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SUMMARY

Full-field strain measurement techniques are based on computing the spatial derivatives of numerical or
functional approximations of the underlying displacement fields extracted from digital imaging methods.
These methods implicitly assume that the medium satisfies the strain compatibility conditions, which are
only true in the case of a continuum body that remains continuum throughout its deformation history. In the
present work, we introduce a method that can be used to calculate the strain components directly from typ-
ical digital imaging data, without the need of the continuum hypothesis and the need for displacement field
differentiation. Thus, it enables the measurement of strain fields from imaged surfaces that may or may not
contain discontinuities. Numerical comparisons are performed on the basis synthetic data produced from an
analytical solution for an elastically orthotropic open-hole domain in tension. For performance comparison
purposes, the mean absolute error distributions are calculated for the cases of both the traditional meshless
random grid method, and the direct strain method introduced herein. It is established that the more refined
representation of strain provided by our present approach is more accurate everywhere in the domain, but
most importantly, near its boundaries. Published 2013. This article is a US Government work and is in the
public domain in the USA.
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1. INTRODUCTION

Calculation of strain by differentiation of displacement fields is a typical practice in full-field mea-
surement methods [1-15]. In addition, there are techniques, such as Shearography [16-18] and
Moiré interferometry [19, 20] that exploit implicit differentiations of the displacement fields, com-
pute only a subset of the strain components, and require specialized instrumentation, are impractical
for nonplanar cases and are sensitive to out of plane motions.

Strain field estimation based on differentiation of displacement fields utilized by these techniques
implies that the strain compatibility equations remain satisfied for the entire domain of observation
over the entire loading history such as the continuum hypothesis remains valid. However, when
surface discontinuities or strain localization occur because of damage initiation, the continuum
hypothesis is no longer valid throughout the entire field of observation. Therefore, full-field mea-
surement results based on the anticipated validity of the continuous hypothesis yield both inaccurate
and indeterminate measurements, thus leading to false qualitative and quantitative conclusions.

Our experience with the utilization of high-throughput multidegree of freedom automated mecha-
tronic testing machines, which are capable of loading specimens multiaxially in conjunction with
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314 A. ILIOPOULOS AND J. G. MICHOPOULOS

energy-based inverse constitutive characterization methodologies for composite materials [21-26],
has underlined the need for both automated full-field data processing, but also of an accu-
rate encapsulation of deformation fields. Such concerns become increasingly more important
in regions of the specimen that are close to or have undergone failure, and accordingly, the
medium can no longer be considered as a continuum. In these areas, the microcracks and cracks
developed break the validity of the continuum hypothesis and the associated strain compatibility
relations.

Another important issue arising from the derivation of strain from a full-field displacement repre-
sentation is that of relative lower accuracy near and on the boundaries of the implemented analytical
representation [13,27]. As the strain components are defined in terms of the derivatives of the dis-
placement components, it is expected that the analytical approximation of the strain components
will be somewhat problematic, as the displacement approximation does not impose spatially driven
constraints on the formulation of its derivatives. Although it is possible to reformulate the meshfree
approximation of the displacement fields to take into consideration such information, this would be
impractical and would require considerable and customized effort to manually guide the approxi-
mation from an algorithmic perspective in a manner that is aware of the boundaries, and it remains
general without need for customization from geometry to geometry.

The final issue of concern arises from the fact that if there is noise in the displacement fields, their
differentiation will only amplify it for the evaluation of the strain fields.

The challenging character of these issues has driven us to consider a new approach in calculat-
ing the full field of strain quantities from full-field digital images of deforming specimens. The
numerical and analytical method presented in this paper succeeds in representing the strain ten-
sor field directly from directional engineering strain quantities without requiring or enforcing the
satisfaction of the compatibility conditions.

Because this paper aims at introducing direct strain imaging (DSI) as a new full-field mea-
surement method, we first describe the steps involved with the implementation of the traditional
meshless random grid (MRG) method [5—15]. This will help delineate the differences and provide
the basis of performance comparison between MRG and DSI methods.

The typical experimental procedure for measuring the full field of deformation quantities accord-
ing to most full field methods in general, and MRG method in particular, can be outlined
as follows:

1. A specimen is marked with an appropriate visible pattern that consists of a random distribution
of dots distinguishable from the background.

2. If the experiment is to take into consideration out-of-plane motion, two or more cameras are
used so that the deformation is stereoscopically reconstructed. The projective characteristics
of the cameras are identified through an appropriate calibration procedure [8, 28]

3. The specimen is placed in the mechanical testing machine, and one image per camera is
captured in the undeformed configuration prior to the initiation of the loading sequence.

4. While the experiment is taking place, successive images of the deforming specimen are
captured.

5. The images are processed and for each frame, the coordinates of appropriate points (nodes)
are calculated. Those nodes may be, for example, geometric centroids of dots (for the case
of grid methods), appropriate boundaries of geometric entities, correlated subregions (for the
case of Digital Image Correlation (DIC)), and so on.

6. Using an interpolation or approximation scheme, a representation of the displacement
field is obtained. In the MRG method, the field is represented by a continuous meshless
approximation.

7. The strain at any point in the domain is obtained by differentiation of the displacement fields
based on the definition of the strain measure as a function of the displacements.

Noise introduced by various sources is the most dominant source of error and plagues all full-
field measurement methods. In its presence, the MRG method has been shown to perform very
well [13] compared with other methods. The main reason for its improved performance is that the
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DIRECT STRAIN TENSOR APPROXIMATION 315

approximation scheme of the meshless representation works naturally as a filter that deals excep-
tionally well with the image acquisition noise. Unfortunately, because not all noise can be removed,
there is still room for improving the accuracy levels of full-field techniques for certain experimental
configurations.

Following this introduction, the paper continuous with a brief description of the overall problem
at hand, and introduces the DSI method by describing a meshless approximation algorithm applied
on strain tensor quantities derived from distinct engineering strain component measurements. A
proof of the consistency of this approximation follows. The paper continues with presentation of
synthetic experiments that are developed to explore the performance of the method on well estab-
lished full-field representations, based on the deformation of an orthotropic plate with and open hole
in tension. The paper closes with conclusions of the current work and future plans.

2. PROBLEM STATEMENT

The engineering strain between pairs of adjacent centroids of dots (nodes) along the directions
defined by them, will be the digitally determined data input for the proposed analysis. A domain €2
in the undeformed configuration is shown in Figure 1(a), populated with a number of such nodes.
The same domain in the deformed configuration is shown in Figure 1(b). For a set of n nodes in the
vicinity of an interest point described by a position vector w = {x,, ¥} ", it is possible to form
a number of engineering strain quantities e;; = (ll./j —Lij)/lij,i=1...n—1,j=2...ni <]
[29] in terms of the distances /;;, li/ ; in the initial and deformed configurations, respectively. Each
of those quantities can be considered as the average of the strain component in the direction of the
line connecting the two nodes over the respective line segment. Given those engineering strains and
the coordinates of the nodes, we seek to calculate the strain tensor at any point w in the domain. It
is important to note that similar to traditional meshless methods [30-32] the vicinity of a point of
interest W = {x,, Y} T is bound by an appropriate domain Of support (DOS), and in this work, we
will consider the DOS to be circular.

The solution of this problem might be at first considered as the extension of the typical three gauge
rosette strain calculation [29]. However, this would only hold true if the strain field is considered
constant throughout the region of interest. Indeed, in calculating the strain from a strain rosette, it
is assumed that the engineering strains measured by each directional strain gauge of the rosette, all
occur at the same point. Although this might be true for certain strain gauge rosette configurations,
it is certainly not the case under the requirements of the problem we are attempting to solve because
as is evident from Figure 1, the engineering strain quantities cannot be considered as been measured
at the same point.

(a) Undeformed (b) Deformed

Figure 1. Deformation configurations and distances of selected node pairs.
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316 A. ILIOPOULOS AND J. G. MICHOPOULOS

It should be noted that although the method presented herein is used in the context of full-field
strain measurements using digital imaging information in the visual spectrum, it can be also applied
to any context where appropriate data can be acquired. For example, engineering strain data may
be obtained by quantifying separation distances between neighboring markers via the use of ultra-
sound or X-ray tomography techniques, and the respective full-field strain tensor could be calculated
between appropriate volumetric speckles by the method presented in this paper. The same is true for
all methods that can identify marker separation on surfaces of deformable bodies.

In the following section, we will present a solution to this problem by the means of a spatial
moving least squares approximation.

3. DIRECT STRAIN APPROXIMATION
Our aim is to identify the strain tensor components at any point described by a position vec-

tor w = {Xxy, yw}' within a deformable domain. An approximation of the components of the
two-dimensional strain tensor at any point x = {x, y}T in the vicinity of w can be expressed by

et (wix) =) pj(xai(w) =p" (xa* (w)
J

et (wix) =" pixal’(w)=p"(xa” (w) M)
J

el (wix) =Y p;xa’(w)=p"(x)a* (W)
J

where p(x) is a vector of basis functions that can be chosen to consist of 7 monomials of the lowest
orders to ensure minimum completeness. A polynomial basis of order M < m has the general form

T
p(x) =p(x,y) = {1,x,y,xp,x%y% . xM yM) )

Such a polynomial basis can be constructed by concatenation of the complete order terms using the
Pascal triangle of monomials [30, 32]. It should be noted that the polynomial basis could be chosen
to be different for each of the strain components, but this would add in algebraic complexity that is
not presently justified. In addition, a*(w) and @« = xx, yy, xy are vectors of coefficients specific to
every point w of the domain,

a“(w)={ag,a‘f,...,af’n}T,a=xx,yy,xy. 3)

In contrast to the MRG method [8], here we are seeking to directly calculate the strain com-
ponents. Therefore, we first need to identify the engineering strains between a number of node
combinations.

The normal strain at an angle 6 relative to the global coordinate system is given by the well-known
transformation,

Exx + € Exx — & )
Exyl = — 5 Yy o4 3 Y c0s 26 + £y, sin 26. 4)

Using Equations (4) and (1), we can derive the function that approximates the xx strain tensor
component at a point X = {x, y}7 on a coordinate system Ax’y’ forming an angle @ with the global
coordinate system Axy (Figure 2) in the vicinity of w, as follows:

T XX T yy
x)a™"(w) +p- (x)a’’ (w
iy = PO T )

T XX T yy
x)a** (w x)a”Y (w 5
P ()Zpu ) oo 5)

+ pT(x)a*” (w)sin 26,
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DIRECT STRAIN TENSOR APPROXIMATION 317

xg = {zp,y8}"

W = {2, Y}

S (X4,%Xp;A)

Figure 2. Strain component 8f’c . of the approximation in the direction of AB relative to the local coordinate
system at point A.

or

Szx/ (w;x) = pT(x)a™ (w) cos® 0+

6
+ pt(x)a””? (w) sin® § + pT (x)a*” (w) sin 26. ©

Within the domain €2 (Figure 2) and in the vicinity of a point expressed by the vector w, we
assume the existence of two neighboring nodes 4 and B expressed by the vectors x4 = {x4, y4}T
and xp = {xp,yp}"', respectively. The mean strain between these two nodes as derived by
Equation (6) can be defined by

fol el (wis(X4,Xp; 1))

[xp — X4

0s(x4.Xp3A)
By | )

) )

el (Wix4,xp) =

where s(x 4, Xp; A) is the parametric expression of the line segment passing from both A and B and
is given by

s(x4,Xp;A) = (1 —A)x4 + Axp =

8
— (1= Ay + Axg, (1 = Wya + Ay A € 0,11, ©
It is easy to prove that
d ,Xg: A
S(’“g—;’*)':lxlg—n, ©)
and hence Equation (7) simplifies to
_ 1
el (W;X4,Xp) :/ el (wis (x4,xp; A)) dA. (10)
0
The line integral in Equation (10) can then be derived by combining Equations (6) and (8),
1
/gﬁx,(w;s(xA,xB;x))dA:
0
1
11
= / [p" (s)a™* (W) cos® 6+ .
0
+ p"(s)a”” (w)sin® 6 + p* (s)a”” (w) sin 26 dA.
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318 A. ILIOPOULOS AND J. G. MICHOPOULOS

The angle 6 can be calculated by the nonambiguous arctangent of the vector xp — X 4. Splitting up
the integral and distributing the independent terms outside the integrands yields

1
/ef‘cx,(w;s(xA,xB;)L))d)Lz
0
1
= [00529/ pT(S(XA,XB;)k))d/\i| a**(w)+
0 ) (12)
+ |:sin29/ pl(s(x4.Xp: 1)) dl:| a¥¥ (w)+
0

1
+ [sin 29/ pLr(s(x4,x5: 1)) dk} a*’ (w).
0

The vector integrals in Equation (12) can be easily calculated for a given polynomial basis and
can be derived from the terms of Table I. If a full-order polynomial is chosen, the integral basis
vector can be constructed by concatenation of the respective terms. For example, if a six-term basis
vector is chosen to be p(x) = p(x,y) = {1, x,y,xy,x2, y?}T, the integral basis vector will be

1
rT(XA,xB) = / pT (s (x4,Xp; 7)) dA
0
1 1 1
= {1, E(XA + xp), E(YA + ¥B), ‘ (x4 2ya+yB) +xB(ya+2yB)), (13)

1 1
5(xf1 + Xaxp + X3), g(yi +yayp + y%)} .

Table I. Integral basis monomials.

Complete Number of Additional terms
order terms
Constant 1 1
Linear 3 {%(XA +x3),%()’A+y3)}
Bilinear 4 6(A(2ya+yB) +xp(ya+2yB)
Quadratic 6 {% (xaxp +x3 +x3). % (vays +yfl+y%)}
Quadratic 8 {ﬁ(xf1 (3yA—I—y3)+2xAxB(yA—I—y3)+x%;(y,4+3y3)),
= (v% (Bxa+xB) +2y4yB (x4 +xB) + y5(xa + 3XB))}
Cubic 10 {%(xA +xB)(xfl+x%),%(yA+yB)(yfl+y%)}
Quartic 15 {% (x5 (4va+yB) +x3xB(ya +2yB) +x4x 2ya +3yB) +
+x3(y4 +4yB)).
20 (x% (Byayp +6y% +y3) +xaxp (4yayp +3y% +3v3) +
+x3 (3v4yB + 5 +63)).
20 (V3 (4xq +x8) + ¥4 yB(Bxa +2x8) + yay3(2x4 +3xp) +
+yp(xa +4xp)),
5 (3B + X342 + xaxp +xh +2%).
L0dve+03vd +ravg +0d b))
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DIRECT STRAIN TENSOR APPROXIMATION 319

The choice of an appropriate polynomial basis will yield an integral vector basis r* (x4, xp). Thus,
Equation (12) can be written as

1
/ el (Wis (X4, Xp5 X)) =
0
= [rT(xA,xB)0052 9] a**(w)+ (14)
+ [r" (x4, xp) sin® 6] a*” (w)+
+ [I‘T(XA,XB) sin 29] a*’ (w),

or
1
/ 8£x/(W; S(X4,Xp;A))dA =
0
15
= qF, (x4.X5)2™ (W) + @1, (x4, x5)2”” (W) + (13)
+q, (x4.xp)a™ (W),
with

qu(XA,XB) =rT(x4,xp)cos’ 0
qg‘y(XA,XB) =rl(x4,xp)sin?0 } . (16)

q;fy(XAva) = rT(XA, XB) sin 260

Collecting the terms of Equation (15) into larger vectors and substituting in (7) yields

eh . (W:xa,XB) = q" (x4,Xp)a(W), (17)
with
0" (xa.xp) = {gi"} =
= {qzx(XA’XB)? qg‘y(XA’XB)v qu(XAva)}

a(w) = fag) = { @ ()" @ ). @ )}
k=1...3m

(18)

Equation (17) describes the approximated mean strain between any two nodes in the domain at
the vicinity of point w. When the coordinates of the nodes are determined using a digital imaging
technique, it is possible to calculate the real mean strain (aka the engineering strain) between any
two of the n nodes as

7

l.. —
e,-,-:m(xi,x,-)z”Tzr—lzm—l,izl...n—l,j=2...n,i<j, (19)
ij 1 1 J

where x; andx; are the vectors representing the positions of nodes 7, j at the undeformed configu-
ration, and x;. and x,/- are the same vectors in the deformed configuration. The scalar quantities e;;
should not be thought of as the elements of a matrix, but rather as a set of n(n — 1)/2 numbers.
Although, not of interest in the current analysis, the latter can be thought as functions of x; and x;
and time. The condition expressing that i should be greater than j ensures the requirement that
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320 A. ILIOPOULOS AND J. G. MICHOPOULOS

no combination is considered twice. A functional of weighted residuals can now be constructed by
using Equations (17) and (19), as follows:

n—1.n

X; +X;\ (5 _ 2
J= i=1jz=:2i<j w (w— %) (ef’cx/ (w;xi,xj) _Sxx’(xi,xj)> =
c (20)
n X; +X; 2
= > W(w—%) (a" (xi,x;) a(w) —e;j)”,
i=1j=2i<j

where W(w—(x; +x;)/2) = W;; = 0is a weight function that decreases with distance as introduced
by [30,32]. A common weight function is the cubic spline weight function given by,

2 . . L1

Z—4d? + 443 d<—

3 * )
Way=wd)=12%_45 4022 Loi<i @D

3 37 2

0 ,d>1

with d = %, the normalized distance, and d, the smoothing length that is usually equal to the
extent of the domain of support.

It should be noted that any strain component could be used in the functional of Equation (20) and
that all of them are present in this equation because of Equation (4). The notationi =1, j =2,i < j
represents the set of all combinations between the indexes i and j. The least squares minimization
of the residual defined by Equation (20) will provide the values of coefficients in the vector a(w) so

that &, (w: x;, x ) optimally approximates €., (X;, X;) . To minimize the residual in Equation (20)

with r)é:);pect to a, we form the derivatives
oJ aJ
—=0=— — =0,k=1...3m (22)
oa Bak

that can be expanded to

.. 2
n—1.n - 3m _ij B
oJ aZizl,j=2,i<j Wi (Zr:l qr dr —e,])

dax oay
n ol m i d (2321 q7 ar — eij)
=2 Z Wij > d/ar—ei S0 =
i=1,j=2,i<j r=1 (23)
n—1.n 3m
iy i
2 (St ol -
i=1,j=2i<j r=1
n—1,n 3m n—1,n
_ ij ij ij
=2 Z Wi qu q/ar =2 Z Wijqy eij-
i=1,j=2i<j r=1 i=1,j=2,i<j
Introducing this expression to Equation (22) yields
n—1,n 3m n—1,n
ij ij ij
> (% >4 q;far) = ) Wiqle (24)
i=1,j=2,i<j r=1 i=1,j=2,i<j
In matrix notation, the last expression can be written as
Q(w)a(w) = B(w)ey, (25)
or
-1
a(w) = Q  (w)B(w)e,, = M(w)ey, (26)
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DIRECT STRAIN TENSOR APPROXIMATION 321

where

T
ey = {€21,€31,€32,€41,€42 ..., Cn(n—1)} (27)

is a vector that collects all the measured engineering strains in the vicinity of w, B is a matrix that
has the form

B(w) = [b21,b31,b32,b41,baz, ..., by—1)]

X; + X , (28)
by o0 =W (w= 323 ) qtx.x,)
and Q(w) is defined by
n—1,n X + X
Qw= Y W (w— T]) q(xi,x;)q" (%, ;). (29)
i=1,j=2,i<j

For the system of Equation (25) to be fully determined the number of equations has to be
equal to 3m, where m is the number of monomials in the polynomial basis. For most cases,
the strain values are to be acquired by all the combinations between n nodes, and therefore:

@ —3m 2L, = 2 (14 +/1T+24m). However, an overdetermined system would lead
to noise reduction, and thus is preferable. This can be expressed by

n%(wm). (30)

This inequality can be used in conjunction with additional considerations for the identification of
the extent of the domain of support and is a topic of a follow-up study.

The matrix M(w) = Q~!(w)B(w) will be of size 3m x n, where each row corresponds to an
element of the vectors described in Equation (3).

Partitioning this matrix vertically in three submatrices of dimensions m x n yields

M, (W)
M(w) = | My,(w) |. 3D
Mxy(W)

It is now possible to express the coefficients vectors as
a*t (W) = Myx(W)ey

a’’(w) =M, (Wey ¢ . (32)
2™ (W) = My (W)ey

Substitution of these expressions in Equation (1) yields the final form of the fully defined strain field
approximation expressions

el (w) = el (wiw) = B i (Whey,
sﬁ’,y(w) = eﬁy(w; w)=®,,(Wey ¢, (33)
el (W) = el (Wiw) = By (Whey,

where ®,(w) = pT(w)Mg (W), are shape functions of the strain components for the point w for
QO =XX,Yy,X).

4. CONSISTENCY TEST

A desired but not necessary property of approximations is that of consistency. That is to say, given a
field that is expressed by a specific basis function, then it should be reproducible in an exact manner
by the approximation when using this basis function.

Published 2013. This article is a US Government work and Int. J. Numer. Meth. Engng 2013; 95:313-330
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322 A. ILIOPOULOS AND J. G. MICHOPOULOS

Following a similar approach as in [30], we consider that the actual fields of the components of
the strain tensor of a domain are given by

k
xx(X) =) pi(®)cF* ()
J

k
eyy(®) =) piX)c}(®) ¢ (34)
j

k
xy(X) =Y pj(x)c} (x)
J

We also assume that the same fields are to be approximated by functions of the form given by
Equation (1) with m = k and the same basis with Equation (34), that is,

k
) =) pixa}*(x)
J

k
=Y pixax®¢. (35)
J

k
) =Y pixa}’ ()
J

It is obvious that J in Equation (20) will be equal to 0 for af(w) = ¢ (x) and because J is pos-

itive definite, this value will represent the minimum minimorum. In addition, because the sum of

Equation (35) yields a linear combination of the coefficients; this minimum will also be unique.
Hence, replacing a with ¢ in (35) yields

e (%) = exx(®), 6" (%) = £, (%), "L (%) = 2y (). (36)

This proves that the approximated fields of Equation (35) and hence Equation (1) reproduce exactly
the fields described by Equation (34).

5. CONDITION NUMBER

As indicated in [33], the effects of the condition number in meshless surface fitting are critical only
in the sense of invertibility and do not have a proven relationship with the effectiveness of the regres-
sion. Accordingly, in the case of the DSI method, the uniqueness of the solution — as expressed by
the condition number — is not of utmost importance either. However, it is worthwhile mentioning
that the condition number should not be outrageously high to allow the approximation of the tensor
surface from a numerical perspective. To demonstrate this point, we consider the system matrix of
interest as indicated in Equation (25) is Q.

To study the effects of the domain of support and the number of monomial terms used in the
polynomial basis, a number of numerical tests were performed. A random distribution of nodes was
generated in a square domain of a unit length as shown in Figure 3. The matrix Q was calculated
using Equation (29) for a number of domain of support radius values and for a number of monomial
terms of the polynomial basis function of Equation (2).

The condition number of matrix Q is plotted versus the domain of support radius in Figure 4. In
this plot, it is observed that for polynomial basis with one and three terms, the condition number
is very low, indicating very stable solutions. For higher number of monomial terms, the respective
condition numbers tends to be larger but in acceptable ranges especially when compared with other
meshless methods [33].
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Figure 3. Randomly generated points in a 1 x 1 domain used in the study of the condition number of Q of
Equation (25).
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Figure 4. Condition number of matrix Q versus radius of domain of support for polynomials with various
numbers of monomial terms.

6. SYNTHETIC EXPERIMENTS

Because DSI is a consistent approximation, it is expected that it can exactly reproduce simple poly-
nomial fields and hence, it is more interesting to validate it in more realistic and complex situations.
To this end, a set of synthetic validation experiments was conducted on a well-known deformation
field resulting from the tensile loading of an orthotropic body with a circular hole (Figure 5).

To evaluate the performance of DSI relative to the MRG method, synthetic experiments were
developed by applying both methods, and their error relative to the known analytic solution was
calculated. The error metric utilized was defined as

e = I£a = &
i i G7
€q = |8a _8d|

where i = 1... N is indexing of the N evaluation points, & is the strain as calculated from the
analytic solution at point 7, and &, and ¢}, are the strain on point i from the MRG and DSI methods,
respectively. The mean absolute error over a set of nodes is calculated by
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Figure 5. Orthotropic infinite plate with circular hole and load at infinity. Direction of hatch lines coincides
with the coordinate system’s Ox axis and the major orthotropic direction.

A
em = N;MJ _8£n|
= ) (38)

N
1 S
ed:NZ|82—8ld|

i=1

Furthermore, because the prevailing source of errors in full-field measurements is that of the noise
by the imaging sensor, a simple sensitivity study was conducted for various levels of noise. To inves-
tigate the effect, the actual strain field might have on both methods; the synthetic tests with varying
load inclination were also conducted.

6.1. Orthotropic plate with open hole

We consider an infinitely large orthotropic elastic plate that contains a circular hole of radius r that
is subjected to a stress state at infinity equal to p. The applied load forms an angle B with the
major orthotropic axis as shown in Figure 5. This angle essentially controls the degree of anisotropy
introduced in the strain—stress fields and varying it amounts to rotating the major orthotropic axis
relative to the loading direction (i.e., dual description of the angle). Strain at any point on the plane
is expressed by the elastic constitutive equation, [34]

Exx = A110xx + A120yy + d16Txy
Eyy = A120xx + A220yy + A26Txy ¢ - 39)

Yxy = a160xx + A260yy + deeTxy

It has been shown [34] that the composition of Equation (39) for the general case of multiply
connected plane problems can be reduced to a set of algebraic equations in terms of holomorphic
functions expressed in the complex plane with the help of the mathematical theory of elasticity. In
fact, the general solution to this problem for an elliptic hole is known [35] and is implemented here
for an ellipse of minor to major axes aspect ratio of unity, to reflect the problem when the hole is
circular. Additional modifications have been introduced [36] to account for rotations of the medium
at infinity.
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The stresses are calculated by equation [35]

Oxx =0y + 2Re |:512 3¢5)Z(T1) + 552 awaoz(zm)}
oyy =0,y +2Re |:8¢<;Z(Tl) + 3W;Z(jz)i| , (40)
Txy = T;’; —2Re [sl 3¢5)Z(f1) + 52 aW;Z(ZZz)}
where 51 and s, are the roots of
ay15* —2a165> + a1 + aes)s* — 2a265 + ar» = 0. 41)

It has been shown [34] that Equation (41) has no real roots and are therefore always of the form
§1,3 =d1 :tbli, S2,4=(l2:|:b2i,b1 >0, b2>0. (42)

The stress state at infinity is given by

0% = pcos?f, oy = psin®B, gy = pcos fsin B, 43)

whereas the holomorphic function is

ir [a)f" + iszo;’o + (52 + i)tfc’;]
2(s1—52)

ir[o +is1o°+ (s1+ 1)t
2(s1 —52)

Z1 + ,/z%—rz(l—i-Sf)

r(l1+isq)

2% 4/25 —r2(1+53)

r(141is3)

@o(z1) = — ¢1(z1)

) (44)

Vo(z2) = — 2(z2)

where

ti(z1) =

(45)

$2(z2) =

The sign ambiguity in Equation (45) is removed by requiring |{;| < 1 and |{,| < 1. The com-
plex variables are defined in terms of the real position coordinates according to: z; = x + s1)
and z, = x + s»y. Finally, the displacement field components at Ox and Oy directions are given
by [36]

u =2Re[p1po(z1) + pavo(z2)] + xe3y + yesy, 46)
v =2Relq190(21) + g2V0(22)] + yegy, + xe3,
with
_ 2
p1=ans1” +aiz2—aiesi
2
P2 =4a1182" + a2 —dies2
2 _
0 = ai281” +dz —dazes1 \ (47)
S1
a1282% + ax — ares2
q2 =
§2
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Figure 6. Strain and absolute error contours for nodal noise level of 1 x 10~2 pixels and loading angle of

B = 45°. The domain is assumed to span 1600 pixels wide by 1600 pixels in height. (a)—(c) exx, €yy, Exy

of the analytic solution; (d)—(f) exx, €yy, €xy of the synthetic experiment using the meshless random grid

method; (2)—(1) exx, €yy, £xy of the synthetic experiment using the DSI method; (j)—(1) respective absolute

error of the meshless random grid method; and (m)—(0) respective absolute error of the direct strain imaging
method. MRG, meshless random grid; DSI, direct strain imaging.
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6.2. Numerical experiments

To compute the fields for the synthetic numerical experiments, the radius of the hole was selected to
be a = 1072m, the stress at infinity 0o, = 7 X 10° Pa, the angle of the major orthotropic axis was
B = 45°, whereas the extent of the domain of interest (in both the x and y coordinates) was 8a. The
material properties were selected to be

ajl diz2 die 2.245 —=2.732 0.000
12 az dz | =| —=2732  9.436 0.000 |x10°Pa'. (48)
dle dp2 dee 0.000 0.000 4.315

A total of 2380 randomly distributed nodes were generated using the method described in [13],
whereas the displacement field of Equation (46) was used to generate the displaced nodes, with
varying levels of noise. Because for the current digital imaging technology and for most practical
applications, the accuracy in coordinate measurement is approximately at the range of 5 x 10™# to
5 x 1072 pixels [13]; the noise level was chosen to vary from 10™* to 10~! pixels, assuming the
entire domain is mapped on a digital image that is 1600 pixels wide by 1600 pixels high. For the
load angle sensitivity trials, the angle B was chosen to vary from 0° to 90, the noise level was kept
at 1 x 1072 pixels, and the synthetic runs were executed 70 times, to also obtain an estimation of the
variation of the mean absolute error.

The basis function for MRG was chosen to be of second order (a total of six terms), whereas for
the DSI, it was chosen to be of first order (a total of three terms). This choice was made so that
the approximation on strains for both methods is of the same polynomial degree. The domain of
support radius was chosen at 3.6 x 1073m, whereas the weight function was the one presented in
Equation (21).

In Figure 6, the strain contours as well as the absolute error of the MRG and DSI methods are
plotted. For those plots, the level of noise imposed on the node coordinates was 1 x 1072 pixels. It
is evident that DSI performs considerably better within the entire domain (Figures 6(m), 6(n), and
6(0)) compared with MRG for all strain components. This fact is more evident in Figure 7, where
the mean absolute error of €4, over the entire domain is plotted for MRG and DSI for various noise
levels. The ratio of those errors (bottom graph of Figure 7) reveals that DSI is about at least 1.2
times more accurate than MRG. In the same graph, it can be seen that DSI can be up to 3.3 times
more accurate.

Similarly, in Figure 8, the mean absolute error over the boundary of the hole is plotted. In this
case as well DSI outperforms MRG by a factor ranging from about 1.2 to about 3.6 times. It is also
worthwhile mentioning that DSI performs better with increasing noise levels.

____MRG (em)
_DSI(e d)

Mean Absolute error [uStrain]

10 10 10~ 10
4

Q’O 3.

N:

o 2f
174 =3 -2 =1
10 10 10 10

Noise level [pixels]

Figure 7. Mean absolute error of exx over the interest domain and relative performance of direct strain
imaging over meshless random grid (eyy, €x, show similar behavior).
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Figure 8. Mean absolute error of &y, over the hole boundary and relative performance of direct strain
imaging over meshless random grid (eyy, €x) show similar behavior).
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Figure 9. Mean absolute error of €y over the entire domain versus load angle (¢, and ey, show similar

behavior). For each load angle, 70 trials were performed, and their standard deviation is shown as the error

bars in the graph. It is worthwhile noting that the standard deviation of the direct strain imaging error is very
small and the error bars are almost indistinguishable from the trend line.

Both methods seem to reach a plateau for noise levels below 2 x 1073, which is anticipated to
depend on the spatial density of the nodes. It should be noted that for most practical cases the dis-
placement noise levels are between 5 x 1073 to 10 x 1073 that give the DSI an average performance
markup of about 3 times for both error metrics.

Finally, in Figure 9, the mean absolute error of each of the methods is plotted with respect to the
loading angle as this induces the strain variability due to the specific nature of the anisotropic elastic
problem at hand. As expected, the average of the mean error is not affected by the load angle, but
for the MRG method, its deviation (i.e., the error of the error) is considerably larger. This observa-
tion further supports the utilization of the DSI method in applications where the knowledge of the
uncertainty of the full-field measurements is of importance.

7. CONCLUSIONS

In this work, the numerical foundation of the DSI method was presented and its accuracy relative
to the MRG method was assessed. DSI outperformed MRG both on the regions near the domain
boundaries, where full field methods traditionally suffer, but also on the rest of the domain of inter-
est. For the chosen medium configuration, DSI was found to be at least 1.2 times more accurate,
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while there were tests where it achieved an accuracy improvement of up to 3.6 times. It was estab-
lished that at the noise levels of the most popular digital imaging devices, DSI outperforms MRG by
a factor of 3 in terms of the mean absolute error. DSI also proved to be very robust and numerically
stable in terms of mean error deviation, as was shown by repeated numerical experiments under the
same image sensor noise levels.

Furthermore, DSI does not make any explicit or implicit assumptions on the continuity of the
underlying field, and therefore, it can be used on media that either cannot be considered continua or
have developed cracks or otherwise failed.

In a more general setting, the analysis presented herein introduces a method for approximating
tensor quantities with respect to its transformation law, from directional component measurements,
rather than a scalar quantity that is usually the case for typical regression analysis approaches.

Future plans include the development of a more detailed analysis for DSI with respect to the
parameters that affect its performance (noise level, node density, choice of polynomial basis, and
choice of DOS), as well as comparison of its performance and validation with actual experimental
data obtained by strain gauge measurements.
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