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Abstract
We present a new robust line matching algorithm for solving
the model-to-image registration problem. Given a model
consisting of 3D lines and a cluttered perspective image of
this model, the algorithm simultaneously estimates the pose
of the model and the correspondences of model lines to im-
age lines. The algorithm combines softassign for determin-
ing correspondences and POSIT for determining pose. Inte-
grating these algorithms into a deterministic annealing pro-
cedure allows the correspondence and pose to evolve from
initially uncertain values to a joint local optimum. This re-
search extends to line features the SoftPOSIT algorithm pro-
posed recently for point features. Lines detected in images
are typically more stable than points and are less likely to
be produced by clutter and noise, especially in man-made
environments. Experiments on synthetic and real imagery
with high levels of clutter, occlusion, and noise demonstrate
the robustness of the algorithm.

1. Introduction
This paper presents an algorithm for solving the model-to-
image registration problem using line features. This is the
task of determining the position and orientation (the pose)
of a three-dimensional object with respect to a camera coor-
dinate system given a model of the object consisting of 3D
reference features and a single 2D image of these features.
We assume that no additional information is available with
which to constrain the pose of the object or to constrain the
correspondence of model to image features. This is also
known as the simultaneous pose and correspondence prob-
lem.
Automatic registration of 3D models to images is a fun-

damental and open problem in computer vision. Applica-
tions include object recognition, object tracking, site in-
spection and updating, and autonomous navigation when
scene models are available. It is a difficult problem be-
cause it comprises two coupled problems, the correspon-

Partial support of NSF awards 0086162, 9905844, and 9987944 is
gratefully acknowledged.

dence problem and the pose problem, each easy to solve
only if the other has been solved first:

1. Solving the pose problem consists of finding the ro-
tation and translation of the object with respect to the
camera coordinate system. Given matching model and
image features, one can easily determine the pose that
best aligns those matches [5].

2. Solving the correspondence problem consists of find-
ing matching image features and model features. If
the object pose is known, one can relatively easily de-
termine the matching features. Projecting the model
in the known pose into the original image, one can
identify matches according to the model features that
project sufficiently close to an image feature.

The classic approach to solving these coupled problems is
the hypothesize-and-test approach. In this approach, a small
set of image feature to model feature correspondences are
first hypothesized. Based on these correspondences, the
pose of the object is computed. Using this pose, the model
points are back-projected into the image. If the original and
back-projected images are sufficiently similar, then the pose
is accepted; otherwise, a new hypothesis is formed and this
process is repeated. Perhaps the best known example of this
approach is the RANSAC algorithm [6] for the case that no
information is available to constrain the correspondences of
model to image points.
Many investigators approximate the nonlinear perspec-

tive projection via linear affine approximations. This is ac-
curate when the relative depth of object features is small
compared to the distance of the object from the camera.
Among the researchers that have addressed the full perspec-
tive problem, Wunsch and Hirzinger [11] formalize the ab-
stract problem in a way similar to the approach advocated
here as the optimization of an objective function combining
correspondence and pose constraints. However, the corre-
spondence constraints are not represented analytically. The
method of Beveridge and Riseman [1] uses a random-start
local search with a hybrid pose estimation algorithm em-
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ploying both full-perspective and weak-perspective camera
models.
David et al. [4] recently proposed the SoftPOSIT algo-

rithm for simultaneous pose and correspondence determi-
nation for the case of a 3D point model and its perspective
image. This algorithm integrates an iterative pose technique
called POSIT (Pose from Orthography and Scaling with IT-
erations) [5], and an iterative correspondence assignment
technique called softassign [9] into a single iteration loop.
A global objective function is defined that captures the na-
ture of the problem in terms of both pose and correspon-
dence and combines the formalisms of both iterative tech-
niques. The correspondence and the pose are determined si-
multaneously by applying a deterministic annealing sched-
ule and by minimizing this global objective function at each
iteration step.
We extend the SoftPOSIT algorithm from matching

point features to the case of matching line features: 3D
model lines are matched to image lines in 2D perspective
images. Lines detected in images are typically more stable
than points and are less likely to be produced by clutter and
noise, especially in man-made environments. Also, line fea-
tures are more robust to partial occlusion of the model. Our
current algorithm uses the SoftPOSIT algorithm for points
to determine the pose and correspondences for a set of im-
age and model lines. An iteration is performed where at
each step the given 2D to 3D line correspondence problem
is mapped to a new 2D to 3D point correspondence prob-
lem which depends on the current estimate of the camera
pose. SoftPOSIT is then applied to improve the estimate of
the camera pose. This process is repeated until the pose and
correspondences converge.
In the following sections, we examine each step of the

method. We first review the SoftPOSIT algorithm for
computing pose from noncorresponding 2D image and 3D
model points. We then describe how this is used to solve
for pose when only line correspondences are available. Fi-
nally, some experiments with simulated and real images are
shown.

2. Camera Models
Let be a 3D point in a world coordinate frame with origin
(figure 1). If a camera placed in this world frame is used

to view , then the coordinates of this point in the camera
frame may be written as . Here, is a rota-
tion matrix representing the orientation of the camera frame
with respect to the world frame, and the translation is
the vector from the camera center to , expressed in the
camera frame. Let the th row of be denoted by and
let the translation be
We assume that the camera is calibrated, so that pixel co-

ordinates can be replaced by normalized image coordinates.

O

camera frame

C image plane

world frame

T

Figure 1: The geometry of line correspondences.

Then, the perspective image of a 3D point in the world
frame is where

(1)

We will also need to use the weak perspective (also
known as scaled orthographic) projection model, which
makes the assumption that the depth of an object is small
compared to the distance of the object from the camera, and
that visible scene points are close to the optical axis. The
weak perspective model will be used iteratively in the pro-
cess of computing the full perspective pose. Under the weak
perspective assumption, since is a unit vector
in the world coordinate frame that is parallel to the camera’s
optic axis. The weak perspective image of a 3D point in
the world frame is where

(2)

3. Pose from Point Correspondences
Our new line matching algorithm builds on the SoftPOSIT
algorithm [4], which itself builds on the POSIT algorithm
[5]. This section of the paper gives an overview of these
two algorithms.

3.1. The POSIT Algorithm
The POSIT algorithm [5] computes an object’s pose given
a set of corresponding 2D image and 3D object points. The
perspective image of a 3D world point is related



to the image produced by a scaled orthographic
camera according to

(3)

Equation (3) is obtained by combining equations (1) and
(2). The term can be determined only if the camera pose
is known:

(4)
where is the vector in the camera coordinate frame
from the world origin to . When the depth range of the
object along the optical axis is small compared to the object
distance, is small compared to , and
. This is exactly the assumption made when a perspective
camera is approximated by a scaled orthographic camera.
The POSIT algorithm starts by assuming that the per-

spective image points are identical to the scaled ortho-
graphic image points, so that for all . Under this
assumption, the camera pose can be determined by solv-
ing a simple linear system of equations. This solution is
only approximate since is only approximate. How-
ever, given a more accurate estimate of the object’s pose,
the accuracy of the terms can be improved by reestimat-
ing these terms using equation (4). This process is repeated
until the pose converges.

3.2. The SoftPOSIT Algorithm
The SoftPOSIT algorithm [4] computes camera pose given
a set of 2D image and 3D object points, where the corre-
spondences between these two sets are not know a priori.
The SoftPOSIT algorithm builds on the POSIT algorithm
by integrating the softassign correspondence assignment al-
gorithm [8, 9]. For image points and object points,
the correspondences between the two sets is given by an

assignment matrix where
. Intuitively, the value of ( )
specifies how well the th image point matches to the th ob-
ject point. Initially, all have approximately the same
value, indicating that correspondences are not known. Row

and column of are the slack row and column,
respectively. The slack positions in receive large values
when an image point does not match any model point or a
model point does not match any image point.
An object’s pose can be parameterized by the two vectors

and ; given and
, and can easily be determined. The homogeneous

object points are written as . Then, given
the assignment weights between the image and object
points, the error function

(5)

gives the sum of the squared distances between scaled or-
thographic image points (approximated using the perspec-
tive image points as in equation (3)) and the corresponding
(weighted by the ) scaled orthographic images of the
3D object points (which depend on the object’s estimated
pose, and ) [4]. The solution to the simultaneous
pose and correspondence problem consists of the , ,
and which minimize . The function is minimized
iteratively as follows:

1. Compute the correspondence variables assuming
that pose is fixed.

2. Compute the pose vectors and assuming that
correspondences are fixed.

3. Compute the scaled orthographic corrections using
equation (4) and the new pose vectors.

Steps (1) and (2) are described in more detail below.

Computing Pose. By assuming that the are fixed,
the object pose which minimizes this error function is found
by solving and . The solution is

(6)

(7)

where [4]. Computing and re-
quires the inversion of the matrix ,
which is inexpensive.

Computing Correspondences. The correspondence
variables are optimized assuming the pose of the ob-
ject is known and fixed. The goal is to find a zero-one
assignment matrix, , that explicitly specifies
the matches between a set of image points and a set of
object points, and that minimizes the objective function
. The assignment matrix must satisfy the constraint that

each image point match at most one object point, and vice
versa (i.e., for all and ). The
objective function will be minimized if the assignment
matrix matches image and object points with the smallest
distances . (Section 5 describes how these distances are
computed.) This problem can be solved by the iterative sof-
tassign technique [8, 9]. The iteration for the assignment
matrix begins with a matrix in which element is
initialized to , with very small, and
with all elements in the slack row and slack column set to a
small constant. The parameter determines how large the



distance between two points must be before we consider
them unmatchable. The continuous assignment matrix con-
verges toward a discrete matrix due to two mechanisms that
are used concurrently:

1. First, a technique due to Sinkhorn [10] is applied.
When each row and column of a square correspon-
dence matrix is normalized (several times, alternat-
ingly) by the sum of the elements of that row or column
respectively, the resulting matrix has positive elements
with all rows and columns summing to one. When the
matrix is not square, the sums of the rows and columns
will be close to, but not exactly equal to one.

2. The term is increased as the iteration proceeds. As
increases and each row or column of is renor-

malized, the terms corresponding to the smallest
tend to converge to one, while the other terms tend

to converge to zero. This is a deterministic annealing
process [7] known as softmax [2]. This is a desirable
behavior, since it leads to an assignment of correspon-
dences that satisfy the matching constraints and whose
sum of distances in minimized.

This combination of deterministic annealing and Sinkhorn’s
technique in an iteration loop was called softassign by Gold
and Rangarajan [8, 9]. The matrix resulting from an iter-
ation loop that comprises these two substeps is the assign-
ment that minimizes the global objective function . These
two substeps are interleaved in an iteration loop along with
the substeps that optimize the pose.

4. Pose from Unknown Line
Correspondences

4.1. Geometry of Line Correspondences
Each 3D line in an object is represented by the two 3D end-
points of that line whose coordinates are expressed in the
world frame: . See figure 1. A line in
the image is defined by the two 2D endpoints, and , of
the line and is represented by the plane of sight that passes
through and the camera center . The normal to this
plane is , and 3D points in the
camera frame lying on this plane satisfy .
Let us assume that image line corresponds to object

line . If the object has pose given by and , then
and lie on the plane of

sight through . When and are erroneous and only
approximate the true pose, the closest points to and
which satisfy this incidence constraint are the orthogonal
projections of and onto the plane of sight of :

(8)

where we have assumed that has been normalized to a
unit vector. Under the approximate pose and , the im-
age points corresponding to object points and can be
approximated as the images of and :

(9)

4.2. Computing Pose and Correspondences
The pose and correspondence algorithm for points (Soft-
POSIT) involves iteratively refining estimates of the pose
and correspondences for the given 2D and 3D point sets.
The new algorithm for lines builds on this approach by ad-
ditionally refining in the iteration a set of estimated images
of the endpoints of the 3D object lines. With this estimated
image point set, and the set of object line endpoints, Soft-
POSIT is used on each iteration to compute a refined esti-
mate of the object’s pose.
On any iteration of the line algorithm, the images of the

3D object lines endpoints are estimated by the point set

img (10)

which is computed using equations (8) and (9). For every
3D endpoint of an object line, there are possible images
of that point, one for each image line. This set of
image points depends on the current estimate of the object’s
pose, and thus changes from iteration to iteration. The ob-
ject points used by SoftPOSIT are fixed and is the set of
object line endpoints: obj .
We now have a set of image points and a set of
object points. To use SoftPOSIT, an assignment ma-

trix between the two sets is needed. The initial assignment
matrix for point sets img and obj is computed from the
distances between the image and model lines as discussed
in section 5. If and have distance , then all points
in img and obj derived from and will also have dis-
tance . Although the size of this assignment matrix is

, only of it values are nonzero
(not counting the slack row and column). Thus, with a care-
ful implementation, the current algorithm for line features
will have the same run-time complexity as the SoftPOSIT
algorithm for point features, which was empirically deter-
mined to be O [4].
The following is high-level pseudocode for the line-

based SoftPOSIT algorithm.

1. Initialize: , , , obj .

2. Project the model lines into the image using the current
pose estimate. Compute the distances between the
true image lines and the projected model lines.



3. Initialize the assignment matrix as
and then compute by nor-

malizing with Sinkhorn’s algorithm.

4. Compute img (equation (10)).

5. Solve for and (equations (6) and (7)) using
and the point sets obj and img , and then compute
and from and .

6. Stop if and have converged; otherwise, set
update and go to step (2).

The algorithm described above performs a deterministic an-
nealing search starting from an initial guess for the object’s
pose. However, it provides only a local optimum. A com-
mon way of searching for a global optimum, and the one
taken here, is to run the algorithm starting from a number
of different initial guesses, and keep the first solution that
meets a specified termination criteria. Our initial guesses
range over for the three Euler angles, and over a 3D
space of translations containing the true translation. We use
a random number generator to generate these initial guesses.
See [4] for details.

5. Distance Measures
The sizes of the regions of convergence to the true pose
is affected by the distance measure employed in the cor-
respondence optimization phase of the algorithm. The line-
based SoftPOSIT algorithm applies SoftPOSIT to point fea-
tures where the distances associated with these point fea-
tures are calculated from the line features. The two main
distinguishing features between the different distance mea-
sures are (1) whether distances are measured in 3-space or
in the image plane, and (2) whether lines are treated as hav-
ing finite or infinite length. The different distance measures
that we experimented with are described below.
The first distance measure that we tried measures dis-

tances in the image plane, but implicitly assumes that both
image and projected model lines have infinite length. This
metric applies a type of Hough transform to all lines (im-
age and projected model) and then measures the distance
in this transformed space. The transform that is applied
maps an infinite line to the 2D point on that line
which is closest to some fixed reference point . The
distance between an image line and the projection of
object line with respect to reference point is then

. Because this Hough line distance
is biased with respect to the reference point , for each
pair of image and projected object line, we sum the dis-
tances computed using five different reference points, one
at each corner of the image and one at the image center:

.

The second distance measure that we tried measures dis-
tances in the image plane between finite length line seg-
ments. The distance between image line and the projec-
tion of object line is
where measures the difference in the orienta-
tion of the lines, measures the difference in the
location of the lines, and is a scale factor that deter-
mines the relative importance of orientation and location.

where denotes the angle
between the lines. Because lines detected in an image are
usually fragmented, corresponding only to pieces of object
lines, is the sum of the distance of each endpoint of
to the closest point on the finite line segment . So, for

a correct pose, even when is only a partial
detection of . This distance measure has produced better
performance than the previous measure, resulting in larger
regions of convergence and fewer number of iterations to
converge.

6. Experiments
6.1. Simulated Images
Our initial evaluation of the algorithm is with simulated
data. Random 3D line models are generated by selecting
a number of random points in the unit sphere and then con-
necting each of these points to a small number of the closest
remaining points. An image of the model is generated by
the following procedure:

1. Projection: Project all 3D model lines into the image
plane.

2. Noise: Perturb with normally distributed noise the lo-
cations of the endpoints of each line.

3. Occlusion: Delete randomly selected image lines.

4. Missing ends: Chop off a small random length of the
end of each line. This step simulates the difficulty of
detecting lines all the way into junctions.

5. Clutter: Add a number of lines of random length to
random locations in the image. The clutter lines will
not intersect any other line.

Figure 2 shows our algorithm determining the pose and cor-
respondence of a random 3D model with 30 lines, from a
simulated image with 40% occlusion of the model, 40%
of the image lines being clutter, and normally distributed
noise with standard deviation of the image dimen-
sion (about pixel for a image). As seen in this
figure, the initial and final projections of the model differ
greatly, and so it would be difficult for a person to deter-
mine the correspondence of image lines to model lines from
the initial projection of the model into the image. Our algo-
rithm, however, is often successful at finding the true pose



Figure 2: Example application of our algorithm to a cluttered image. The eight frames on the left show the estimated pose
at initialization (upper left) and at steps 1, 3, 5, 12, 20, 27, and 35 of the iteration. The thin lines are the image lines and the
bold lines are the projection of the model at the current step of the iteration. The correct pose has been found by iteration
step 35. The right side of this figure shows the evolution of the assignment matrix at the corresponding steps of the iteration.
Because of the way the simulated data was generated, the correct assignments lie near the main diagonal of the assignment
matrix. Image lines are indexed along the vertical axis, and model lines along the horizontal axis. Brighter pixels in these
figures correspond to greater weight in the assignment matrix. The correct assignments have been found by iteration step 35.
Unmatched image and object points are apparent by the large values in the last row and column of the assignment matrix.



from such initial guesses. Although we have not yet done a
quantitative evaluation of the algorithm, anecdotal evidence
suggests that under 50% occlusion and 50% clutter, the al-
gorithm finds the true pose in about 50% of trials when the
initial guess for the pose differs from the true pose by no
more than about of rotation about each of the x, y, and
z axis. (The initial rotation of the model shown in figure 2
differs from that of the true pose by about each of the
coordinate axis.)

6.2. Real Images
Figure 3 shows the results of applying our algorithm to the
problem of a robotic vehicle using imagery and a 3D CAD
model of a building to navigate through the building. A
Canny edge detector is first applied to an image to produce
a binary edge image. This is followed by a Hough trans-
form and edge tracking to generate a list of straight lines
present in the image. This process generates many more
lines than are needed to determine a model’s pose, so only
a small subset are used by the algorithm in computing pose
and correspondence. Also, the CAD model of the building
is culled to include only those 3D lines near the camera’s
estimated position.

7. Conclusions
The simultaneous determination of model pose and model-
to-image feature correspondence is very difficult in the pres-
ence of model occlusion and image clutter. Experiments
with the line-based SoftPOSIT algorithm show that it is ca-
pable of quickly solving high-clutter, high-occlusion prob-
lems, even when the initial guess for the model pose is
far from the true pose. The algorithm solves problems for
which a person viewing the image and initial model projec-
tion have no idea how to improve the model’s pose or how
to assign feature correspondences.
We are interested in determining the complexity of the

algorithm when no information is available to constrain the
model’s pose, except for the fact that the model is visible
in the image. This will allow us to compare the efficiency
of line-based SoftPOSIT to other algorithms. The key pa-
rameter that needs to be determined is the number of initial
guesses required to find a good pose, as a function of clut-
ter, occlusion, and noise. We expect that the line-based al-
gorithm will require many fewer initial guesses than point-
based SoftPOSIT algorithm.
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