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Consensus, Polarization and Clustering of
Opinions in Social Networks

Lin Li, Anna Scaglione, Ananthram Swami, and Qing Zhao

Abstract—We consider a variation of the Deffuant-Weisbuch
model introduced by Deffuant et al. in 2000, to provide new
analytical insights on the opinion dynamics in a social group.
We model the trust that may exist between like-minded agents
through a trust function, which is a discontinuous (hard-
interaction) non-increasing function of the opinion distance. In
this model, agents exchange their opinions with their neighbors
and move their opinions closer to each other if they are like-
minded (that is, the distance between opinions is smaller than
a threshold). We first study the dynamics of opinion formation
under random interactions with a fixed rate of communication
between pairs of agents. Our goal is to analyze the convergence
properties of the opinion dynamics and explore the underlying
characteristics that mark the phase transition from opinion
polarization to consensus. Furthermore, we extend the hard-
interaction model to a strategic interaction model by considering
a time-varying rate of interaction. In this model, social agents
themselves decide the time and energy that should be expended
on interacting each of their neighbors, based on their utility
functions. The aim is to understand how and under what
conditions clustering patterns emerge in opinion space. Extensive
simulations are provided to validate the analytical results of both
the hard-interaction model and the strategic interaction model.
We also offer evidence that suggests the validity of the proposed
model, using the location and monthly survey data collected in
the Social Evolution experiment over a period of nine months.

Index Terms—opinion dynamics, continuous opinions, opin-
ion clusters, consensus, polarization, opinion formation, social
networks, opinion diffusion, information aggregation, network
learning, non-Bayesian models, information aggregation

I. INTRODUCTION

O OBTAIN a fundamental understanding of opinion
formation in social networks, one natural question to
ask is that how the initial scattered information is shared and
diffused in social networks. Indeed, information aggregation
and diffusion generally involve interactions between agents
in the network. Given the role of social interactions in the
diffusion of information, it is important to obtain a thorough
understanding of how the structure of social interactions
affects the formation of opinion and in shaping individual
behaviors.
Indeed, various mathematical models of social interactions
have been formulated and studied historically in Economics
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[1]-[3] and Social Sciences [4]-[7]. Studies in these disci-
plines have focused on providing theoretical tools and ana-
lyzing experimental results to interpret social trends. More
recently, an increasing number of disciplines that relate to in-
formation processing, such as computer science, optimization
and control as well as signal processing, have taken a close
interest in the study of social interactions. Another motivation
for this study is from the increasingly dispersed social data
in clouds of interacting computing systems. An interesting
question is whether learning and parallel decision making
in such environments lead to herding (a phenomenon that is
referred to as information cascade [4], [8]) or fragmentation.

A popular approach in Economics and Social Sciences is to
model social interactions via Bayesian learning. Specifically,
Bayesian models describe the interactions between rational
agents by postulating that agents’ actions are driven by the
objective of maximizing their own expected utilities, which
depend on the state of the world 0. Agents observe the actions
of their peers, and update their beliefs using Bayes rule,
optimally fusing public information obtained by observing
their peers’ behaviors, and private information about 6. While
it is possible to quantify formation and propagation of opinions
with Bayesian learning, the complexity of computing the
chain of actions and resulting belief updates under the pure
Bayesian learning model complicates the analysis. In contrast,
the description which we refer to as non-Bayesian learning,
that emerged from the field of statistical physics [9], radically
reduces the complexity of the interaction model, by removing
the strategic action and directly postulating a rule to update
agent opinions. In this case, interactions between agents are
often random and local while the learning rule is designed to
approximate the resulting change in the agents’ beliefs, leaving
out the agents’ decisions. A clear exposition of the difference
between the two approaches, which also provides an excellent
set of references on the topics is in [10].

The interaction models discussed in this paper fall in this
last class of models with continuous opinions (see [9] for
a survey) which are embodied by a probability distribution
for the state of the world 6 that is assumed to be a discrete
random variable. Our goal is to present a simple but plausible
model for the evolution of opinion in a population of agents,
and provide answers to the following fundamental questions
concerning the formation of opinions in social networks:

o What kinds of interactions will lead to consensus and
which ones will lead to polarization of opinions?

o Under what conditions will a social group split into
clusters of opinions?

In the following, we use opinion and belief interchangeably.
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An early formulation of continuous opinion dynamics was
given by DeGroot [11]. Indeed, in DeGroot’s model, individ-
uals start with an initial opinion profile on a binary decision
6 € {0,1}, represented by a vector of the probabilities that
each agent attributes to one of the two events, say z; = P(0 =
1), which is agent ¢’s private information. The update process
is captured by a fixed stochastic matrix T, where the (7,7)""
element T;; represents the relative trust that agent ¢ places on
agent j’s opinion. Beliefs of individuals are updated linearly
by taking a weighted average of their neighbors’ beliefs (77;
are the weights). The analysis of such a model is relatively
straightforward, since the belief updates take the same form as
the well-known average consensus algorithm [12]. Therefore,
considering a social graph G = (V, ) with V representing the
set of agents, and such that £ includes an edge (4, ) if and
only if T;; > 0, consensus of opinions is attained globally
only if G is connected, otherwise, each connected component
will attain, in general, a different consensus in opinions.

Another related model is the Hegselmann-Krause (HK)
model [13], [14]. In the HK model as well, the opinion of
each agent is represented by a real number 0 < z; < 1
that is updated synchronously, similar to the DeGroot model.
However, the HK model introduces a confidence level (or a
threshold) 7y (set to 1 in [14]) to model the lack of influence
among agents whose beliefs are too far apart. Specifically,
let \V; be the set of neighbors (i.e., agents) with which
agent ¢ can directly communicate. Let [;[k;m0] = {j €
NiUi: |z;[k] — z;[k]| < 70} be the set of trusted neighbors,
i.e., whose absolute opinion distances are less than 7y from
agent i’s opinion x;[k] after the k" interaction. Then after
exchanging beliefs with their neighbors, individual opinions
are updated synchronously according to the following rule:

1
Ty 2= il

JEL; [k;7o)

xilk +1] =

where | S| denotes the cardinality of the set S. If agent ¢ has no
credible neighbors (i.e., I;[k; 79] = ), then it does not change
its opinion. Though similar to the DeGroot model, a significant
difference is that the HK update is nonlinear with respect to
the current opinion profile. In particular, the set of neighbors
with which agent ¢ updates its belief may change with k. An
extension to the HK model, as discussed in [13], is to assume
asymmetric confidence intervals [—7;, 7,-] such that the trusted
set I;[k; o] is replaced by L;[k; 7, 7] = {j e NjUi: —7 <
xjlk] — z;[k] < 7,.}. Another related extension, called the
heterogeneous HK (htHK) model [15], is to introduce diversity
of confidence bounds 7 = [y, - - - , 7,,]. While the convergence
properties of the HK model can be observed numerically,
analytical results are limited. Recently, [16] extended the
analysis of the HK model to multidimensional beliefs and
provided an upper bound on the convergence time.

The Deffuant-Weisbuch (DW) model [17], [18], on which
our proposed analysis is based, explores the effects of simple
random pair-wise interactions between agents whose opinion
distance is smaller than a threshold. In this model as well, each
individual’s opinion is represented by a real number z; €
[0,1]. Agents ¢ and j are randomly selected for interaction,
which is assumed to be symmetric (i.e., if i € Nj, then j €
M) Let Ii[k;TQ] = {] € M : |$Z[k] — xj[k]| < ’7'0}. If
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J € ILjk; 7] and thus ¢ € I;[k; 7o), then after the interaction,
opinions are updated pair-wise as follows

zilk +1] = (1 — pai[k] + fu;[K] (1

zjilk +1] = (1 — p)z; [k] + fas[k],

where i € (0,0.5] is called the mixing parameter. Specifically,
Deffuant et al. in [17] explored this system over a square
grid in which individuals are only connected with their four
immediate neighbors. Weisbuch in [18] extended this simple
lattice topology to a scale free network topology. Though
different from the HK model, the DW model also relies on
the idea of bounded confidence. Both models focus on a one
dimensional belief so they exhibit similar behavior.

The model proposed in this paper is based on the DW
model, but rather than binary decision making, as assumed
in [13], [14], [17], [18], our model facilitates the analysis of
multi-alternative decision making (decision between multiple
alternatives), similar to [16], [19]. Specifically, we treat each
agent’s opinion as a vector of probabilities, in a probability
simplex of arbitrary dimension; each element of the opinion
vector represents the probability that a certain alternative is
true. We introduce another generalization of the DW model:
a state-dependent trust function p(d). Although similar in
spirit to the parameter po defined in [13], [14], [18], [20],
[21], the trust function p(d) in our model varies with the
squared opinion distance d between the interacting agents.
Clearly, the effect of 1(d) is time varying since agent opinions
evolve over time and its value depends on how distance is
defined. This leads to the so-called hard-interaction model
[22] that includes both generalizations. Moreover, we give an
explicit mathematical characterization of the existence of a
phase transition from a society of polarized opinions to one
with a convergent opinion, and its relation to the society’s
initial opinion profile. Motivated by understanding how the
rate of interaction affects the outcome of the interactions in the
non-Bayesian setting, we extend the hard interaction model in
[22] by considering a time-varying rate of interaction, which
is called the strategic interaction model. In this model, agents
determine how much effort they want to invest in interacting
with others. Specifically, at each time instant, agents choose
an interaction pattern to select neighbors (connected agents),
with whom interaction produces a positive net profit. Our
focus is on understanding whether simple incentive schemes
for interaction can lead to clustering behaviors in opinion
space. Finally, all of our findings are validated numerically.
In particular, the Social Evolution dataset [23] collected from
80 people in a student dormitory, is used to validate the model.

II. SOCIAL INTERACTION MODEL

Let V = {1,2,--- ,n} denote a set of social agents, who
interact with each other over a fixed undirected communication
graph G = (V, &), where & is the set of edges. We focus on the
case where G is arbitrarily connected in the sense that there
exists at least one path connecting any two agents in G. Denote
N the set of agents (also called neighbors) connected to agent
iinG, e, N; ={j € V\i| (4,5) € £}. Agent interactions are
modeled as pair-wise random encounters. We define a positive
and time-invariant vector p whose ith element p; is the
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probability of agent ¢ initiating an interaction and a stochastic
matrix P whose (i,7)" element P;; is the probability that
agent ¢ chooses to interact with agent j. We assume:
Assumption 1: The stochastic matrix P is time-invariant
and it has the same sparsity as the undirected network graph
g, ie., Pij >0+ (Z,]) cé€.
We postpone a discussion of the effect of time-varying com-
munication rates to Section IV.

A. Opinion Updates

The opinion evolution runs as follows. Each agent in
the network starts with an initial opinion profile which is
modeled as a g-dimensional vector of probabilities x,;[0] =

[1]0],-- - ,x4[0]] in opinion space
q
X = {x: (w1, ,2q)" | ngzl and xy € [0,1]}.
=1

The opinion x;[0] can be thought of as a set of probabilities
that the agent attributes to outcomes of a discrete random
variable, or a mixed strategy. At each step, the network selects
an agent', say agent i, with probability p; to initiate an
interaction; and with probability P;;, agent ¢ will then choose
to interact with agent j € A;. If neither of the agents finds the
opinion of the other agent trust-worthy (according to a trust
function), then nothing happens. Otherwise, the agent who
is open-minded to the other agent’s opinion, will update its
opinion in a way that decreases the opinion distance between
the two agents. Motivated by the application in [24], we
introduce a distance function s(x;,x;) : X x X — R* to
measure the difference between opinions, i.e.,

s(xi,%;) = [[xi — x4 = [(xi — x;)TA(x; — x;)]"/?

where A € R?*9 is a positive definite matrix. The set X is
bounded with respect to the norm ||x;]|a := s(x;,0), ie.,
sup;|Ix;lla < oo for Vx; € X and Vi € V. Hence, the
triangular inequality implies s(x;,x;) < 2sup;||X;[|4 := Ssup,
where sup, denotes the supremum of the value x; for Vi € V.

For ease of notation, let d;;[k] = s?(x;[k],x;[k]) denote
the squared opinion distance after k network-wide interactions
have occurred and dg,, = sgup denotes the supremum of
squared distance. Given that agents ¢ and j interact at the
(k + 1)™ step, the opinions are updated as follows:

X[k 4+ 1] = x[k] + p (dig[K]) (x5[k] = xi[k]) (@)
xj[k + 1] = x;[k] + p(diz[k]) (xi[k] — x;[k]) 3)

where 1i(d) defines the trust function of each agent in terms
of d. Note that x1(d) > 0 when the agent is open-minded to
the opinion of the interacting agent and p(d) = 0 otherwise.

We say that the network attains consensus (herding) when
all agents have the same opinion vector with respect to the
distance measure, ie., Vi,j € V, s(x;,x;) = \/% =0,
but need not believe in only one outcome, i.e., consensus

The phrase ‘randomly selected by the network’ is not meant to imply
that the “network™ chooses the initiating agent; rather this is a model for
agents randomly getting activated. In earlier work, we had used the model of
a common rate Poisson clock at each agent, which dictates when the agent
initiates an interaction
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does not require x;9[k] = 1 for Vi and some 6 € [1,...,q].
In contrast, polarization describes a process in which the
society is asymptotically divided into non-interacting sub-
groups (herds), each of which is internally in consensus with
respect to the distance measure. More precisely, s(x;,x;) = 0
if 7,7 belong to the same sub-group. Finally, we say that a
system devolves into clusters of opinions if there exist distinct
groups of agents with similar opinions within the group, while
the opinion distances between different clusters are relatively
large. Hence, the opinion distances between agents in the same
cluster need not be zero. Note that herding or clustering is in
opinion space; it does not make any assumption about G.
The dynamics of individual opinions clearly depend upon
u(d). We present here one specific construction of u(d).

B. Hard-Interaction Model

The hard-interaction model considers a trust function that
satisfies the following assumption.

Assumption 2: The trust function p(d) € [0,0.5] is a non-
increasing function of the squared opinion distance d.

The function p(d) models the trust that may exist between
like-minded agents. Given that the amount of trust one places
in another reflects the amount of risk one is willing to take
in social interactions, it is reasonable that as the difference
between the opinions of two interacting agents increases, the
trust p(d) between the agents decreases. Simply put, agents
interact more strongly with agents that have closer opinions.
Note also that p(d) is similar in spirit to the fixed mixing
parameter p defined in [13], [14], [18], [20], [21], but here
it is dependent on the opinions of the two agents. Hence,
w(d) is stochastic: its value depends on which two agents are
communicating and on their opinion distance. The constraint
wu(d) < 0.5 implies that an agent trusts its own prior opinion
at least as much as that of the opinion of its neighbor. The
technical reason will become apparent soon.

The hardness of the hard-interaction model stems from the
existence of a threshold 7, such that if the squared opinion
distance between interacting agents is larger than 7, then
neither of the two agents updates its opinion.

Assumption 3: There exists a threshold 7 : d > 7 —

u(d) = 0 and u(0)/u(r~) < B < .
This implies that agents will interact with their neighboring
agents if and only if d is less than a given 7 € (0, dsyp).
Therefore, the system in (2) and (3) might not change at all
after an opinion exchange, implying that the agents have no
influence over each other when they are not like-minded?.
For reasons that will soon become apparent (Lemma 6), even
though our results are not restricted to the step-function in (1),
the condition x(0)/u(77) < oo means that there must be a
discontinuity of u(d) at d = 7 for the results to hold.

Assumption 4: The trust function p(d) is concave and C*-
differentiable for Vd € (0, 7).

The regularity condition imposed in Assumption 4 is needed
for analytical reasons, made clear in the next section.

2The system will not change if x;[k] = x,[k]. i.e., agents are already in
agreement.
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Fig. 1. Opinions of agents ¢,j and ¢ before and after the interaction of
agents 7, j, where x’ and s’ = v/d’ denote the opinion and opinion distance
after a generic update.

With all of the above in mind, it can be checked that the
DW update in (1) is a special case of our proposed model in
(2) and (3). Let f(x) be the step function. It follows from (1)
that the squared opinion distance after the update is given by

|zi[k 4+ 1] — [k + 1] (4)
= [1—2f (78 — [wlk] — 25 [kI*)] " - wilK] — 5k]

Let x; = [x;, 1—a;]T for Vi € V. Then with ¢ = 2, A = I, /2,
u(d) = i for 0 < d < 78, our model in (2) and (3) reduces
to the DW model in (1) in terms of the change in squared
opinion distance. Note also that for the DW case, the concavity
condition (Assumption 4) is met.

III. OPINION DYNAMICS

In this section, we study the asymptotic convergence prop-
erty of the opinion dynamics under the modeling assumptions
described in the previous section. Our aim is to provide
analytical insights on what may happen as the initial scattered
information is diffused in the network, with an emphasis on
finding global conditions under which a society will converge
to one opinion or it will polarize into isolated groups.

Suppose that the (k + 1) interaction is between agents i
and 7. It follows from (2) and (3) that

dijlk + 1] = [1 = 2pu(di; [k])]? di [K] )
= di;[k] — 4p(diz[k]) (1 — p(dij[k))) dij[K].

Thus the condition |1 — 2u(d;;)] < 1 (see Assumption 2)
is needed to ensure that distances do not increase after an
interaction. We call this decrease in d;; the private marginal
benefit that is caused by the interaction between agents ¢ and
j. Note that the condition 1/2 < p(d;;) < 1 also leads to
a decrease in d;j, but the “ordering” of the opinions x; and
x; reverses after the interaction, implying that the agent puts
more trust in the prior opinion of its neighbor than in its own.

Because of the triangular inequality (see Fig. 1), if opinions
of the interacting agents (i,;j) are moving closer, then the
perimeter of the triangle with vertices ¢, 7 and any other point
¢ shrinks after the update?. In other words, the sum of opinion
distances can only shrink after an interaction; any interaction
between the pair (7, j) € £ also changes the opinion distances
between these two nodes and their neighbors. This creates a
network effect called network externality.

Now consider the dynamic effects that arise from network
externality. Since opinions of the non-interacting agents do

30f course, this does not imply that the opinion distances of £ to 7 and
j both shrink. It is quite possible that one (but not both) of the interacting
agents moves away from £.
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not change after the interaction, i.e., x¢[k + 1] = ay[k] for
V¢ # i, j, a simple manipulation of (2) and (3) yields

die[k + 1] = dic[k] + p* (dij [k])dis K]
+2u(di;[k]) (x [ | = xe[k)T A(x;[k] = xi[k])  (6)
djelk + 1] = djelk] + 1 (dij[K])dij [K]

+2u(dz‘j [K]) (x; [k] — xe[k]) " A(xi[k] — x;[k]).  (7)

Let D[k + 1] := Y" > .| dem[k + 1] be the sum
of squared distances over all possible pairs of agents in
the network, given that agents ¢ and j interacted at k + 1.
Let D[k} = >0 > .. 1 drm[k] be the sum of squared
distances at time k which is prior to the interaction. Thus
DIk] is a measure of the disparity of opinion in the society.
The change in D after the interaction equals (see Appendix)

DYk + 1] = DIk} = —2npu(di; [k]) [1 — pu(di; [K])] di [k]@)

Notice that the change in the overall sum of squared distances
depends entirely on d;;[k] between the two interacting agents
and it is n/2 times as large as the change in d;;[k| of the
interacting pair (see Eqn. (5)).

A. ODE Approximation of the Distance Dynamic

Agents in the network interact at random: at each time,
agent ¢ is selected with nonzero probability p; to initiate an
interaction and with probability P;;, agent ¢ will then choose
to interact with agent j. Let P € R™*™ be the matrix of
probabilities of the pair (¢, j) performing any exchange, i.e.,
P;j = p;Pij +p; Pj;. The first term corresponds to the case of
agent ¢ initiating an interaction with agent 5 and the second
to that the probability of agent j initiating the interaction with
agent 7. By Assumption 1, P = ?w} has the same sparsity
as G, ie., ?ij > 0 + (i,7) € &. Hence, given that G is
connected, information can be propagated directly or indirectly
from any agent G to any other agent with nonzero probability.

Let fi(d) be the distribution of d between any pair of agents
at time k. For n sufficiently large, the conditional expectation
of d[k + 1] with respect to fr+1(d) can be approximated
by the sample mean and we have the following relation:
E{dk+ 1]} = > jyee Pi;E{d[k +1]| | (i,7) interacts} ~
> (ij)cE ?ij %. With this sample mean approximation
and the relation in (8), we have

E{d[k+1]} — E{d[K]}

DY k +1] - D[]

N(gg n(n—1)/2

= nf 1 > Pijuldisk]) [ — p(dig[K])] dij[K].
(i) €E

Our general approach to studying the asymptotic behavior
of opinion dynamics here is to map the difference equation
onto an ordinary differential equation using an Euler-type
approximation, i.e., the derivative of a continuous function
d(t) equals d(t) ~ (d[k + 1] — d[k])/h where h > 0 denotes
the discretization step size and d[k] is the value of d(t) at
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t = kh. Using Euler’s approximation and setting i = %, the
following ordinary differential equation (ODE) can be derived

d(t) = - > Py pldig () [1— p(dig (8)] dij () (9)
(t5)es =p(di; (1))

== Y Pip(dij(t))di; ().

(i,5)€E

where d(t) = E{d(t)} denotes the mean of the average
distribution f;(d). For convenience, we do not explicitly show
the time variable ¢ whenever it does not cause confusion in
the rest of the paper.

Taking the expectation on both sides of Eqn. (9) with respect
to the distribution f;(d), we get

i=— Y E {?ijp(dij)dij} (10)
(i,5)€E
= —< > Ej) E {P(dij)dij} = —E{p(di;)di; } .

(i,9)€€

The second equality holds true because it follows from As-
sumption 1 that given a network G, the pairwise communica-
tion rates ?ij are fixed prior to any interaction. We are now
ready to develop the main results regarding opinion dynamics
in our model.

B. System Analysis and Results

The next property gives a lower bound on the dynamic of
the expected squared distance d.

Lemma 5: Under Assumptions 2 — 4, the dynamic in (10)

is lower bounded by d > —Bp(d)d .
Proof: See Appendix. [ ]

It is to be noted that Assumptions 2— 4 allow us to use the
expected squared distance d(t) as a surrogate for studying the
evolution of total disparity D(t) between agents’ opinions.
From Lemma 5, it is expected that (10) will not converge if the
lower bound does not converge. For convenience, we express
the dynamic of the lower bound system by b = —Bp(b)b.
Indeed, the ODE of b locally resembles the form of the logistic
equation, as initially investigated in [22]. However, the model
in this paper includes network externalities that were not
accounted for in [22] and hence analysis is quite different.

Lemma 6: Under Assumptions 2 and 4, the system b =
—Bp(b)b converges if and only if 7 > b(0).
Proof: See Appendix. [ |

Using Lemma 6, a necessary condition for (10) to converge
under the hard-interaction model can be established and it
generalizes the result in [22] to the model with externalities
as defined in this paper.

Lemma 7: Under Assumptions 1 — 4, when the number of
agents n is sufficiently large, a necessary condition for the
interaction model in (2) and (3) in a connected network to
converge almost surely is 7 > d[0].

Lemma 7 indicates that if the system converges almost
surely, then the threshold must be above d[0], the average
initial squared distance. If 7 < d[0], then agents will remain
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Fig. 2. Group polarization

polarized with a positive probability. One way to interpret
the threshold value 7 is that it represents how open-minded
a society is. If it is open-minded enough (relative to this
initial dissonance in opinions), then the system will converge.
This also implies the existence of a phase transition 7y
from polarization to consensus for 7, sufficiently above d[0].
However, we will show next that the necessary condition
developed in Lemma 7 is not a sufficient condition.

Let there be two groups of opinions H; and H in a society
(See Fig. 2). Within each group, the opinions are in consensus,
but for V(4,7) : ¢ € Hy,j € Ha, the distance d;; = 7 + € is
above the threshold. Let &2 = {(4,4) | i € Hy and j € H»}.
Since the two groups do not communicate (as the trust function
wu(dij) = 0 V(i,5) : i € Hi,j € H»), the agents cannot
come to a consensus. However, if the number of intergroup
pairs of agents normalized by the total number of pairs is
n(ylf%i‘)/z < %5, then d[0] = (7 + U)% < 7 and thus
1 (d[0]) > 0. This contradicts the assumption that the two
group do not communicate. Hence, 7 > d[0] is not a sufficient
condition for consensus.

A final remark pertains to the effect of Assumption 1 on
the network dynamics. Recall that in the derivation of (10),
we have shown that the rate of interaction ?ij does not affect
the dynamic of the mean d(t) when Pj; is fixed (as required
in Assumption 1). If this is the case, then for n sufficiently
large, there is no graph selection that can mitigate the effect of
a large initial average distance d[0] (relative to the threshold)
since the necessary requirement for consensus in Lemma 7
does not change. Then the natural question to ask is that what
asymptotic opinion profile can be observed if P;; is time-
varying. We will examine this in the following section.

IV. STRATEGIC OPINION FORMATION

While the interaction model discussed in Section III studies
the opinion dynamics under random interactions with a fixed
rate of communication, there are many social settings in
which agents dynamically determine how much effort and
time they want to consume in interacting with their neighbors.
A strategic model of interaction for an agent is the process
of defining a goal through a utility function and allocating
resources (i.e., time and energy) for interactions with its
neighbors to maximize the utility function. In this model, we
contemplate the possibility of agents not wanting to interact at
all with their peers and, therefore, we allow the sparsity pattern
of P to be different from that of G and the communication
rates P;; for V(i,j) € £ to vary with time.

There are two steps in modeling strategic interactions for a
network of agents. First, one needs to explicitly model the
cost and benefit that each agent receives as a result of a
particular action, which define the incentives agents have to
interact more or less often with neighboring agents. In this
case, it is assumed that the initiator of an interaction knows
the opinions of all its neighbors, before it starts the interaction.
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Second, the strategic model should be tractable so that it can
provide insights or predictions on how individual incentives
affect the aggregation of information and the formation of the
asymptotic opinion profile.

A. Strategic Interaction Model

As highlighted earlier, the utility function of an agent should
reflects its goal for interactions. The mathematical description
of goal-attainment thus involves the cost and benefit for par-
ticipating in a particular interaction. We define the following
utility function: for some x > 1,

Ui([Pyljen.) = > Py [r(dij) — &(dij)] — Py
JEN;

(1)

where r(d;;) is the benefit or reward agent ¢ receives from
interacting with agent j and &(d;;) represents the cost of
interacting with agent j. Both the cost and reward are functions
of the squared opinion distance. Note also that without the
second term F;}, maximizing the utility function is equivalent
to assigning P;; = 1 to agent j that gives the highest positive
profit, measured by the reward received minus the cost. It is
however, important to emphasize that the focus of the strategic
interaction is not to model the agents as selfish individuals who
calculate their overall profits from each potential interaction,
but rather to study their tendency to initiate interactions that
are beneficial to them. This tendency is measured by P;; and
the term PZ'; in (11) should be interpreted as the force behind
such incentives. The mathematical formulation of the utility
function thus allows us to translate individual’s tendency to
interact into a tractable process that can potentially provide
answers to why herding behavior occurs.

Recall that the underlying assumption is that agents do seek
to arrive at consensus, but subject to the interaction rules.
Also recall from Eqn. (8) that the private marginal benefit (5)
enjoyed by the interacting pair (i, 7) is amplified n/2 times (n
is the number of nodes) in terms of the network-wide average
squared distance. Motivated by this, we set the reward function
to be proportional to this private marginal benefit, i.e.,

r(di;) = ap(dij)dis,
where p(d) is defined in (9) and « is called the reward
coefficient.

Let us now consider the cost of interaction £(d;;), which
should specify the energy for communicating with agent j
whose opinion is y/d;; away from agent ¢. Here we present
two interesting constructions of the energy function &(d;; ):

(1) f(d”) = 'Yldij if dij < 7 and f(d”) = +oo if dij >T

(ii) f(dm) = 'YQILLQ(dij)dij if dij < 7 and f(d”) = 40 if

dij >T

where 7 and vy, are called the cost coefficients associated with
the two energy functions. The first construction of the energy
function assumes that, if the (squared) opinion distance d;; is
large, then agent ¢ consumes more energy to communicate to
J than when d;; is small. The notion here is that it will take
more effort to dialogue with someone farther away in opinion
and convince them to move their opinion profile closer. Rather

than choosing a linear cost function, we could have chosen
a function of the form &(d;;) = 1 f(dij)di; where f(d) is
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any positive non-decreasing function of d. As will become
evident from the analysis in the next section, the choice
f(d) =1 does not lead to any loss of generality. In contrast,
the second construction of the energy function captures the
overall cost of opinion changes for both agents. Note that
given d;; < 7, the amount of energy spent in interacting with
agent j is proportional to agent j’s change in opinion, i.e.,
d(x;[k], z;[k+1]) = p?(d;;[k])d;; [k], which also equals agent
i’s change in opinion d(z;[k], z;[k + 1]). In both cases, agents
assign infinite energy for interactions with neighbors who are
not like-minded. Each of the two cases will lead to different
opinion formation processes, as we shall see shortly.

Agents interact with each other according to the following
strategic model. An agent is randomly activated at each time
instant with equal probability, i.e., p; = 1/n for Vi € V. If
agent 7 is selected, it needs to make a strategic decision on
an interaction pattern for selecting neighbors. The decision is
in the form of probabilities F;; obtained by maximizing the
utility function defined in (11). Then based on the decision,
agent ¢ interacts with one of the neighbors in N, and this
event is followed by the opinion update rule given in (2) and
(3). At the next time instant, the same procedure is applied.

B. System Analysis

In this section, we explore how the individual incentives for
interactions affect the opinion formation process. Suppose that
agent ¢ is chosen at time k. Recall that the first step in the
strategic interaction model is to determine P;; for Vj € N;
maximizing the utility function, i.e.,

max Z Pyj [r(dij[k]) — &(dij[K])] — Py
" JEN;

under the constraint that » . .., Pij = 1 and P;; > 0.
Let [a]t = a if a > 0, and O otherwise. Solving the above
optimization with respect to P;; yields, for Vj € N;

s%(wdm- [K)) - &(d kD))

where the scaling factor S; is defined as follows: let ¢ =

Kk—1

P;i[k] = (12)

rk—1

S nen, (Ir(din [8]) = (i KDTT)

&
e {

In the case that P;;[k] = 0 for Vj € N;, we have P;;[k] =1
and P;;[k] = 0 otherwise. That is, if interacting with any of
its neighbors will bring zero or negative net benefit to agent
1, then agent ¢ will choose to be a recluse for the moment.

ifc#£0

otherwise. (13)

1) Case Study (i): Consider the case when the energy
function is defined as £(d) = vid for d < 7 and +o0
otherwise. Note that under Assumption 2, the term p(d) =
w(d)(1 — p(d)) is a non-increasing function of d, with maxi-
mum value p(0). When d;; < 7, replacing £(d;;) with y1d;; in
(12), we observe that, if the ratio -, /a of the cost coefficient
to the reward coefficient is greater than or equal to the product
p(0), then

n
o

> p(di;) (14)
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for Vd;;. This situation implies that the agents have insufficient
incentives to interact with each other. In this case, it follows
from equation (12) that P;; = 0 for Vj € N, given that
d;; < 7. Thus agents always choose to not interact with the
other agents and remain inactive, i.e., P;;[k] = 1 for Vk. As a
result from (14) and the fact that P;; = 0 whenever d;; > T,
the system will not evolve over time and the initial opinion
profile is the one and only fixed point. For a more interesting
scenario, we have the following assumption.

Assumption 8: The reward and cost coefficients satisfy the
relation 21 < p(0).

Under the strategic model, it follows from equation (12)
and Assumption 8 that the rate of interaction P;; changes over
time, depending on the relative distances between agent ¢ and
its neighbors. If the cost of interacting with an agent exceeds
the benefit, then the agent who is to initiate an interaction
will impose a zero rate of interaction with that agent. On the
contrary, more probability weight will be put on the neighbors
yielding higher (positive) utilities. Hence, the probability dis-
tribution of pairwise interactions P;; = (P;; + Pj;)/n is also
dependent on the opinion distances between agents.

It follows from (9) and (12) that the dynamic of d equals

- 1 1 1 _1 2
d=—~ > <§ * S_g> n(diz) == p(dij)dij,

2

15)

where 7)(d) = [ap(d) — 1] From (15), one can clearly see
that the system stops evolving (i.e., d = 0) if d;; for ¥(i, j) €
€ satisfies one of the two conditions: (i) d;; = 0; (ii) 7(d;;) =
0. The first condition is satisfied if the interacting agents are
in consensus. The second condition implies that agents will
not interact if their squared opinion distance d;; lies in the
union Dy U [T, dsup) Where

Dy ={de 0,7 p@) <2}, (16)

o
Note that D; is an empty set when the ratio v; /o < p(77). In
this case, agents will not update their opinions only if d;; > 7
for V(4,j) € £. Under this situation, the network follows the
same opinion update rule as in the hard-interaction model with
a threshold 7, but it allows the rate of interaction P;; to vary
with agent opinion profiles.

On the other hand, as shown in Fig. 3, when 71 /o > p(77),
the set is nonempty and the threshold 7 > inf(D; ), where inf
denotes the infimum. Since p(d) is a non-increasing function
of d, the range of the set D; goes from inf(D;) to 7. Clearly,
d;; > inf(D;) implies that the associated agents will not
update their opinions. The opinion diffusion in this case will
not converge to a consensus not only because the agents may
not be sufficiently like-minded (i.e., d;; > 7), but also because
~1/c is too big to warrant sufficient incentives between pairs
of like-minded agents whose (squared) opinion distances lie
in the interval d;; € [inf(Dy), 7).

2) Case Study (ii): We now examine the case when the
energy function is defined as £(d) = vou?(d)d for d < 7 and
400 otherwise. Under Assumption 2, it can be shown that the
expression 1/p(d) — 1 is a non-decreasing function of d, with
a minimum value 1/4(0) — 1. Hence, if the ratio v2/cv is less
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inf(D7)

not like-minded

active ‘ D;

Fig. 3. The solid line represents the trust function p(d) and the vertical
line maps the value of  such that v /ac = p(d) to the point d = inf(Dy).
The “active” region means that agents ¢ and j will interact if d;; falls in this
region.

than 1/1(0) — 1, then

for Vdij. When dij <, replacing f(d”) with Vguz(dij)dij
in equation (12), observe that if the preceding relation is true,
then P;; = 0 for Vj € {m € N, | di, < 7}. This result,
together with the fact that P;; = 0 whenever d;; > 7, implies
that the initial opinion profile of the system is the one and only
fixed point because none of the agents is willing to interact
with its neighbors. Hence, we make the following assumption.

Assumption 9: The reward cost coefficients satisfy the re-

: 2 1
lation o 2 m — 1.

We now consider the opinion evolution of a system
satisfying Assumption 9. Since £(d) = you?(d)d for
d < 7, the dynamic of the expected squared distance
d has the same expression as (15) except that n(d;;) =
loapu(dij) — (o + v2)p? (dij)] . As mentioned before, the sys-
tem reaches a fixed point if d;; for V(i, j) € £ satisfies one
of the two conditions: (i) d;; = 0; (ii) n(d;;) = 0. The second
condition indicates that agents will not interact if d;; lies in
the union Dy U [7, dg,p) Where

DQ:{dG(O,THﬁd)—lZ%}.

Or equivalently, d;; € (0,sup(D2)]U[0, dsyup) since 1/p(d)—1
is a non-decreasing function of d.

Clearly, if the threshold 7 < sup(Dz) is small relative to
the supremum of the set Dq, then agents in the network will
not update their opinions because either they are too closed-
minded to the opinions of the others or they do not have
sufficient incentives to interact. In contrast, as depicted in
Fig. 4, if the threshold 7 > sup(Ds), agents will interact
if d;; lies in the open interval (sup(D2), 7). Hence, it can be
deduced that the system will form one or multiple opinion
clusters. Within each cluster, the squared opinion distances
are upper bounded by sup(Ds). Between the clusters, the
squared opinion distances are lower bounded by the threshold
7. Comparing Figures 3 and 4, we observe that the two cost
functions lead to distinct active regions (under appropriate
conditions on the cost-reward coefficients): one case can lead
to consensus; the other case leads to clustering.

A7)
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D> active ‘ not like-minded

Fig. 4. The solid line represents the trust function u(d) and the vertical line
maps the value of y such that y2 /o = 1/u(d)—1 to the point d = sup(D2).

V. NUMERICAL RESULTS

In this section, we first numerically validate the analytical
results of both the hard-interaction model (Sec. V-A) and
the strategic interaction model (Sec. V-B) using synthetic
data. Then we offer evidence that the proposed model for
opinion evolution could portray real phenomena using the
Social Evolution dataset [23] (see Sec. V-C).

A. Hard-Interaction Model

Recall that the choice of the underlying communication
network G is arbitrary and the analytical results hold for any
connected network. We start by generating G using a random
geometric graph (RGG), i.e., G = G(n,r), which consists
of n randomly distributed social agents over an unit disk
with a radius of communication r. While » = 1 implies
a fully connected network, » = 0 represents a completely
disconnected network. Each initial opinion profile x;[0] for
Vi € V is uniformly distributed in the opinion space X with
q = 3 possible decision states. Without loss of generality,
the ¢>-norm is used to measure the opinion distance between
agents, i.e., s(x;,%;) = ||x; — x;||a with A = I,.

For the hard-interaction model, we set the trust function to
be p(d) = 0.4 for d < 7 and 0 otherwise. Three connected
RGG graphs G(n,0.8) are generated with n = 50, 100, 200
number of agents and are kept fixed for all trials. We define
a subgraph Geg[k] = (V, Eere[k]) of G at each time instant,
where E[k] = {(i,7) € € | dij[k] < 7}. A normalized
algebraic connectivity of the subgraph Geg[k| is defined as
the algebraic connectivity of Ger[k] divided by the algebraic
connectivity of G. For k sufficiently large, the normalized
algebraic connectivity approaches either 0 or 1. A value of 0
indicates that G is disconnected; A value of 1 indicates that
Eefi[k] = € and moreover, d;;[k] ~ 0 for V(i, j) € £, implying
that consensus is reached. The top panel in Fig. 5 shows the
(normalized) algebraic connectivity of the subgraph Geg[k],
where k is sufficiently large, averaged over 300 realizations for
various values of 7. Each realization starts with an uniformly
distributed initial opinion profile. Uniform communication rate
(i.e., p; = 1/n and P;j; = 1/(n — 1)) is used. Observe that
as 7 approaches 0.64, society reaches a consensus almost
surely and thus a phase transition occurs approximately at
7 = 0.64. Moreover, as n increases, the phase transition
boundary becomes sharper; the normalized algebraic connec-
tivity decreases at 7 = d[0]. The bottom panel in Fig. 5
shows the corresponding histograms of the 300 asymptotic
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Fig. 5. Phase transition (top) of a society from polarized beliefs to a
consistent belief. Histogram (bottom) of 300 asymptotic opinion profiles with
n = 100 at 7 = 0.16,0.36, 0.64.

opinion profiles at 7 = 0.16, 0.36, 0.64, respectively. Notice
the evidence of fragmentation or clustering at smaller values
of 7, and consensus at larger values.

Fig. 6 compares the phase transitions for three different
network configurations: RGG, Erdos-Renyi graph and small-
world graph. Specifically, n = 50 agents are generated for
each of the graphs. The radius of communication r in the
RGG is set to be 0.8. The Erdos-Renyi graph [25] is generated
uniformly at random from the collection of all graphs which
have n = 50 nodes and M = 120 edges. The small-
world graph [26] is generated by setting psw = 1, ¢sw = 1
and asw = 2, where ¢, denotes the maximum distance
of short-range connections, ¢s represents the number of
random connections to add per node and a,, is the clustering
exponent. All of the three graphs used in the simulation are
connected. Uniform rate of communication P;; is adopted.
The (normalized) algebraic connectivity of Geg[k] for each
graph is averaged over 400 realizations, each of which starts
with an uniformly distributed initial opinion profile. Observe
from Fig. 6 that the phase transitions almost overlap with one
anther. As discussed towards the end of Section III, specific
choices of the fixed graph (P) do not impact the dynamics

B. Strategic Interaction Model

For the strategic interaction model, we set x = 2 and
define the trust function to be wu(d) = 0.5 — 0.4d* for
Vd < 7 as shown in Fig. 7 for different values of 7, i.e.,
7 = 0.25,0.64, 0.81. The underlying communication graph is
a RGG graph with n = 50 and r = 0.8. The initial opinion
profiles for the individual agents are generated uniformly over
the opinion space X with ¢ = 3. Opinion distances between
agents are measured by the /2-norm.

1) Case Study (i): Consider the subgraph Geglk] =
(V, Eegt[k]) of G at time k, where E.q[k] contains all the
edges (i,7) € £ whose corresponding distances d;;[k] are
such that d;;[k] < 7 if Dy = () and d;; < inf(D;) otherwise.
Fig. 8 shows the (normalized) algebraic connectivity of the
graph Gog [k] for k sufficiently large. The plot is averaged over



1080

P
2 0.8t 1
o 8
@© € 067 1
St
g0 04r _—RGG
= O
s 0.2- - - - Erdos-Renyi
Z5
° ) |—Small-World
(=)
<= O 0.5 1 1.5 2
Threshold t©
Fig. 6. Phase transitions using three different random graphs, n = 50.
0.6 ‘
=1 = 0.25|
—
% 0.4t .‘“"~. ===1=0.64
- e =7 =0.81
(7] ] .
2 02 H f b
= . 0
L L]
'
0 . . . . .
0 02 04 06 08 1 12 14 16 18 2
Distance Squared d
Fig. 7. Trust Function with 7 = 0.25,0.64,0.81

400 realizations for different values of 7 and inf(D;). Each
realization starts with an uniformly distributed initial opinion
profile. Observe that when inf (Dy ) is small, i.e., 1/« is large,
the agents are less likely to reach a consensus for any value
of 7. In contrast, when inf(D;) is large, i.e., inf(D;) > 0.64
approximately, the society tends to form a convergent opinion
almost surely for large values of 7 (approximately above 0.64).

2) Case Study (ii): Fig. 9 shows the final outcome of the
interactions (top panel) and the squared distance distribution
(bottom panel) with 7 = 0.09 and sup(D2) = 0.0158 (i.e.,
Y2/ = 4.0016). Observe from the top panel that three
opinion clusters are formed. Within each cluster, the (squared)
opinion distances are upper bounded by sup(D2) = 0.0158,
as shown in the bottom right panel of Fig. 9. Also, the
(squared) distances between clusters are at least 0.18, which
is much larger than the threshold 7 = 0.09. Fig. 10 shows the
final outcome of the interactions (top panel) and the squared
distance distribution (bottom panel) when 7 = 0.64 and
sup(Dy) = 0.0158. In this case, agents form a single opinion
cluster, as shown in the top panel; the squared distances within
this cluster are computed to be upper bounded by 0.0156,
which is less than sup(Ds). Fig. 11 shows the time evolution
of the expected squared opinion distance d[k] as k increases
for the two scenarios. In both cases, d decreases until it reaches
an equilibrium point.

C. Social Evolution Dataset

To demonstrate the validity of the proposed interaction
models, we use data collected in the Social Evolution ex-
periment [23]. Specifically, the experiment monitored more
than 80% of the residents in a dormitory, with a population
of approximately 30 freshmen, 20 sophomores, 10 juniors, 10
seniors and 10 graduate student tutors. Interactions between
individuals were tracked by their proximity, location, SMS
and call records. Surveys were conducted monthly on so-
cial relationships, health-related habits, on-campus activities,
political views and common cold symptoms. The friendship
or communication network is connected; the exact network
graph, although not significant to this research, is provided in
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Fig. 9. Final opinion landscape (top), initial (bottom left) and final (bottom
right) squared distance distributions, with 7 = 0.09 and sup(D2) = 0.0158.

[27] and we assume it stays constant. While many insights can
be gleaned from an analysis of the full data, for this research,
the data that we choose to exploit are the location data and
the survey data on health-related habits.

The location data are collected through a mobile phone
application that scans the wireless local area network (WLAN)
access points within a certain range. We use the location data
to study how social interactions shape individuals preferences
in terms of how frequently they visit a place. There are 32724
identified WLAN access points; we choose to use the top
100 most frequently visited access points (approximately 10
locations) to extract individual opinions. The opinion space X
is of dimension ¢ = 101, where the first 100 states correspond
to the top 100 frequently visited WLAN access points and the
last state represents all other locations. Opinions are estimated
once every four weeks. Specifically, we assume a Binomial
distribution for visiting an access point with n,. being the
total number of places a student could visit in four weeks.
We count the total number of times a student visited one
of the 100 access points. Then the probability of visiting
each place is the maximum likelihood estimator (MSE) of
the Binomial distribution, given the actual count. The relative
number of visits to different location is an indication of the
importance of the locations. A question of interest is how
this relative importance evolves over time, and whether this
stabilizes. Opinion distances are measured by the f2-norm
with A = I,. Although the distance calculations are carried
out with ¢ = 101, it is important to note that the intrinsic
dimensionality of the opinion space X can be estimated by
Nloc + 1 where njo. is the number of locations with which
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Fig. 11. Dynamics of expected (squared) distance d for 7 = 0.09 (left) and
7 = 0.64 (right).

the WLAN access points are associated; according to [27],
Nioc ~ 10 for these top 100 WLAN access points.

Fig. 12 shows the histograms of the squared opinion dis-
tances d in the following six time periods: (P1) 10/1/08 -
10/25/08; (P2) 10/26/08 - 11/22/08; (P3) 11/23/08-12/20/08;
(P4) 12/21/08-1/17/09; (P5) 1/18/09-2/14/09; (P6) 2/15/09-
2/28/09. We observe that in P1, d can take almost all the values
ranging from 0 to about 0.7 and a few values around 1, while
by P6, the values of d are concentrated around 0 and 1. We
compute a quantity |w|o, the number of “quantized” distances
d that have nonzero probability: the value |w|y drops from
59 in PI to 17 in P6, indicating that opinions are clustered.
Fig. 13 shows the time evolution of the expected (squared)
opinion distance d. We observe a similar downward trend in
d (see Fig. 11) except in the weeks around Christmas, i.e., P4.
The dotted line in Fig. 13 shows a predicted curve for d once
the data in P4 were discarded.

Consider now the monthly survey data on health-related
habits, in particular, the eating habits and the exercising habits.
Eating habits are tracked by the number of healthy items a
person eats (i.e., number of salads per week and number of
fruits and vegetables per day). Exercising habits are recorded
by the number of aerobic exercises (each lasting at least 20
minutes) per week and the number of times one participates
in team sports per week. Thus individual opinions can be
constructed by computing the probabilities of the following
four states: (1) eating healthy but not exercising; (2) exercising
but not eating healthy; (3) eating healthy and exercising; (4)
none of the above. The opinions are again computed on
a monthly basis. Assume that both events (eating healthy
and exercising) are independent and each follows a Binomial
distribution with n; and ng being the total number of items a
person could eat per month and the total number of exercise
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Fig. 12. Histograms of squared opinion distance d in P1 and P6. The ¢g
norm |w|o denotes the number of “quantized” opinion distances d that have
nonzero probability.
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Fig. 13.  Evolutions of the expected d: measured v.s. predicted dynamics
from P1 to P6.

activities one could do per month. Then the probability of
each event is the maximum likelihood estimator (MSE) of
the Binomial distribution given the actual number of healthy
items a person eaten in a month or the number of exercises a
person done in a month. Using the independence assumption,
the probabilities of the four states can be computed.

Fig. 14 shows the histograms of the squared opinion dis-
tances in selected months*. Clearly, they show no significant
change over time. Unlike the previous experiment (on the
frequently visited places) which exhibits clustering behavior
as time evolves, social interactions between students do not
seem to affect individual health-related habits. This suggests
that social interactions do not influence a person’s opinions
toward different issues at the same level, in terms of the rate
of behavioral changes. There are two possible explanations.
One is that, generally speaking, health-related habits usually
change over a long time scale and this might be caused
by a small threshold 7 in the trust function; people are
close-minded toward changing habits. Hence, it is difficult
for the survey data to capture such minuscule changes in
opinion. Another reason is that students are often not actively
involved in exchanging relevant health advices during social
interactions. If this is the case, then P;; is in fact, equal to
zero for ¢ # j and thus opinions stay constant.

VI. CONCLUSIONS

We proposed a generalization of the Deffuant-Weisbuch
model and studied opinion dynamics in a connected network
under two related interaction models, i.e., the hard-interaction
model and the strategic interaction model. Under the hard-
interaction model, we provided a necessary condition that
guarantees opinion convergence. We showed that the necessary
condition for convergence does not change as long as the

4Survey results are not available for Nov. 08, Jan. 09, Feb. 09 and May 09.
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communication rates are time-invariant. Under the strategic in-
teraction model, we showed how opinion formation processes
are affected by the individual incentives behind interactions.
In particular, we explored two specific utility functions, which
lead to two different asymptotic opinion patterns. Our analysis
of a rich social data indicate evolution towards clustering
behaviors, measured by the frequency of visiting a location;
however, the data do not indicate clustering with respect to
other behavioral traits which may evolve at a longer time scale.

VII. APPENDIX

Derivation of Eqn. (8): Given that agents ¢ and j interacted
at £+ 1, the change in D after the interaction is only affected
by the opinion distances between the pairs (i,7), (¢,¢) and
(4,€) for V. It then follows from (5), (6) and (7) that D% [k +
1] — D[k] equals

dijlk + 1] — di;[k]
+ ) dielk + 1] — diglk] + djelk + 1] — dje[K]
VOH£i,j
= — 4p(di; [k]) (1 — p(diz [K]))dis [F]
+ ) (262 (di[R)dig[R] — 2(di [K]) i [K]]
VOH£i,j
= — 4p(di; [k]) (1 — p(diz [K]))dis [F]
+ (n — 2) [244°(dij[K])dij K] — 2u(di; [k])dis K]
= — 2npu(di;[k]) [1 — p(di; [K])] dij[K].

Lemma 5: Let h(d) = p(d)d = p(d)(1 — p(d))d. Then
under Assumptions 2 and 4, its second derivative equals i =
—2(f1)2d+(1—2p)jid+2(1—2u) 1 < 0 for d € (0, 7) and thus
h(d) is concave for d € (0,7). Let Peg = [ fe(u)du < 1
and degr = [ uf¢(u)du. Then

f

t(u)
P du.

dsup T
E{h(d)} = / h(u) fy(u)du = P / h(u)

Using Jensen’s inequality and the relation dog < d yields

E{h(d)} < P (fo ) <p (Zi ) 7 < p(dua)d

The last inequality holds because p(d) is a non-increasing
function of d (i.e., its derivative p = (1 — 2u)i < 0). We
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Fig. 15. Vector Field: the point £(s;¢) moves toward the stable fixed point
&1 =0if £(0;¢) < K and moves away, otherwise.

have p(derr)/p(d) < p(0)/p(77) < B and subsequently,
E{h(d)} < Bh(d).

Lemma 6: For s sufficiently small, Taylor’s expansion
gives p (b(t+ s)) =~ p (b(t)) + (b(t + s) — b(t)) p (b(t)). Then

system b(t + s) = —Bp(b(t + s))b(t + s) becomes

o =Bt s) it p(b() = O
e ={ H00h it (b(1)) < 0.

where f(s:1) = 5 |p (b(t)) — b(£)p (b)) (1 = K52 ) [ (e +
s) and p(b) := dp/db. In the first case, p(b(t)) is locally
constant and hence, the local rate of convergence around b(t)
is exponential and is equal to p (b(t)) when p(b(t)) > 0,
i.e., b(t) < 7. For the second case when p (b(t)) < 0, define
&(s;t) == b(t+ s)/b(t). With respect to s, the dynamics of &
become

é(sst) = gghte + ) = ~res ) (1- S5
(18)
where  R(t) = p (b(t)) — b(t)p (b(1)) . (19)
_ p(b(t))
Note that the dynamics of £(s; ) resemble the logistic equa-

tion. There are two equilibria at £ = 0 (stable) and &, = K (t)
(unstable). When R(t) > 0, as shown in Fig. 15, the system
will converge if K(t) > £(0;t) = 1. Indeed, if b(t) < T,
then K(t) = 1 — % > 1. and (18) converges. The
exponential rate of convergence equals R(t). Moreover, since

b(t) is a monotonically decreasing function of ¢, an equivalent
condition for convergence is b(0) < 7. On the contrary, when
b(t) = 7, we get K(t) = 1 because p(7) = 0. For b(t) > T,
both p (b(t)) and p (b(t)) are zero, which implies R(¢) = 0 in
(18) and bifurcation occurs. Thus the system may not converge
when b(t) > 7 for Vt.
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