, or neither, which will be called normal.

How are these abstract states recognized? Ultimately, an agent must be able to

reflect on some aspect of its low-level state, and quickly determine the correct abstract

state. Such a readily accessible portion of the low-level state was defined as an indica­

tor, I(x1). A good indicator of load for load balancing is the number of jobs ready for

execution (see [Ferr86] for an investigation of load indices for load balancing). Thus,

we will require agents to maintain in their primary memory, for quick access, the

current value of this number, which we call the instantaneous number of ready jobs,

denoted by R1•

The instantaneous number of ready jobs was chosen as an indicator for a number

of important reasons. First, since it is a single quantity, it allows differentiation

between the necessary abstract states using the following simple rules:

if R, < Ru then underloaded

else if R 1 > R 0 then overloaded

else normal

Ru and R 0 are experimentally determined thresholds, and R 1 is a time-average over

recent past values of R1 (to be discussed shortly). Second, it has relationships to com­

munication overhead and expected job delay, two quantities whose importance will

become apparent below. These relationships are easily determined, and will be used

for predictive purposes. Third, a simple stochastic model describing how R1 changes

over time, also to be used for prediction, can be conveniently realized. Fourth, and

84 Decentralized Load Balancing Chap. 5

most importantly, there is strong theoretical support under assumptions that are not

unreasonable that R1 is a good indicator of load [Ferr86] (which is also supported by

experimental evidence [Ferr88]).

As presented so far, the abstract state y1 (t) could simply be defined as the value

of I(x1(t)), which equals R1(t); i.e., the current state could just be the current instan­

taneous number of ready jobs. This would not work well though in a system where R1

changes rapidly. A common scenario is that R1 fluctuates rapidly about a more slowly

changing fundamental variation. (\Ve have observed this in our experiments

described in Chapter 6. Similar observations are reported in [Ferr88] and [Zhou87].)

It is this fundamental variation which is of most interest.

One way of extracting this fundamental variation is to consider the sequence

Ri(t),Ri(t+T$),Ri(t+2Ts), ···,where Ts is the sampling period for I(x1). Note that

!(xi) can change at the rate at which x.-, the low-level state, changes. Even if it were

possible, monitoring every change in J(x1) would be unnecessary, hence the reason for

sampling. T8 should be small enough that the Nyquist criterion is satisfied, i.e., that

1/ Ts is greater than twice the base frequency of R1. Standard Fourier analysis tech­

niques can be used to determine this frequency. (Note that a very high base fre­

quency would indicate a poor choice of indicator.)

If this sequence is considered as a time series R1 (n), R, (n + 1), R1 (n + 2), · · · ,

where n is the index of the sampling period, filtering techniques can be applied to

remove very high frequency components, leaving only the fundamental components.

In Section 4.5.2, we discussed the use of a moving average and autoregression tech­

niques for filtering. We will use the following simple autoregressive model (based on

(4.4)):
(5.1)

where w is a constant between zero and one. This has the effect of averaging samples

of the time series of the instantaneous number of ready jobs over the recent past.

How much weight is given to the recent past is determined by the value of w.

Define the number of ready fobs B.- (n), for time period n as the closest integer to

Ri(n),
(5.2)

Finally, the value of agent A.-'s local state at time t is simply the number of ready

jobs during time period n which contains t,

(5.3)

Therefore, the abstract state space Y 1 is the set of non-negative integers, up to some

maximum Bmax· The size of Yi is limited because of the finiteness of the memory of

real machines. If agents are heterogeneous, they can have different values for Bmax.

We will assume a homogeneous set of agents to simplify our discussion; therefore, they

will all have the same value for Bmax. Thus,

Sect. 5.2 Abstract State Space 85

Yi = {0, 1, 2, ... ,Bmax}, for all i.

For purposes of exposition, we have so far ignored the distinction made in Sec­

tion 4.5.2 between the state spaceY, and the measure A-f(Yi), y,EYi, defined over the

same state space. We now make that distinction precise. The current abstract state

Yi(t) can take on, as its value, any of the state identifiers in Y,. When necessary, we

will use the symbol 0 to refer to one of these state identifiers. Each of these states also

has a numerical value, defined by the measure .i\1(0). A1 simply maps state 0 to the

integer value it represents. When necessary, we will use the symbol (3 to refer to one

of these integers.

Summarizing, the current abstract state Yi(t) is 0, where M(O) = (3 is agent A,'s

number of ready jobs, as defined by (5.1) and (5.2). The abstract state space Yi is

the set of symbols representing all the possible values of Bi, which are the non­

negative integers up to some maximum value Bmax.

Since the symbols of the state space and the values of the measure defined over

that space have a one-to-one correspondence, there is no need to burden the reading

of this text by maintaining this distinction, so long as the reader understands that it

does exist. In the few cases where the distinction must be made, the reader will be

alerted.

5.3. Domain-specific Knowledge

To conquer uncertainty, agents are given knowledge specific to the domain of

load dynamics. This knowledge is gathered by observing variables of interest, such as

Bi, and noting specifically how they change over time. Most of this knowledge can be

acquired offline, applying time-series analysis to past histories of these variables.

Knowledge can take on many forms, which depend on the problem. Our analyses

will produce some knowledge in the form of a number of models of load dynamics.

An agent can use these models to predict what state the system is in, given past state

information. Since it is desirable that the reliability of the predictions be quantifiable,

probabilistic models are used. These models are convenient since they encode very

economically a great deal of knowledge about agent activity.

Unfortunately, not all knowledge can be expressed succinctly in terms of simple

models. For example, when an agent receives a job, it must make a prediction about

how much processing time the job will need. This can be done by consulting a table,

which has recorded the amount of processing time that similar jobs needed in the

past. This table is really a set of special-case rules, each one stating: if this is a job of

type x, then it will need y units of processing time. Consequently, information which

is unstructured, and cannot be generalized as a parametric model, can always be

expressed as a set of special-case rules.

Finally, we note that knowledge can be represented by rules which indicate which

models to use. Thus, from a large set of models, where each model applies to a

86 Decentralized Load Balancing Chap. 5

limited situation, a selection can be made based on rules, which test which situation

applies. Even this form of knowledge is used in our load-balancing study.

5.4. Designing State-transition Models

An agenes abstract state space is defined to be the set of non-negative integers,

up to some maximum value, and each state represents a possible value of the number

of ready jobs in the agent. Given the value of a past state, an agent can predict a

future state using a state-transition model. Our model will be probabilistic rather

than deterministic; that is, it will provide for a set of possible future states, with

assigned probabilities. These probabilities quantify the reliability of the model's pred­

ictions.

We will assume that state changes occur at discrete points in time, with some

period T as the discretization period. (This period T need not necessarily be the same

as the sampling period T6 , although it is convenient when Tis a multiple of T8 • To

simplify our discussion, we will assume that T = Ts.)

When we speak of agent Ai going through a sequence of states 00 , 01 , 02 , starting at

timet, we mean that Yi(t) = 00 , Yi(t+T) = 01 , Yi(t+2T) = 02 • In Section 4.5.2, we

discussed the relationship between the abstract state space and the period T, and saw

that the larger this period T, the smaller the rate of state change. A large T is desir­

able for many reasons, most importantly that uncertainty grows more slowly in time if

the rate of state change decreases. The slower the increase in uncertainty, the greater

the confidence in inferences about the current state based on past state information,

and the lesser the need to update state information through communication.

A particularly useful model is one which has the Markovian property: the proba­

bility distribution of the next state Yi((n+l) T), given the past states y1(0) = 00 ,

Yi(T) = 01, ... , Yi((n-l)T) = On_1 , and the current state Yi(nT) =On, depends only on

the value of the current state, not on those of past states. A first-order Markov model

can be conveniently represented as a matrix of one-step transition probabilities P,

with the n-step transition matrix given by pn. This allows one to derive a set of pos­

sible states, along with their probabilities, given any past state, which is exactly what

our agents must be able to do.

5.4.1. Load Levels and Degree of Variability

Load balancing deals with the natural fluctuations of the loads, and their conse­

quent imbalances among different agents, by redistributing them. These fluctuations

are caused by the unpredictable increases and decreases in the rate of job arrivals, and

the unpredictable amount of work each job brings in. We make the following

assumption, based on empirical evidence from our experiments described in Chapter

6, about the pattern of load fluctuations: the load does not change in a continuous

fashion; rather, it remains constant, at some load level for an unpredictable interval of

time, after which it changes to a new load level, where it then remains constant for

Sect. 5.4 Designing State-transition Models 87

another interval of time until the next change. (See Figure 6.6 in Chapter 6 for an

illustration of this behavior.) The lengths of time over which these changes take place

are very short relative to the intervals of time the load remains constant. This is a

good example of domain-specific knowledge, of which our agents will take advantage.

Note that the load level and the fundamental component of the variation in the

number of ready jobs as defined in Section 5.2 are not the same. The purpose of iden­

tifying the fundamental component was to remove high-frequency components from

the time series of instantaneous number of ready jobs by taking a short-term average.

As for the notion of load level, it embodies the idea of plateaus within the long-term

fluctuation of load. Their relationship manifests itself as the relatively continuous

movement of the fundamental component of variation about a temporarily fixed load

level. (See Figure 6.6 in Chapter 6 for an illustration of the relationship between the

fundamental component and the load level.)

To make this more concrete, we now pose it in terms of how an agent's abstract

state changes. The time behavior of load Bi will be characterized by two quantities: a

long-term average of Bi, denoted by Li; and the average difference between Bi and L,,

denoted by Vi. The idea is that Li represents the load level, which should remain

constant until a significant change in load takes place, and Fi is a measure of the

degree of variability of Bi about Li.

Let MAL(n) be a moving average (see (4.3)) of the past NL loads,

Nr
MAL(n) = l:wkBi(n-k)

k=O

(5.4)

and let MA v(n) be a moving average of absolute differences between Bi and Li for

the past N v loads,
Nv

MAv(n) = l:wk'l Bi(n-k)- Li(n-k)j.
k=O

(5.5)

The symbols w0 , w1 , ... , w0 ', w1 ', ... , represent weights of constant value, which are to

be determined by design and experimentation.

Let HL be the minimum significant change in Bi, according to some definition of

significance. Similarly, let H v be the minimum significant change in the variation of

Bi about the load level. Finding good values for HL and H v will depend on experi­

mentation. · Good values for HL and H v will cause Li and Vi to change slowly (e.g.,

with a period much larger than period T), and they will both represent long-term

averages about which Bi(n) and B, (n) - Li(n), respectively, fluctuate.

We approximate Li by rounding the value of MAL(n) to the nearest multiple of

HL· To avoid fluctuations of Li when MAL(n) varies closely about the midpoint

between multiples of HL, hysteresis is to be added. We thus define Li as a function of

n as follows:

88 Decentralized Load Balancing

l
ROU.l\rD(.MAL(n), HL) if MAL(n) > Li(n-1) + HL/2 + h

L1(n) = ROUND(MAL(n), HL) if MAL(n) < Li(n-1)- HL/2- h

L1(n-1) otherwise

Chap. 5

(5.6)

To compute ~'i, recall that it represents a measure of B/s variation about L1.

\Vhen L1 changes (i.e., when L1(n) =/=- L1(n-1)), a new value for Vi must be esta­

blished, regardless of its previous value. Let Nc(L1(n)) be the number of time periods

during which L1 has not changed (i.e., Li(n) # Li(n- Nc (Li(n)) -1) but

L1 (n) = L1 (n-k) for O~k<Nc(L1 (n))). Thus, in computing the moving average

MAv(n), Nv is the minimum of NL, the number of past states used in the MAL mov­

ing average computation, and Nc(Li(n)), the amount of time Li has remained con­

stant.

Consequently, we will define l'1 (n) as follows:

l
ROUND(MAv(n), Hv) if MAv(n) > V,(n-1) + Hv/2 + h

V1(n) = ROUND(MAv(n), Hv) if MAv(n) < l'1(n-1)- Hv/2- h

l'i(n-1) otherwise

5.4.2. The Agent State-transition Model

(5.7)

With this characterization of the load in terms of a load level and a degree of

variability in mind, we can now design an agent's state transition model. The model

should allow an agent A1 to predict the possible states of another agent A;, based on

.4.i's most recent reception of information about A;.

Recall from Section 3.2 that kj1(t) represents At's current state information about

Aj· Rather than sending each other the value of their number of ready jobs B1(n),

our agents will exchange their load levels and degrees of variability, i.e., L1(n) and

V,(n). This information is in a sense more valuable than simply the value of B1(n),

as that value is true for a single point in time, but may change very quickly (within

one period T). The load level and the degree of variability change much more slowly,

and therefore do not need to be communicated as often. Consequently, the prediction

of the current state based on the load level and on the degree of variability is likely to

be more effective than if it were based simply on information about the most recent

state.

Thus, we define

Kji(t) = (Lj(n-a1i·), Vj(n-aji)),

where t=nT, aji = ajiT, and t- aji is the time Ai recorded this information and

subsequently sent it to A 1• Thus, afi is the age of this information in units of time,

and aji is the same age in terms of time periods.

Sect. 5.4 Designing State-transition .\1odels 89

The agent's state-transition model should say, given Kji(t), what possible states

Ai is currently in, and what the respective probabilities are. This model should have

the following properties:

(1) it should be Markovian;

(2) given that L1(n) =). has not changed in the interval of time periods [n-aii, n],

the probability that B1(n) is greater than). should equal the probability that

B1(n) is less than..\. More generally, we would like E(Bj(n) I Lj(n-aii) = >.) =
..\;

(3) the variance of (B1(n) I L1(n-a1i), should grow with increasing Fi(n), and with
. .
mcreasmg a ji.

The actual state transition model is given by

p(Bj(n) = {J I Lj(n-k) = ..\, l'j(n-k) = v) = [P~]Ap, (5.8)

where [P~]Ap is the element in row). and column {J of the k-step state transition pro­

bability matrix P~, P v is the one-step transition matrix of size Bmax x Bmax' defined

by

0 0 0 0

Pv 0 0 0

0 Pv 0 0

0 0 Pv 0 0
(5.9)

0 0 0 0 Pv

0 0 0 0
2 2

This model has many good qualities: it is simple; it has the properties described

above; it can be stored efficiently; and it can be evaluated efficiently (or pre-evaluated

and stored as a table, for quick lookup afterwards). The parameter Pv is the probabil­

ity that A i will remain in the same state after one transition (except for states 0 and

B max, for which the probability of remaining in these states after one transition 1s

(1 + Pv)/2). It is a decreasing function of Vi (hence the subscript v),

90 Decentralized Load Balancing Chap. 5

(5.10)

Thus, the greater the degree of variability, the greater the probability of moving

to a higher or lower state, and therefore the lesser the probability of remaining in the

same state. The exact relationship between Pv and Vi is determined experimentally.

We call this model the steady-state response model, in that it bases its prediction

on the fact that the remote agent's load is assumed to be at the same load level since

the reception of the load level information. Thus, the agent is in a steady state: to

remain at the same load level, the load, determined by the arrival rate of jobs from its

private source and from agents transferring jobs, and the mix of job types, has essen­

tially remained the same.

An agent also needs a model for predicting what would happen if it offioaded a

job to a particular agent. Given such a prediction, it can calculate whether utility

will go up or down, and thus make a rational decision. For load balancing, our agents

use the following simple model (so simple it can be stated as a single rule):

if a job is offioaded to A j, L j will increase by 1.

We call this model the transient response model in that it is used to predict a

future state based on the expectation that the remote agent's load level will change.

This is in contrast to the steady-state response model, where the load level remains

constant. Note that there is an implicit assumption that an offioaded job will have a

significant effect on the receiving agent's load level, specifically, that the load level will

go up by one. This implies that, in general, the types of jobs that are offioaded are

those that will execute for a relatively long time, long enough to affect the long-term

average of Bi.

5.5. Measures for Comparing the Desirabilities of Agents

Load-balancing decisions require an agent, that wants to offload a job, to be able

to tell which remote agent, if any, is best for receiving the job. In general, the remote

agent with the "best" state, i.e., the state representing the presence of the smallest

number of ready jobs, is not necessarily the one to which jobs should be offioaded.

The main reason, illustrated in Section 4.5.3, is due to the uncertainty of information

about these remote agents, and the nonlinear relationship between the measure of an

agent's state and its utility. This results in situations where, for example, a remote

agent with a reported load level of 4, which was reported 1 second ago, may be more

desirable as the destination than a remote agent with a reported load level of 0, but

which was reported 20 seconds ago. There is also the factor of distance: an agent

which is far away is generally less desirable than a close one. Thus, we need a way of

measuring the utility of an agent, given the uncertainty of the information about its

number of ready jobs and its distance.

Sect. 5.5 Measures for Comparing the Desirabilities of Agents 91

5.5.1. Computing liD Agent's State Utility

Let us first consider the utility of the states of an agent. The objective is to

minimize job delay; thus, we will define utility to be a measure of negative expected

job delay, given the agent's state which represents its number of ready jobs. (Utility

is a quantity to be maximized, and job delay is to be minimized, hence the reason for

equating utility with negative job delay.)

Let elap(w, /3) be the total elapsed time of job w, given /3, which is the time­

averaged number of ready jobs during the lifetime of job w.

elap (w, /3) = total elapsed time.

In general, elap(w, /3) increases with increasing /3, for a given job w. Since we

assume a homogeneous set of agents, the elap function is the same for all of them.

A job's execution time, the total time spent by an unloaded machine executing it,

lS

elap(w, 0) = total execution time,

since there are no other jobs to interrupt job w. Thus, the factor by which job w's

elapsed time increases when there are a total of /3 jobs (including w) contending for

the machine is

elap (w, !3)
elap(w, 0) '

(5.11)

which we call the stretch factor. We define the quantity J.t(/3) as the negative stretch

factor. The value of J.t(/3) reaches its maximum (which equals 0) when /3 = 0, and

decreases with increasing /3. We now determine its shape.

To construct J.t(/3), we must have a model of how jobs get control of the CPU. In

particular, this model must tell us how much time is spent executing all jobs, and how

operating system overhead is accounted for. Suppose that there are /3 compute-bound

jobs, and that each takes the same amount of time elap(w,O) to complete if any one of

them were placed in an empty system. But since there are /3 of them, we would

expect them to take at least /3 · elap(w,O) to complete, given pure processor-sharing

scheduling. Thus, we have

elap(w, /3) ? /3 · elap(w,O).

This would be an equality if there were no overhead, which is never the case in real

systems.

Let us use a very simple model for overhead. Let

/3
fovtrhtad = -

13
-- < 1
max

(5.12)

be the fraction of time attributed to overhead functions by the CPU. It is a linear

function of the number of ready jobs: the more jobs it has to schedule for execution,

92 Decentralized Load Balancing Chap. 5

the more overhead. f3max is a constant representing the number of jobs which causes

the CPU to spend all its. time scheduling, therefore never getting any work done.

(Note that !3max must be greater than Bmax, the maximum number of ready jobs, oth­

erwise an agent might get into an undesirable state where it would never get any work

done.)

Given a number j3 of ready jobs, the fraction of time the CPU can spend execut­

ing jobs is

!3
!executing = 1 - -

13
--.
max

(5.13)

Using these models, we can now say that a job w, in a system where the number of

ready jobs is /3, would take the following amount of time to complete:

elap(w,/3) = !3. elap(w,O)
1 - J3 I J3max .

The function p,(j3) then becomes,

p,(j3) = - !3
1 - J3 I J3max .

Given p,(j3), we define the local utility of agent Ai as,

ui(8) = p,(/3), M(8) = /3, for all i,

(5.14)

(5.15)

(5.16)

where Ai is in state 8, and M(8), the measure of state 8, is the numerical value /3.

Since our agents are homogeneous, they all share the same local utility function, given

by p,(j3).

Note that utility is not a linear function of the agent's state. This has a pro­

found effect on decisionmaking when remote agents' states are not known with com­

plete certainty. We explore this in more detail in Chapter 6.

5.5.2. Conditional Utility with Respect to Job Offioading

An agent's state utility indicates its ability to execute jobs, measured in terms of

(the negative of) the expected increase in the job's elapsed time relative to its execu­

tion time. This measure, as defined by (5.15), depends solely on the jobs already

present at that agent, and contending for the CPU.

Consider now the problem of agent Ai, who is trying to determine which agent, if

any, is the best destination for a job w. Let us assume for a moment that Ai knows,

with complete certainty, the state of every other agent, so that it can compute uj(Yj),

for all j. Further, assume that Ai is the only agent making an offioading decision, so

that a resonance is impossible. Would the best destination agent for w be the one

with the maximal utility?

The problem here is that Ai must compute the utility of a future state of Aj,

that which will occur if job w is offioaded there. This computation depends on

Sect. 5.5 Measures for Comparing the Desirabilities of Agents 93

knowledge which only Ai has, namely that w is being considered for offioading to A 1.

Therefore, A j's future state utility is conditioned on knowledge possessed by the agent

who is computing the utility. The difference between this conditional utility and the

previous absolute utility is that conditional utility depends on the viewpoint of the

computing agent, whereas absolute utility does not.

There is also the less subtle problem of accounting for network delays. If the

delay in time due to the network transmission of a job from one agent to another is a

significant factor, as is most likely if the agents are distributed over a large geographic

area, conditional utility will be affected. This is because utility was defined as the

negative stretch factor. Previously, this quantity was solely due to CPU contention;

network delay, is now a factor to be taken into account. The network delay will gen­

erally be a function of the job size {including the size of data files associated with the

job), and of the distance between the agents.

Thus, agent Ai is no longer just interested in A j's current state. It is interested in

its future state, conditioned on the probability of offioading a job to it, and condi­

tioned on the time it takes to transmit the job to it. We now formalize this notion of

conditional utility.

Assume that the function netdelayij(w), i.e., the time job w is delayed due to net­

work transmission from Ai to A;, is known. The total elapsed time from the arrival of

w at Ai to the end of w's execution on A J (which has f3 ready jobs just before w's

arrival) is,

netdelayiJ(w) + elap (w, f3 + 1).

The conditional state utility of agent Aj (whose state is 8) from Ai's viewpoint, given

that Ai will offload job w to A 1, is

netdelayi;(w) + elap(w,p+1)
u;i(8,w) = - () , M(8) = p, p < Bmax· (5.17)

elap w, 0

The ratio of a job's network delay to its execution time is denoted by

netdelayiJ (w)
TJi;(w) = - l (0) .

e ap w,

Extending definition (5.17) to include (3 = Bmax, and expressing u1s'(8, w)

definitions (5.15) and (5.18), the conditional state utility is defined by

.. -{ TJi;(w) + .u(/3+1), P < Bmaz, M(8) = p,
u)I (8' w) - - R = B

00 ~ max·

(5.18)

in terms of

(5.19)

Since after the transfer of w there will be fi+1 jobs present at A1, we use .u(/3+1),

assuming A;'s ready job number, p, is less than Bmax· If p = Bmax• a job offioaded to

A J could not be accepted, and would be returned. We consider this to have the

lowest possible utility, -oo. Note also that TJij(w) is independent of Aj's state.

Therefore, conditional utility differs from absolute utility by a constant, but this

94 Decentralized Load Balancing Chap. 5

constant depends on information known only to the computing agent.

Unfortunately, the conditional utility function forces agents to know, or at least

reasonably predict, the execution time a job will need (to compute 1] 1;(w)). The net­

delay function must also be known, but this is less difficult to approximate as it is

often a simple linear function of the distance between agents and of the total job size.

5.5.3. Expected Utility

So far in this chapter, we have assumed that agents know each other's states, and

therefore can compute each other's utilities. Of course, this is an unreasonable

assumption, as has been emphasized in the previous chapters. It is true that, in gen­

eral, agent .4i does not know with complete certainty that, say, the state of .4 J is 0.

But .41 can compute the probability of this, based on past information about .4 1,

(5.20)

Using the usual convention that t = nT, a ji = a11 T, and M(O) = (3, this probabil­

ity can also be expressed as

(5.21)

Consequently, .41 can compute the expected utility of the state of .4 1, based on past

information K11 (t), as follows:

E[u1(y1(t)) I Kji(t)] = ~ uj(O)·p(yj(t)=O I Kj,(t)). (5.22)
9EY;

Since the probabilities in (5.20) and (5.21) are equivalent, (5.22) can be expressed as

Bmax

E[uj(Yj(t)) I Kji(t)] = ~ J.L(f3)·p(Bj(n)=f31 Lj(n-aji), Vj(n-aji)). (5.23)
{3=0

If .4/s information about .41, K 11 (t), is that L1(n-a11) = A., and Vj(n-a 11) = v, then

in terms of the state-transition matrix Pv defined by (5.9), the e:x.-pected utility is

/3m ax

E[uj(Bj(n)) I A.,v,aji] = ~ J.L(f3)·[P~iihf3·
/3=0

(5.24)

Using the expected utility, an agent can make comparisons between remote agents

using information which is, to varying degrees, uncertain.

It is interesting to see the effect of expected utility as a function of the age of the

state information. We will explore this behavior in Chapter 6.

5.5.4. Conditional Expected Utility

We now extend our formulation of the expected utility to include conditional

expected utility. This requires computing the weighted sum of the conditional utili­

ties for each possible state, weighted by the probability that an agent is in that state.

In formula (5.19), which defines conditional utility, if the probability that the agent is

Sect. 5.5 Measures for Comparing the Desirabilities of Agents 95

in state Bmax is non-zero, the entire conditional expected utility will be -oo. Conse­

quently, we will first define the conditional expected utility given that the agent is not

in state Bmax.

Let B represent the case that A i is in state B max,

B = { B j (n) = B max } ,

and let B represent the negative of B, i.e., the case that Aj is not in state Bmax· Let

PB be the probability of B occurring, given KJi(t):

PB = P(B I Kjl(t)).

Define the conditional expected state utility of A i from Ai 's viewpoint, given that A 1

will offload job w to Aj, and that A1 is not in state Bmax' as follows:

E[uji(Yj(t),w) I Kji(t),B] =
1 ~ tl.ji(O,w)·p(yj(t)=O I Kji(t)), (5.25)

1-ps 9EY ;-Bmax

which equals

1
Bmax-1

~ (t] ij (w) + p (,B + 1)) · p (B i (n) = ,B I K ji (t)) .
{3=0

(5.26)

Since the expectation sums over values 0 through Bmax-1 for ,B, it must be divided by

the probability that ,B =!= Bmax' which is 1 - PBmax.

If Ai's information about Ai, K;i(t), is that Lj(n-aji) = >., and Vj(n-a;i) = v,

then, in terms of the state-transition matrix P u' the conditional expected utility is

E[u;i(Bj(n),w) I >.,v,aji,B] =

1
Bmax-1

~ (tJij(w) + p(,8+1))·[P~iihf3·
(3=0

Since t] i; (w) does not depend on /3, it can be taken out of the summation, and we get

E[u;i(Bj(n),w) I >.,v,aji,B] =

1 (B max -1 a .. l
a;, tlij(w) + ~ p(,8+1)·[Pv11 hf3 .

1-[Pu hBmax (3=0

What if Bj(n) does equal Bmax (i.e., B is true)? How is this incorporated into

the conditional expected utility function? This will depend on the job offi.oading poli­

cies, which can vary for different load balancing environments. For example, one pos­

sible policy is that, if Ai offioads a job to A; who already has the maximum number

of jobs it can support, Ai will indicate to A1 that it cannot accept the job. A 1 can

then consider another agent for offi.oading it, or can retain it for local execution. To

simplify matters, if we assume that Ai will keep the job, the conditional expected util­

ity given Bj = Bmax is,

96 Decentralized Load Balancing Chap. 5

(5.29)

By offioading a job to A1 when Ai is in state Bmax' the state utility of Ai is only

affected in that time was wasted shipping w. Since Ai does not accept w, its actual

state is unaffected. (This policy can be improved by making Ai first send a request to

Ai, and then making A 1 wait for a confirmation for acceptance from Ai, rather than

shipping the entire job first. In fact, A i would reply with an update concerning L i

and v1, so that Ai could make a decision based on better information. To keep our

discussion simple, we will not use these improved policies. Once all the models are

defined using the simple policy, it is not difficult to extend them to incorporate the

improvements.)

Note that, although A ;'s state which is B max is unaffected if w is mistakenly

offioaded to it, the state of some other agent, the one who eventually gets the job for

execution, most certainly will be affected with a decrease in utility.

We can now give a complete expression for the conditional expected utility:

E[uji(B;(n),w) I >.,v,aji] =

Bmax-1

:E (TJif(w) + ,u(,8+1))·[P~i•J>.J3 + (TJij(w) + p(Bmax))·[P~jihBmax ·
J3=0

After some simplification, we get

Bmax-1

TJij(w) + :E p(,8+1)·[P~ii]>.J3 + .u(Bmax)·[P~jihBmax ·
J3=0

(5.31)

Finally, we define the conditional expected utility of Ai, given that it offioads job

w to Ai, which may or may not be able to accept it. Let

(5.32)

A1 's conditional expected state utility is based on its local state not changing if A i is

not in state Bmax, but that it will change (i.e., its number of ready jobs will increase

by one) if A j is in state Bmax.

In terms of P v' Lj(n-aji) =). and Vj(n-aji) = v, this expectation can also be

expressed as

E[uii(Bi(n),w) I >.,v,aji] =

(1-[P~iiJ>.Bmax)·,u(Bi(n)) + [P~iiJ>.Bmax ·,u(Bi(n) + 1).

In summary, agents can use conditional expected utility as a measure for compar­

ing the desirabilities of remote agents with respect to offioading decisions. This meas­

ure accounts for the state of a remote agent, including the fact that such information

is uncertain, and for the network delays between agents.

Sect. 5.6 Making Rational Decisions 97

5.6. Making Rational Decisions

How do agents make rational decisions? It will depend on the types of decisions

agents make, i.e., on whether they are problem decisions, which address the transfer of

jobs to balance the load, or communication decisions, which address the maintenance

of an agent's view of the global state. We are now ready to answer this question for

each case. We also consider a method for avoiding resonances, designed specifically

for the load-balancing problem.

5.6.1. Problem Decision Rules

First, we will consider the construction of an agent's problem decision rule.

Recall from Section 3.2 that an agent"s decision d1 is given by the decision rule /i,

The decision rule for agent Ai is a function of all influences Zj affecting it, and the

newly generated work Sj arriving at Ai· The influences are of two types, transferred

work and information. In terms of load-balancing, Ai's decision rule is a function of

the current job arrivals, including those transferred from other agents as well as new

ones, and of A./s information about other agents, Ki(t). The result of the decision

rule is a load- balancing decision: whether a given job should be offioaded, and, if so,

where.

It is the arrival of a job that triggers an agent into making a load-balancing deci­

sion, invoking the decision rule. We will assume that only new jobs (not those which

have already been transferred) can be offioaded. More specifically,

(1) a job cannot be transferred more than once;

(2) if a job is to be transferred, the transfer must occur before the job has executed;

(3) if a job is transferred to an agent which cannot accept the job, the job is exe-

cuted locally.

Note that these limitations are by choice, and not imposed by our formal model.

Having them accentuates the consequences of each load-balancing decision that an

agent makes, since later "corrections" are not allowed. For example, if the decision is

to offload a job to a particular remote agent, and that agent determines this was not a

good decision, it cannot correct it by further offioading the job to another agent.

Similarly, if the decision is to execute a job locally, and later it is found that it would

have been better to have offioaded it, we cannot correct it by later offioading.

An agent Ai has a decision space Di. Since our agents are homogeneous, they

will have the same decision spaces. Thus, the decision space for A1 is

D i = { d 0 , 61 , 62 , • · · , oN},

where decision ok means "offload to agent Ab" for any l~k~N,k=Fi; if k=i, ok is the

decision to execute the job locally. Decision d 0 is the null decision, meaning that no

decision is made, and the job is kept locally but not executed (but may be executed at

98 Decentralized Load Balancing Chap. 5

a later time when another decision is made). Note the difference between the At's

decision variable di, which can take on any value in D 1 , and an actual decision value

d 0 or bk for 1~k~N, which is a particular element of D 1 •

In order to make a rational decision, agents must be able to predict what will

happen to global utility if a particular decision is made. The decision which produces

a maximal positive change of global utility is the best decision. In Chapter 4, we dis­

cussed the problems of computing global utility; approximations were proposed, of

which we now make use. The central idea was to convert a global optimization into

local optimizations, reducing the chance of resonances (caused by the conversion) by a

separate mechanism. We now present the design of an agent's decision rule. The

form of the decision rule is the same for every agent, again due to the homogeneity of

agents.

Agent A/s local optimization considers the change in utility for each possible

decision Ai can make, ignoring all decisions being made concurrently by other agents.

The payofffor di = bj, the decision to offload job w to Aj made by Ai, is defined as

-
A(bj,w) = E[uji(Yj(t),w) I Kji(t)] + E[uii(Yi(t),w) I Kji(t)]

+ ~ E[uk(Yk(t)) I Kki(t)].
k;f.i, j

It is the sum. of the utilities of the states in which every agent is expected to be after

the decision is made. For every agent except A; and Ai, the assumption is that the

state will be the same as what it currently is; therefore, we compute the expected util­

ity E[uk(Yk(t)) I Kki(t)] of the current state based on the past infqrmation. (See Sec­

tion 5.5 for definitions of the expectations used in the formula for A (b 1, w).)

Aj is expected to change its state if it is not already in state Bmax; its number of

ready jobs is expected to increase by one since it is to receive a new job for execution.

Therefore, we use E[uji(Yj(t),w) I Kji(t)], the conditional expected utility of the state

Aj will be in after Ai offioads job w to it, defined by formula (5.31).

Ai, the decisionmaking agent computing the payoffs, must compute its own state

utility taking into account the fact that, if the job being offioaded is not accepted by

Aj, it must be executed locally. Therefore, we use E[uii(Yi(t),w) I Kji(t)], defined by

formula (5.32}.

\Vhen a new job w arrives at agent A. 1 , Ai computes the payoffs A(bj,w) for all

1 ~ j ~ N. It then creates a set of decisions
- -

Dc(w) = {bk: A(bbw);;?: A(bi,w), bkEDi}.

D c(w) is the set of all decisions which Ai can make, that have a payoff greater than or

equal to that of the decision to execute job w locally. It will then make a randomized

selection, to minimize the probability of a resonance, from n; (w). That will be A/s

decision concerning job w.

Sect. 5.6 Making Rational Decisioru~ 99

5.6.2. SPACE/TIME Randomization for Load Balancing

To avoid the situation where agents that have a job to transfer all select the

minimally loaded agent and cause a resonance, it makes sense to randomize selections

over the space of all good candidates as job destinations. In the situation where there

are too few good candidates for the number of jobs to be transferred by all agents,

some agents will delay their transfer for a random amount of time. We are now ready

to describe how this is done specifically for the load-balancing problem.

An agent A1, about to make a load-balancing decision, must first determine if it

should delay its decision. This will depend on the likelihood of a resonance, based on

At's current information about the load levels of other agents,

Agent Ai will determine the number of jobs it expects all agents are capable of

accepting, and the total number of jobs it expects will be transferred by all agents.

We will make use of the thresholds defined earlier, Ru. and R 0 • Recall that, if an

agent's average number of ready jobs is below Ru., the agent is considered under­

loaded, and if an agent's average number of ready jobs is above R 0 , the agent is con­

sidered overloaded.

Let Cb the job capacity of A.k, be the expected number of jobs Ak is capable of

accepting from other agents:

Ck = max(O, Ru. - Lk{n-ak1)), l~k~N.

If Ak's load level is below Ru., then Ak has, on the average, room for Ru. - Lk(n-aki)

jobs.

Let C be the total job capacity of all agents:
N

C = ~ Ck.
k=l

Let Jb the job overflow of Ab be the expected number of jobs Ak has to offload,

Jk = max(O, Lk(n-aki) - R 0).

If Ak 's load level is above R 0 , then A.k has, on the average, Ru. - Lk(n-aki) jobs to

possibly offload.

Let J be the total job overflow of all agents,
N

J = ~Jk·
k=l

Given C and J, should an overloaded agent offioad now, or wait? We want the

agent to make this determination quickly, without having to consult other agents.

Therefore, the agent must consider the likelihood that many jobs might be sent to a

small number of agents. To determine this, we consider the following graph matching

100 Decentralized Load Balancing Chap. 5

problem.

Given a graph with two sets of vertices,

J = ul, jz, ... ' iJ},

and

C = {c 1 , c2 , · · ·, cc},

where the size of J is J, the total job overflow, and the size of C is C, the total job

capacity, let a matching m be a set of edges where, for each edge, one vertex is from

J, and the other vertex is from C, and each vertex in J is incident to at most one

edge. A matching need not include all vertices in J, or in C. Let M(J, C) be the set

of all possible matchings given J and C. Figure 5.1 contains an example of a match­

mg.

•

J c
Figure 5.1. Example of a matching.

A matching has the at-most-one property if the degree of any vertex in C is at

most one. Let M+ (J, C) be the set of all possible matchings that have the at-most­

one property. Figure 5.2 contains an example of a matching with the at-most-one

property.

Sect. 5.6 Making Rational Decisions 101

•

J c
Figure 5.2. A matching with the at-most-one property.

Relating this to the load-balancing resonance problem, J represents all the jobs

that can be offi.oaded, and C represents all the slots available at all agents for those

jobs. A matching is simply a mapping of jobs to slots. A matching with the at­

most-one property is a mapping where no slot gets more than one job, a desirable

situation in avoiding resonances.

A vertex ;"EJ is assigned in matching m if m contains an edge (j, c), cEC. Con­

sider the following algorithm for building a matching mEM. For each jEJ, randomly

decide whether it should be assigned in m or not, with probability

P(j is assigned) = p.

The value of p will be defined shortly.

If j is to be assigned, then randomly select cEC such that each vertex in C has

an equal likelihood of being chosen, and let (f, c) be an edge in m.

If matchings are created in this fashion, then the probability that exactly n ver­

tices of J are assigned in the matching (or, equivalently, that the matching will have

exactly n edges) is

n n-::;;_ C l
(J) p"(l-p)J-n

P(l ml = n) = 0 n > C (5.35)

If a matching has exactly n assignments, what is the probability that the match­

ing has the at-most-one property? The total number of possible matchings given n

assignments is C". The total number of matchings which have the at-most-one

102 Decentralized Load Balancing Chap. 5

property, given n assignments, is simply the number of permutations made up of n

vertices, chosen from the C vertices in C.

c~
P(C,n) = (C _ n)!, O~n~C.

Therefore, the probability that a matching with n assignments has the at-most-one

property is simply

P(C,n)
en

C'
---·--, O~n~C.
(C- n)!Cn

If we now consider m; to be a random variable, representing a matching from

M+ (J, C) created using the algorithm described above, we can determine the

expected number of assignments E(I m; I),
min(J, C) (J) P(C)

E(l m; I) = n~O n n pn(1 - p)J-n C: n . (5.36)

Now, the value of p which maximizes E(I m; I) can be found by differentiating

the expectation in (5.36) with respect to p, setting the derivative equal to 0, and solv­

ing for p:

dE(I m+ I) min(J,C) (J) P(C)
_ _..;_~P- = :E n n :n pn-1(1- p)J-n-1(n- Jp) = 0. (5.37)

dp n=1 C

As an illustration, consider the case where there are J > 1 jobs, but only one slot

C = 1. Substituting for C in the derivative, we get,

min(J,1) (J) P(1) :E n n ~n pn-1(1- p)J-n-l(n- Jp) = 0,

n=l 1

which, after simplification, yields

J(1- p)J-2(1- Jp) = 0.

Solving for p, we get

1
p = -.

J

Intuitively, it makes sense that an agent should decide to offload a job with pro­

bability 1/J if it knows that there are J-1 other potential senders, and only one slot

available. In fact, this is precisely what happens in a distributed system of computers

connected by an Ethernet [Metc76]. If J computers wish to transmit a packet at the

same time, each should randomly decide to do so with probability 1/ J to minimize

the probability of collisions.

A table of optimal p values, given J and C, can then be constructed and made

available to each agent. 'Whenever an agent has a job to offload, it first computes J

Sect. 5.6 Making Rational Decisions 103

and C using its local information, looks up p, and makes a randomized decision. If

the job is not to be offioaded, then the agent can either elect to execute it locally, or

to wait until a later time to make the decision again. Since there are always new jobs

arriving, we choose always to begin execution of the job locally, and then randomize

the decision concerning the new job that arrives next.

We can now express the SPACE/TIME probability distribution for selecting a

decision. Recall from the previous section that an agent determines

- -
D0(w) = {bk: b.(bbw) ~ b.(bi,w), bkEDi},

the set of all decisions which A, can make with a payoff greater than or equal to that

of the decision to execute job w locally. The probability of choosing local execution

has already been determined above:

p(d, = t51) = p.

Using formula (4.24), the probability of choosing decision Oj, j=Fi, is

b.(bj,w)
(1 - p)---~--

~ b.(bbw)
ekED c(w),ok'f.bj

In summary, when an agent receives a new job, it first determines randomly

whether the job should be offioaded or not. This random decision is based on its per­

ception of how many jobs will be offioaded by all agents, and how much capacity

there is for accepting jobs by all agents. The agent uses this to determine the optimal

offioading probability, the one that maximizes the expected number of jobs offioaded

while avoiding resonances. If it is decided to offload the job, then one of the multiple

remote agents which are good candidates is selected randomly, with the probability of

selecting an agent proportional to its relative payoff in utility.

5.6.3. Decisionmaking Processes for Load Balancing

We can now describe the various decisionmaking processes of a load-balancing

agent. An agent's decision procedure, which gets evaluated when a new job arnves

and whose result is a load-balancing decision, has four distinct phases:

(1) situation evaluation;

(2) job evaluation;

(3) destination evaluation;

(4) SPACE/TIME randomization.

In the first phase, situation evaluation, the agent considers whether a load-balancing

decision is actually necessary, given its beliefs about the global system state. In par­

ticular, the agent considers its own local state. If the agent is lightly loaded (i.e., the

number of ready jobs is below some threshold Ru), there is no reason to spend time

evaluating the rest of the decision procedure since the decision to run the job locally is

104 Decentralized Load Balancing Chap. 5

a good one, and can be made quickly. If the agent is not lightly loaded, it considers

the states of remote agents. If all remote agents are heavily loaded (i.e., their

numbers of ready jobs are above some threshold R0), then again, there is no reason to

spend time evaluating the rest of the decision procedure since the decision to offload

anywhere is a bad one. Consequently, the decision to run locally is best, and can be

made quickly.

Assuming the situation warrants further evaluation of the decision procedure, the

process enters the second phase, job evaluation. Specifically, it is determined whether

the job is a good candidate for offioading. For example, the longer the job's expected

execution time, the more desirable the job is for offioading. Although in general such

information is not explicitly available, it may be possible to infer it based on an

analysis of past behavior, such as on the previous execution times of the same job, or

on those of similar type jobs.

The third phase is destination evaluation, where remote agents are considered as

possible destinations for the job. In this phase, hypotheses are made concerning the

expected improvement in utility, and are based on local information about the states

of remote agents. We have called this expected improvement the payoff of a decision

to transfer a job to a particular agent. Agents with positive payoffs make up the

space of possible destinations, used by the next phase.

Finally, the fourth phase is SPACE/TIME randomization, where the destination

for the job is actually selected. This selection is based on randomizing over the space

of possible candidates, and possibly randomizing over a future time interval (as

described in Section 5.6.2), so that resonances are avoided.

Figure 5.3 summarizes the phases of an agent's load-balancing decision pro­

cedure.

Sect. 5.6

Job

Beliefs about

local and remote

states

Situation

Evaluation

Making Rational Decisions

Beliefs about

job execution

times

Job

Evaluation

Hypotheses

about effects

of oflloadin g

Destination

Evaluation

Beliefs about

local and remote

states

Space/Time

Randomization

load- balancing

decision

Figure 5.3. Phases of a Load-Balancing Decision Procedure.

5.6.4. Communication Decision Rule

105

Agents must decide when to communicate in order to update each other's state

information. In Section 4.6, we described the process of determining when to inquire

about a remote agent's state. This inquiry occurred when the sum of the loss due to

communication overhead and the loss due to degradation in decision quality (due to

aging information) was at a minimum.

For load balancing, agents will use a two-way cooperative communication proto­

col (see Figure 5.4): an agent will request a state update from a remote agent when its

information about that remote agent becomes too uncertain; an agent will voluntarily

offer a state update to a remote agent when it believes the quality of the decisions

made by that remote agent will significantly improve with updated information.

Request when uncertainty large

Offer when signifieant change occurs

Figure 5.4. Two-way cooperative protocol for state updating.

106 Decentralir.ed Load Balancing Chap. 5

When should an agent request an update from a remote agent? To answer this,

we first need a loss function for communication overhead. Assume that agent A 1

sends or receives a message (that is, communicates) with average period T ji· It does

not matter whom Ai communicates with, it simply matters that a communication

takes place every Tji time units. Assume also that every communication incurs a

fixed amount of overhead in time, T, (see Figure 5.5). We can then say that the frac­

tion of time Ai wastes due to communication overhead is T, I T11.

time

Figure 5.5. Communication overhead over time.

From (5.12), the fraction of time that an agent whose number of ready jobs

equals f3 wastes due to job scheduling overhead is f3 I f3max. Combining the two

sources of overhead, we can say that the loss due to communication overhead, given

the presence of job scheduling overhead, is the agent's state utility without communi­

cation overhead, minus the agent's state utility including communication overhead:

-8
(5.38)

Simplifying, we get

(5.39)

Checking extreme values, we see, as expected, that as the communication over­

head /, = T, I Tji approaches zero, the loss goes to zero:

lim L(T)(T··) = 0
c Jl '

fc -+ 0

and, as the communication overhead approaches 1 - f3 I f3max, the loss goes to infinity:

Sect. 5.6 Making Rational Decisions 107

lim L Vl (T j 1) = oo.
fe, 1-/3/ /3ma.x .

We use this result to determine the maximum communication bandwidth for updat­

ing state information, given the maximum loss an agent is willing to allow. Then, a

portion of this bandwidth is assigned to communication with every remote agent. \Ve

have described how this is done in Section 4.6.5.

We also need a loss function for degradation in decision quality due to aging

information. We will use the pair-wise approximation based on A, 's local state, and

A/s possible local states, using formulas (4.20), (4.21), and (4.22) which were

developed in Section 4.6.4.

Consider an agent A, 's decision to offload a job to remote agent A j· Let /31 be

A/s number of ready jobs, and let A/s information about A j's load level be A. Say

that w, a job of average size, arrives at A,. Let

oij(/3i,/3j) = p,(f3j) + rJij(W) + p,(/3j+1),

represent the utility of A1 and A j if w is offloaded from A1 to A i• and let

Rij(/3i,/3J) = f.l(f3i~1) + fl(f3J),

represent the utility of A1 and A j if w is reta£ned by A1•

(5.40)

(5.41)

If Ai offioads w to A i• the sum of A1 's state utility and the conditional expected

state utility of A j from Ai 's viewpoint will be

Uji(ajt)l offioad = E[uii(Bi(n),w) I A,v,aji] + E[uji(Bj(n),W) I A,v,aj1],

which, by definition (5.40), equals
Bmax-1

Uji(ajt) I offioad = I: oij(,Bj,f3)[P~ji 1>./3 + oij(Bmruuf3i)[P~ji hBmax. (5.42)

/3=0

Notice that, if Ai has a maximum number of ready jobs, then it cannot accept A1's

job, and A 1 must consider the consequences of retaining the job.

If Ai does not offload w to A j' the sum of A/s state utility and the conditional

expected state utility of Aj from A/s viewpoint will be

UJi(a;i)l retain = ui(B,(n)+1) + E[uj(B;(n)) I A,v,aji],

which, by definition (5.41), equals
Bmax

I; RiJ(/3i,/3)[P~iihf3·
/3=0

(5.43)

In fact, Ai will base its decision to offload or not on which of these two utilities is

greater. Therefore, we can say that Ai will make the decision which maximizes the

pair-wise conditional expected utility of Ai and A J,

108 Decentralized Load Balancing Chap. 5

(5.44)

We now need to calculate the maximum possible sum of pair-wise conditional

expected utilities, u1,, based on making best decision if A ;'s state were known by A,.

This is given by the formula,
•

u1i(aji) =

B -1

m~ max(oij((3i,(3), R,j((3,,(3)) [P~1'h~ + Rij((3;,Bmax)[P~iihBmax · (5.45)
~=0 ' .

The difference between uji (aj1) and uji (a ji) is that the former is the maximum of state

utilities which are consequences of an offload or retain decision. This decision is based

on the expected utility of A ;'s state. The latter is the expectation of the maximum of

state uWities which are consequences of an offload or retain decisions, considered for

each possible state of A 1.

Therefore, Ai 's loss function for degradation in decision quality due to aging

information (based on formula (4.22), see Section 4.6.2) about A; is
•

L ~a) (a ji) = u Ji (a j£) - Uji (a jsl

This loss is a function of the age of information; we need to express it as a function of

period Tji· By (4.6) in Section 4.6.1,
Tji+Tt

L~T)(Tj;) = ;.. f L~a)(aji)·
]I +t

We need the discrete time version of L ~ T) (T Ji). Let

N·· = r.!j_ 1 1' T ,

and let

where Tji and Nji is the continuous and discrete time communication period respec­

tively, where Tt and Nt is the continuous and discrete average transmission time

respectively, and Tis the continuous time state-transition period. Then,

1 Nji+Nt

L~T) (N;i) = ~ :E L~a) (aj;) · T. (5.46)
.nJI Nt

Now that we have the communication loss function and the decision quality loss

function, we can compute the period Tji for which their sum is at a minimum, which

Sect. 5.6 . .:\faking Rational Decisions 109

is the best period for communication.

Finally, an agent will voluntarily offer a state update to a remote agent when it

believes the quality of the decisions made by that remote agent will significantly

improve. When should this happen?

We have assumed all along that an agent A 1 can infer A;'s state based on

knowledge of A j's load level Lj, and A j's state transition probability matrix, p~iS,

which is derived from the measure of variability v1. Therefore, when L1 or V1

change, Aj must broadcast their new values to all interested agents (which we have

assumed to be all agents). Note that A J knows the values of L j and l'; with complete

certainty, and, when they change, A J knows that all other agents have old informa­

tion which must be updated.

This method imposes an acceptable overhead since the load level and the degree

of variability change very slowly. (If they did not change slowly, other variables

would have to be identified which changed slowly in time, while providing enough

information to a parameterized model so that statistical inferences could be made

between updates.)

In summary, we have described a two-way cooperative protocol between pairs of

agents, A 1 and A 1. When Ai"s information about A;· becomes too uncertain, Ai sends

a request to A j for an update. When A j senses a change in its load-level or degree of

variability, it volunteers the new information to other agents. The period between

update requests is that which minimizes the sum of two loss functions: the loss from

communication overhead, and the loss from degradation in decision quality due to

aging information.

CHAPTER 6

EXPERIMENTS

We now discuss load balancing experiments in which we use our principles and

techniques for intelligent decentralized control. The goal is to demonstrate the appli­

cation of these techniques and principles, and verify their feasibility. The chapter is

organized as follows. We will first summarize and analyze the load balancing problem

in more concrete terms than in the previous chapter. Next, we describe the experi­

mental setup and the approach, which includes a validation study of the simulator.

We then provide experimentally determined values for the parameters of the models

developed in Chapter 5. Finally, we present the results of the experiments.

6.1. Experimental Load Balancing

In Chapter 3, we presented a formal model that ignored the distinction between a

machine (or computer system), which supports the execution of jobs, and an agent

residing on the machine, which makes decisions pertaining to a decentralized control

problem. We now do need to make this distinction, because in our experiments the

machine is simulated, but the agent is real. With this in mind, we shall summarize

the main ideas behind load balancing.

The load balancing problem centers around dynamically assigning jobs to

machines so that some job performance index, such as the average response time, is

optimized. The important characteristics of the problem are: each machine has its

own job stream; an agent on each machine decides whether a job should either exe­

cute locally, on the machine owning the job stream it came from, or remotely, but in

this case the job must be explicitly sent to a specific remote site; job arrival times and

service times are not known in advance to the agent (even though the inter-arriYal

and service-time distributions may be predicted using past information).

We focus on the decentralized source-initiated form of the problem; i.e., when a

job arrives at a machine, the agent residing on that machine must make a load balanc­

ing decision of whether to execute the job locally or remotely, and, if remotely, where.

This is in contrast to the receiver-initiated scheme, where agents request work from

other agents. There was no reason to select one scheme over the other. Either would

have satisfied our goal, which was to determine the feasibility of our techniques, and

not necessarily to find the best scheme for load balancing. (See [Eage86] for a com­

parative analysis of the two schemes.)

How can load balancing optimize the average response time of jobs? A job's life­

time can be divided into a number of time intervals, where for each interval the job is

110

Sect. 6.1 Experimental Load Balancing

characterized in one of three ways:

(1) job dependent execution;

(2) job dependent sleeping;

(3) system dependent waiting.

111

Thus, during the job's lifetime, the job is either executing, or sleeping (i.e., doing

nothing) for an interval of time which is dependent on the job's characteristics, or

waiting for a time which is dependent on external system factors. For example, if a

job cannot execute because there are other jobs which must also execute on the same

machine, this is a system dependent factor and therefore the job is classified as wait­

ing. On the other hand, if a job cannot execute because it must wait for input from a

user, this is a job dependent factor, and therefore the job is classified as sleeping.

The sleep /wait distinction is made for the following reason: wait time can be

affected by load balancing, sleep time cannot. A good load balancing scheme will

minimize wait time, but it cannot affect sleep time. (\Ve are taking a very idealized

view of the separation between wait and sleep times. In a real system, sleep time and

wait time are generally not independent of each other. For example, the user's input

speed, and the input itself, in an interactive program can be affected by sluggish

response time.)

So if a goal of load balancing is to minimize job lifetimes, and only the wait time

component of the lifetime can be affected, then it is the wait times which must be

minimized. Factors contributing to wait times are queueing delays at the CPU, disks,

or network communication channels, and network transfer times when offioading. If

good load balancing decisions are being made, jobs will be assigned to machines in

such a way that contention for these resources is spread more uniformly over time.

The decision rules that agents will execute are stochastic replicated decision func­

tions [Stan85]. They are stochastic because decisions will be probabilistic, due to the

fact that important aspects of the job streams are not known in advance. They are

replicated because all agents use the same algorithm, control is fully decentralized,

and jobs can execute on any machine.

There are a number of important reasons why we chose load balancing as a vehi­

cle for illustrating the usefulness of our methods. Load balancing is a relevant

research topic in itself, worthy of investigation. The operating systems community

has recognized the importance of location-independent process (i.e., job) design, so

that load balancing of jobs is feasible [Powe83]. Also, load balancing has been found

to be effective [Zhou87], although the question remains as to what is the best way to

do load balancing. Further, current distributed systems research is focusing on the

design of very large distributed systems [Ande87], where the potential for resource

sharing, and in particular, processor sharing, is great. Finally, one can create con­

trolled meaningful simulation experiments for load balancing, given the availability of

job trace data, and one can verify the realism of a simulated environment, something

112 Experiments Chap.6

we have made a great effort to do.

6.2. Experimental Setup

The environment of our load balancing experiments is a simulated distributed

system of DEC V AX/780 machines running the Berkeley Unix operating system.

These machines are connected by a point-to-point network whose topology is ran­

domly created for each experiment with the constraint that each machine has, on the

average, three neighbors.

Figure 6.1. Example of a network of machines.

Each machine individually simulates its own job activity (i.e., the scheduling and

movement of jobs among a number of servers). The network is simulated in the sense

that inter-machine transmissions are delayed as a function of the distance, i.e., the

number of hops between machines. Routing, link traffic, and congestion, are not

simulated, but queueing of messages at the source and destination machines (not at

the intermediate nodes) is.

6.2.1. Processor Simulation Model

Each machine is individually modeled as a set of five servers with queues: a

source, a CPU, an I/0 device, a network interface, and a sink. The servers, queues,

and their connections are illustrated in Figure 6.2.

Sect. 6.2

Source

Agent

exe ute

rem tely

Experimental Setup

system proceues

execute

locally

I/0

user processes

.___~- from other machines

to other machines

Figure 6.2. Simulation model of a single machine.

113

Sink

These servers and queues are occupied by jobs, which are the basic units of work.

There are two types of jobs, user and system. User jobs generally represent work ini­

tiated by human users, and are the objects which may get offi.oaded for load balanc­

ing. System jobs represent work done on behalf of the system (e.g., scheduling).

The source server produces user jobs at specific points in time. Characteristics of

these user jobs, such as their arrival time, their total execution time, and their total

elapsed time, are determined by reading a trace of job accounting records derived

from the real workload of a Berkeley Unix system. Consequently, the simulation is

trace-driven.

114 Experiments Chap. 6

The CPU server simulates the time-shared execution of jobs. Jobs are served or

are executed by being delayed in the CPU server for a short fixed period of time q

called a quantum. They will repeatedly visit the CPu server, each time for one quan­

tum, until they have executed for a time equal to their total execution time defined in

the trace.

The CPU server has four queues: arrival, foreground, background, and system.

When a user job arrives at a busy CPU, it enters the arrival queue if it is a new job,

the foreground queue if it is a young job, and the background queue if it is an old job.

A new job is one which has not accumulated any CPU time yet. A young job is one

which has accumulated less than T1 /b seconds of time, and an old job is one which

has accumulated at least r, /b seconds of time. r, /b is a tunable parameter of the

simulator. Only user jobs are classified as new, young or old. The system queue is

used only for system jobs, which go there regardless of their accumulated CPU time.

The queueing policy is as follows. When the CPU server releases a job (the job

has executed for one quantum) it removes a job from the system queue, if one exists,

and executes it. If the system queue is empty, it looks at the arrival queue for a job.

If the arrival queue is empty, it looks at the foreground queue for a job. If the fore­

ground queue is empty, it finally looks at the background queue for a job. Thus, the

queues implement a single virtual priority queue, with system, ne·w, young, and old

being the job priority order. Jobs of the same type are handled first-come-first-served.

The I/0 server is an infinite server with no queueing. It models a job's I/0 (e.g.,

terminal and disk) time as a fixed delay between visits to the CPU. The total I/0

time, summed over all visits, is derived from trace file data. (Unfortunately, job

arrival times at each I/ 0 device were not available from the traces, and therefore they

had to be estimated.) Note that we do not model the queueing that might actually

occur in a real system. This was done for two reasons:

(1) this simplifies the simulator;

(2) the CPU is by far the bottleneck for jobs in the systems we have observed, with

very little queueing occurring at I/ 0 devices.

The network server is used to transfer jobs from one machine to another, to sup­

port load balancing. It simulates the delays that would be incurred in packet

transmission in a real system. The delay times are determined by the size of what is

being transmitted, and by the distance in hops between the machines. A message is a

single packet, the smallest unit of size, and jobs are multiple packets comprising their

code and data files (the number of packets for the transfer of a job is inferred from the

trace data). The network topology is randomly generated, constraining each machine

to have three neighbors (i.e., links to other machines) on the average.

Finally, the sink server is the final destination of a job. Its function is to record

job statistics, and to release resources owned by the job.

Sect. 6.2 Experimental Setup 115

6.2.2. Job Activity

So far, we have described the operation of each server in isolation. We now con­

sider the possible paths a job will take about the servers, which will illustrate server

interactions. When a job is created, a decision by an agent must be made whether to

execute it locally or remotely. Once this decision is made, our simulated machine

guides a job through each server until it has completed execution. Note that every

machine has its own single agent which makes load balancing decisions. For now, we

will defer the discussion of agents and load balancing, and focus on a job's simulated

activity within a machine.

\Vhen a job arrives at a machine to begin execution, it first enters the CP'C

server's arrival queue. The arrival queue is only used for new jobs; once the job has

received some service from the CPU, it will use the foreground queue exclusively, until

its execution time surpasses a threshold T1 /b, after which it uses the background

queue exclusively.

When serviced by the CPU, the job executes for one time quantum q. After this,

assuming the job needs more execution time, it will cycle about the CPU (and its

queues), until it needs to do I/0.

Unfortunately, the trace accounting file created by Berkeley unix did not provide

job arrival times at I/0 devices; therefore, they had to be estimated. We simply used

a fixed quantity, N9
, which represents the maximum number of times a job can cycle

about the CPU before needing I/0. (Values for q, N 9 , and Tf /b were determined by

experimentation. The optimal values which provided the minimal error in validation

tests, described later, were q = 1/64 seconds, N 9 = 8, Tt /b = .i5 seconds.)

After a job has visited the CPU N 9 times, assuming it has not completed execu­

tion, it goes to the I/ 0 server. There, it receives a variable amount of service time,

with the constraint that after all its visits to the I/0 server, the total I/0 time equals

the value for total I/0 time provided by the trace file. After I/0 service completes,

the job returns to the CPU server.

The cycling between the CPU and I/0 servers continues until the job has com­

pleted execution. Upon completion, the job enters the sink server, ·where job statis­

tics, including the mean and variance of the job's queueing and service times for each

server, are recorded. The job is then destroyed.

The job's simulated elapsed time is the time interval which begins when the job

is generated by the source server, and ends when it leaves the system at the sink

server. Note that this simulated elapsed time is the sum of the job's execution and

I/ 0 times, which are given values from the trace file, and the CPU queueing time,

which is a function of the simulated system's dynamic behavior. (It also includes net­

work queueing and transmission delay time if load balancing is in effect, and the job

has been transferred from one machine to another.) If the simulator works well, the

simulated elapsed time (with no load balancing) will be close to the real elapsed time,

which is also obtained from the trace file. This was one of the measures we used for

116 Experiments Chap. 6

the simulator's validation.

6.2.3. Job Movement Between Machines

'When load balancing is activated, an agent considers a new job for machine

placement after leaving the source server. If the job is to execute locally (on the same

machine where it was generated), it goes to the local CPU server. If it is to execute

on a remote machine. it goes to the local network server, and from there goes to the

remote machine's CPU server. Once the placement decision is made, the job resides

for its entire lifetime on the selected machine. This is in contrast to ;"ob migration

(also referred to as process migration), where a job can be moved at any time during

its lifetime. Although job migration is more difficult from an operating system design

point of view, it might produce better load balancing results since redistribution of

load occurs on a finer granularity. As discussed in Section 5.6.1, the consequences of

bad job migration decisions are less severe than those of bad job placement decisions

since they can be "corrected." Since our goal is to test the decisionmaking capabilities

of a new decentralized control system, and not necessarily to determine what the best

load balancing method is, we have chosen job placement· load balancing for our exper­

iments.

6.2.4. Operating System Overhead

In a real system, not all CPU time is devoted to running jobs. Some time is lost

to overhead incurred by the operating system to carry out such operations as context

switching, priority calculation, queue manipulations, and job table lookups, to name a

few. In our simulator, this overhead is represented by a system job which runs

periodically (each second) and uses up some CPU time.

In Chapter 5, we proposed a simple model for the fraction of time spent due to

CPU overhead, based on the simple idea that the more jobs there are for the operat­

ing system to consider, the more time it spends in overhead. Assuming that the

number of ready jobs (3 is known (the details about how (3 can be obtained are dis­

cussed later), this fraction was approximated by the linear function of (3 given in

(5.12), which is

8
!overhead = _a_._ < 1.

I-' max

Using this, we determined in (5.14) the ratio

elapsed time to its execution time, for a given (3:

elapsed time

of a compute-bound job's expected

execution time 1 - f3/t3max

In fact, this 1s the measure used to define the utility of an agent m state (), where

M(O) = (3.

:.

Sect. 6.2 Experimental Setup 117

To obtain !3max' and, more importantly, to check if the model reflects reality,

experiments on a real system were performed. We created a purely CPU-bound job

which used 10 seconds of CPU time, and ran it every 10 minutes. Each time it ran,

we recorded the elapsed time and the number of ready jobs averaged over the job's

elapsed time. The results are summarized in Figure 6.3, showing the elapsed time to

execution time ratio, as a function of the average number of ready jobs.

200

+
150+-------~-------r-------+------~

Elapsed
+

Time
+

100 +---------~------~----~+~-?~------~
+

{seconds}

50

+

0+---------+---------r---------~------~

0 3 5 8 10

Average number of ready jobs

Figure 6.3. Ten-seconds execution of a. CPU-bound process.

Note the general shape of the curve, fitted to the data points. Our model of

l-/3:!3max seems to fit. We can then choose the value of !3max which minimizes the

mean square error between the points of the curve /3 and the experimentally
1-/3//3max

measured points. The best value for !3max was found to be 32.258. For efficient

implementation of the function, we simply used !3max = 32.

118 Experiments Chap. 6

6.2.5. Input Trace Description

The trace files used to generate input to the simulator are derived from the real

workloads of systems running under the Berkeley Unix operating system. We believe

that the driving of the simulator with genuinely real workloads was one of the most

important decisions we made when designing the experiments. This is because load

balancing is concerned with the dynamic behavior of workloads. A probabilistic work­

load generator, which makes stationary assumptions about the job interarrival time

distributions, or the service time distributions, might not capture this behavior

correctly. Also, we wanted the results of our experiments to reflect how a real system

would behave; using real inputs was one important step in this direction. A robust

simulator is another step, to be described shortly.

The traces reflect workloads from two types of environments: a computer science

research one, and a staff-support one. The computer science research environment

workload is primarily influenced by text formatting, program compiling, and CPU­

intensive simulation jobs. The main components of the staff-support environment

workload are text editing and formatting, and mail jobs. Each trace represents one

full day of job activity. The traces were recorded at three different sites, U.C. Berke­

ley, AT&T Bell Laboratories, and Bell Communications Research, from at least two

machines at each site. The traces from U .C. Berkeley were gathered at different times

of the year. The traces from the other sites were gathered during summer months.

We divided each trace into smaller traces of 2-hour periods, thus obtaining a very

large pool of trace files representing a variety of different workloads, and capable of

creating a variety of different load levels (different for each machine, and varying

differently over the time of each machine's activity). In fact, each trace was used to

drive a single-machine simulation experiment to determine how the number of ready

jobs varied over the 2-hour time period. We also computed an overall time-averaged

value of the number of ready jobs for each 2-hour time period (we call it the average

load for the trace), giving us an idea of whether the trace produced an overall low or

high load. This was useful in the load balancing experiments for constructing non­

uniform workload distributions over machines (e.g., high average load traces on some

machines, low average load traces on others) to see the effects, if any, of load balanc­

ing in those conditions. For each experiment, a random assignment of traces to

machines was made, keeping constant the sum of the average loads of all the traces.

The relevant per-job data contained in the traces are the job name, birth time,

total CPU usage (user and system time), total elapsed time, time-averaged memory

usage, and number of disk I/O's (each taking a known, roughly constant, amount of

time). The times are recorded in discrete units of 1/64 second, except for birth times,

which are in units of 1 second (due to record packing limitations in the trace file). To

avoid discretization effects of arrivals occurring only at 1 second intervals, a different

random value between 0 and 63/64 second, in units of 1/64 second, was added to each

birth time.

Sect. 6.2 Experimental Setup 119

Although the environment was simulated and trace-driven, that aspect of each

machine which makes decisions about whether to offload jobs or not, which we have

referred to simply as the agent, was real. From the perspective of the agent, what we

performed were trace-driven simulation-driven experiments. \Vhat was simulated was

the environment which provided inputs to each agent, and which each agent could

affect. Each agent could be used in a real system without modification (except, of

course, for the interfaces).

All experiments lasted for two hours of simulated time. Collection of statistics

began after the first five minutes of simulated time to minimize the effects of system

startup transients. Depending on the number of machines in the distributed system,

the experiments took anywhere between 20 minutes (1 machine) to 6 hours (30

machines) of real time to execute on a DEC VAX 8600.

6.2.6. Validation of the Simulator

Simulation is a desirable experimental method because it allows one to observe

and test a system which may not be physically realizable or accessible. For our exper­

iments, we would need a large number of machines to construct a distributed system.

In fact, our techniques for agent-based decentralized control have greater significance

when there are large numbers of machines, since global state uncertainty grows as the

number of machines increases. Simulation experiments can be repeated many times

at relatively low cost, and the environment can be changed in each experiment in a

controlled manner.

Of course, a simulation only makes sense when the simulator does in fact provide

a true model of the real environment; this is why validation is not only an important

part of any modeling study, it is a necessary part. Only after a complete and careful

validation can the experimenter have faith in the results produced by the simulation.

Equally important, any description of a simulation experiment must include the vali­

dation procedure and its results.

We chose to follow two separate validation procedures. In both procedures the

goal was to simulate the activities of a single machine. Since we could actually

acquire the same type of results from the real machine, the simulated and real results

could be compared and evaluated. Assuming we could rely on the simulated single

machine, then we could replicate it and create a large simulated distributed system

(which we do not have a real version of such a system that can be used for such

experiments as these, and therefore could not measure and compare). Then, using

measurements of real point-to-point network transmission delays, we could model the

network interconnecting the simulated single machines as a delay, dependent on the

number of packets and the number of hops.

In the first validation procedure, we compared the simulated and real elapsed

times of jobs. The job elapsed time can be considered as simply the sum of its CPU

execution time, its I/0 time, and its CPU queueing delay. Since the CPU and I/0

120 Experiments Chap. 6

times are fixed by the trace, the only variable which depends on the dynamics of the

simulation is the CPU queueing delay. Thus, the relative differences of the simulated

and real elapsed times gives us a measure of how faithfully queueing delays have been

modeled. This is important since CPU queueing delay is a major component of the

cumulative system-dependent delay a job experiences; it is this cumulative delay,

averaged over all jobs, that load balancing attempts to minimize. (The other major

component of cumulative system-dependent delay is network transmission time of

offioaded jobs. Note that it is important to minimize the sum of CPU queueing delay

and network transmission delay. This may mean increasing network transmission

delay due to offioading a job in order to obtain a more substantial decrease in CPu

queueing delay, and consequently an overall decrease in the cumulative delay. This is

the point of load balancing.)

Define the percentage relative error between simulated and real elapsed times as

follows:

I R- s I
percentage relative error = 100% x R

where R = real elapsed time, and S = simulated elapsed time. Every time a job com­

pleted, the percentage relative error was computed and stored. Figure 6.4 displays the

cumulative distribution of percentage relative error.

Percent

of

Jobs

10 20 30 40 50
Percentage Relative Error

Figure 6.4. Distribution of relative error.

The simulated elapsed times of 24% of all jobs were perfect, i.e., they matched

the real elapsed times exactly. 84% of all jobs were simulated to within 10% of their

Sect. 6.2 Experimental Setup 121

real elapsed times, and 99% were simulated to within 50% of their real elapsed times.

The average relative percentage error per job was 7.69%.

One problem with the relative error measurement is that, if a job's real elapsed

time is a very small value, say 30 milliseconds, and its simulated elapsed time is, say,

15 milliseconds, the relative error is 50%, which would be the same relative error as

that for a job whose real elapsed time is 4 hours and its simulated time 2 hours.

Therefore, we also measured the absolute error, defined as follows:

absolute error = I R - S I

where, again, R = real elapsed time and S = simulated elapsed time. The average

absolute error per job was 157 milliseconds, and the average job elapsed time was

23.89 seconds.

In the second validation procedure, we constructed a controlled experiment where

a purely CPU-bound job, called the test job, was executed periodically. Recall that

this was already done on the real system to obtain constants for modeling system

overhead. We also 11 ran 11 the test job on the simulated system. The test job had a

predetermined and selectable execution time of either 10 seconds or 60 seconds, and

the period between runs was 10 minutes, so that a test job was never started while a

previously started test job was still running. In both real and simulated systems, each

time the job ran, its elapsed time and the number of ready jobs averaged over the

elapsed time were recorded. Note that the elapsed time is the sum of the execution

time, a fixed known value, and of the time due to system overhead, which includes

CPU queueing time. Our hope was that the elapsed times as functions of the number

of ready jobs in both systems would turn out to be close to each other. This was

indeed the case. Graphs for the simulated elapsed-to-execution-time ratios and the

real elapsed-to-execution-time ratios are displayed in Figure 6.5.

122 Experiments Chap. 6

Simulated System Real System
20 20

Elapsed + +

to 15 + + 15
+

Execution

Time 10 10
+

+

Ratio

5 5
+

+

0 0
0 3 5 8 10 0 3 5 8 10

Average Number of Average Number of

Ready Jobs Ready Jobs

Figure 6.5. Simulated and real elapsed times.

In summary, we validated the simulator in two ways, one showing the differences

in elapsed times on a per-job basis, the other showing the differences of the elapsed

times of a single test job running over a range of different load levels.

6.3. Constants for State Transition and Utility Models

In Chapter 5, we developed a number of parameterized models, constituting an

agent's knowledge for load balancing. These models addressed the general problem of

load balancing; given our experimental system, we nO'\\' provide the values for the con­

stants appearing in the models.

6.3.1. Abstract State Space

An agent Ai's abstract state indicator !(xi) was defined as the instantaneous

number Ri of jobs ready for execution. This is simply the total number of jobs

located in the CPU server, waiting in any of the queues, and including the job

currently being executed by the CPU. As this value can change with each clock tick,

an agent samples this value every T5 time units to obtain the time series

Ri(n), Ri(n-1), Ri(n-2), ... A sampling period of

Ts = 1/64 second,

Sect. 6.3 Constants for State Transition and Utility Models 123

was felt to be sufficient to retain the base frequency component of the time series, and

yet impose little overhead due to the sampling itself.

To remove high frequency components, the autoregressive model (5.1), \vhich we

repeat here, was used:

The constant w was set to

w = 0.96466162.

Choosing this value for w, it can be shown that any single sample Ri (n) will contri­

bute less than 4% to Ri(n). Yet, if R,(n) equals some value r0 , and Ri(n +k) equals a

constant value r 1 for 64 periods (one second), Ri(n +64) will cover more than 90% of

the distance between r 0 and r 1 .

These two properties mean that

(1) transient values of Ri(n) have a small effect on Ri(n);

(2) Ri(n) tracks fundamental components of the time series Ri(n) well over relatively

short periods of time (i.e., one second).

We use Ri(n) to compute Bi(n), the number of ready jobs, as given by (5.2):

Bi(n) = ROUND(ri(n)).

This also represents the agent's local abstract state

and makes up the agent's abstract state space

Y i = { 0, 1, 2, ... , B max } .

The maximum number of ready jobs observed in our experiments was

Bmax = 25.

The only constraint on B max lS

B max < /3max '

where /3max is the hypothesized number of ready jobs which would cause a machine to

spend all its time in overhead. We saw in Section 6.2.4 that /3max = 32; thus, the con­

straint is satisfied.

The upper half of Figure 6.6 illustrates the variation of the number of ready jobs

over an interval of 6.5 minutes for a simulation driven by one of our traces. The vari­

ation is representative of that of a highly loaded machine. A less loaded machine

would typically show much less activity during any six minutes. The lower half of

Figure 6.6 shows the fundamental component of the frequency of this variation, which

has a period of approximately one minute. It also shows the load level Li(n), about

which the number of ready jobs varies, and the degree of variability Vi(n).

124

20

Number

of

Ready

Jobs

0

20

Number

of

Ready

Jobs

0
0

fundamental

component

1 2

Experiments

degree of

3 4 5
Time in minutes

Figure 6.6. Variation in the number of ready jobs.

Chap. 6

load

6

For the example in Figure 6.6, a sampling period T, of 1/64 second, to produce

samples which are then time-averaged using the autoregressive model (5.2) to yield

values of the number of ready jobs spaced one second apart, is sufficient for capturing

the fundamental frequency component of R1.

6.3.2. Load Level and Degree of Variability

To obtain the load level Li(n), we use a moving average of the number of ready

jobs, Bi(n), as given by (5.4):

Sect. 6.3

with, in our case,

Constants for State. Transition and Utility Models

NL

MAL(n) = :E wkBI(n-k),
k=O

NL = 60.

125

Thus, the number of ready jobs is averaged over the past one-minute period. The

weights wk were all set to 1/60, thereby uniformly accounting for each sample over

the past minute:

1
w k = 60 ' 0 ~ k < 60.

Using MAL(n), the load level L1(n) is given by (5.6):

L;(n) ~I
ROUND(MAL(n), HL)

ROUND(MAL(n), HL)

L1(n-1)

if MAL(n) > L1(n-1) + HL/2 + h

otherwise..

with the number of ready jobs considered a significant change in load being

HL = 4.

Notice in Figure 6.6 that, in fact, the load level changes with an average period

of just more than one minute. And yet, it does represent a long-term average of the

number of ready jobs.

The moving average of the absolute differences between the number of ready jobs

and the load level, MA v(n), is given by (5.5):

with, in our case,

Nv
MAv(n) = :E wk 'I B,(n-k) - L,(n-k) I.

k=O

l\'v = 60.

The weights wk' were all set to 1/60, as we did for weights wk:

, 1 k
wk = -. 0 ~ < 60.

60'

Using MA v(n), the degree of variability V1(n) is given by (5.5):

V;(n) ~I ROUND(MAv(n), Hv)

ROUND(MAv(n), Hv)

Vl(n-1)

if MAv(n) > V1·(n-1) + Hv /2 + h

if }JAv(n) < Vi(n-1)- Hv/2- h

otherwise.

with H v, the distance between the differences considered a significant change m

126 Experiments Chap.6

variation about the load level being

Hv = 1.

6.3.3. State TrllDsition Probability Matrix

We saw in Section 5.4.2 that the parametric model for one-step state transitions,

P v' is a Bmax x Bmax matrix given by (5.9):

(1 +Pv) (1-pv)
0 0 0

2 2

(1-pv) (1-Pv)
0 0

2
Pv 2

0
(1-pv) (1-pv)

0
2

Pv
2

p = (1-pv) v
0 0 Pv 0

2

0 0 0 0 Pv

0 0 0 0
(1-pv)

2

Recall that Pv is a decreasing function of Vi as given by (5.10):

dpv
Pv=f(Vi), --<0.

dVi

0

0

0

0

(1-pv)

2

(1-l-Pv)

2

We now explicitly define this relationship, on the basis of empirical evidence.

We conducted approximately 300 single-machine experiments, each driven by a

different two-hour trace file. For each experiment, three time-series were generated:
-

(1) Bi(n), the time-series for the number of ready jobs for trace£;

(2)

(3)

Li (n), the time-series for the load level for trace i;
-
Vi(n), the time-series for the degree of variability for trace i.

We then divided Bi(n), for each trace i, into a number of smaller time-series

where m and n define an interval for a sequence of numbers of ready jobs,

Bi(m), Bi(m+1), · · ·, Bi(n),

such that Li(k) = >., and Vi(k) = v, for m '(k '(n. Thus, over the interval [m,n], the

Sect. 6.3 Constants for State Transition and Utility Models 127

load level and the degree of variability remain constant.

The reason for doing this is the assumption that the conditional distribution

p(B,(n)l B 1(n-m)) is stationary if L,(k) and Vi(k) are constant for kE[m,n]. (In fact,

under these conditions the distribution is considered second-order or weakly stationary

[Chat85] by definition, since second-order stationarity implies that the mean and the

Yariance of (Bi(n)l B,·(n-m)) are constant. L,(k) and F,(k) are measures of the mean

and variance, respectively).

For each time-series [B, (m, n) J.~v, we generated a three-dimensional frequency

table f>.vi(x,y,z), where the (x,y,z) entry indicates the number of times Bi(k)=x, given

Bi(k- z)= y, for x, yE{O, 1, ... , Bmax }, and m ~z~k ~ n. Tables generated from time­

series which had the same load level and degree of ,·ariability were then combined

(additively) to produce a set of frequency tables

F>.v(x,y,z) = ',Ehvi(x,y,z)

From these frequency tables, we verified that the form of the state transition probabil­

ity matrix P v had a close correspondence; the only remaining task was to determine

Pv = f(Vi). In our experiments, we observed that V, took on only five possible values:

lli E {0, 1, 2, 3, 4}.

For each of these values, we then found a value for Pv which provided a best fit (using

minimal mean-square error) to the distributions defined by the frequency tables.

These were found to be:

Po = 0.993, p1 = 0.980, Pz = 0.961, p3 = 0.934, p4 = 0.901.

\Vith_ this, the one-step state transition matrix P v is completely defined, assum­

ing that lli (n) for any single machine in the load balancing experiments would not

contain values greater than 4. (This was indeed the case.)

Figures 6. 7, 6.8, and 6.9, illustrate the effect of the different degrees of variability

and of information aging, on the state transition probabilities

p(Bj(n) = /3 I Lj(n-aji)=A, Vj(n-aji)=v), O~P'~25.

Each figure shows a family of state transition distributions, for a given load level A

and degree of variability v. For each figure, the load level A was set to 4. The degree

of variability is different for each figure: in Figure 6. 7, v=O, p0 = .993; in Figure 6.8,

v=2, pz = .961; for Figure 6.9, v=4, p4 = .901. Finally, within each figure, distributions

are shown for a number of ages of information ranging between 0 and 120 seconds,

specifically, a E {0, 10, 30, 60, 120}.

128

p
r

0

b
a

b
i

y

p

r

0

b
a

b
i

i
t

y

1

1

0
0

Experiments Chap. 6

Figure 6.7. Distributions with>.= 4, v = 0.

0(.. :
)1

0

0(.. :
)t

10

0(.. :
)t

30

0(.. =
)1

60

0(.. =
)1

120

4 8 12
Number of Ready Jobs

Figure 6.8. Distributions with >. = 4, v = 2.

Sect. 6.3

p
r

0

b
a

b

t

!I

Constants for State Transition and Utility Models 129

Figure 6.9. Distributions with .A = 4, v = 4.

There are two specific observations to be made about these state transition distri­

bution families. The first observation is that, within one family of distributions, the

width of the spread about the load level increases as information age increases. This is

particularly noticeable when one compares the distribution for age 0 with the distribu­

tion for age 120 in any family; the distribution for age 0 has all its mass at the load

level, whereas the distribution for age 120 has its mass spread widely about the load

level.

The second observation is that, across families of distributions, the rate at which

the spread widens about the load level increases with the degree of variability v. This

can be seen most evidently by comparing the family of distributions with v = 0 to the

family of distributions with v = 4: the width of the spread increases with information

age much more rapidly for the latter.

6.3.4. Utility Models

The local state utility of an agent (see Section 5.5.1) is given by (5.15):

-/3
Uj(O) = JI.(/3) = 1 _ f3//3max, M(O) = /3.

Since we have determined that /3max = 32, we know the relationship between the

number of ready jobs /3, and the utility. Note that the domain of JI.(/3) is the set of

integers {0, 1, 2, ... , Bmax}, where, as we have also determined, Bmax = 25.

130

u
t

t

y

0

-50

-100

0

Experiments Chap. 6

5 10 15 20 25
Number of Ready Jobs

Figure 6.10. Local state utility function.

An agent also needs to determine the future state utility of a remote agent if a

job w is offi.oaded to it. This conditional utility of agent A f• from As's viewpoint,

given that job w will be offi.oaded form Ai to Aj, is given by (5.19):

_ { 1Jij(w) + J.t(.B+l), ,B < Bmaz, M(8) = ,B

Uji(O,w) - -oo ,B = Bmax

To compute Uji(O,w), we need to specify how Ai can compute

netdelayij(w)
1Jij(w)=- l (0).

e ap w,

To compute netdelayij(w), agent Ai needs to know:

(1) the average packet transmission rate between itself and A 1;

(2) the size of job w.

As mentioned earlier, the network topology was randomly generated for each

experiment, with the constraint that the average number of neighbors of a machine

would be 3. To get a rough idea of the distribution of the number of machines within

a given distance from a given agent, we consider a planar graph with an infinite

number of nodes, where each node represents a machine, and is adjacent to three

other nodes, and analyze the number of nodes within a small neighborhood of a given

node.

Sect. 6.3 Constants for State Transition and Utility A1odels 131

Let

f (d) = the number of nodes within distance d of the gu;en node.

f(d) must be at least as large as f(d -1), the number of nodes within distance d -1.

And, each node at distance d-1, of which there are f (d-1)- f (d-2), is adjacent to

2 nodes which are at distance d from the given node. Thus, we have the following

recurrence relation:

f (d)= f (d-1) + 2(! (d-1)- f (d-2)), f (0)=0, f (1)=3.

Solving it, we get

f (d) = 3(2d- 1), d~O.

Therefore, we see that, with a unit increase in the distance from the given agent, the

number of agents it has to communicate with roughly doubles.

Returning to our experiments, each agent A1 was provided with knowledge about

the distance in hops, d1j, to every other agent Aj, and the average packet transmission

rate between nodes, which we set at 64 kilobytes per second. (Similar estimates were

observed by [Cabr88] for Berkeley Unix systems using ARPANET protocols.

Although this is a low bandwidth considering the high-speed networks available

today, we chose it to accentuate the consequences of bad decisions.) Therefore, if an

agent knows that the size of a job is sz(w) (in kilobytes), it can determine how long it

will take to transmit it to any other agent by computing,

sz(w)·dij
netdelay1j(w) = /

64 kbyte s

Although the trace file did not contain the actual job size and the sizes of the

data files which would also have to be shipped (assuming files are not replicated across

multiple machines), it did contain the number of disk I/O's a job requested, and its

average memory usage. From this information, we computed an approximate job

transmission size sz(w). In general, there is no reason why an agent could not know

exactly the total transmission size of a job, assuming all code and data files are expli­

citly identified. The unavailability of the actual job size was a problem for us purely

because that size happened to not be recorded in the trace.

To compute 1'/ij(w), an agent also needs to know job w's execution time,

elap(w, 0). In contrast to the job size, this information is generally not available prior

to the execution of the job, and yet, it is necessary for estimating the conditional util­

ity, a fundamental quantity needed for rational decisionmaking.

We dealt with this problem by recognizing that, when a job w arrives, it is often

the case that w has been executed in the past. If this is the case, an estimate can be

made about its execution time, based on its past behavior. This is another example of

special-purpose knowledge an agent would have for load balancing.

132 Experiments Chap. 6

A good indicator for identifying the same job over a number of executions is its

name, denoted by n (w), which was recorded in the traces. (As the name of a job is

simply the name of the file containing the job's executable code, it certainly is possible

to have different jobs with the same name, since file names can be modified over time.

Jobs which execute frequently, however, generally retain the same name.)

An agent keeps a list of the names of jobs that have executed in the past. As

this information is shared periodically between agents, the jobs could have executed

on any machine (and this information is valid for all machines since the machines are

homogeneous in our experiments). For each job name, an agent keeps track of the

number of times it has executed, plus the mean m (n (w)) and the coefficient of varia­

tion c (n (w)) of the past execution times. The mean m (n (w)) is used to construct an

estimator for elap(w, 0), and the coefficient of variation c (n (w)) provides a measure of

the reliability of m (n (w)). Agents also keep track of the overall mean execution time

of all jobs, m (w). To estimate elap(w, 0), agents use the following formula:

estimate(elap(w, 0)) = wc(n(w))m(n(w)) + (1-wc(n(w)))m(W), 0 < w < 1.

The estimate of elap(w, 0) is a weighted sum of the mean execution time of jobs with

name n.(w), and the mean execution time of all jobs. When the coefficient of varia­

tion c (n. (w)) is small, m (n (w)) is emphasized; when c (n (w)) is large, m (u:) is

emphasized. The best value for w was found by executing a large number of jobs,

recording the actual job execution times, and then minimizing the sum of squared

errors

:E[real(elap(w, 0))- estimate(elap(w, 0))] 2
•

w

The number of entries (one per job name) in such a list can become very large for

each agent. Assuming that availability of memory is not a problem, agents are still

faced with the potential problem of highly time-consuming lookup times. To coun­

teract this, agents, in actuality, use two data structures for maintaining job informa­

tion: a balanced binary tree for information lookup, and a simple unordered list for

information recording. The binary tree allows for rapid lookup (requiring 0 (log n)

comparisons, where n is the number of job name records), and the unordered list

allows for rapid recording of job information. When an agent recognizes that the

machine on which it resides has no jobs to execute (i.e., it has spare time), it removes

a job information record from the unordered list, places it into the binary tree, and

does the balancing. (Note that if a job record with the same name already exists in

the tree, only a recomputation of the mean and coefficient of variation is necessary.)

This repeats until there are no more entries in the unordered list, or until a new job

arrives. When a new job arrives, the binary tree data structure must be left in a

stable state; thus, the job record currently being placed into the tree is completed, the

tree is balanced, and the new job can then begin execution.

Sect. 6.3

Job
Name

troff

cc

cp

mail

troff

Constants for State Transition and Utility Models

Exec.

Time

125 sec

19 sec

.1 sec

.8 sec

93 sec

no work pending,

transfer info

Job
Name

Mean

Exee Time

Coeff

of Var

Unordered List Balanced Binary Tree

Figure 6.11. Job information data structures.

133

We make some final observations about an agent's management of job informa­

tion. Job information can be given to an agent when the agent is created. The agent

can add more information dynamically by observing jobs executing on its machine.

Agents can learn from each other by sharing information generated on their respective

machines. Finally, a human can, at any time, provide additional job information to

any agent, which treats this like any other observation, first placing it into its unor­

dered list, and eventually into the binary tree.

As for selecting the optimal time for transferring job information from an unor­

dered list to a binary tree, agents may take advantage of special-case knowledge about

how the load varies over time, namely that there will be (often predictable) periods of

time (e.g., between 3:00 AM and 6:00 AM) when little or no work is expected, and

thus time can be spent reorganizing information so that performance during future

periods of high load will be improved. (An agent's objective function could be

modified so that the expected future utility is increased by reserving a period of time

during which no work is accepted, and information reorganization can take place.

Perhaps humans have some similar mechanism for inducing sleep.)

In summary, we have shown how an agent obtains estimates for netdelay1 j(w)

and elap(w,O), so that it can compute 1Jij(w). This, along with knowledge of the

function J..L(/3), is necessary in computing a remote agent's conditional state utility.

134 Experiments Chap. 6

Since the state transition probability matrix P v has also been explicitly specified,

an agent A1 can compute the conditional expected utility (see Section 5.5.4) of remote

agent A; using (5.31).

Let
Bmax-1

U1 (>.,v,a) = I; ,u(,B+1)·[P~]A/3 + ,u(Bmax)·[P:,]ABmax ·
/3=0

U 1 (>., v, a) is simply the conditional expected state utility of a remote agent assuming

that a job is offioaded there, ignoring the network delay, and that the local agent

(which is computing the utility) knows the remote agent's load level >., its degree of

variability v, and the age a of the information itself. Since our agents are homogene­

ous, u1 (>.,v,a) is a valid utility model for all of them. (u1 (>.,v,a) seems expensive to

compute in real time, since it requires a large number of matrix multiplications; we

will address this problem shortly.)

We saw earlier how the state transition probabilities varied with the age of infor­

mation (this generated a family of distributions). We now consider how the condi­

tional expected utility varies with aging information. It is only necessary to analyze

U 1 (>., v, a), as 1'/ii(w) is independent of information age.

Figures 6.12 and 6.13 each show a family of curves for U1 (>.,v,a), where in Fig­

ure 6.12, the load level is fixed at). = 0, while in Figure 6.13 the load level is fixed at

>. = 4. Within each family, each curve corresponds to a different value of vE{0,2,4},

and U 1 (A., v, a) is varied with respect to information age a. K otice how the utility

decreases as information ages for these relatively low load levels.

age in minutes

Figure 6.12. Utility curves for ...\ = 0.

•

Sect. 6.3 Constants for State Transition and Utility Models 135

age in minutes

Figure 6.13. Utility curves for A = 4.

Consider the situation where an agent Ai has information about two remote

agents A j and Ak. Ai 's information about A j is that .4. j's load level is 0, and that the

degree of variability is 4. Ai's information about Ak is that Ak 's load level is 4 and

the degree of variability is 0. Information about each has the same age a. The ques­

tion is: which of the remote agents has the highest expected state utility if a job is

offi.oaded there, ignoring network delays?

Since the A j's load level is lower than that of Ab it would seem that A j should

have a better expected state utility. But the information concerning Aj has a higher

degree of variability than that of Ak; therefore, a.S the information ages, the decision­

making agent Ai becomes more certain about Ak 's state than it is about A/s state.

This is illustrated in Figure 6.14 .

136

0

u
t

t

y

-10

Experiments Chap. 6

~--~

0 1 2 3 4 5
age in minutes

Figure 6.14. Utility curve comparison.

According to this figure, A 1 has a higher expected state utility when the informa­

tion is less than approximately 4.5 minutes old; after that, Ak has a higher expected

state utility. This illustrates why it is necessary to base decisions on a comparison of

expected utilities, which takes uncertainty of information into account, rather than on

a simple comparison of agent states (which in this case would be information about

load levels), which ignores information uncertainty.

These examples have ignored network delay, whose effect on state utility, for a

given job w, is the quantity 7JiJ(w). Based on (5.31), conditional expected utility is

given by

The effect of 17iJ(w) on the curves reported in Figures 6.12, 6.13, and 6.14 is to

translate them downward (since 17 ij (w) is always negative). We shall illustrate this by

extending our previous example about the decisionmaking agent A.i and the remote

agents Aj and Ak· Suppose that the distance from Ai to A 1 is 10 hops (a very large

distance), and the distance to Ak is 1 hop. Assume estimate(elap(w, 0)) = 20 seconds,

where w is the job to be possibly offioaded by Ai, and sz(w) = 700 kbytes. Since

7Jij(w) =

then, for agent A1, we have

7Jij(w)

sz(w) · dij /64 kbyte /sec

estimate (elap(w, 0))

- - 700·10/64 = -5.47
20

Sect. 6.3 Constants for State Transition and Utility Models 137

and, for agent Ab

'7ik(w) =- 700;~/64 =-.55

The utility curves, assuming that A ;'s reported load level is 0 and its degree of varia­

bility is 4, and that Ak 's reported load level is 4 and its degree of variability is 0, are

shown in Figure 6.15.

0

u
t

age in minutes

Figure 6.15. Effect of network delay on utility.

Aj's utility curve is translated downward by 5.47 units, and Ak's utility curve is

translated downward by .55 units. Thus, when Ai accounts for network delay, Ak 's

expected state utility is always better than A /s, regardless of the age of information.

6.3.5. Efficient Utility Computations

The function U 1 ()., v, a) requires a number of matrix multiplications, a sum of

scalar multiplications, and other operations, which can be time-consuming. To avoid

this, agents are given a three dimensional table U 1 (.>., v, a) of precomputed values.

How large is this table? For our experiments, we said that the load level can

take on values from

). E {0, 4, 8, 12, 16, 20, 24}.

The degree of variability can take on values from

v E {0, 1, 2, 3, 4}.

If we measure a, the age of the state information, in seconds for up to five minutes

138 Experiments Chap. 6

(this is considered a long time), then

a E {1, 2, 3, · · · ,300}.

Therefore, the size of the U1 (>.,v,a) table is 7x5x300 = 10,500 entries. Each entry

must represent a value for utility, which ranges from -115 to 0 (this comes from

1-l(/3), O:S;/3:S;25), and therefore can consist of a single byte. Thus, our table uses

approximately ten kilobytes of memory.

An agent can efficiently compute a conditional expected utility by simply deter­

mining 1Jij(w), looking up UJ(>.,v,a), and adding them together. The most time con­

suming part is computing 1Jij(w), which requires a search through a balanced binary

tree to obtain elap(w, 0). However, even if the tree contains 1000 job information

records (representing the most common jobs), the search will require at most 10 com­

parisons. In fact, an agent A1 will typically compute 1Jij(w) for a number of agents

Aj, but they will all use the same value for elap(w, 0); thus, the 10 comparisons are

really amortized over multiple conditional expected utility computations.

6.3.6. Efficient Payoff Computations

In Section 5.6.1, we defined the payoff .6.(61, w) of the decision oj (which

represented the "offload to A/' decision) as (see (5.34))

E[uji(Yj(t),w) I Kji(t)] + E[uii(Yi(t),w) I Kji(t)] + :E E[uk(Yk(t)) I Kki(t)].
k::f:.i, j

Theoretically, an agent Ai would compute .6.(61, w) for all j, select those of its values

which are positive, and make a final selection using the space/time randomization

technique described in Section 5.6.2. Unfortunately, this is an extremely time­

consuming procedure as just described.

Let us carefully consider what computations must take place. We already know

that E[uji(Yj(t),w) I K11 (t)] can be computed quickly by adding UJ(>.1,v1,a1i) and

1Jij(w).

E[uii(Yi(t),w) I Kji(t)] is given by (5.33), which is equivalent to

(1-[P~~'lxi:J)I-l(/3i) + [P~~'hi:JI-l(/3i+1), A1(y~(t)) = .Bi.

In general, an agent will only consider offioading a job to a remote agent whose load

level is lo~. Given an agent A J with small >.1, the probability that A J will be in state

Bmax, [P~~-' hp3• will be very small. Therefore, E[uii(Yi(t), w) I K;i(t)] can be approxi­

mated by p,(/3i).

We are then left with the sum of expectations

:E E[uk(llk(t)) I Kki(t)].
k::;i=i, j

This is simply a sum of expected utilities, given by (see (5.24))

Sect. 6.4 Experimental Results 139

f3ma.x
aki

E[uk(Bk(n)) I >.bvk,aki] = 2: t-t(~)·[Pvk hkf3·
(3=0

Rather than computing this expectation, we can create a table of precomputed values

similar to that for U1 (>.,v,a). Therefore, let

f3ma.x
Uo(>.,v,a) = 2: t-t(,B)·[P~hf3

(3=0

be the table of expected state utilities of an agent whose load level is >., whose degree

of variability is v, and whose information's age is a.

Let

Then,

N

U'E. = 2: Uo(>.bvbaki)·
k=l,k=Fi

~(oj,w) ~ UI(>.j,Vj,aji) + t-t(~i) + (u'E,- Uo(>.j,VJ,ajt)).

This formula is much better in terms of efficiency of computation than the original

formula, except that U ~ still is a potentially very large sum. If we consider that the

purpose of computing .6-(oj,w) for all j is eventually to compare them and select the

best ones (i.e., those that are better than the payoff of making the null decision), then

since UE is a constant factor added to each payoff, it can be dropped out of the calcu­

lation! Consequently, we define the relative payoff as

b.(oj,w) = UI(>.j,vj,aji) + t-t(,Bi)- Uo(>.j,vj,aji)·

This requires three table lookups, one addition, and one subtraction.

Finally, how many payoff computations must an agent make in order to arrive at

a load balancing decision? The agent is only interested in remote agents which are

lightly loaded. Furthermore, it need not necessarily find the least loaded agent, since

it will randomize its decision over a number of underloaded agents any-way. Thus, by

grouping agents into underloaded and not-underloaded groups, and then randomly

selecting a small number of the underloaded ones (we used 8 in our experiments), the

payoffs for offi.oading jobs to these agents can be determined, and a randomized deci­

sion can then be made. Thus, only a small constant number of payoff computations,

which are themselves very simple, need to be made (and not one payoff computation

per remote agent).

6.4. Experimental Results

To evaluate our methods, we conducted a number of experiments for a compara­

tive study of job placement strategies, including our own agent-based strategy. The

strategies differ in their costs for state information communication, in their costs for

decision procedure computations, in their job transfer costs, and in the degree to

140 Experiments Chap. 6

which they minimize average job elapsed time, which is the performance index to be

optimized.

6.4.1. Types of Job Placement Strategies

The five job placement strategies compared in this study are:

(1) Perfect Information [P]: load balancing decisions are made with perfect

knowledge of the global system state. When a new job arrives at a machine, a

job placement decision is made which takes into account the load on every

remote machine, the job transfer time, and the job's expected execution time. In

a sense, this is the best decision which can be made given complete certainty

about the global system state, but not about concurrent decisions being made by

other machines. Therefore, this strategy is immune to the first problem of decen­

tralized control (see Section 3.4), but not to the second.

(2) Periodic Update [U]: load balancing decisions are made on the basis of aging

information about the global system state. Machines broadcast their state to all

other machines on a fixed periodic basis. When a new job arrives at a machine, a

job placement decision is made which takes into account the load on every

remote machine (based on imperfect information), the job transfer time, and the

job's expected execution time. The update period is the same for every machine;

a number of experiments were carried out with periods varying from 1 second to

5 minutes. The actual periods used were 1, 2, 4, 8, 15, 30, 60, 120, 180, and 300

seconds. This strategy is subject to the two fundamental problems of decentral­

ized control, and makes no attempt to combat them except by periodic refreshing

of information.

(3) Intelligent Agents [I]: load balancing decisions are based on the principles and

techniques described in this dissertation. State information is updated on the

basis of our analysis of the tradeoffs between communication overhead and degra­

dation in decision quality due to aging information. Decisions account for uncer­

tainty of information, and expected payoffs based on conditional expected utility.

Space/time randomization is used to avoid resonances. This strategy is subject

to the two fundamental problems of decentralized control, and combats them in

the best \vays we believe are possible.

(4) No Load Balancing [B]: this strategy does not do any load balancing; i.e., jobs

always execute locally. This represents the baseline strategy; comparing the

other methods to the baseline strategy tells us whether they are better than

essentially doing nothing.

(5) Random Decisions [R]: the random decision strategy is to offload a job to a

randomly selected remote machine if the local number of ready jobs is above a

fixed threshold. The threshold we used was 3, and was determined experimen­

tally to be optimal (i.e., to minimize average job response time) under random

decisionmaking in our experimental context. Comparing other methods to this

Sect. 6.4 Experimental Results 141

strategy tells us whether more complex decisionmaking schemes are better than

making purely random decisions.

6.4.2. Accounting for Costs

Each of the strategies have different costs. \Vith respect to state information

communication costs: [B], [P], and [R] are subject to none; [U] is subject to these

costs, and they can be very significant for small update periods; [I] is subject to these

costs, but explicitly tries to keep them low.

With respect to job transfer costs, only strategy [B] is not subject to them since it

does not do any load balancing. For the other strategies ([P], [U], [I], and [R]), the

job transfer costs are the same.

\Vith respect to decision procedure computation costs, strategy [B] is not subject

to them because it does not do any load balancing, and strategy [R] is not subject to

them because of the simplicity of the random selection decision. Strategies [P] and

[U] are subject to these costs, and have the same costs because they use essentially the

same decision procedure; their procedures only differ in the quality of the information

on which they base their decisions. Finally, strategy [I] has the most complex, and

consequently the most costly, decision procedure, even though we will show that the

cost is not really significant. Figure 6.16 displays a 3-dimensional cost space, with

points for each strategy qualitatively representing their approximate relative costs.

142 Experiments

state
information

update

i [U]
I

[B] [R]

[I] • , "' job
1 1 _." " transfer

,-----'*
: "/ [P]

" I ,
______ _v"

computation

Figure 6.16. Location of strategies in cost space.

Chap.6

These costs are explicitly accounted for in our experiments by simulating com­

munication, job transfer, and decision procedure computation times. As already

described in Section 6.1.4, communication and job transfer times are based on the

amount of data to be sent, the distance between the sender and the receiver, and the

communication bandwidth" More interestingly, since all decision procedures

correspond to the actual execution of code within the simulated experiment (i.e.,

decisionmaking procedures are not simulated), the decision procedure computation

time is based on the real amount of time it takes to compute the decision. Conse­

quently, simulated time is delayed by the appropriate amounts every time a decision

procedure computation is made.

6.4.3. Number and Types of Experiments

We conducted 120 experiments. Each experiment simulated a distributed system

comprised of 30 machines, and used a different combination of 30 traces, selected from

a total set of 300. Each experiment consisted of a set of simulations, one for each

strategy [PJ, [U] (which included a separate simulation for each update period), [I],

[B], and [R]. To limit variations in load distributions between experiments, traces

were selected such that the sum of their average loads (see Section 6.1.5), and the

Sect. 6.4 Experimental Results 143

distribution of average loads across machines, were virtually the same. (Within an

experiment, the same combination of traces \\'as used for each simulation of a different

strategy.) On the average, approximately 65000 jobs were executed per experiment.

All the results to be presented consist of statistics of performance measures based on

all the experiments.

6.4.4. Results

The first experimental result we present addresses how each strategy performs in

terms of the average job CPU queueing delay time. Job CPU queueing delay is the

total time a job is delayed due to CPU contention with other jobs. If the strategy

makes good load balancing decisions, the average CPU queue should be kept low

because jobs will be spread more evenly over the various machines.

Figure 6.17 contains a graph showing the improvement in average job delay

versus the information update time for each strategy. The other graphs we will

present will be of this type. In general, they will show some performance index on the

vertical a:xis (typically expressed as a percentage of the optimal value; the baseline

value will correspond to 0%), and the information update period on the horizontal

axis, which is scaled logarithmically. Points (with lines connecting them) for strategy

[U] will be plotted for each update period. Horizontal lines for strategies [P], [I], [B],

and [R], all of which are independent of the horizontal a..xis of the graphs, will ·be

shown for comparison. Each point (for [U]) or horizontal line (for [P], [I], [B], and

[R]) represents the mean value statistic of the performance index, averaged over 120

runs.

144

100

Percent

Improvement

zn

CPU

Queueing

Delay

-100

Experiments

[R]

I
I
I
I
I
I
I
I
I
I
I

[U]

[B]

---------------L---------------L------
1 I
I I

I I
I I

I I

I I
I I

I
I
I
I
I
I

-200~----------~------------~----~

Chap.6

1 10 100 300
Inter- update Period

Figure 6.17. Improvement in Average CPU Queueing Delay.

For the graph in Figure 6.17, a 100% improvement in delay corresponds to no

delay, 0% corresponds to the average job delay for jobs in the baseline experiments

using strategy [B]. In absolute terms, each percentage point corresponds to an

approximate reduction of 17.5 milliseconds in CPU queueing delay for every job.

Strategy [U] has poor performance for very small and very large update periods.

For very small update periods, communication overhead costs are very high; for very

large update periods, degradation due to decisions based on stale state information is

high. For the optimal update period, which is 15 seconds, [U] provides for

Sect. 6.4 Experimental Results 145

approximately a 49.1% improvement in delay.

Percentage Improvement in

Average CPU Queueing Delay

% Improvement

Strategy .05 .95

quantile
mean

quantile

[I] Intelligent Agents 67.6 67.7 67.8

[P] Perfect Information 55.1 63.8 68.1

[U] Periodic Update 38.3 49.1 53.2

[R] Random Placement 46.8 47.5 47.9

[B] No Load Balancing 0.0 0.0 0.0

Table 6.1.

Table 6.1 summarizes the results for each strategy. Strategy [P], which is based

on perfect state information, yields a 63.8% improvement in delay, while strategy [I] is

slightly better at 67. 7%. What is noticeably different between [P] and [I] is the

difference in the variation of the improvement, indicated by the width of the interval

between the .05 and .95 quantiles. [P] has a much wider variation than [I]. In partic­

ular, [P]'s .05 quantile is significantly lower than the mean, where [I] does not exhibit

this problem. We believe that this is due to [I]'s mechanism for avoiding resonances,

which is not present in [P], as this is the only advantage of [I] over [P]. Strategy [R]

does quite well relative to [U], with a 47.5 mean improvement in delay, although this

is significantly lower than those of [P] or [I]. Notice that the statistical variation for

[R] is small, like that for [I], suggesting again that randomization goes far in avoiding

resonances.

Although the average job CPU queueing delay is an important performance

index, minimizing it does not necessarily insure that the average job elapsed time is

minimized. This manifests itself in load balancing systems where job transfer time is

a significant cost. Consequently, although offi.oading of jobs to balance the load

causes CPU queues to be shorter on the average, the delay a job experiences during its

transfer to other machines will increase its overall elapsed time.

146 Experiments

100 [R] [U]

o~------~----------------~---------1 ~----~

Percent

Improvement

tn

Elapsed

Time

-100

[B]

I
I
I
I
I
I
I
I
I
I
I
I
I

I I

------------L---------------L------1
I
I
I
I
I
I
I
I
I
I
I
I

-200~---------------~------------------~------~

Chap. 6

1 10 100 300
Inter- update Period

Figure 6.18. Improvement in Average Elapsed Time.

Figure 6.18 is a graph of the improvement in average elapsed time versus the

information update period~ for each strategy. 100% improvement in average elapsed

time means that there are no delays due to CPU queueing, network queueing, or net­

work transmission. Thus, a 100% improvement corresponds to the minimum elapsed

times jobs could experience. 0% corresponds to the average job elapsed time in the

baseline experiments using strategy [B]. In absolute terms, each percentage point

corresponds to an approximate reduction of 228 milliseconds in elapsed time for every

fob. Table 6.2 summarizes the results.

Sect. 6.4 Experimental Results 147

Percentage Improvement in

Average Elapsed Time

% Improvement

Strategy .05 .95

quantile
mean

quantile

[I] Intelligent Agents 67.0 67.1 67.2

[P] Perfect Information 52.8 62.7 G7.6

[U] Periodic Update 37.3 48.1 51.7

[R] Random Placement 43.9 44.3 44.8

[B] No Load Balancing 0.0 0.0 0.0

Table 6.2.

As one might expect, the results are very similar to those for the average CPU

queueing delay improvement except for the degradation under [R], which is more

significant. We see again that, under [U], the performance is poor for very small and

very large update periods, with the best period of 15 seconds offering a 48.1%

improvement. This is 1.9% less than the CPU queueing delay improvement, suggest­

ing that [U] is less sensitive to the cos·t of network transmissions and delays than it is

to CPU queueing delays (which is true). Under [R], there is a 44.3% improvement,

which is 3.2% less than the CPU queueing delay improvement. This is expected since,

under [R], machines are not selected on the basis of distance, or on any other cri­

terion; they are simply selected randomly.

Again, the best mean improvements occur under [I] (67.1%), and under [P]

(62.7%). In particular, the difference between the improvement under [I] and the

CPU queueing delay improvement under [I] is 0.5%; thus, [I] seems to take better into

account network transmission delays than the other strategies.

148

50

Percent

Time

Wasted

tn

Overhead

Experiments

0~------------~~------------~------~

1 10 100 300
Inter- update Period

Figure 6.19. Fraction of Time for Overhead.

Chap. 6

Figure 6.19 exhibits a graph showing the percentage of time a CPU spends com­

municating state information and computing decision procedures. Table 6.3 summar­

izes the results. Under strategy [U] with an update period of 1 second, every machine

spends an average of 49.6% of its time for overhead, mostly due to communication.

As the update period increases, the overhead is reduced, as expected. For an update

period of 60 seconds, the overhead is about 4.0%. For larger update periods, overhead

rises a bit due to unbalanced load distributions, which cause some machines to have

high loads and consequently to spend more time for local job scheduling (see Section

6.1.4).

Sect. 6.4 Experimental Results 149

Percentage Time Spent
for Overhead

%Time Spent

Strategy .05
Mean

.95

quantile quantile

[I] Intelligent Agents 3.97 3.98 3.98

[P] Perfect Information 2.85 2.88 3.01

[U] Periodic Update 4.00 4.04 4.31

[R] Random Placement 3.12 3.14 3.17

[B] No Load Balancing 3.70 3.70 3.71

Table 6.3.

For strategies [R], [P], [I], and [B], overhead is less than [U] in all cases. This is

not surprising for [B] and [R], which only have local job scheduling overhead, and for

[P], which also has to compute its not very complex decision procedure. \:Vhat is

surprising is that, although the overhead for [I] is higher than for all the other stra­

tegies except [U], it is still very low in absolute terms. Empirical evidence seems to

suggest that intelligent decentralized control is feasible at low cost.

Why does our strategy [I] do so well, and yet impose so little overhead? One of

the hypotheses we made at the outset was that, if decisions could be based on infor­

mation whose reliability could be quantified, and if communication costs could be

kept low by updating information only when necessary, we would achieve our goal. It

is clear that good decisions are being made under [I], as it surpasses all the other stra­

tegies in optimizing the performance index. What can be said about the frequency

with which state information is updated?

150

Percentage

of

Me66age6

20

10

Experiments

I
I

I I I I

L-------L-------L-------L-------
1 I I I

I I

I I
I
I
I

I I I

- ----L-------L-------L-------
1 I I
I I I

I I I
I I

I I
I

a~~~~~~~~~~~~~
~~~~----~ 

0 60 120 180 240 300 
Inter- update Period 

Figure 6.20. Distribution of Update Periods. 

Chap. 6 

Figure 6.20 shows the histogram of update periods between agents under strategy 

[I]. It shows that update periods under approximately 30 seconds rarely take place. 

Since, the optimal communication period under [U] was approximately 15 seconds, 

this suggests that the quantification of information uncertainty and its integration 

into decisionmaking using conditional expected utility (all of which are lacking under 

[U]) can dramatically improve decisions. The average update period given by the his­

togram in Figure 6.20 is 80.16 seconds! This is a dramatic illustration that the princi­

ple of frugal state information communication, presented in Section 4.6, is of critical 

importance in reducing communication overhead, which can be a significant cost in 

distributed systems. In particular, as the systems get larger, these effects are 

magnified. 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In this chapter, we summarize the main points of this dissertation and we present 

the major conclusions. 

7.1. Summary 

In Chapter 3, we presented a formal model for decentralized control, and showed 

that there are two fundamental problems: 

1. No agent can know with certainty the current global state. 

2. No agent can know with certainty the current actions of remote 

agents. 

In Chapter 4, we presented a set of principles for constructing approximate solu­

tions. 

• Adopt a knowledge-based solution: incorporate all special-case knowledge 

about the problem as an integral part of the decisionmaking process. 

• Apply knowledge abstraction: summarize information into a form which can 

be utilized and communicated more efficiently. 

• Quantify uncertainty: explicitly account for information uncertainty m 

decisionmaking. 

• Use directional heuristics: select decisions based on their tendencies to 

increase utility. 

• Integrate information aging m decisionmaking: condition expected state 

utility on the age of information. 

• Communicate frugally: communicate only when the cost of the consequences 

of using out-of-date information in decisionmaking exceeds cost of communica­

tion overhead. 

• Avoid resonances using SPACE/TIME randomization: randomize over 

the space of good decisions and over the time during which these decisions can be 

made to avoid mutually conflicting decisions between agents. 

Our goal has been to show that, despite the formidable nature of the two funda­

mental problems of decentralized control, the techniques described in this dissertation 

can provide acceptable approximate solutions to them. This was demonstrated in 

Chapter 5 by the effective application of the techniques to the general problem of 

decentralized load balancing. The main results, presented in Chapter 6, were that 

151 



152 Summary and Conclusions Chap. 7 

agents can make good decisions (measured by a marked increase in system perfor­

mance) which do not mutually conflict even though they use uncertain state informa­

tion. In particular, frequent communication was found to be unnecessary. 

7. 2. Conclusions 

The major conclusions we draw from this research are the following ones. 

Correct abstract state design is crucial to efficient decentralized control. 

The design of the abstract state space has an underlying effect on all aspects of distri­

buted decisionmaking. The abstract state space should have a strong correspondence 

to the low-level state space partition imposed by the decision space so that decisions 

can be selected correctly and quickly. It should be small, to minimize the storage 

required for global state information and reduce the number of terms in the expected 

utility and payoff computations. If the abstract space is a good one, a simple model 

for prediction can be constructed (e.g., in the form of a Markov state transition 

model). Such a model will have slow state transition rates to minimize the need for 

remote agents to receive state information updates. 

Note that it is important to separate measures of states and the utility of states 

(i.e., the state's value and the state's utility should not generally be one and the 

same). As the state space design is influenced by the construction of convenient pred­

iction models (e.g., state transition models), and the utility function is influenced by 

the performance measure to be optimized, combining these influences may not be pos­

sible. Forcing an equivalence between state value and state utility will detract from 

the effectiveness of the state prediction model, or the effectiveness of the performance 

optimization, or both. Furthermore, the variation of the expected future state and 

the expected future state utility as a function of aging information will generally be 

different. 

Qualifying state information by quantifying its uncertainty improves 

decisionmaking. 

In general, an agent will regard each item of information about the state of remote 

agents with varying degrees of uncertainty. Basing decisions not only on what each 

item of information says, but also on how reliable it is, can have a dramatic effect on 

improving the quality of decisionmaking. This is due to the general sensitivity of the 

decisions made by a large number of agents over a small interval of time to a rela­

tively small number of items of information, namely, the states of the most desirable 

agents (e.g., agents which have a large capacity for work). The added dimension of 

reliability of information allows better discrimination of agent utilities. 

Formulating expected state utility as a function of aging information is 

valuable for correctly evaluating alternatives. 

Defining the utility of states enables us to use decision theory, which provides a for­

malism for how a decisionmaker can evaluate alternatives in a statistically optimal 

manner when the underlying information is uncertain. Decisionmaking is significantly 



.. 

Sect. 7.2 Conclusions 153 

improved when decisions based on this state information are sensitive to the 

information's age. The effects of aging information can be incorporated as an integral 

part of decisionmaking by formulating the expected state utility as a function of the 

state information's age. This is important for distributed decisionmaking in very large 

distributed systems where communication costs and delays are significant, and there­

fore, different items of information will have varying and potentially large ages. 

State information communication can often be replaced with inferencing. 

By making inferences based on past information and predictive models, the need for 

communication can be reduced significantly. In effect. communication is replaced with 

local computation, which is a desirable goal in large distributed systems of cooperative 

agents. This is greatly dependent on the rate at which information becomes stale, and 

how well this is accounted for by the decisionmaking process. 

Space/time randomization is an effective way of avoiding resonances. 

The advantage of space/time randomization is that it is a cheap decision selection 

procedure which dramatically reduces the possibility of mutually conflicting decisions. 

Therefore, it is an effective solution to the second fundamental problem of decentral­

ized control. In particular, as distributed systems become larger and larger, 

space/time randomization becomes more and more valuable as it avoids reliance on 

explicit communication . 



BIBLIOGRAPHY 

[Abra80] 

S.M. Abraham and Y.K. Dalal, "Techniques for decentralized management of 

distributed systems," Proc. 20th CO.MPCON, February 1980. 

[Agra82] 

A.K. Agrawala, S.K. Tripathi, and G. Ricart, 11 Adaptive routing using a virtu­

al waiting time technique," IEEE Trans. Software Engineering, vol. SE-8, 

January 1982. 

[Ande87] 

D.P. Anderson, D. Ferrari, P .V. Rangan, S.-Y. Tzou, "The DASH Project: Is­

sues in the design of very large distributed systems," Computer Science Divi­

sion, Univ. of Calif., Berkeley, Tech. Report UCB/CSD 87/338, January 1987. 

[Axel84] 

R. Axelrod, The Evolut£on of Cooperation. New York: Basic Books, Inc., 

1984. 

[Bash83] 

A.F. Bashir, V. Susarla, K. Vairavan, "A statistical study of the performance 

of a task scheduling algorithm," IEEE Trans. Computers, vol. C-32, no. 8, 

August 1983. 

[Birr82) 

A. Birrell, R. Levin, R. Needham, and M. Schroeder, 11 Grapevine: An exercise 

in distributed computing, 11 Comm. A CM, vol. 25, April 1982. 

154 



.. 

Bibliography 

[Blac54] 

D. Blackwell and M.A. Girshick, Theory of Games and Statistical Decisions. 

Kew York: Dover, 1954. 

[Boor81] 

R.R. Boorstyn, and A. Livne, "A technique for adaptive routing in networks," 

IEEE Trans. Communication, April 1981. 

[Bore21] 

E. Borel, "La theorie du jeu et les equations integrales a noyau symetrique, 11 

C.R. A cad. Sci. Paris, vol. 173, 1921. Translated by L.J. Savage in Econome­

trica, vol. 21, 1953. 

[Brya81] 

R.M. Bryant, and R.A. Finkel, "A stable distributed scheduling algorithm," 

Proc. 2nd International Conference on Distributed Computing Systems, April 

1981. 

[Cabr86] 

1.-F. Cabrera, "The influence of workload on load balancing strategies," IBM 

Technical Report RJ5271 {54311}, August 1986, also appears in Proc. 1986 

Summer Usenix Conference, June 1986. 

[Cabr88] 

1.-F. Cabrera, E. Hunter, M.J. Karels, D.A. Mosher, "User process communi­

cation performance in networks of computers," IEEE Trans. Software En­

gineering, vol. 14, no. 1, January 1988 . 

[Camm83] 

S. Cammarata, D. McArthur, and R. Steeb, "Strategies of cooperation in dis­

tributed problem solving," Proc. 8th International Joint Conference on 

Artificial Intelligence, Karlsruhe, West Germany, August 1983. 

155 



156 Bibliography 

[Casa86] 

T.L. Casavant, and J .G. Kuhl, "A formal model of distributed decision­

making and its application to distributed load balancing," Proc. 6th Interna­

tional Conference on Distributed Computing Systems, May 1986. 

[Casa88] 

T.L. Casavant and J.G. Kuhl, "A taxonomy of scheduling in general-purpose 

distributed computing systems," IEEE Trans. Software Engineering, vol. 14, 

no. 2, February 1988. 

[ Chat85] 

C. Chatfield, The Analysis of Time Series {Third Edition) London: Chapman 

and Roll, 1985. 

[Chu69] 

W. W. Chu, "Optimal file allocation in a multiple computing system," IEEE 

Trans. Computers, vol. C-18, October 1969. 

[Chu80] 

W. W. Chu, L.J. Holoway, W. Lan, and K. Efe, "Task allocation in distributed 

data processing," IEEE Computer, vol. 13, November 1980. 

[Chou82] 

T.C.K. Chou, and J.A. Abraham, "Load balancing in distributed systems," 

IEEE Trans. Software Engineering, vol. SE-8, no. 4, July 1982. 

[Chur61] 

C. W. Churchman, Prediction and Optimal Decisions: Philosophical Issues of a 

Science of Values. Englewood Cliffs, NJ: Prentice Hall, 1961. 

[Clar80] 

D.D. Clark and L. Svobodova, "Design of distributed systems supporting local 

autonomy," Proc. 20th COMPCON, February 1980. 



.. 

Bibliography 

[Cohe78] 

G. Cohen, "Optimization by decomposition and coordination: A unified ap­

proach," IEEE Trans. A.utomatic Control, vol. AC-23, no. 2. April 1978. 

[Cork83] 

D.D. Corkill, and V.R. Lesser, "The use of meta-level control for coordination 

in a distributed problem solving network," Proc. 8th International Joint 

Conference on Artificial Intelligence, Karlsruhe, \Vest Germany, 1983. 

[Cruz87] 

J .B. Cruz and A.R. Stubberud, "Knowledge-based approach to multiple con­

trol coordination in complex systems," Proc. IEEE International Symposium 

on Intelligent Control, Philadelphia, PA, January, 1987. 

[Davi81] 

D.W. Davies, E. Holler, E.D. Jensen, S.R. Kimbleton, B.W. Lampson, G. 

Lelann, K.J. Thurber, and R.W. Watson, Distributed Systems-Architecture 

and Implementation, llol. 105, Lecture Notes in Computer Science. Berlin: 

Springer-Verlag, 1981. 

[Davi83] 

R. Davis, and R.G. Smith, ":Kegotiation as a metaphor for distributed prob­

lem solving," Artificial Intelligence, vol. 20, 1983. 

[Draz78] 

R.J. Drazovich and S. Brooks, "Surveillance integration automation project 

(SlAP)," Distributed Sensor Nets Workshop, Pittsburgh, PA, December 1978 . 

[Duda79] 

R.O. Duda, P.E. Hart, N.J. Nilsson, SubJective Bayesian Methods for Rule­

Based Inference Systems. Technical Note 124, Artificial Intelligence Center. 

SRI International, 1976. 

157 



158 Bibliography 

[Eage86] 

D.L. Eager, E.D. Lazowska, and J. Zahorjan, "A comparison of receiver­

initiated and sender-initiated adaptive load sharing," Performance Evaluation, 

vol. 6, no. 1, ~1arch 1986. 

[Efe82] 

K. Efe, "Heuristic models of task assignment scheduling m distributed sys­

tems," IEEE Computer, vol. 15, June 1982. 

[Ensl78] 

P.H. Enslow Jr., "What is a distributed data processing system," IEEE Com­

puter, vol. 11, no. 1, January 1978. 

[Erma80] 

L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy, "The Hearsay-II 

speech understanding system: Integrating knowledge to resolve uncertainty," 

Computing Surveys, vol. 12, no. 2, June 1980. 

[Feig63] 

E.A. Feigenbaum, and J.A. Feldman, Eds. Computers and Thought. New 

York: McGraw-Hill, 1963. 

[Ferr78] 

D. Ferrari, Computer Systems Performance Evaluation. Englewood Cliffs, KJ: 

Prentice-Hall, 1978. 

[Ferr86] 

D. Ferrari and S. Zhou, "A load index for dynamic load balancing," Proc. 

1986 Fall Joint Computer Conference, Dallas, TX, November 1986. 

[Ferr88] 

D. Ferrari and S. Zhou, "An empirical investigation of load indices for load 

balancing applications," in Performance '87. Amsterdam: North-Holland, 

1988. 



Bibliography 

[Gain78) 

B.R. Gaines, "Fuzzy and probability uncertainty logics," Information and 

Control, vol. 38, 19i8. 

[Gall77) 

R. Gallager, "A minimum delay routing algorithm using distributed computa­

tion," IEEE Trans. Communication, vol. COM-25, January 197i. 

[Gao84) 

C. Gao, J.W.S. Liu, and M. Railey, "Load Balancing Algorithms in Homo­

geneous Distributed Systems," 1984 International Conference on Parallel Pro­

cessing, August 1984. 

[Gene85) 

M.R. Genesereth, M.L. Ginsberg, and J .S. Rosenschein, "Cooperation without 

communication," 1985 Florkshop on Distributed Artificial Intellt"gence, Sea 

Ranch, California, 1985. 

[Giff79) 

D. Gifford, "Violet: An experimental decentralized system," Operatinn Sus­

terns Review, vol. 13, no. 5, December 1979. 

[Gins87) 

M.L. Ginsburg, "Decision Procedures," m Distributed Artificial Intelligence. 

London: Pitman, 1986. 

[Gopa87a) 

P.M. Gopal, B.K. Kadaba, and G. Wieber, "Load distribution m packet­

switched networks," Proc. ICC, June 1987. 

[Gopa87b) 

P.M. Gopal and B.K. Kadaba, "Selective load redistribution in packet­

switched networks," IBAf Technical Report RC12707 {57196}, April 198i. 

159 



160 Bibliography 

[Halp84} 

J. Halpern, andY. Moses, "Knowledge and common knowledge in a distribut­

ed environment," Proc. 9rd Annual ACM Conference on Principles of Distri­

buted Computing, Vancouver, British Columbia, Canada, 1984. 

[Haye83) 

F. Hayes-Roth, D.A. \Vaterman, D.B. Lenat, Eds., Building Expert Systems. 

Reading, MA: Addison-Wesley, 1983. 

[Ho80] 

Y.-C. Ho, "Team decision theory and information structures," Proc. IEEE, 

vol. 68, no. 6, June 1980. 

[Howa71] 

R. Howard, Dynamic Probabilistic Systems. New York: Wiley, 1971. 

[Huhn87] 

M. Huhns, Ed., Distributed Artificial Intelligence, Los Altos, CA: Morgan 

Kaufmann Publishers, and London: Pitman, 1987. 

[Ishi81] 

M. Ishizuka and J.T.P. Yao, "Inexact Inference for Rule-Based Damage As­

sessment of Existing Structures," Proc. 7th International Joint Conference on 

Artificial Intelligence, Vancouver, 1981. 

[Jarv75] 

R.A. Jarvis, "Optimization strategies in adaptive control: A selective sun•ey," 

IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-5, January 1975. 

[Jens78] 

D.E. Jensen, "The Honeywell experimental distributed processor: An over­

view," IEEE Computer, vol. 11, no. 1, January 1978. 



.. 

Bibliography 

[Kalm69] 

R.E. Kalman, M. Falb, and M. Arbib, Mathematical System Theory. New 

York: McGraw-Hill, 1969. 

[Klei80] 

L. Kleinrock, and M. Gerla, "Flow control: A comparative survey," IEEE 

Trans. Communication, vol. COM-28, April 1980. 

[Kuma87] 

A. Kumar, M. Singhal, and M. Liu, "A model for distributed decision-making: 

An expert system for load balancing in distributed systems," Proc. 11th Annu­

al International Computer Software and Applications Conference, Tokyo, 

Japan, October 1987. 

[Lars79] 

R.E. Larsen, Tutorial: D£stributed Control, IEEE Catalog Xo. EHO 153-7, 

New York: IEEE Press, 1979. 

[Laza87] 

A.A. Lazar, J.T. Amenyo and S. Mazumdar, "WIEl'\ER: A distributed expert 

system for dynamic resource allocation in integrated networks," Proc. IEEE 

International Symposium on Intelligent Control, Philadelphia, PA, January, 

1987. 

[LeLa77] 

G. LeLann, "Distributed systems - Towards a formal approach," Proc. IFIP 

Congress, Toronto, Ontario, Canada, August 1977. 

[Less78] 

V.R. Lesser, and L.D. Erman, "Cooperative distributed problem solving: A 

new approach for structuring distributed systems," Department of Computing 

and Information Sciences, Univ. Massachusetts, Amherst, Tech. Report 78-7, 

May 1978. 

161 



162 Bibliography 

[Less80] 

V.R. Lesser, and L.D. Erman, "Distributed interpretation: A model and exper­

iment," IEEE Trans. Computers, vol. C-29, no. 12, December 1980. 

[Less81] 

V.R. Lesser, and D.D. Corkill, "Functionally accurate, cooperative distributed 

systems," IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-11, no. 1, 

January 1981. 

[Less83] 

V.R. Lesser and D.D. Corkill, "The distributed vehicle monitoring testbed: A 

tool for investigating distributed problem solving networks," AI Magazine, vol. 

4, no. 3, Fall1983. 

[Luce57] 

R.D. Luce, and H. Raiffa, Games and Decis£ons, Introduction and Critical 

Survey. New York: John 'Wiley and Sons, 1957. 

[Malo84) 

T.W. Malone, R.E. Fikes, and M.T. Howard, "Enterprise: A market-like task 

scheduler for distributed computing environments," Working paper CISR WP 

111 (Sloan WP 1537-84}, Center for Information Systems Research, MIT, 

Cambridge, MA, 1983. 

[Marc 59] 

J.G. March, and H.A. Simon, Organizations. New York: \Viley, 1959. 

[Mars55] 

J. Marschak, "Elements for a theory of teams," Management Science, vol. 1, 

1955. 

[McQu77] 

J.M. McQuillan, and D.C. Walden, "The ARPA network design decisions, 11 

Computer Networks, vol. 1, August 1977. 



... 

Bibliography 

[McQu80] 

J .M. McQuillan, I. Richer, and E. C. Rosen, "The new routing algorithm for 

the ARPANET," IEEE Trans. Communication, vol. COM-28, May 1980. 

[Mesr70] 

M.D. Mesrovic, D. Macko, and Y. Takahara, Theory of Hierarchical lvfultilevel 

Systems. ~ew York: Academic, 1970. 

[Metc76] 

R.M. Metcalf, and D. Boggs, "Ethernet: Distributed packet-switching for local 

computer networks," Comm. AC.~f, vol. 19, July 1976. 

[Neym33] 

J. Neyman and E.S. Pearson, "The testing of statistical hypothesis in relation 

to probability a priori, 11 Proc. Cambridge Philosophical Society, vol. 29, 1933. 

[Neum28] 

J. von Neumann, "Zur Theorie der Gesellschaftspiele," Math. Annalen, vol. 

100, 1928. 

[Neum47] 

J. von Neumann and 0. Morgenstern, Theory of Games and Economic 

Behavior. Princeton, NJ: Princeton University Press, 1947. 

[Padu74] 

L. Padulo and M.R. Arbib, System Theory. Philadelphia, PA: W .B. Saunders 

Co., 1974 . 

[Patt73] 

H.H. Pattee, Ed. Hierarchy Theory. New York: Braziller, 1973. 

163 



164 Bibliography 

[Pear86] 

J. Pearl, "On Evidential Reasoning in a Hierarchy of Hypothesis," Artificial 

Intelligence Journal, vol. 28, no. 1, February 1986. 

[Powe83] 

M.L. Powell and B.P. Miller, "Process migration in DEMOS/~1P," Proc. {}th 

Symposium on Operating Systems Principles (OS Review), vol. 1 i, no. 5, Oc­

tober 1983. 

[Radn62] 

R. Radner, "Team decision problems," Ann. l\1ath. Stat., vol. 33, 1962. 

[Rama84] 

K. Ramamritham, and J .A. Stankovic, "Dynamic task scheduling in distribut­

ed real-time systems," IEEE Software, vol. 1, no. 3, July 1984. 

[Reit81] 

J. Reiter, AL/X: An Inference System for Probabilistic Reasoning, M.Sc. 

Thesis, Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, 

1981. 

[Salt 78] 

J.H. Saltzer, "Research problems of decentralized systems with largely auto­

nomous nodes," Operating Systems Review, vol. 12, no. 1, January 19i8. 

[Sand78] 

N'.R. Sandell, P. Varaiya, M. Athans, and M. Safonov, "Survey of decentral­

ized control methods for large scale systems," IEEE Trans. Automatic Con­

trol, vol. AC-23, no. 2, April 19i8. 

[Schw80] 

M. Schwartz, and T.E. Stern, ''Routing techniques used in computer commun­

ication networks," IEEE Trans. Communication, vol. COM-28, April 1980. 



• 

·. 

Bibliography 

[Sega76] 

A. Segall, "Dynamic file assignment in a computer network," IEEE Trans. 

Automatic Control, vol. AC-21, April 1976 . 

[Sega77] 

A. Segall, "The modelling of adaptive routing in data-communication net­

works," IEEE Trans. Communication, vol. COM-25, no. 1, January 1977. 

[Sega79] 

A. Segall and N.R. Sandell, "Dynamic file assignment in a computer network­

Part II: Decentralized control," IEEE Trans. Automatic Control, vol. AC-24, 

no. 5, October 1979. 

[Shel64] 

W. Shelly II, and G.L. Bryan, Ed. Human Judgements and Optimality. Kew 

York: Wiley, 1964. 

[Shaf76] 

G. Shafer, A Mathematical Theory of Evidence, Princeton, KJ: Princeton 

University Press, 1976. 

[Shor75] 

E.H. Shortliffe and B.G. Buchanan, "A model of inexact reasonmg in medi­

cine," A1athematical Biosciences, vo. 23, 1975. 

[Shor76] 

E.H. Shortliffe, Computer-based medical consultation: MYCIN, Kew York: 

American Elsevier, 1976. 

[Simo57) 

H.A. Simon, Models of Man. New York: Wiley, 1957. 

165 



166 Bibliography 

[Sing87] 

M. Singhal, "On the application of AI in decentralized control: an illustration 

by mutual exclusion," Proc. 7th International Conference on Distributed Com­

puting Systems, September 1987. 

[Smit80] 

G.R. Smith, "The contract net protocol: High level communication and con­

trol in a distributed problem solver," IEEE Trans. Computers, vol. C-29, no. 

12, December 1980. 

[Smit81] 

G.R. Smith, and R. Davis, "Frameworks for cooperation in distributed prob­

lem solving," IEEE Trans. Systems, Man, Cybernetics, vol. SMC-11, no. 1, 

January 1981. 

[Stan82] 

J.A. Stankovic, N. Chowdhury, R. Mirchandaney, and I. Sindhu, "An evalua­

tion of the applicab1lity of different mathematical approaches to the analysis 

of decentralized control algorithms," Proc. COMPSA.C, November 1982. 

[Stan84a] 

J .A. Stankovic, "A Perspective on Distributed Computer Systems," IEEE 

Trans. Computers, vol. C-33, NG. 12, December 1984. 

[Stan84b] 

J .A. Stankovic, "Simulations of three adaptive decentralized, job scheduling 

algorithms," Computer Networks, vol. 8, no. 3, June 1984. 

[Stan84c] 

J .A. Stankovic, and I.S. Sidhu, "An adaptive bidding algorithm for processes, 

clusters and distributed groups," Pro c. 4th International Conference on Distri­

buted Computing Systems, May 1984. 



Bibliography 

[Sta.n85] 

J .A. Stankovic, "An applicaton of Bayesian decision theory to decentralized 

control of job scheduling," IEEE Trans. Computers, February, 1985. 

[Stee86] 

R. Steeb, D.J. McArthur, S.J. Cammarata, S. Narain, and W.D. Giarla, "Dis­

tributed Problem Solving for Air Fleet Control: Framework and Implementa­

tion," in Expert Systems: Techniques, Tools and Applications, P. Klahr and 

D.A. Waterman, eds .. Reading, :M:A: Addison-Wesley, 1986. 

[Ston78a.] 

H.S. Stone, "Critical load factors in distributed computer systems," IEEE 

Trans. Software Engineering, vol. SE-4, May 1978. 

[Ston78b] 

H.S. Stone, and S.H. Bokhari, ''Control of distributed processes," IEEE Com­

puter, vol. 11, July 1978. 

[Suri80] 

R. Suri and Y.-C. Ho, "Resource management for large systems: concepts, al­

gorithms, and an application," IEEE Trans. Automatic Control, vol. AC-25, 

no. 4, August 1980. 

[Ta.ne81] 

A.S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, 

1981. 

[Tenn81a.] 

R.R. Tenney, and N .R. Sandell, "Structures for distributed decisionmaking," 

IEEE Trans. Syst., Man, Cybern., vol. SMC-11, No. 8, August 1981. 

167 



168 Bibliography 

(Tenn8lb} 

R.R. Tenney, and N.R. Sandell, "Strategies for distributed decisionmaking," 

IEEE Trans. Systems, }.fan, and Cybernetics, vol. SMC-11, !\'o. 8, August 

1981. 

[Tenn8lc] 

R.R. Tenney, and N.R. Sandell, "Detection with distributed sensors." IEEE 

Trans. Aerospace and Electronic Systems, vol. AES-17, no. 4, June 1981. 

[VanT68] 

H.L. Van Trees, Detection, Estimation, and Afodulation Theory, vol. 1. New 

York: Wiley, 1968. 

[Wald50] 

A. Wald, Statistical Decision Functions, New York: \:Viley, 1950. 

[Wins84] 

P .H. Winston, Artificial Intelligence {2nd Edition}. Reading, MA: Addison­

Wesley, 1984. 

[Wits68] 

H.S. Witsenhausen, "A counterexample m stochastic optimum control," 

SIAM, vol. 6, no. 1, 1968. 

[Zade65] 

L.A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, 1965. 

[Zade77] 

L.A. Zadeh, "Theory of fuzzy reasoning and probability theory vs. possibility 

theory in decision-making," Proc. of the Symposium on Fuzzy Set Theory and 

A.pplications, IEEE Conference on Decision and Control, New Orleans, 1977. 



.... 

Bibliography 

[Zade79] 

L.A. Zadeh, "A Theory of Approximate Reasoning," in Machine Intelligence. 

New York: Wiley, 1979. 

[Zade83] 

L.A. Zadeh, "The role of fuzzy logic in the management of uncertainty in ex­

pert systems," Fuzzy Sets and Systems, vol. 11, 1983. 

[Zhou87) 

S. Zhou and D. Ferrari, "An experimental study of load balancing perfor­

mance," Pro c. International Conference on Distributed Systems Principles, 

Berlin, September, 1987. 

[Zhou87) 

S. Zhou, "An experimental assessment of resource queue length as load m­

dices," Proc. Winter USENIX Conference, Washington, D.C., 1987 . 

169 




