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Abstract – Electric motor and power electronics based inverter 
are the major components in industrial and automotive electric 
drives.  In this paper we present a model based fault diagnostics 
system developed using machine learning technology for 
detecting and locating multiple classes of faults in an electric 
drive.  Power electronics inverter can be considered to be the 
weakest link in such a system from hardware failure point of 
view, hence this work is focused on detecting faults and finding 
which switches in the inverter cause the faults.  A simulation 
model has been developed based on the theoretical foundations of 
electric drives to simulate normal condition, all single-switch and 
post-short-circuit faults.  A machine learning algorithm has been 
developed to automatically select a set of representative operating 
points in the (torque, speed) domain, which in turn is sent to the 
simulated electric drive model to generate signals for the training 
of a diagnostic neural network, “Fault Diagnostic Neural 
Network” (FDNN).  We validated the capability of FDNN on data 
generated by an experimental bench setup.  Our research 
demonstrates that with a robust machine learning approach, a 
diagnostic system can be trained based on a simulated electric 
drive model which can lead to correct classification of faults over 
a wide operating domain. 
 
 Index Terms – Model-based diagnostics, power electronics, 
field oriented control, inverter, motor, electric drives, neural 
network, fuzzy techniques, electric vehicle, hybrid vehicle, 
machine learning.    

 
                       I.  INTRODUCTION 

3-phase induction motors using techniques such as the Field 
Oriented Control (FOC) [1-7] to provide precise torque are 
widely used in various industrial applications including the 
automotive power train for electric and hybrid vehicles.  The 
control in these drives is realized by solid state electronic 
switches (e.g. IGBT, MOSFET etc.) being turned on or off [8].  
In response to a control algorithm, a reference voltage is 
generated, and the inverter synthesizes this voltage reference 
command using techniques such as pulse-width modulation 
(PWM) or space-vector modulation (SVM) [4].  If a switch 
fails to function in the way it was intended to, the voltage 
synthesis process will be impaired, leading to failure in getting 
proper voltage at the motor terminals, and hence, the failure in  
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obtaining the requisite torque at the motor shaft.  Failure of the 
switches can take place in the form of “open” and “short” 
circuit, and as well as the failure of reverse diodes in the 
switches. 
 Although motor is relatively a more robust device 
compared to the inverter, motor windings can deteriorate with 
time, which can result in either open or shorted windings, fully 
or partially.  When this happens, motor will fail to generate 
proper shaft torque or any torque at all, in spite of the fact that 
the inverter is applying proper voltage input to the motor.  
Hence, the electric drive can malfunction due to the fault of 
either the inverter or the motor.  However, inverter is 
considered to be the weakest link in the system.  Our objective 
is to develop a robust diagnostic system that has the capability 
of accurately detecting the state of the drive and correctly 
locating faults as soon as they occur.  We present a machine 
learning approach to train a diagnostic system, FDNN (Fault 
Diagnostic Neural Network), that detects and locates faulty 
switch or switches in the inverter.  When a fault occurs, the 
FDNN can point out which switch or switches failed, so the 
system can be shut down properly or lead to the 
reconfiguration of the system based on the nature of the fault.  
In other words the diagnostic results provided by FDNN can 
be used to make a gracefully degradable [9-10] operation of a 
faulty drive possible. 
 Fault diagnostics for internal combustion (IC) engine 
vehicles has been well investigated [11-15], but not to the 
same extent for electric or hybrid vehicles.  However, there 
are active researches in electrical system diagnostics [16-25].  
Rule-based expert systems and decision trees are two 
traditional diagnostic techniques, but they have serious 
limitations.  A rule-based system often has difficulties in 
dealing with novel faults and acquiring complete knowledge 
to build a reliable rule-base, and is system dependent.  A 
decision tree can be very large for a complex system, and it is 
also system dependent such that even small engineering 
changes can mean significant updates [18].  More recently 
model based approaches, fuzzy logic, artificial neural 
networks (ANN), and case based reasoning (CBR) are popular 
techniques used in various fault diagnostics problems in 
electrical systems.  Moseler and Isermann [16] described a 
black box type of model using a polynomial differential-
algebraic equation with application to a brushless dc machine.  
In their work the estimated system parameters under normal 
and faulted conditions are compared with the current system 
parameter values, and if any discrepancy with normal 
condition is seen, then a faulty condition is declared.  
However, the parameter-estimated model of this kind can 
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easily lose the intuitive focus of the system, and in general 
does not point towards the specific problem and its location.  
In addition, sometimes the model can encounter a topological 
change after a fault, and hence the premises based on which 
the model was originally developed and the parameters 
estimated, may not hold anymore.  Ribeiro, Jacobina and Silva 
[17] investigated four different techniques for fault detection 
in voltage-fed asynchronous machine drive systems, all based 
on direct comparisons of the measured voltages to their 
reference voltages obtained from the PWM reference signals.  
Fenton, McGinnity, and Maguire [18] gave an overview on the 
fault diagnostics of electronic systems and emphasized on the 
need for automated diagnostic tools such as ANN, fuzzy logic, 
and etc.  In particular they recommended hybrid solutions 
such as model based approaches combined with CBR, or 
fuzzy logic or ANN.  Kim and Parlos presented a model-based 
fault detection and diagnosis system for electric motors [19].  
Their system used a transient empirical predictor modeled by a 
dynamic recurrent neural networks and wavelet packet 
decomposition.  Their diagnosis system was tested on a 373-
kW and a 597-kW induction motor, and its diagnostics 
accuracy reached about 93%.  Filippetti et. al. investigated the 
applications of various artificial intelligence (AI) techniques 
[20] to induction motor drive fault diagnostics.  They 
presented an ANN architecture to quantify a stator short-
circuit condition, and a fuzzy logic system for the detection of 
broken rotor bars fault severity, with an adaptive fuzzy-NN 
applied to stator short-circuit detection.  Zidani et. al. [21] 
presented a fuzzy logic system for induction motor stator fault 
diagnosis based on the stator current Concordia patterns.  One 
fuzzy output is used to assess the fault severity in four 
conditions in fuzzy terms: zero, light, medium and high. A 
comprehensive list of books, workshops, conferences, and 
journal papers related to induction motor fault detection and 
diagnosis can be found in [22] and a good discussion on ANN 
and fuzzy logic methodologies for studying faults in the motor 
and mechanical faults can be found in [23]. 

Two quite different approaches used in fault diagnostics in 
electric motor and drives have also influenced our research.  In 
[24] Kastha and Bose systematically described the effect of 
different types of fault in a voltage-fed PWM inverter 
induction motor drive that uses the open loop volts/hertz speed 
control method.  The important fault types including single 
line to ground, rectifier diode short circuit, and earth fault on 
dc bus, were identified in the beginning and followed by 
preliminary analysis of the selected fault types.  Systematic 
simulation study was then conducted to substantiate the 
analytical study.  Kastha and Bose pointed out that the study 
of fault performance of the drive system is extremely 
complex. The complexity is further aggravated due to a 
modeling problem of the machine under saturation and 
unsymmetrical condition.  Smith et. al. presented a time-
domain response based method for the on-line detection of the 
intermittent misfiring of the switching devices in a voltage-fed 
PWM inverter [25].  They pointed out that frequency domain 
methodologies are not suitable for the purpose and that time 
domain techniques are considered more appropriate.   

Our research is one step more advanced from those 
published works.  Whereas most of the existing diagnostic 
systems are built to detect a faulty condition against the 
normal condition, very few addressed small classes of faulty 
conditions.  We are investigating an advanced machine 
learning technology combined with model based approach for 
the development of a robust diagnostic system that has the 
capability of detecting and locating multiple classes of faults 
in an electric drive operating at any valid (torque, speed) 
conditions. 
 Faults in electric drives can be classified into two basic 
groups: (a) motor related, and (b) power electronics related.  
Within the motor related faults there are mechanical and 
electrical faults.  Mechanical faults are related to motor 
bearings and other mechanical unbalances leading to 
vibrations.  Electrical faults within the motor such as 
partial/full winding (including inter-turn) short circuit, open 
circuit etc., and an unbalanced inverter output applied to the 
motor can all result in unbalanced current and magnetic field 
in the motor.  Power electronics faults are related to inverter 
failure, e.g. open or short circuited switches, or reverse diodes.  
Such faults can be of either permanent nature or intermittent 
type.  As mentioned earlier, this research is focused on the 
problem of power electronics inverter fault diagnostics.  
Power electronics inverter can have single switch failure (open 
or short), reverse diode failure (open or short), or multiple of 
these faults.  However, the probability of multiple failures is 
much lower than single failure event.  Other inverter failure 
can be due to leads breaking down, shorting, or connector 
problems.  In this paper we focus on the classification of 
inverter open circuit faults in switches using machine learning 
technology.  The techniques presented in the paper are general 
and can be easily extended to detecting other types of faults, 
either electrical and/or mechanical.  We want to point out that 
in the cases of simple discrete open faults (or short circuit 
faults) the signatures can be significantly different from 
normal conditions and those faults can sometimes be detected 
by simple methods such as rule based algorithms.  But our 
methodology is general enough to detect different classes of 
faults occurring at different locations, which can be 
intermittent, and whose signatures may be subtle involving 
multiple signal analysis.  As we will see in the experiment 
section, such faults are difficult to detect and locate with 100% 
accuracy.  Furthermore, our approach shows that a fault 
diagnostic system can be developed using machine learning 
techniques on simulated data and performs fault diagnostics 
robustly under any valid operation conditions. 

With the above in perspective, the research presented in 
this paper has the following distinct features compared to the 
existing techniques:  

� It combines a model based diagnostics approach with 
a machine learning technique to train a robust fault 
diagnostic system. 

� The resulting fault diagnostic system has the 
capabilities of detecting and locating up to 10 
different classes of faults in a six-switch inverter.  
Signal signatures of a faulty condition against the 
normal   condition   are   relative   easy    to   identify, 
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Figure 1. Illustration of a model based fault diagnostic system driven by machine learning. 
 
 

whereas the signal signatures of one fault against 
another fault are often subtle, and not easy to detect. 

� During the development phase of a fault diagnostic 
system there is no need to take direct measurements 
of data from electric drives, which is time consuming 
and costly.  

� The resulting system has been validated using the 
data generated by an experimental inverter-motor 
system and proven to be effective. 

 Figure 1 illustrates our approach to fault diagnostics of 
electric drive.  “SIM_drive”, a simulation model of a field 
oriented control (which can be closed or open loop) electric 
drive with a power electronics based inverter and a 3-phase 
induction motor is developed and implemented using the 
Matlab-Simulink software.  SIM_drive has the capability of 
simulating normal operation condition of an electric drive as 
well as the faulty conditions of the open and post-short-circuit 
faults in an inverter switch.  A post-short-circuit fault implies 
that if a particular switch of the inverter is short circuited, very 
shortly thereafter the other inverter switch located on the same 
limb will be gated to turn on, leading to a complete short 
circuit of the limb.  Eventually the complete limb where the 
short circuit occurred will burn out to become permanently 
open.  In our on-going work, we extended the problem scope 
to include a short circuit fault where it is assumed that the 
inverter will be shut-down by a proper protective mechanism 
when the current exceeds a certain threshold.  We have found 
that our methodology works successfully on these faults as 
well, and we plan to report this in a subsequent paper. 
  In the SIM_drive model we assume a minimal amount of 
current and voltage sensors available in a drive system: 
sensors in series with any two of the inverter output lines and 
two voltage sensors across any two of the output terminals of 
the inverter.  The SIM_drive model operates at any selected 
(torque, speed) operating point under normal and various 
faulty conditions.  Since in real world an electric drive can 
operate at different (torque, speed) points, a diagnostic system 
should be trained to be robust throughout the (torque, speed) 
domain.  A machine learning algorithm is developed to select 
representative operating points from the (torque, speed) 
domain for use by the SIM_drive model to generate training 
data.  The objective of the machine learning approach is to 
train a diagnostic system on the representative data so that it 
has the capability of performing accurate fault diagnostics in 
an electric drive that operates at any valid operating point.  
The intelligent system used in this research is a multi-class 

neural network system.  We will describe two possible neural 
network architectures and discuss their pros and cons.  It 
should be noted that once a model based ANN has been 
trained, its implementation in a real-time environment is rather 
simple, since it amounts to having just the weights of the 
neurons in the ANN burned in an inexpensive microprocessor.   
 Experiments were conducted both on the simulated data 
and the data generated by an experimental bench setup.  The 
results show that the proposed diagnostic system is very 
effective in detecting multiple classes of faulty conditions of 
an inverter in an electric drive operating at any valid (torque, 
speed) point. 
 

II.  A 3-PHASE ELECTRIC DRIVE MODEL 
 

 In this section, we briefly describe the basics in the 
development of a simulation model of an electric drive.  The 
structure of the electric drive system using an induction motor 
with an optional closed loop is shown in Figure 2 (a).  The 
inputs to the system are the dc voltage, reference torque, 
reference air gap magnetic flux in the induction motor, and the 
mechanical source/sink input in the form of shaft speed or 
load torque in the shaft.  The controller is a FOC [3-7] that 
generates a reference 3-phase voltage.  This reference voltage 
is then synthesized through a PWM process.  In the open loop 
configuration, the feedback torque loop shown in Figure 2(a) 
does not exist, and the controller simply generates a voltage 
and frequency reference using any scheme which can include, 
among others, constant volts per hertz (V/Hz).   The motor is 
represented by the following standard set of equations with d-
q axis fixed in the stator [3, 5-7].   
 
Vds = (Rs + pLs) Ids + pM Idr              (1) 
Vds = (Rs + pLs) Iqs + pM Iqr              (2) 
0    =  pM Ids + ωr M Iqs + (Rr + pLr) Idr + ωr Lr Iqr     (3)  
0    = -ωr M Ids + pM Iqs - ωr Lr Idr  + (Rr + pLr) Iqr     (4) 
 
where and Rs, Rr are stator and rotor resistances, Ls , Lr, are 
stator and rotor self inductance, and M is the stator/rotor 
mutual inductance,  ωr is the electrical rotor angular velocity, 
Vds , Vqs are d and q axis stator voltage,  Ids , Iqs are d and q 
axis stator current,  Idr , Iqr are d and q axis rotor current, and p 
is the differential operator d/dt.  The rotor is assumed to be 
shorted and hence the voltages are 0 in equations (3) and (4).  
The electromagnetic torque is defined as Te = (3/2) (P/2) M (Iqs 
Idr – Ids Iqr), where P is the number of poles.   In a FOC scheme  
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A fault diagnostic system Operation data from an Electric drive data 
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                                (a) A 3-phase electric drive model                              (b) A six-switch inverter 

Figure 2. A 3-phase electric drive model and a six-switch inverter in a 3-phase electric drive. 
 
this torque equation can be simplified further by dropping the 
second term within the parenthesis leading to a simple control 
[3].  The mechanical equation of motion for the motor shaft is 
given by Te - TL = P/2 [J (dωm/dt) + Bωm], where ωm is the 
mechanical shaft speed, and the excitation frequency ω = (P/2) 
ωm.  TL is the load torque, J is the moment of inertia, and B is 
the friction coefficient.  These equations are numerically 
solved for currents during the implementation of a simulation 
model using Matlab-Simulink.  Specifically, we intend to 
simulate various faults for the six-switch scheme shown in 
Figure 2(b).    

One possible approach for fault diagnosis in an inverter is 
to have sensors installed at all possible locations to flag any 
abnormalities, assuming that the sensors do not fail as well.  
For example, to detect open circuit fault conditions within an 
inverter, we would need to place current sensors at every 
single switch and reverse diode to detect whether a particular 
switch or diode is faulty.  This is not cost/weight effective, and 
real-life inverters do not contain that many sensors.  Our 
approach assumes that only a minimal amount of current and 
voltage sensors exist in an electric drive system:  the current 
sensors in series with any two of the inverter output lines, and 
two voltage sensors across any two of the output terminals of 
the inverter. We also assume a Y-connected 3-phase induction 
motor stator, without any return connection from the neutral of 
the Y.  The problem statement can thus be summarized as 
follows:  For a 6-switch inverter driven 3-phase induction 
motor embedded with two current sensors in the output 
inverter line and two voltage sensors across the lines, a robust 
diagnostic system is to be developed to accurately identify any 
single faulty inverter switch among the six switches, or one 
failed vertical switch pair. 
 The above theoretical model was implemented in a 
simulation model, SIM_drive, using the Matlab-Simulink 
software.  SIM_drive has the capability of simulating the 
normal and faulty operations within the 3-phase induction 
motor drive at any given (torque, speed) point.  Table 1 shows 
the normal operation of the scheme shown in Figure 2(b).  The 

numbers in the voltage columns are to be multiplied with the 
dc voltage V, in order to obtain the true voltage applied to the 
motor phase windings.  In the implementation, we assume that 
a gating signal 1 implies that the switch is turned on, and 0 
implies that the switch is turned off.  We also assume that if 
the upper switch A is on, then the lower switch A’ will be off, 
and vice versa, to prevent any possibility of direct short circuit 
of the dc voltage source.  Table 2 shows the states of the six-
switch inverter when the switch A is open-faulted.  In this 
case, although switch A (upper limb) is supposedly turned on, 
in reality it remains off due to an open-circuit fault.  In 
addition to the 6 states shown in the Table 1, we also have two 
null states corresponding to all switches being on or off 
simultaneously.  These null states amount to short circuiting of 
the motor terminals.  The model is also used to simulate three 
post-short-circuit cases corresponding to the three vertical 
switch pairs open, one pair at a time, namely, the pairs A and 
A’, B and B’, and C and C’ respectively.  The operating 
conditions used in the simulation are specified in Table 3. 

Figure 3 shows examples of the simulated signals 
generated under the normal operation condition by SIM_drive.  
In Figure 3(a) the step function is the command torque, and 
the actual torque is seen to ultimately follow the command 
with a delay depending on the controller settings.  Figure 3(b) 
shows the current signals Ia, Ib, and Ic.  Figures 4 shows the 
signal behaviors with switch A open circuited at time 0.1 
seconds.  Figure 4(a) shows the torque command (step 
function) and the actual torque signal (oscillatory with 
changing amplitude).  Figure 4(b) shows the currents Ia, Ib, 
and Ic (3 currents in different shadings, with 120 degrees 
phase shift from each other in steady state) acquired after the 
fault.  Note that we used short trigger time for the purpose of 
clarity in viewing the faulty signal features.  It should also be 
noted that in simulations no restriction was imposed on the 
current magnitude, whereas in an experimental system there is 
a limit to the allowable current in order to prevent any damage 
to the system or the components.  Figure 5 shows the signal 
behaviors  of  one  post-short-circuit  case in which the  pair A  
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and A’  become  open   circuited   at   time   0.25  second.   As  
discussed earlier, short circuiting switch A made A’ open 
eventually, since the latter is gated to be on, shortly after the 

short circuit, causing the entire A and A’ limb to become 
open.

 
Table 1: Switching table for normal operation of the switches                         Table 2: Switching table for the faulted operation in which Switch A 

                            is permanently open 
 
 
 
 
 
 
 
 
 
 
 

 
         Table 3: The operating conditions used in the simulated sine-PWM-closed-loop model 

Variable name Description Value 
VDC DC voltage provided by battery 500V 
PWM carrier frequency Frequency of the sine wave 8 kHz 
Speed Fixed running speed of the motor 60, 300, 600, 900, 1800 rpm 
Reference torque command Mechanical torque desired from the motor 10, 50, 100, 200 Nm 
Simulation time Simulation time 6.25s 
Trigger time Time point to trigger the fault condition 0.25s 
Sampling rate Sampling rate to get the output data. 0.001s 
Points of data Points of data 6000 

 

  
       (a) Torque signal.               (b) Ia, Ib and Ic signals 
         Figure 3.  Signal behaviors in the normal condition generated by SIM_drive. 
 

 
        (a) Torque signal.               (b) Ia, Ib and Ic signals 

          Figure 4.  Signal behaviors generated by SIM_drive. in an condition that switch A is open. 
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# 
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2 0 1 1 -2/3 1/3 1/3 

3 0 0 1 -1/3 -1/3 2/3 

4 0 0 1 -1/3 -1/3 2/3 

5 0 0 0 0 0 0 

6 0 1 0 -1/3 2/3 -1/3 

Null 0 1 1 -2/3 1/3 1/3 
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3 0 0 1 -1/3 -1/3 2/3 

4 1 0 1 1/3 -2/3 1/3 

5 1 0 0 2/3 -1/3 -1/3 

6 1 1 0 1/3 1/3 -2/3 

Null 1 1 1 0 0 0 
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       (a) Torque signal.               (b) Ia, Ib and Ic signals 

Figure 5.  Signal behaviors in an abnormal condition that both switches A and A’ are open in a sine-PWM-closed-loop model. 
 
      III. ELECTRIC DRIVE FAULT DETECTION USING     
            SIGNAL ANALYSIS AND MACHINE LEARNING 

 
 Fault diagnostics in electric drive can be performed by 
developing an intelligent system that can learn to detect signal 
faults under various faulty circuit conditions.  The challenges 
in developing such robust diagnostic systems lie in the fact 
that it is easier to identify signatures of a faulty condition 
against the normal condition, whereas signal signatures of one 
fault against another one are often quite subtle.  We model the 
fault diagnostics in electric drive as a multi-class classification 
problem.  The input space consists of relevant signals (e.g. 
voltages and currents among others) from the electric drive 
system, and the output space consists of class labels, {f0, f1, 
…, fk}, where f0 is considered to be the normal operational 
condition, and f1 through fk are the k faulty conditions in the 
electric drive, which in our case correspond to the 6 switches, 
one open at a time, and the three cases of post-short-circuits.  
Figure 6 illustrates the computational steps involved in the 
signal fault detection system, where the input consists of the 
voltages Van, Vbn, Vcn to the motor, the currents Ia, Ib, Ic, and 
the motor electro-magnetic torque Te.  Note that we use time 
domain signals instead of frequency domain signals in our 
diagnostic system for the same reasons as indicated by Smith 
et. al. in [25].  The first computational step is to segment the 
signals and extract the signal features from each segment.  The 
signal segments are then analyzed by an artificial neural 
network, which is trained on the signals generated by 
SIM_drive at the parameter points selected by the CP-Select 
algorithm, a machine learning algorithm.  The major research 
contribution in this section is the machine learning technology 
used to train a neural network that can robustly detect and 
locate faults inside an electric drive operated under any given 
valid condition. 
 
A. Signal segmentation and feature extraction 
 
 Signal fault detection is performed on a segment-by-
segment basis.  All input signals are segmented using the same 
fixed sized segments and the two adjacent segments are 
overlapped in 1/3 of the segment width in order to maintain 
continuity of information flowing between segments.  The 

basic frequency of the signals is over 80 Hz, and sampling 
frequency is chosen to be 1000 Hz, which is sufficient for this 
purpose. We chose to use 16 samples in each segment with an 
overlap of 5 samples between two adjacent segments.  A 
signal of 3000 data samples is segmented into 272 segments.  
Figure 7 illustrates the segmentation scheme.  The solid 
vertical lines indicate the beginning of segments, the dashed 
vertical lines indicates the ending of segments, the signal 
between a dashed line and the subsequent solid line is the 
overlap portion of the two adjacent segments.  Each signal 
segment is represented by the following features: 

� Max: maximum magnitude of the signal within the 
segment 

� Min: minimum magnitude of the signal within the 
segment 

� Median: median of the signal within the segment 
� Mean: mean of the signal within the segment 
� Standard deviation: standard deviation of the signal 

segment 
� Zero-frequency component of the power spectrum 

 The detection of signal faults within a time period requires 
one segment from each input signal and each segment is 
represented by the 6 features listed above.  Since we have 7 
input signals (3 voltage signals, 3 current signals, and 1 torque 
signal), the combined feature vector to represent a particular 
state in the electric drive at a particular time is a vector of 42 
dimensions.  The feature vector is the input to a neural 
network classifier that determines whether the 7 signals within 
this time period manifest any fault. 
 
B. Smart selections of operation parameters 
 
 In a drive system, the current and voltage signals behave 
differently under different operation conditions specified by 
torque and speed.  The issue of smart selection of “control 
parameters” (also referred to as operating point) in the (torque, 
speed) domain is important for all electric drive diagnostic 
systems that are trained on simulated data.  

A diagnostic system trained on more representative data is  
more likely to perform better diagnostics in real world system 
under any operation condition.  Figure 8 illustrates the 
proposed   machine  learning   algorithm,   CP-Select  (Control   



 

         

7 

 
 
 
 
 

 
Figure 6. Major computational steps in a signal fault detection system. 

 
 

                               
  

 
 

Figure 7. Illustration of signal segmentation 
 
 
 

 
 
 
 
 

 

Figure 8.  Illustration of CP-Select algorithm for an electric drive diagnostic system. 

 
point-Select), for the generation of a robust electric drive 
diagnostic  system.   The  CP-Select  algorithm,  automatically 
selects representative operating points in a given domain of 
control parameter (CP) space to generate representative 
training data for a neural network system for fault diagnostics.  
The operating space for a drive system has two components, 
i.e. torque (Tq) and speed (Sp).  The Tq and Sp pair selected 
by CP-Select is sent to SIM_drive, which in turn, generates 
current and voltage signals, I, V, at all three phases at the 
given speed and torque point under normal and faulty 
conditions.  Collectively, these signals are denoted as I, V, 
where I={I0, I1, I2, …, Ic} and V={V0, V1, V2, …, Vk}, where 
the elements Ii and Vi (with i = 0 to k) within the I and V 
vectors are current and voltage signals obtained under normal 
(with index 0) and k faulty conditions.  Ii and Vi themselves 
can be vectors that contain several signals acquired at different 
locations of the circuit.  Diagnostic features are extracted from 
these signals and feature vectors are used to train an ANN 
called FDNN, and the performance of the FDNN is evaluated 
on a validation data set Tv.  If the performance is satisfactory, 
the algorithm stops, otherwise, more operating points are 
selected.  Tv is a validation data set containing features  
extracted  from  signals  generated  by SIM_drive that operates  

 
on a set of randomly selected control parameters (operating 
points) in the (torque, speed) domain. 

The most complicated component in the CP-Select 
algorithm is ASCP (Automatic Selection of Control 
parameters).  Initially Φ contains the rectangular space (refer 
to Figs. 9 and 10) that includes all valid torque and speed 
points used by a real world electric drive.  As the process goes 
on, Φ contains all subspaces from which potential parameters 
can be selected.  The ASCP algorithm repeatedly removes one 
parameter space from Φ at a time and performs an iterative 
process until Φ is empty or the performance of the trained 
FDNN is satisfactory.  At each iteration ASCP selects three 
sets of points, and each set goes through a simulation, training 
and evaluation process as shown in Figure 9.  The first set of 
points contains the four corner points and the center point of 
the current parameter space C_CP (see X1, X2, X3, X4, X5 in 
Figure 10) and are stored in P0.  The points in P0 that have not 
been selected before are sent to SIM_drive to generate new 
training data.  The newly generated training data are combined 
with the existing ones to form the current training data set, Tr.  
FDNN is trained on Tr and evaluated on validation data set 
Tv.  If the performance of FDNN on Tv is satisfactory, the 
process stops.  Otherwise it goes on to select the second set of 
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Network 
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faulty class 
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Tq, Sp FDNN 

Automatic Selection of control 
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points, which are the interior points of the current parameter 
space C_CP (see X6, X7, X8, X9 in Figure 10).  The same 
simulation, training, and evaluation steps are repeated on this 
set of points.  If the performance of FDNN at this stage is 
satisfactory, the process stops.  Otherwise the third set of 
parameters is selected, which contains the four center points 
on the four sides of C_CP (see X10, X11, X12, X13 in Figure 10).   
Again, the same simulation, training and evaluation process is 
applied to this set of parameters as well.  If the performance of 
FDNN at this stage is satisfactory, the ASCP algorithm stops, 
otherwise, the current parameter space C_CP is evenly divided 
into four subspaces CP1, CP2, CP3 and CP4, which are 
appended to the parameter space set Φ.  All the parameter 
spaces in Φ are sorted based on the performances of FDNN on 
the validation points in the space, and then the entire process 
repeats.   

We have conducted an experiment to evaluate the CP-
Select algorithm by using the SIM_drive described in section  
II.  We identified a valid (torque, speed) space as {Torque 
(Nm): [10, 200], Speed (rpm): [50, 1800]} as an initial 
parameter space denoted as C_CP.  For every pair of (torque, 
speed) points (Tq, Sp) selected by the CP-Select algorithm, we 
ran the simulation model for about 6 seconds to generate 
seven sets of current and voltage signals in the 3-phases.  One 
set is normal signal series, and each of the other six sets 
corresponds to one faulty condition.  All these signals are 
segmented and signal features are extracted, and a FDNN is 
trained to classify the single-switch faults in the inverter in an 
electric drive.  The CP_Select algorithm selected 8 random 
points within the C_CP space to form the (torque, speed) 
validation set, Tv= {(25, 236), (75,360), (36,1149), (96,1502), 
(121,119), (135,518), (146,672), (176,1401)}, which are 
shown in cross marks in Figure 11.  The points shown in 
diamonds were selected at the first iteration, the points marked 
in squares and triangles were generated by the CP-Select 
algorithm at the second and third iterations respectively.  The 
points marked in asterisks are the randomly selected test data. 
Figure 12 shows the performance of a 6-class neural network 
system trained to classify the single switch faults in a 3-phase 
inverter.  The performance was obtained by evaluating the 
neural network on the validation set Tv after it is trained on at 
each iteration.  We chose to use performance threshold per_th 
= 99%.  At the first iteration, training data Tr0 contains signal 
data generated by SIM_drive on the control points selected in 
the first iteration (see Figure 11).  A neural network FDNN0 is 
trained on Tr0 and the overall performance of FDNN0 
evaluated on the validation set is 94.62% < Perf_th = 99%.  Its 
performance on individual classes is shown in the curve 
connecting the diamond points in Figure 12.  At the second 
iteration, the neural network FDNN is trained on Tr0 ∪ Tr1, 
where Tr1 is the signal data generated by SIM_drive on the 
points selected by the CP_Select at the second iteration, and 
its performance on Tv is shown in the curve connecting the 
square points in Figure 12.  The overall performance is 
96.06% < Perf_th = 99%.  At the third iteration, the neural 
network FDNN is trained on Tr0 ∪ Tr1 ∪ Tr2, where Tr2 is the 
signal data generated by the SIM_drive on the points selected 
by the CP_Select at the third iteration, and its performance on 

Tv is shown in the curve connecting the triangular points in 
Figure 12.  The overall performance at the third iteration is 
100% > Perf_th = 99%, therefore the algorithm stops. 

 
C. Multi-class Fault Classification using Artificial Neural 

Networks (ANN) 
 

 Artificial neural networks are capable of capturing 
underlying numerical or logical relationships among training 
examples.  Neural networks have been successfully applied to 
a broad range of problems including engineering diagnosis, 
pattern classification, intelligent manufacturing, control 
problems and computer vision [25-34].  A neural network 
architecture using feedforward backpropagation consists of 
specification of the number of layers, number of units in each 
layer, type of activation function of each unit, and the 
connection weights between the units of different layers, 
which are determined by a machine learning algorithm.  
According to Huang et al. [30], two-layer or sometimes called 
one-hidden layer perceptrons, can implement any convex open 
or closed decision regions. Therefore, we chose to use a one-
hidden-layer architecture for signal fault detection.  Most of 
the research in neural networks has been in the development 
of learning and training algorithms for 2-class classifiers, i.e. 
classifiers with one output node that represent classes 0 and 1.  
However, fault diagnostics in electric drive has six classes of 
single switch faults and three classes of post-short-circuit 
classes. The most common architectures which have been 
proposed for multi-class neural networks [35], involve a single 
neural network with K output nodes, where K is the number of 
faulty classes, and a system of binary neural networks 
combined with a posterior decision rule to integrate the results 
of neural networks.  A system of binary neural networks 
requires separate training of each neural network and each 
trained neural network generates a decision boundary between 
one class and all others.  The most noticeable limitation in this 
approach is that the decision boundaries generated by the 
different 2-class neural network classifiers can have 
overlapped or uncovered regions in the feature space [35].  For 
the feature vectors that fall on an overlapped region in the 
feature space, more than one 2-class classifiers can claim the 
input as their classes, resulting in ambiguity.  The feature 
vectors falling on the regions that are not claimed by any 
neural networks will be rejected by all neural networks.  As a 
result the resulting system may not generalize well.  Another 
type of multi-class neural network system is to use a single 
neural network with k output, where k > 1.  This type of the 
neural network architecture has the advantage of simple 
training procedure, and only one neural network is trained for 
all m classes, where m > 2.  If trained properly, a neural 
network system implemented in this architecture should 
reduce the ambiguity problem [35]. 

Based on the single neural network architecture, we 
implemented two different systems of neural networks as 
illustrated in Figure 13 for the diagnosis of 10 classes of faults 
in an electric drive: one class represents the normal condition, 
six classes represent six single switch faults, and the last three 
classes represent the three post-short-circuit faults.   
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Figure 9. Computational Steps in ASCP component.  Please refer the points xi, i = 1, …, 13 to Figure 10. 

 

    

    

  

    

    

  

    

    

 

Figure 10. Illustration of operating points in a two-dimensional CP space 

X7 

X2 
X3 

X8 

X11 

X5 

X10 

X6 X9 

X14 

X15 X16 

X17 

X12 

 
X4X1 

Simulation, training, and evaluation process 
 

P0 = { x1, x2, x3, x4, x5} ⊂ C_CP, num_select=1 

Activate SIM_motor to generate new training 
data using all points in P0 that have not been 
used before, add new training data to Tr. 

Is Performance of 
FDNN on Tv good? 

Exit Yes 

Train a FDNN on Tr 

Yes 
P0 = { x10, x11, 
x12, x13 } ⊂ C_CP 
num_select = 3 

P0 = {x6, x7, x8, 
x9} ⊂ C_CP 
num_select = 2 

Yes 

No 

num_select 
==2 

num_select 
==1 

No 

No 

Divide C_CP into four equal size 
subspace CP1 CP2, CP3 and CP4 

Add the four subspaces CP1, CP2, CP3 
and CP4 to Φ and sort the parameter 
spaces in   Φ based on the performance 
of FDNN in increasing order.   

Remove the first parameter space from and 
set it to C_CP 

Φ 



 

         

10 

Training, validation and test points
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      Figure 13.  Two neural network architectures developed for the fault classification in a in an electric drive. 
 

Figure 13 (a) shows a structured diagnostic system 
consisting of two neural networks, one is trained to classify  
single switch faults, and the other classifies the post-short-
circuit faults, and WTA [35] approach is used to integrate the 
results from the two neural networks.  Figure 13(b) shows a 
single neural network trained to classify all 10 classes: normal, 
six single switch faults, and 3 post-short-circuit faults.  One 
important issue in a multi-class neural network is how to 
encode the classes in the output nodes of the neural network.  
In both neural network architectures, we chose to use a “one-
hot spot” method described as follows.  For a k-class 
classification problem, we need an output layer of k bits, each 
class is assigned a unique binary string (codeword) of length k 
with only 1 bit set to “1” and all other bits are “0.”  For 
example if it is a six-class classification problem, class 0 is 
assigned a codeword of 000001, class 1 is assigned a 
codeword of 000010, class 2 is assigned of a codeword 
000100, etc. The advantage of this encoding is that it gives   

enough tolerance among different classes.  We use the back 
propagation learning algorithm to train all the neural networks.  

In order to evaluate these two neural network systems,  we 
conducted the following experiments using simulated data.  
The structured multi-class neural network system contains two 
separately trained neural networks, both having 42 input nodes 
and 1 hidden layer with 20 hidden nodes. The neural network 
for single switch fault classification has 7 output nodes, which 
represent the normal class and the 6 faulty classes.  The neural 
network for the post-short-circuit classification has 4 output 
nodes, which represent the normal class and the 3 post-short-
circuit classes.   

 The randomly selected validation and test parameters, 
and the training parameters generated by the CP-Select 
algorithm for the six single switch faults are shown in Figure 
11 and the parameters (operating points) for the post-short-
circuit are shown in Figure 14. 

Figure 11. Randomly selected test and validation set, and the train data 
selected by CP-Select algorithm. 

Figure 12: The performance of the FDNN trained on data generated by 
SIM_drive using the control points generated by the CP-Select during three 
iterations. 

Decision logic  
(Winner Take 
All ) 

Final detection result 

A 7-Class neural network for 
detecting single switch faults 
 

A 4-Class neural network for 
post-short-circuit faults 

 

Normal 
A   broken 
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C   broken 
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Signal Features Normal 
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A 10-Class neural network  
 

(a) A system of two neural networks for classifying the single switch and 
     short circuit faults  in a 3-phase electric drive 

(b) A 10-class single neural network for classifying all 10 classes of faults in a  
     3-phase electric drive  
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Training, validation and test points for post-short
circuit fault classification
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   Figure 14.  Randomly selected test and validation parameters, and the training parameters selected by the CP-Select for classifying post-short-circuit faults. 
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                 Figure 15: Performances of two different neural network systems 
  

 The single-switch fault classification neural network was 
trained on the control parameters in Tr0, Tr1 and Tr2 generated 
by the CP-Select algorithm using 3 iterations as described in 
section III. C.  The post-short-circuit fault classification neural 
network was trained on the control parameters (operating 
points) in Tr0 shown in Figure 14, which gave 100% correct 
performance on the validation data shown in the squared 
points in Figure 14.  Therefore the CP-Select algorithm 
stopped at the end of the first iteration.  The four randomly 
selected test points are shown in triangular in Figure 14.  For 
the 10-class single neural network system, the CP-Select 
algorithm generated the training points in four iterations 
resulting in Tr0, Tr1, Tr2 and Tr3, which are shown in Figure 15 
along with the validation points and test points.  The 10-class 
neural network has 42 input nodes and 1 hidden layer with 20 
hidden nodes, and 10 output nodes, where one node represents 
the normal class, and 6 represent the single switch fault 
classes, and 3 represent the three post-short-circuit faulty 
classes.  It is trained on the data generated by the SIM_drive 
using the operating points in Tr0 ∪ Tr1 ∪ Tr2  ∪ Tr3 .   
 The test data for both diagnostic systems were the   signals 
generated by SIM_drive from the same four (torque, speed) 
points as shown in Figure 11 and 14.  11320 feature vectors 
were extracted from these signals among which 6792 data 
samples contain the six single switch faults, and 3396 contain 
the three post-short-circuit faults, and 1132 are normal.  The 

performances of these two diagnostic systems on the test data 
set are shown in Figure 15.  The structured diagnostic system 
correctly detected and located all 9 faulty classes and the 
normal class with 100% correct detection.  The single neural 
network system correctly detected with 100% all the 6 single 
switch faults, but detected correctly with only 90% and 92%  
on  test  data  from  the post-short-circuit faulty class 1 and 
class 2.  We want to point out that if there were signal data on 
the data generated from real time operation, FDNN can be 
trained by combining the simulated and real time signals.  The 
resulting  FDNN is then expected to be more robust.  Since 
operation data is difficult to obtain at the design stage, it is 
also possible to train the FDNN using only the simulation data  
initially, and then incrementally train the FDNN as the real 
operation data becomes available, which has been discussed in 
one of our papers [36]. 

 
IV. PERFORMANCE OF FDNN ON DATA GENERATED 

FROM BENCH SETUP 
 

 A reasonable question about model based diagnostic 
approaches based on simulation data is how well the system 
can operate on real data, which often contain noise and are not 
as stable in the sense that signals generated under the same 
faulty condition vary in certain features.  In order to evaluate    
the robustness of the  proposed model based diagnostic system 

(a) Randomly selected test and validation parameters, and the training   
      parameters selected by the CP-Select for classifying post-short-circuit   
     faults.  

(b) Randomly selected test and validation parameters, and the training  
      parameters selected by the CP-Select using a single neural network   
     classification system.  
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trained through machine learning, we developed an 
experimental bench setup of an electric drive in the VE 
(Vehicle Electronics) lab at the University of Michigan-
Dearborn in an attempt to generate data as close to real 
operation as possible.  Figure 16 shows the system setup and 
the 3-phase open-loop inverter circuit that has the capability of 
generating signals under normal and various faulty conditions.  
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 Figure 16: Experimental set up of the electric drive system. 

  
The bench set up has the following components: Matlab 
Simulink, dSPACE control desk and control box, Hampden 

IM-100 induction machine, three phase transformer, three 
phase rectifier, inverter, interface boards, and Hall sensor.  
The signals generated by the bench setup are not stable in the 
sense that signals generated under the same faulty condition 
but at different run can have different behavior. Figure 17 and 
18 show the signals generated in two separate runs by the 
bench setup system when switch A is broken and both A and 
A’ are broken respectively.  It is obvious that the signals 
generated by the bench setup under the conditions are not 
identical in the two separate runs.  Figure 19 shows the Ia, Ib, 
and Ic signals generated by a simulated model in which the 
switch A was broken in Fig. 19(a) and both switch A and A’ 
were broken in Fig. 19 (b).  It is clear that the signals 
generated by SIM_drive are smooth and have expected 
behaviors, and the signals  generated  by  the   bench  set  up  
and  SIM_drive are similar but have small variations.  A 
neural network system developed using the machine learning  
approach described  in section III  has been tested on the data 
generated by the experimental bench setup system shown in 
Figure 16 and the results are shown in Figure 20.  The three 
classes of post-short-circuit fault were detected and located 
with 100% accuracy.  The six classes of single switch faults 
were detected and located correctly within 98% of all the 
cases.  The lowest detection rate is on the normal condition, 
which is close to 96% over all cases. 

 

              
  

Figure 17: Ia, Ib, Ic signals generated at two separate occasions with switch A broken. 
 

             
     

 Figure 18.  Ia, Ib and Ic generated by the bench set up circuit system with switches A and A’ broken. 
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Figure 19. Current signals generated by SIM_drive with switch A broken and both A and A’ broken. 
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                                                   Figure 20.  Performance of a model based fault diagnostic system on data  
                                                                     generated by experimental bench setup system. 

 
V. SUMMARY AND CONCLUSIONS 

 
 In order to effectively detect and locate multiple classes of 
faults, it is important to develop a diagnostic system that is 
robust for an electric drive operating at any valid torque and 
speed.  We have presented a model based diagnostic system 
framework driven by a machine learning algorithm for multi-
class fault detection in an electric drive system with a three 
phase induction motor.  The framework consists of a 
simulated model of an electric drive and implemented using 
Matlab-Simulink, a machine learning algorithm for the smart 
selection of vehicle operating points from the (torque, speed) 
space for the use by the simulated model, SIM_drive to 
generate representative training data, and a neural network 
classification system developed and trained on the signals 
generated at the representative operating conditions for the 
fault diagnostics of electric drive inverters.   
 The SIM_drive assumes minimum number of sensors and 
contains control mechanisms for generating current and 
voltage signals at all switches under the normal operation 
condition, all single switch broken and post-short-circuit 
conditions.  The simulated electric drive model uses a closed 
loop field oriented control, and sine-triangle PWM method for 
synthesizing reference voltage command generated by the 
FOC. 
 A machine learning algorithm, CP-Select, was designed to 
select the representative operating conditions in terms of 
torque and speed such that the signals generated by SIM_drive 
at these operating points can be used to train a robust 

diagnostic system.  The CP-Select uses a novel procedure: 
“select-simulation-evaluation”, that systematically selects the 
torque-speed operating points for training, generate signals at 
the selected points, and evaluates the system trained at these 
points, and CP-Select stops when the system performance is 
satisfactory.  We presented two neural network architectures, a 
structured multi-neural-network system, and a single-neural-
network system.  The structured multi-neural-network system 
showed superior performance, whereas the single-neural-
network system is easier to implement and train.   
 The proposed model based diagnostic system trained with 
machine learning technology has been evaluated by two sets 
of experiments.  In the first set of experiments, we used the 
test signals generated by the SIM_drive that contain normal 
and 9 faulty classes.  In the second set of experiments, we 
used the data generated by a bench setup in the laboratory to 
test the model-based fault diagnostic system trained on the 
signals generated by the simulated electric drive.  The model 
based fault diagnostic system performed very well in both sets 
of data.  We are particularly encouraged by the results 
obtained on the data generated by the bench setup, where the 
model based fault diagnostic system prediction accuracies 
were close to 98% or above in detecting 9 classes of faults: six 
single switch broken classes and three post-short-circuit fault 
classes. 
 In conclusion, the proposed model based fault diagnostics 
approach is found to be very effective in detecting multiple 
classes of faults in an electric drive inverter.  The authors 
would like to point out that the training phase in the proposed 

(a) Ia, Ib, Ic signals generated by the simulated model with switch A 
     broken. 

(b) Ia, Ib and Ic generated by the circuit system with switches A and A’ 
      broken. 
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approach is elaborate to make the resulting diagnostic system 
accurate and robust.  However, once the training is complete, 
the implementation in a diagnostic system is quite simple 
since thereafter the weights of the resulting diagnostic neural 
network can be stored in and processed by a fast and low cost 
processor.  A significant contribution of this work is the 
presentation of a generalized methodology for developing 
fault diagnostics systems: a technically sound simulated 
system model combined with machine learning techniques to 
train a robust diagnostic system, which can be applied to a 
broad range of applications including real-time systems. 
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