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Abstract

Most computational models of analogy assume they are given a
delineated source domain and often a specified target domain
These systems do not address how analogs can be isolated from
large domains and spontaneously retrieved from long-term
memory, a process we cajpontaneous analogyVe present a
system that represents relational structures as featgee ba-

ing this representation, our system leverages percepig@ a
rithms to automatically create an ontology of relationalist
tures and to efficiently retrieve analogs for new relatictialc-
tures from long-term memory. We provide a demonstration of
our approach that takes a set of unsegmented stories, wcisstr
an ontology of analogical schemas (corresponding to plet de
vices), and uses this ontology to efficiently find analogimit
new stories, yielding significant time-savings over linaaa-

log retrieval at a small accuracy cost.

n
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Target =0 Pterodactyls!

(a) Mapping (b) Spontaneous Retrieval

Figure 1:An analog of Analogical Mapping vs. Sponta-

1 Spontaneous Analogy neous Analogy.In Analogical Mapping (a), we are given an

In our day-to-day experience, we often generate analogiegxplicit source and target, free from interfering contet.
spontaneously (Wharton, Holyoak, & Lange, 1996; Clementspontaneous analogy (b), the analogs are spontaneously re-
1987). That is, with no explicit prodding, we conjure up trieved from long-term memory.
analogs to aspects of our current situation. For exampliégewh
reading a story, we may recognize a plot device that is anal-

ogous to one used in another story that we read long ag The process of spontaneous analogy shares some proper-

The shared plot device may be a small part of each story,
is usually not explicitly delineated for us or presentedsior i
lation from the rest of the story, and we may recognize th
analogy of the plot device even if the general plots of the twi
stories are not analogous. Somehow,sggmenbut the plot
device andetrievethe analod from another story in long-
dormant memorySpontaneous analody the process of ef-

ficiently retrieving an analog from long-term memory given

an unsegmented source domain such that part of the sou
shares structural similarity with the analog, though théyht
not share surface similarity. This process differs frormsta
dard models of analogy, which are givedelineatedsource

concept, and often a target concept. Given a pair of analog

analogical mapping is relatively straightforward. The mor
difficult problem is finding the analogs to begin with. As

Chalmers, French, and Hofstadter (1992) argue “when th
program'’s discovery of the correspondences between the tw

situations is a direct result of its being explicitly givemet
appropriate structures to work with, its victory in findirget
analogy becomes somewhat hollow”.

1in our terminology, aranalogis substructure of a domain that
is structurally similar to a substructure of another domaind an
analogical schemas a generalization of an analog. For example
an input domain might be the entire story Rbmeo & Juliet an

fies with low-level perception, as exemplified in Figure 1.
\Nithin seconds of being presented with a visual image of a
eoterodactyl flying over a canyon, one can typically describe
othe image using the word “pterodactyl”, even if one has had
no special explicit recent priming for this concept, indeed
even if one has not consciously thought about pterodaayls f
several years. For us to produce the word “pterodactyl”, we
mustsegmenthe pterodactyl from the canyon and retrieve the
E%terodactyl” concept from the thousands of concepts store
In'memory. We must have learned the “pterodactyl” concept
to begin with from unsegmented images. This perceptual pro-
cess is robust to noise: The pterodactyl in the image could be
gartially occluded, ill-lit, oddly colored, or even draws a
cartoon, and we are still able to correctly identify thissha

(to a certain point). Likewise, many details of the plot dea

rom the above story example could be altered or obfuscated,
ut this analogy would degrade gracefully.

Our primary technical contribution in this paper is an algo-
rithm calledSpontof that solves the problem of spontaneous
analogy: efficient parsing, storage, and retrieval of agslo
from long-term memory. Thatis, given a corpus of many large
unsegmented relational structures, Spontol discovelsgna
ical schemas that are useful for characterizing the corpds a

' efficiently retrieves analogs given a new structure. Eigerg

r

analog would be the part of the story where Romeo kills Tybalt & set of narratives in predicate form, Spontol discovers plo

who killed Romeo’s friend, Mercutio (like itHamletwhere Ham-
let kills Claudius, who killed Hamlet's father), and an asgital
schema would be the generalized plot device of a “revendjail

2Spontolis short for ‘spontaneous analogy using ti@ntol on-
tology learning and inference algorithm”.
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devices and analogs between the stories. We know of no pridoth these systems are also limited in that they are unable to
work that scales to this task when the number of narrativesxploit partial analogical schemas. That s, a partial leyen
and statements per narrative are both in the hundreds. these systems’ vectors does not correspond to a common sub-

In the remainder of this paper, we describe related worlgraph in the corresponding structures. These systemsistand
(Section 2), give background gperceptual systemgSec- contrast to Spontol, which is able to represent larger struc
tion 3), describe the Spontol algorithm, which transforhes t  tures and efficiently find common substructures.

roblem of spontaneous analogy into a “perceptual” problem

?Section 4), F()jemonstrate Spog}c/ol’s perfF())rmarFI)ce onpa story 3 Background: Perceptual Systems
database (Section 5), discuss implications and shortasnin Spontol transforms relational structures into featureshem

of Spontol, and conclude (Section 6). that their surface similarity corresponds to the strudtsira-
ilarity of the relational structures. After Spontol has read
2 Related Work this transformation, the problem of spontaneous analogy is

_reduced to the problem of feature overlap, and any of several

There has been earlier work on the problem of analogy inyisting “perceptual” systems can be used to find and exploit
the absence of explicitly segmented domains. The COWARD) 4tters in feature vectors. Our implementation of Spontol

system (Baldwin & Goldstone, 2007) addresses this probyges 5 model inspired by the human sensory cortices (audi-
lem by searching for mappings within a large graph, esseng,y isyal, tactile) calledntol (Pickett, 2011). Ontol is a
tially searching for isomorphic subgraphs. SUBDUE (Holder i of aigorithms, both of which are given “sensor” inputs
Cook, & Djoko, 1994) compresses large graphs by breakingsy o jength, real-valued non-negative vectors). The éits

them into repeated subgraphs, but is limited in that its outyrithm constructs an ontology that concisely encodegthe i

put must be a strict hierarchy, and would be unable to disp 5 For example, given a set of vectors representing Misua
cover the lattice structure of the concepts in Figure 2. Maut inqows from natural images, Ontol produces a feature hi-

(McKay, 1981) uses a number of heuristics to efficiently de-g 5.y joosely modeled on that seen in the visual cortex.

termine whether one graph is a subgraph of another, but thighg second algorithm takes as input an ontology (produced

must be given source and target graphs to begin with. Wey e first algorithm) and a new vector, aoatseshe vector.
can also apply The Chunker (described in Section 3) to feary ¢ is it produces as output the new vector encoded in the

ture bag graphlet kernels (Shervashidze, Vishwanathan, Pe higher-level features of the ontology. In addition to “lmtt-
Mehlhorn, & Borgwardt, 2009), which are related to Spon—upn parsing, the second algorithm also makes “top-down”
tol's transformT in that both represent partial graphs, but this ;. 4i~tions about any unspecified values in the vector.
earlier work applies only for cases where there is one kind OP Ontol is ignorant of the modality of its input. That is, Ontol

entity, one kind of relation, and only binary relations, #hi g given no information about what sensory organ is produc-
Spontol works for multiple kinds of entities and relatioms, s inputs. Because of this ignorance, we are able taleve

cluding relations of large arity. age Ontol to find patterns in abstract “sensory” inputs that a
The MAC phase of MAC/FAC (Forbus, Gentner, & Law, actually encodings of relational structures.

1995) bears some relation to our spontaneous analog mdtriev

MAC uses vectors of content, such as the number of node@ntology Learning

and edges in a graph, as a heuristic for analog retrieval-HowOntol’'s ontology formation algorithm, callefhe Chunker

ever, in cases where the subgraph in question is a part of geeks to find concepts (ohunks that allow for concise char-

much larger graph, the heuristics that MAC uses are drownedcterization of vectors. Since chunks themselves are rgcto

out by the larger graph. Likewise, ARCS (Thagard, Holyoak,The Chunker is applied recursively to create an ontology. In

Nelson, & Gochfeld, 1990) also assumes that analogs havsssence, this algorithm is similar to trecursive block pur-

been delineated (i.e., it matches an entire source domaiguit algorithm described by Si and Zhu (2011) in that both

rather than a substructur®EQL(Kuehne, Forbus, Gentner, search for large frequently occurring sets of features. The

& Quinn, 2000) generalizes relational concepts, but ddesn’Chunker differs in that it allows for multiple inheritance,

build a hierarchical ontology of analogical schemas. while recursive block pursuit creates only strict tree stru
There has been some work on representing structures asres. In Section 4, we show the importance of this prop-

feature vectors. For example, Holographic Reduced Repreerty for finding multiple analogical schemas within a single

sentations have been used to implement Vector Symbolicelational structure. For simplicity, we describe the cite

Architectures in which there is a correlation between vecbinary version of The Chunker algorithrah{ink(B), which

tor overlap and structural similarity (Gayler, Levy, & Bod, takes as input a s& of feature bags and produces an ontol-

2009). This work is limited in that it requires vectors ofdggh ~ ogy Q) provided by Pickett (2011), but this can be modified

10,000 to represent very small grapks10 nodes), and only  for continuous vectors. In this version, each vector iste@a

represents binary relations of a single type, so this agbroa as a set, with a value of 1 for featufesignifying inclusion of

is not directly extendable to relational structures sucthas f in the set, and a value of 0 signifying exclusion.

stories in our demonstration. This is also a limitation foe t The Chunker searches for intersections among existing fea-

system proposed by Rachkovskij, Kussul, and Baidyk (2012)ture bags and proposes these as candidates for new concepts.

3230



Each candidate is evaluated by how much it would compress Although the parsing problem is NP-complete, a sin-
the ontology, then the best candidate is selected and addegte bottom-up pass can be performed in logarithmic time
to the set of feature bags, and the process is repeated antil f{Pickett, 2011). Importantly, Ontol examines only a small
candidates are found that further reduce the descriptiagitte  subset of the concepts and instances while parsing. This
of the ontology. Figure 2 shows the ontology constructed bymeans that, when judging concept similarity, Ontol does not
this algorithm when applied to an animal dataset, where theeed to compare each of insnodes. This property is impor-

“sensory percepts” are features for each animal

th

-Catfish ‘ ,@
C"Fish"j \\\ /". Chastegs)
oncept W @

= W\ SO s

airborne

Figure 2:The Zoo Ontology with some instancednstances

tant for spontaneous analog retrieval (described below).

4 Analogy as Perception

We now describe a method for transforming relational struc-
tures into sparse feature vectors (or feature bags) suth tha
the problem of analog retrieval is reduced to the problem of
percept parsing. An example of this process is shown for the
Sour Grapedable in Figure 5. For this process, we rely on
a transforml (described below) that takes a small relational
structure and converts it into a feature bag (exemplified in
Figure 5(c)). The size of relational structure is limited 1o
becausd'’s runtime is quadratic in the size of the structure.
We view this limitation as acceptable because people gener-
ally cannot keep all the details of an entire lengthy novel (o
all the workings of a car engine) in working memory. Gen-
erally, people focus on some aspect of the novel, or some
abstracted summary of the novel (or engine). Therefore, we
break each large relational structure into multiple oygslag
windows A window is a small set of connected statements,
where two statements are connected if they share at least one
argument. Spontol exploits a principle akin to one used by
the HMax model of the visual cortex (Riesenhuber & Poggio,
1999): as the number of windows for a relational structure
increases, the probability decreases that another steucas

the same windows without being isomorphic to the first.

are individual animals shown on the left, and base features The process for building an ontology of analogical schemas
are on the right. Black nodes in the middle correspond tdrom large relational structures, call&pontol-Build, is de-
higher-level features. The concept that corresponds th™fis scribed in Figure 3. This algorithm extraatsmWindows

is marked. Inhibitory links are shown as dark circles.

Parsing and Prediction

windows from each large relational structure and transgorm
them into feature bags (exemplified in Figure 5(d)) and
chunks these feature bags to create an ontology of windows
called windowOntology Spontol-Build then re-encodes the
windows by parsing them using this ontology, and re-encodes

Given an ontology and a new instance, Ontpksse (b, Q) the larger structures (from which the windows came) as a fea-

algorithm characterizes the feature bag instamosing the ture bag of the parsed windows. Finalpontol-Build runs

hlgher-le\{el features n the ontology. ’For example, 9VeN " another pass of chunking on the re-encoded structures to gen
a new animal (a goldfish) that doesn’t breathe, has fins, has
erate the schema ontology.

no feathers, and is domestic, Ontol will parse the animal as .
. ) . . L The process of spontaneous analog retrieval, called
an instance of théish concept, with the exception that it is . L - :
Spontol-Retrieve, is given in Figure 4. When given a new re-

domestic. If Ontol is given no other information about the ", . :
lational structures, we encodes by extracting windows from

animal, it will also perform top-down inference, andfold it, parsing these using theindowOntologythen parsing the

the f|s_h concept _to pred|ct_that the new mstance:\‘ has ©99%ature bag representation using sehemaOntologyThis
no hair, has a tail, etc.. This latter step is called “top-dow . .
yields a set of schemas that are containesl in

prediction”. Ontol searches for the parse that minimizes th
description length of the instance. In our goldfish exampleTransforming Small Relational Structures

the_ “raw” description of the gc_>|d_fish consists of 4 eIements,Here’ we describe an operatiGawhich transforms a (small)
while the “compressed” description has only 2 elements.  g\ational structure into a feature bag. In our demonstra-

3A full description and implementation of The Chunker, aslwel _tlon, we assume that the relational structure is described

as source code for our demonstration of Spontol can be dadatb 1N Predicate logic, but our approach is not limited to this
athttp:// marcpi ckett. con src/anal ogyDeno. t gz. representation. We consider a relational structure to be a
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“A fox wanted some grapes, but could not get them. This caused
him to decide that the grapes were sour, though the grapes
weren't. Likewise, men often blame their failures on their ¢
cumstances, when the real reason is that they are incdpable|.

(a) English (for clarity)

Figure 3:Spontol’s Ontology Learning Algorithm

/I Creates an ontology of schemas given a set of strucfires
/I’ numWindowss the number of windows to grab per structure.
/I windowSizes the number of statements per window.
define Spontol-Build (S,numWindowsvindowSize

/I Randomly grab windows from each structure,

" fox O 3Fox cause n84 nB83 saneAs f36 (sour O 3G apes)
[/l and transform them into feature bag form. false ;36 f grapesbl(] Bgapes sameAs ;35 Edeci((i;: orsF&x 36) :
. H-— i cause f34 f35 | incapable Of 3Men sameAs f34 (get O 3Fox O 3G apes
foreachse S’ fori= 17 7numW|nd0WS_ . false f34 deci de O 3Fox f36 saneAs n84 (incapable Of 3MVen)
let wsj = grabConnectedStatements (s,windowSiz¢ nen Of 3hen sameAs n83 (fai| Of3Men) | blameFor Of3Men concGircum n83
fail O 3Men want O 3Fox Of 3Grapes circunstances concGircum

add T (Ws.i% to allWindows
/l Run The Chunker to generate the window ontology
windowOntology= chunk (allWindowsg
/I Re-encode each structure using the reduced-size windpws
foreachse S; for i =1,---,numWindows

(b) Predicate Form (Spontol’s actual input)

bl aneFor 1=bl ameFor 3. f ai | 1
ci rcunst ances1=bl ameFor 2
fail 1=bl ameFor3.fail 1

add parse (T (ws;) ,windowOntology to bigWindows
/ Run The Chunker to generate the schema ontology.
schemaOntology chunk (bigWindow$
return schemaOntologywindowOntology

bl ameFor Cf 3Men concG rcum nB3
sameAs nB3 (fail Of 3Men)

fail O3Men

circunstances concCGrcum

nen Of 3ven

incapabl e Of 3Ven

fai |l 1=bl aneFor 1
T. incapabl el=bl ameFor 3. fail1
j i ncapabl e1=hl aneFor 1
i ncapabl el=fail 1
menl=bl aneFor 3. fail 1
menl=bl aneFor 1

menl=faill
menl=i ncapabl el

(c) Transforming a Window

Figure 4:Spontol’'s Spontaneous Analogy Algorithm

/I Finds analogical schemas for relational structure
/I schemaOntologis the schema ontology.
/I windowOntologyis the window ontology.
/I’ numWindowss the number of windows to grab per structure.
/l windowsSizes the number of statements per window.
define Spontol-Retrieve (s,---,windowSizg
/I Randomly grab windows frorg,
[l transform them into feature bag form,
[/l and parse them using the window ontology.
fori=1,---,numWindows
w; = grabConnectedStatements (s, windowSizg
add parse (T (w;j),windowOntology to bags
[l Parsebags, the bag representation sf
relevantSchemas parse (bags, schemaOntology
return relevantSchemas

cause?. fail 1=bl aneFor 3. fai | 1
bl aneFor 1=bl ameFor 3. f ai | 1
bl aneFor 1=cause2. fai | 1
cause2=bl aneFor 3

fail 1=bl ameFor 3. fail 1
fail 1=cause2.fail 1

fai | 1=bl aneFor 1

menl=bl ameFor 3. fail 1
menl=cause2.faill

menl=bl ameFor 1

menl=faill

bl ameFor 1=bl ameFor 3. fai | 1
ci rcunst ances1=bl ameFor 2
fail1=bl aneFor3.faill
fail 1=bl aneFor 1

i ncapabl el=bl ameFor 3. fail 1
i ncapabl el=hl aneFor 1

i ncapabl el=fail 1

menl=bl aneFor 3. fail 1
menl=bl aneFor 1

nenl=faill

nenl=incapabl el

bl anmeFor 1=bl ameFor 3. fai | 1
fail1=bl aneFor3.fail 1

fai |l 1=bl aneFor 1

i ncapabl el=bl aneFor3.fail 1
i ncapabl el=bl aneFor 1

i ncapabl el=fail 1

menl=bl ameFor 3. fail 1
menl=bl aneFor 1

menl=faill

menl=i ncapabl el

fal sel. sour 1=deci de2. sour 1
deci del=cause2. deci del
deci de2=cause2. deci de2

fal sel=cause?2. deci de2

fal sel=deci de2

(d) Many Transformed Windows

setof relational statements, where each statement is either
a relation (of fixed arity) with its arguments, or the spe-
cial relationsaneAs, which uses the syntassaneAs <nane>  Figure 5:Transforming the Sour Grapes Story. We show
(<relation> <argl> <arg2> ...). ThesaneAs relation the transformation dour Grapesrom predicate formto fea-
allows for statements about statements. E.g., the statemenure bag form. For clarity, we show an English paraphrase of
in Figure 5(b) encode (among other things) that “a éex  the story (a), though the input to Spontol has already been
cides thathe grapes are sour”. encoded in the predicate form shown in (b), which shows the
Given a small relational structure (< 10 statements), story as a set of 18 statements. In (c), we show a window
T transformss into a feature bag using a variant of con- from the story and its feature bag transfoingw). Finally,
junctive coding. That is,T breaks each statement into a the story is represented as many transformed windows (d).
set of roles and fillers. For example, the statememntt
O 3Fox OF 3Grapes has two roles and fillers, namely the
two arguments of theant relation. SoT breaks this state-
ment into want 1=0f 3Fox and want 2=Cf 3G apes, where fillers to getfiller equalities For example, if we have that
want 2 means the 2nd argumentwdnt (i.e., the “waneéd”).  deci del=0 3Fox andwant 1=Cf 3Fox, then chaining gives
T then creates one large set of all the roles and theius deci del=want 1. Chaining is essential for recognizing
fillers. If there are multiple instances of a relation, it structural similarity between relational structures, alidws
gives them an arbitrary lettering (e.gvant B1=Cf 3Fox). us to side-step a criticism of conjunctive coding and ten-
T makes a special case for tlsameAs relation. In this sor products: that the code feant B1=Of 3Fox may have
case, T uses adot operator to replace the intermediate no overlap with the code fowant 1=Cf 3Fox (Hummel et
variable. For example, the statemesdaseAs f35 (decide al., 2004). Chaining introduces the code fant Bl=want 1,
O 3Fox f36) andsaneAs f36 (sour Of3Gapes) would which makes the similarity apparent when searching for
yield deci de2. sour 1=Cf 3G apes. The dot operator allows analogs (these “chained” features are a core difference be-
T to encode nested statements (i.e., statements about statereeen MAC’s content vectors and our feature bags). After

ments). Given a set of roles and fillefg,then chainsthe
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chaining the roles and fillerg, treats each of these role-filler [ The Merchant of Venice 50
bindings as an atomic feature. Note that, when we treat roles Wil
and fillers as atomic features, Ontol doesn’t recognize-over __Fable: A Blood Feud

lap among feature bags unless they share exactly the samE[

feature. For example, the atomic featweat B1=Cf 3Fox has Homler
no more resemblance tant 1=Cf 3Fox for Ontol than it does l e —
for any other feature. Also note that the ordering of thegole

in each feature is arbitrary but consisteftyses reverse al- l po—

phabetical order), so there isran1=i ncapabl el feature, but
not ani ncapabl el=nmenl feature. The left side of Figure 5(c) l West Side Story
shows a window taken from the sour grapes story from Figure
5(b). On the right side is the feature bag transform of this se l

Romeo and Juliet : 27
of 6 statements, consisting of 11 atoms. V’ g S
[ Julius Caesar ‘\ } 3

5 Demonstration

l Fable: Veng. at Any Price "Double Suicide"

We applied Spontol to a database of 126 stories provided by Schema

Thagard et al. (1990). These include 100 fables and 26 plays[ King Lear \

all encoded in a predicate format, where each story is a setl S : 11_&

of unsorted statements. An example story in predicate ferm i >

shown in Figure 5(b). Note that although the predicates and [ Winter's Tale

arguments have English names, our algorithm treats akthes ) Y 4

as gensyms except for the spesiafreAs relation. In this en- [__Antony and Cleopatra  |— 3

coding, the smallest story had 5 statements, while the sarge [ Much Ado About Nothing

had 124 statements, with an average of 39.5 statements. ’jifi:,
We ranSpontol-Build on these stories usimumwWindows l I €7 e Bl %

100 andvindowSize= 20 which produced an ontology of sto-

ries, part of which is shown in Figure 6. In this figure we see aFigure 6:Part of the ontology Spontol learned from the

“Double Suicide” analogical schema found in b&bmeo &  story dataset. As in the Zoo Ontology in Figure 2, black

Julietand inJulius CaesarlIn the former, Romeo thinks that ovals represent higher level concepts. The “raw” features

Juliet is dead, which causes him to kill himself. Juliet, who(corresponding to the white ovals in Figure 2) are omitted

is actually alive, finds that Romeo has died, which causes hatue to space limitations. Instead, we show the outgoingedge

to Kill herself. Likewise, inJulius CaesarCassius kills him-  from each black oval. While in the Zoo Ontology, the higher

self after hearing of Titinius’s death. Titinius, who isaally ~ level concepts correspond to shared surface featuresisin th

alive, sees Cassius’s corpse, and kills himself. The largesigure, high level concepts correspond to shared structural

schema found (in terms of number of outgoing edges) wageatures, oanalogical schemagor example, the highlighted

that shared bjRomeo & JulieindWest Side Storyvhich are  oval on the right representsouble Suicideschema, which

both stories about lovers from rival groups. The latter ddes happens in botRomeo & Julieand inJulius Caesar

inherit from the Double Suicide schema because Maria (the

analog of Juliet), doesn’t die in the story, and, Tony (Roisieo o . )

analog) meets his death by murder, not suicide. Some of th# 100 training stories. Whereas MAC/FAC returns entire

schemas found were quite general. For example, the oval oH0ri€s,Spontol-Retrieve returns analogicaschemagjust as

the lower right with 6 incoming edges and 3 outgoing edged Visual system would return a generic “pterodactyl” con-

corresponds to the schema of “a single event has two signif€ept rather than specific instances of pterodactyls). For-co

cant effects”. And the oval above the Double Suicide oval cor Parison, we modifySpontol-Retrieve to return the set of in-

responds to the schema of “killing to avenge another killing Stances that inherit fromelevantSchemagather than just the
Spontol-Retrieve uses this schema ontology to efficiently Schemas.

retrieve schemas for a new story, which can be used to make

inferences about the new story in a manner analogous to  Table 1:Speed/Accuracy Comparison of Spontol

t_hg “goldfish” example_from Section 3. To ev_aluate the ef- Accuracy Average # Comparisons

ficiency _of SpontoI-Rfetrleve, we randomly splllt our s.tory MAC/FAC  100.00%%- .00% 100.00- .00

dataset into 100 training stories and 26 t§§t|ng stories. We Spontol 95.45%+ 62%  15.43F .20

then used an ontology learned from the training set, and mea-

sured the number of comparisons needed to retrieve schemas

(duringparse) for the testing set. We compare this approach Results are shown in Table 1, averaged over 100 trials. We

to MAC/FAC, which, during the MAC phase, visits each of show accuracy (and standard error) for both systems mea-
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