
 

 

FINAL REPORT 
Automated Acoustic Identification of Bats 

 
 

SERDP Project RC-1394 
 

 

OCTOBER 2011 
  

Joseph M. Szewczak 
Humboldt State University 
 
Stuart Parsons 
 University of Auckland 
 
Michael L. Morrison 
 Texas A&M University 
 
 

 
 



  
 

ii 

 
 
 
 
 

This report was prepared under contract to the Department of Defense Strategic Environmental 
Research and Development Program (SERDP). The publication of this report does not indicate 
endorsement by the Department of Defense, nor should the contents be construed as reflecting 
the official policy or position of the Department of Defense. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
Department of Defense.  

  



  
 

iii 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
    3/18/2011 

2. REPORT TYPE 
    Final 

3. DATES COVERED (From - To) 
  August 2004–March 2011  

4. TITLE AND SUBTITLE 
Automated Acoustic Identification of Bats and Birds 

5a. CONTRACT NUMBER 
  
5b. GRANT NUMBER 
  
5c. PROGRAM ELEMENT NUMBER 
  

6. AUTHOR(S) 
Dr. Joseph M. Szewczak 
 

5d. PROJECT NUMBER 
RC-1394 
5e. TASK NUMBER 
  
5f. WORK UNIT NUMBER 
  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Humboldt State University, 1 Harpst St., Arcata, CA 95521 
 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
  

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Humboldt State University, 1 Harpst St., Arcata, CA 95521 

10. SPONSOR/MONITOR'S ACRONYM(S) 
  

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
  

12. DISTRIBUTION AVAILABILITY STATEMENT 
  
13. SUPPLEMENTARY NOTES 
  
14. ABSTRACT 
This project developed a monitoring system to automatically and continuously monitor bats and birds for weeks to 
months by recording the vocalizations they produce. This project combined more than 10,000 sequences of species-
known bat echolocation call recordings from 37 species in 30 states. High-resolution, full-spectrum data enabled an 
intelligent routine to automatically track call trends through noise and echoes and to extract and quantify subtle signal 
parameters, and enable the assessment of signal properties for quality control. The compiled known data supported the 
creation of an expert system to classify similarly parameterized unknown data. The expert classification of calls, and 
sequences of calls, uses an ensemble consensus of redundant hierarchical decision algorithms that reports a single 
species decision only when a result meets or exceeds an acceptance threshold at each decision step and satisfies 
redundant checks and signal assessments. Because of the greater number of bird species, their complexity, and variety 
of calls and songs, this project adopted an alternate approach to recognize target signals for bird signal recognition. 
 
15. SUBJECT TERMS 
  
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 

OF ABSTRACT 

  

18. NUMBER 
OF PAGES 

  

19a. NAME OF RESPONSIBLE PERSON 

  
a. REPORT 

  
b. ABSTRACT 

  
c. THIS PAGE 

  
19b. TELEPONE NUMBER (Include area code) 

  
 



  
 

iv 

Contents 

Contents ......................................................................................................................................... iv 
List of Tables .................................................................................................................................. v 
List of Figures ................................................................................................................................ vi 
Acronyms and Abbreviations ........................................................................................................ ix 
Keywords ....................................................................................................................................... xi 
Acknowledgements ........................................................................................................................ xi 
Abstract ........................................................................................................................................... 1 
Objective ......................................................................................................................................... 2 
Background ..................................................................................................................................... 4 

Acoustic monitoring of echolocating bats .................................................................................. 4 
Acoustic identification of echolocating bats ............................................................................... 6 

Materials and Methods .................................................................................................................... 8 
Bat Fieldwork and Reference Recordings .................................................................................. 8 
Laboratory work........................................................................................................................ 12 

Long duration recording hardware........................................................................................ 12 
Bat software development..................................................................................................... 14 
Bat call trending analysis ...................................................................................................... 18 

Bat call quantitative parameter extraction ........................................................................ 22 
Bat species classifier development ................................................................................... 26 

Bird Software Development ................................................................................................. 29 
Results and Discussion ................................................................................................................. 33 

Northeastern United States bat classifier .............................................................................. 33 
Classification of Indiana Bats ........................................................................................... 38 

Northwestern United States bat classifier ............................................................................. 40 
Midwestern United States bat classifier ................................................................................ 44 
Ozark to northern Georgia bat classifier ............................................................................... 46 
Bat analysis application ........................................................................................................ 48 
Recording hardware .............................................................................................................. 51 
Bat mobile transects .............................................................................................................. 53 
Bird analysis software operation ........................................................................................... 54 

Conclusions and Implications for Future Research/Implementation ............................................ 58 
Recording and classification implementation recommendations ......................................... 58 
Transition, continued development, and software maintenance ........................................... 60 

Literature Cited ............................................................................................................................. 64 
Appendix A. Supporting Data....................................................................................................... 67 

Table of eastern US bat echolocation call characteristics:........................................................ 67 
Table of western US bat echolocation call characteristics: ...................................................... 67 
Eastern US Classification notes: ............................................................................................... 67 
Western US Classification notes:.............................................................................................. 67 

Appendix B. List of Scientific/Technical Publications .............................................................. 68 
Articles in peer-reviewed journals ............................................................................................ 68 
Technical reports ....................................................................................................................... 68 
Conference or symposium proceedings scientifically recognized and referenced ................... 68 
Conference or symposium abstracts ......................................................................................... 68 



  
 

v 

Text books or book chapters ..................................................................................................... 70 
Graduate dissertations ............................................................................................................... 71 
Scientific or technical awards or honors ................................................................................... 71 

Appendix C. Other Supporting Materials .................................................................................. 73 
Protocols/User Guides .............................................................................................................. 73 

Quick start guides to using SonoBat: .................................................................................... 73 
User's Guide: ......................................................................................................................... 73 
Addendum to User's Guide: .................................................................................................. 73 
Background information on full-spectrum analysis:............................................................. 73 
Recording and classification notes: ...................................................................................... 73 

Eastern North America: .................................................................................................... 73 
Western North America: ................................................................................................... 73 

Tables of species’ acoustic characteristics: ........................................................................... 73 
Eastern US bat echolocation call characteristics: ............................................................. 73 
Western US bat echolocation call characteristics: ............................................................ 73 
Arizona region bat echolocation call characteristics: ....................................................... 73 
Rocky Mountain region bat echolocation call characteristics: ......................................... 73 

Guides to using SonoBird: .................................................................................................... 74 
Bat echolocation call recording and analysis workflow: ...................................................... 75 

Appendix D. Addendum ............................................................................................................... 76 
Preliminary field test of discriminating Indiana bats (M. sodalis)............................................ 76 

 

List of Tables 

Table 1. Quantitative descriptive echolocation call parameters determined and calculated in 
the parameter extraction routines, and used in building and implementing species 
classifiers. ..................................................................................................................................22 

Table 2. Initial results (%correct) of classifiers based on discriminant function analysis and a 
prototype artificial neural network compared with final project classifier. ...............................26 

Table 3. Northeastern bat species classification results for individual echolocation calls. ..........34 
Table 4. Northeastern bat species classification results for individual calls by ranges of 

echolocation call duration. .........................................................................................................36 
Table 5. Northeastern bat species classification results for sequences of echolocation calls, 

i.e., bat passes. ...........................................................................................................................37 
Table 6. Individual echolocation call classification results for Indiana bats and little brown 

bats with discriminant probability threshold of 0.90. ................................................................39 
Table 7. Northwestern bat species classification results for individual echolocation calls. .........40 
Table 8. Northwestern bat species classification results for individual echolocation calls by 

ranges of call duration. ...............................................................................................................41 
Table 9. Northwestern bat species classification results for sequences of echolocation calls, 

i.e., bat passes. ...........................................................................................................................42 
Table 10. Midwest bat species classification results for individual echolocation calls using a 

discriminant probability threshold setting for acceptance of 0.90. ............................................44 



  
 

vi 

Table 11. Midwest bat species classification results for sequences of echolocation calls, i.e., 
bat passes, using a discriminant probability threshold setting for acceptance of 0.90 ..............45 

Table 12. Ozark-northern GA bat species classification results for individual echolocation 
calls using a discriminant probability threshold setting for acceptance of 0.90 ........................46 

Table 13. Ozark-northern GA bat species classification results for sequences of echolocation 
calls, i.e., bat passes, using a discriminant probability threshold setting for acceptance of 
0.90 ............................................................................................................................................47 

Table 14. Species matrix of eastern US bat classifiers indicating build status. ............................61 
Table 15. Species matrix of western US bat classifiers indicating build status. ...........................62 
 

List of Figures 

Figure 1. Sonogram of a sequence of echolocation calls recorded from passing bat. ....................5 
Figure 2. Compilation of different eastern red bat calls arranged to show this species’ 

repertoire from short to long call variants. ..................................................................................7 
Figure 3. Capturing bats in preparation for acquiring reference recordings. ..................................8 
Figure 4. Hand release of a hoary bat in anticipation of acquiring a reference recording. .............9 
Figure 5. Photographs and drawing illustrating zipline configuration to acquire reference 

recordings from species-confirmed bats. .....................................................................................9 
Figure 6. Bats with mini-cyalume light tags attached that enable visual tracking of the bat 

after release for acquiring reference recordings. .......................................................................10 
Figure 7. Time-lapse photograph of the light tag track from a silver-haired bat released in a 

montane meadow (Ochoco National Forest, OR). .....................................................................10 
Figure 8. Call sequences from an individual western yellow bat and an individual Yuma 

myotis showing inherent variation of echolocation calls. ..........................................................11 
Figure 9. States from which this project acquired species-known bat recordings to contribute 

to the reference collection, 2005–2010. .....................................................................................12 
Figure 10. Initial mp3-based prototype long-duration field recording unit. .................................13 
Figure 11. Second generation prototype long-duration field recording unit.................................13 
Figure 12. Field testing prototype automated recording units to acquire reference recordings 

of the federally listed lesser long-nosed bat (Leptonycteris yerbabuenae), Ft. Huachuca, 
AZ. .............................................................................................................................................14 

Figure 13. Fringed myotis sequence as recorded showing the actual spacing between calls 
and the same sequence after SonoBat detected the calls and compressed the time between 
calls. ...........................................................................................................................................15 

Figure 14. Example of a well recorded call having full rendering of call details for accurate 
trending and parameter extraction. ............................................................................................16 

Figure 15. Example of an overloaded, or clipped, recording in which signal level exceeded 
the maximum sensitivity of the recording device. .....................................................................16 



  
 

vii 

Figure 16. Example of a recorded call with low signal strength as indicated by a low signal 
to noise ratio. ..............................................................................................................................16 

Figure 17. Example of a call with multiple echoes that interfere with resolving details of the 
end of the call. ............................................................................................................................17 

Figure 18. Example of a call having a high level of distortion. ....................................................17 
Figure 19. Example of how a low signal quality, or out of range recording of one species can 

mimic another species and lead to misclassification. ................................................................17 
Figure 20. Method of zero-crossing analysis to rapidly extract a moving average of the 

dominant frequency content of a signal. ....................................................................................19 
Figure 21. SonoBat intelligent call trending compared with divide by eight zero-crossing 

analysis of the same signal. ........................................................................................................20 
Figure 22. Example of echoes from higher amplitude earlier portions of a call obscuring the 

call ending details. .....................................................................................................................20 
Figure 23. Example of an Indiana bat call recorded in the presence of insect noise. ...................21 
Figure 24. Example of a lesser long-nosed bat call with peak energy shifted to the second 

harmonic in the middle of the call. ............................................................................................21 
Figure 25. Low bandwidth call with a strong echo trailing the call. .............................................22 
Figure 26. Characteristic frequency as a function of call duration for the northeastern species 

call data in the reference data set. ..............................................................................................27 
Figure 27. Characteristic frequency as a function of call duration for the northwestern 

species call data in the reference data set. .................................................................................27 
Figure 28. Sequence classification of a federally listed gray bat (M. grisescens) recording. .......29  
Figure 29. Example wren song recorded in the presence of high amplitude low frequency 

noise, typical of that encountered near transportation corridors. ...............................................31 
Figure 30. The same example wren song in the previous figure with rapid low resolution 

processing with and without initial bandpass frequency filtering. ............................................32 
Figure 31. Likelihood of southwest willow flycatcher calls detected in a recording using low 

resolution processing and detection after frequency bandpass filtering. ...................................32 
Figure 32. Sample bivariate plots of overlapping call parameters of Indiana bats and little 

brown bats showing the similarity in acoustic characteristics between these species. ..............38 
Figure 33. SonoBat high resolution display of an individual call analyzed and displaying the 

classification decision. ...............................................................................................................49 
Figure 34. SonoBat display of a full call sequence after classification analysis and displaying 

the classification decision. .........................................................................................................49 
Figure 35. SonoBat batch process setup panel. .............................................................................50 
Figure 36. Spreadsheet output from a SonoBat batch process run of call sequence 

classification analysis. ...............................................................................................................50 
Figure 37. Binary Acoustic Technology FR125-III field recorder. ..............................................51 
Figure 38. Pettersson D500X ultrasound recording unit intended for long-term, unattended 

recording of bat calls. .................................................................................................................52 



  
 

viii 

Figure 39. Wildlife Acoustics Song Meter SM2 unit for long-term, unattended recording of 
bat calls. .....................................................................................................................................52 

Figure 40. Screenshot of a mobile transect displayed in Google Earth showing the 
distribution of bats along the Catalina Highway, Coronado National Forest, AZ. ....................53 

Figure 41. Zoomed song selection from a recorded file displayed next to an appended 
reference file. .............................................................................................................................54 

Figure 42. SonoBird search panel. ................................................................................................55 
Figure 43. SonoBird search settings panel. ...................................................................................56 
Figure 44. Examples of search results for federally listed golden-cheeked warbler songs in a 

four hour recording made in central Texas. ...............................................................................57 
Figure 45. Bat detector remote microphones enable placement up and away from ground 

clutter and other surfaces that can generate echoes that distort recordings. ..............................60 



  
 

ix 

Acronyms and Abbreviations 

Eastern bats 
Cora Rafinesque’s big-eared bat, Corynorhinus rafinesquii  
Labo eastern red bat, Lasiurus borealis 
Lain northern yellow bat, L. intermedius 
Lase Seminole bat, L. seminolus 
Myau southeastern myotis, Myotis austroriparius 
Mygr gray bat, M. grisescens 
Myle eastern small-footed myotis, M. leibii 
Myse northern long-eared myotis, M. septentrionalis  
Myso Indiana bat, M. sodalis  
Nyhu evening bat, Nycticeius humeralis 
Pesu  tri-colored bat, Perimyotis subflavus 

Eastern and western bats 
Epfu big brown bat, Eptesicus fuscus 
Laci hoary bat, L. cinereus  
Lano silver-haired bat, Lasionycteris noctivagans 
Mylu little brown bat, M. lucifugus  
Tabr free-tailed bat, Tadarida brasiliensis  

Western bats 
Anpa pallid bat, Antrozous pallidus    
Coto Townsend’s big-eared bat, Corynorhinus townsendii  
Chme Mexican long-tongued bat, Choeronycteris mexicana 
Euma spotted bat, Euderma maculatum  
Eupe mastiff bat, Eumops perotis  
Idph Allen’s lappet-eared bat, Idionycteris phyllotis 
Labl western red bat, L. blossevillii  
Laxa western yellow bat, L. xanthinus 
Leye lesser long-nosed bat, Leptonycteris yerbabuenae 
Maca California leaf-nosed bat, Macrotus californicus 
Myca California myotis, M. californicus 
Myci western small-footed myotis, M. ciliolabrum  
Myev western long-eared bat, M. evotis  
Myoc Arizona myotis, M. occultus 
Myth fringed myotis, M. thysanodes  
Myve cave myotis, M. velifer 
Myvo hairy-winged myotis, M. volans  
Myyu Yuma myotis, M. yumanensis  
Nyfe pocketed free-tailed bat, Nyctinomops femorosaccus 
Nyma big free-tailed bat, N. macrotis 
Pahe canyon bat, Parastrellus hesperus  
 
 



  
 

x 

 
Other acronyms and abbreviations 
ANN artificial neural network     
BAT Binary Acoustic Technology    
DFA discriminant function analysis   
DP  discriminant probability    
FFT Fast Fourier Transform  
kbps kilobits per second 
kHz kiloHertz 
PI Principal Investigator  
spp species  
TES threatened or endangered species   



  
 

xi 

Keywords 

Bat, echolocation, wildlife monitoring, presence, ultrasound, ultrasonic, bat detectors, acoustic 
discrimination 

 

 

Acknowledgements 

I gratefully acknowledge the support and encouragement from Strategic Environmental Research 
and Development Program that made much of this current project possible, and in particular to 
the Executive Directors, Mr. Bradley Smith and Dr. Jeffrey Marqusee (former and present), 
Program Managers Drs. Robert Holst and John Hall (former and present), and to the supportive 
staff of HydroGeoLogic, Inc.    

In addition to the generous federal support that expanded the scope of this endeavor, we have 
many people and groups to thank who contributed their time, energy, advice, and data that 
supported and enhanced this project. These include Greg Green, Michael L. Morrison, Stuart 
Parsons, Ronnie Sidner, Joel Tigner, Bryce Maxell, Chris Corben, Mark Jensen, Lars Pettersson, 
Ralph Arwood, Patricia Ormsbee of the US Forest Service and everyone of the Bat Grid 
initiative, Greg Falxa, Tim Carter, Julia Boland, Ted Weller, Janet Tyburec, John Chenger, Ed 
Arnett, Mark Gumbert (and field assistants Piper and Price), Austin Trousdale, Jeff 
Schwierjohann, Dr. Richard Stevens, George Wyckoff, and my graduate students Amy Tegler, 
Cameron Rognan, Zachary Loman, Jean-Paul Kennedy, and Aaron Corcoran. I also thank the 
numerous colleagues, associates, and SonoBat users that have contributed data, advice, and 
suggestions. 



 
 

1 

Abstract 
Objectives: The Endangered Species Act and other environmental regulations, such as the Sikes 
Act, require DoD installations to have Integrated Natural Resource Management Plans, and 
responsible biodiversity stewardship. This project sought to facilitate compliance with these 
regulatory imperatives by further developing software and hardware to automatically survey and 
monitor bats, with a demonstration application of this approach for birds. Particularly for rare 
species, monitoring accrues high costs because of the specialized skills, time, and spatial 
coverage required to perform this work. This project aimed to develop a system to automatically 
monitor bats for weeks or months by recording and analyzing the vocalizations they produce to 
assess species presence/absence, population levels, temporal movements, and acoustically 
gleaned demographic information.  

Technical Approach:  Although relatively easy to record with ultrasonic-sensitive recording 
equipment, confident matching of bat sounds to species requires a comprehensive collection of 
species-known recordings from a variety of conditions to sufficiently cover each species’ call 
repertoire. This project combined more than 10,000 echolocation call sequences of species-
known bats from 37 species in 30 states recorded as high-resolution, full-spectrum data. This 
format enabled analysis with an intelligent routine to automatically track call trends through 
noise and echoes to extract and quantify subtle signal parameters, and enable the assessment of 
signal properties for quality control. The compiled known data supported the creation of an 
expert system to classify similarly parameterized unknown data. This expert classification of 
calls and sequences of calls uses an ensemble consensus of redundant hierarchical decision 
algorithms that reports a single species decision only when a result meets or exceeds an 
acceptance threshold at each decision step and satisfies redundant checks and signal assessments. 
Because of the greater number of bird species, and the complexity and variety of their calls and 
songs, this project adopted an alternate approach to recognize target signals for bird signal search 
and recognition. 

Results:  Bat species classification using the expert system outperformed tests using other 
standard machine intelligence systems e.g., Artificial Neural Networks. Because of signal noise 
and that many bat species have overlapping call characteristics across some or all parts of their 
call repertoires, the classifiers cannot discriminate every recording to species, but did achieve 
correct identification rates of 90–100% from calls and sequences outputted from the classifiers as 
acceptable following signal assessment and redundant checks. Prototype field recording units 
enabled testing and assessment of recording under a variety of field conditions, and provided 
recorded sequences that directed improvements of the automated signal processing routines to 
reduce misclassifications and provide quality control. Bat classifier systems already developed 
include Northeastern, Midwestern, Ozark, Pacific Northwest, Great Basin, and Montane North 
regions of the United States. Some additional fieldwork remains to enable Southeast and 
Southwest classifiers. The bird signal search algorithm demonstrated robustness in its ability to 
rapidly find search targets even with low amplitude signals that occur among noise.  

Benefits: The software analysis and hardware approaches developed and demonstrated by this 
project will enable both short and long-term non-invasive survey and monitoring of bat activity, 
bat species occurrence, and occurrence of targeted bird species at reduced cost and increased 
temporal and spatial coverage. This project will also make contributions of recording data to 
augment the collection of the Cornell Laboratory of Ornithology’s Macaulay Library.  
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Objective 

The Endangered Species Act and other environmental regulations such as the Sikes Act require 
the Department of Defense to manage threatened and endangered species (TES) on lands under 
its jurisdiction. Additionally Department of Defense natural resource managers require species 
presence and occurrence information to follow installation-specific Integrated Natural Resource 
Management Plans and remain in compliance with other environmental initiatives such as the 
Migratory Bird Treaty Act. The inventory and monitoring of bat and bird species necessary for 
this management accrues high costs because of the specialized skills required to perform the 
work. Rare and uncommon species require greater survey effort than more common species to 
acquire indisputable data, particularly over the many large landscapes of U.S. military 
installations. In addition, many installations have large tracts of land with limited access to 
personnel that curtails the opportunity to use standard monitoring protocols. Automated acoustic 
monitoring and identification of bats and birds can reduce costs and operate in personnel-
restricted areas. Unlike intermittent personnel-based surveys, automated systems provide 
consistent data from survey to survey, allow a more thorough assessment of species presence-
absence and abundances because sampling can continue in the absence of human observers, and 
reveal long-term trends of species, thus enabling the evaluation of military activities on TES. The 
methodologies and technologies developed and enhanced by this project will provide an efficient 
and cost-effective solution to meeting monitoring requirements for the management of 
endangered species, and will also be applicable to a wide range of other taxa found throughout 
U.S. military installations. Reliable, indisputable, and third party verifiable, biological survey 
data in the form of recordings can also avoid legal challenges and disputes that could otherwise 
delay projects. 

This project advanced bioacoustic tools and techniques to automatically record, detect, and 
identify bats (and birds) to assess species presence and monitor spatial and temporal population 
dynamics. This technology can be deployed to automatically and continuously monitor bats and 
other acoustic signals (e.g., birds) for weeks or months at a time to assess presence/absence, 
population levels, temporal movements, and acoustically-gleaned demographic information.  

Developing this technology entailed achieving these objectives: 

• Expand an extensive and representative reference collection of species-known, 
high-resolution, information-rich full-spectrum recordings of bats flying under 
natural conditions, i.e., the type of vocalizations that passive recording stations 
would collect from free-flying bats.  

• Develop an intelligent routine to automatically recognize calls, accept or reject 
them according to signal quality, and track the trend of echolocation calls 
through noise, echoes, and other distorting effects and automatically extract 
subtle signal characteristics essential to confidently discriminate acoustically 
similar species.  
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• Develop an automated system to batch process data from automated recording 
equipment to classify to species and extract other information such as temporal 
occurrence and activity.  

• Develop prototype field recording hardware to acquire long-term series of 
recordings under field conditions for testing and development of batch 
processing procedures and software tools, and to collaborate with recording 
hardware makers to develop compatible recording systems.  

• Refine processing and classification methods from proof of concept testing and 
field trials. 

• Apply the methods and technologies developed and implemented for bats on a 
proof of concept demonstration application on bird vocalizations. 
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Background 

The inventory and monitoring of bat and bird species necessary for natural resource management 
can accrue high costs because of the specialized personnel, time, and spatial coverage required to 
perform the work. Even when funds are available, the supply of individuals with the skills to 
acoustically identify bats and birds falls short of the demand (Hobson et al. 2002). Rare and 
uncommon species typically require greater survey effort (and cost) than more common species 
to acquire indisputable data (Green and Young 1993; Queheillalt et al. 2002), particularly over 
the many large landscapes under DoD jurisdiction. In addition, many military installations have 
large tracts of land with limited access to personnel that severely curtails the opportunity to 
survey bats and birds using standard protocols. Fortunately, both bats and birds leak considerable 
information to the environment in the form of acoustic signals that can be exploited for non-
contact monitoring with automated recording equipment. For bats though, even the most 
experienced researchers cannot reliably discriminate many sensitive species with the currently 
used acoustic technology. This often necessitates the capture of bats for indisputable species 
confirmation, again requiring expert personnel at high cost.  

Compared to traditional intermittent surveys, continuous automated monitoring can also improve 
the evaluation of long-term trends of species to improve the evaluation of military activities on 
TES. This ability will promote military activities while more thoroughly protecting TES. By 
deploying multiple units, automated monitoring can also facilitate simultaneous coverage over 
large landscapes, a feat that otherwise requires multiple personnel at high cost. In addition to 
identifying targeted species or multiple species for presence or absence, simultaneous multiple 
signal acquisition can also provide information regarding population levels and trends. 
Contemporaneous monitoring is particularly relevant for bats and birds that can readily move 
between monitoring sites and potentially be counted twice by asynchronous intermittent 
monitoring protocols. 

Acoustic monitoring of echolocating bats 
All North American bats emit regular pulses of vocalizations during flight to generate echoes 
they use for navigation, detecting, and pursuing prey. Biological sonar, or echolocation, provides 
important acoustic information that can be detected and used to indicate the presence of bats, and 
in many cases to identify species (Szewczak and Arnett 2007). Except for a few bat species in 
western North America that emit audible (to humans) echolocation calls, most bats vocalize at 
ultrasonic frequencies (well above the range of human hearing, > 20 kHz). Specialized bat 
detectors can capture and convert the ultrasonic calls of bats into audible sounds or to data that 
can be saved in digital form. Unfortunately, the rapid aerial attenuation of high frequency sounds 
(Griffin 1971) can bias detection rates toward species that produce low frequency sound. 
Although bats can generate sound intensities as high as 133 dB, among the loudest source levels 
recorded for any animal (Holderied et al. 2005), aerial attenuation of ultrasound renders many 
species undetectable at ranges beyond about 30 m. Because different bat species vary in their 
loudness, or intensity, those that vocalize at low intensities will be less detectable and thus 
introduce a bias toward those species that produce high intensity echolocation calls (Griffin 
1958, Faure et al. 1993, Fullard and Dawson 1997). Low intensity echolocators (e.g., 
Corynorhinus spp.), or so-called “whispering bats,” have a smaller effective volume of detection, 
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and thus may be missed during acoustic surveys unless they fly close to an ultrasonic detector 
(within 3–5 m for some species).  

Acoustic detection of bats passing microphones provides a practical and effective means to 
monitor for bat presence, activity, and relative abundance (Figure 1). Fenton (1970) defined a 
“bat pass” as a sequence of two or more echolocation calls, with each sequence, or pass, 
separated by one second or more (also see Thomas and West 1989, Hayes 1997). Bat passes can 
only provide a relative index of abundance because we cannot typically determine the number of 
individual bats detected so in practice most acoustic surveys will only record events of detection, 
i.e., bat passes, of bats that enter the volume of airspace within detection range. These events can 
only provide an index of activity or abundance for example, one hundred different bats of the 
same species passing near an ultrasonic detector are generally indistinguishable from a single bat 
that returns to pass a detector one hundred times (Hayes 2000).  

Because of this limitation, recorded levels of activity at any one site do not necessarily directly 
correlate with abundance because: 1) of differential detectability of bat species, 2) all bat species 
may not call at the same rate (e.g., Myotis versus Lasiurus), 3) all individuals within a given 
species may not call at the same rates (e.g., migrating vs. feeding), 4) some species may remain 
out of detection range of a detector despite their presence, 5) variable foraging behavior of some 
species (e.g., a detector deployed in the open is likely to miss bats that forage along the edge of 
vegetation), 6) weather and environmental factors, and 7) temporal variations in activity 
(Szewczak and Arnett 2007). The latter factor can vary on a scale of days as bats follow local 
insect activity or while in residence or during migration.  

As bats exhibit dynamic movements across the landscape where they typically forage in several 
different locations each night (Lacki et al. 2007), activity as measured by bat passes can vary 
significantly at any one location so that a single night of data will not statistically represent the 
overall trend of bat activity at that location. Hayes (1997) showed that any one night of bat 

Figure 1. Sonogram of echolocation calls recorded from a bat flying past a detector. The 
actual time between calls has been compressed to better display the sequence of calls. 
Note that more call details are revealed in the center of the sequence as the bat made the 
closest approach to the microphone. 
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detection likely misrepresents the mean activity at a site, and that (at least for the sites he studied 
in western OR) as many as seven or eight days of monitoring were needed to approach a 90% 
confidence level of mean representation of activity (also see Gannon et al. 2003). Although mean 
bat activity can be assessed on the order of one week of monitoring, confident assessment of 
species presence in a given season requires even longer survey efforts, typically on the order of 
weeks (Moreno and Halffter 2000). Longer-term temporal variations occur from seasonal 
movements of bats, such as migration, (Johnson et al. 2004, Arnett et al. 2008). 

Acoustic identification systems have only recently been applied to biological signals with the 
majority of work focusing on identifying individuals and species assemblages in bats (e.g., 
Parsons and Jones 2000, Szewczak 2004, Szewczak and Arnett 2007, Redgewell et al 2009), 
cetaceans (e.g., Deecke et al. 1999, Oswald et al. 2003), pinnipeds (e.g., Campbell et al. 2002), 
and prairie dogs (e.g., Placer and Slobodchikoff 2000). Techniques used to identify species and 
individuals include subjective classification by experienced listeners, multivariate statistics, 
synergetic pattern recognition, fuzzy logic, and machine learning techniques such as artificial 
neural networks (ANNs).  

Acoustic identification of echolocating bats 
Discriminating bat species based on their vocalizations presumes that discernible differences 
exist. O’Farrell et al. (1999) asserted that species-specific characteristics exist, although 
revealing those differences may require the application of new technology. Barclay (1999) 
countered that bat species have no particular selective pressure to emit calls differently than any 
other species and we should therefore not expect to find species-specific calls. Echolocating bats 
use their calls to serve a utility function to acquire information and we can expect selection has 
worked to optimize that process (Szewczak 2004). As a result, acoustic identification of bat 
species poses a greater challenge than that of birds whose calls have undergone selection to be 
different from those of other bird species. Natural selection has operated to optimize prey 
detection for echolocating bats and for some syntopic species (e.g., Myotis spp. or Eptesicus and 
Lasionycteris) the similarity of their echolocation call structure indicates little selective pressure 
to emit calls differently from one another. As an additional complication, bats exhibit 
considerable plasticity in their vocalizations (Figure 2) and can produce call variants that overlap 
in many parameters with those emitted by other species (Thomas et al. 1987, Obrist 1995, 
Barclay 1999). To achieve robust performance, any classification system must be capable of 
recognizing a given bat species when presented with calls from any part of its repertoire.  

With such subtle differences between species, and the range of call variation within a species, the 
analysis of bat calls must embrace a comprehensive set of call characteristics. Numerous 
morphological characteristics have been used to describe and measure bat call structure and 
sequences (e.g., Betts 1998; Fenton and Bell 1981; Obrist 1988; Oliveira 1998; Parsons and 
Jones 2000; Szewczak 2000b). Quantitative approaches applied to call analysis have ranged from 
simple descriptive comparison (MacDonald et al. 1994; O’Farrell et al. 1999) to discriminant 
function analysis (DFA) (Krusic and Neefus 1996; Lance et al. 1996; Parsons and Jones 2000) 
and the more sophisticated approach of ANNs that we also implemented (Parsons 2000; Parsons 
and Jones 2000; Parsons 2004). The latter quantitative approaches have demonstrated the 
usefulness of incorporating characteristics beyond those that can be derived just from the basic 
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time-frequency information; for example, the frequency of maximum power, which can only be 
derived from full-spectrum data.  

Shorter calls used in clutter 

Longer calls used in open air 

Figure 2. Compilation of different eastern red bat calls recorded from different bats 
in different locations arranged to show this species’ repertoire from short to long call 
variants. Acoustic identification of bat species must be capable of recognizing 
species across such variation. Some parts of each species’ repertoire may overlap 
with parts of another species’ repertoire.  
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Materials and Methods 

This project entailed both fieldwork and laboratory components. Fieldwork, both under the 
auspices of this project and in collaboration with other researchers across the continental United 
States, augmented a library of bat species-known reference recordings on which to base 
comparative identification of unknown signals using quantitative classifiers. We performed 
additional fieldwork to test and direct development of acoustic monitoring hardware and 
software, and to test and validate the acoustic monitoring methodology developed by this project. 
The laboratory research and development components addressed long duration recording 
solutions and software for processing, identifying, and efficiently searching long duration 
recording data for target signals.  

Bat Fieldwork and Reference Recordings 
Effective acoustic species recognition depends upon prior ascertainment of reliable species-
discriminating data. We acquired recordings of bats (and a trial set of birds) from the field 
independently and in cooperation with ongoing monitoring projects. We only contributed to the 
reference library those recordings that had unambiguous species confirmation. We accepted only 
search phase calls from free foraging bats as these provide the most consistent and species-
discriminating call variety (Betts 1998, Parsons and Szewczak 2009). Acquiring species-known 
bat reference recordings imposes the challenge of simultaneously satisfying the following 
conditions: 1) having a previously-identified individual (Figure 3), 2) fly in conditions that 
engender it to vocalize as it would under natural conditions and, 3) fly sufficiently close to 
recording equipment to acquire a high quality signal while 4) maintaining certainty that the 
acquired signal was from the previously-identified individual, i.e., avoiding confusion from 
unseen interloping bats that may enter the detection range of the microphone.  

  

Figure 3. Acquiring reference recordings typically began with capturing bats. Here, 
graduate students erect a triple high mist net in the Ouachita Mountains of Arkansas in 
preparation of a night of recording (left) and remove a bat from the net (right).  
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We used a variety of methods to fill out bat species’ call repertoires:  

1) Calls recorded from bats flying near known roosts.  
2) Calls recorded from captured bats released by hand (Figure 4). 
3) Calls recorded from captured bats flying on a tethered zipline (Figure 5) (Szewczak 2000a). 
4) Calls recorded from light-tagged free flying bats (Figures 6 & 7) (Hovorka et al. 1996).  
5) Calls recorded from free flying bats from which a visual identification can be made with the 

aid of a spotlight or night vision equipment. 

 
 

 

 

 

 

 

 
Figure 4. Hand release of a hoary 
bat in anticipation of acquiring a 
reference recording. Hand-released 
bats do not often fly in the desired 
direction of the microphone. Here, 
the bat flies contrary to the 
expected direction.  

Figure 5. Clockwise from above, (a) Canyon bat 
(Parastrellus hesperus) flying with an elastic 
tether attached to a zip-line. (b) Zipline configu-
ration. (c) Recording a bat flying along a zipline. 
Zipline flights allow bats to attain a modicum of 
normal flight in a controlled corridor from which 
to acquire reference recordings from species-
confirmed bats. The elastic tether gently keeps 
the bat on track without abruptly shocking it at 
the end of the line.  

a 

c
 

b 
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Figure 6. Bats with mini-cyalume light tags attached using a non-toxic school glue 
stick. Light tagging enables visual tracking of the bat after release and during free-flight 
after capture. Attaching the light tag to the ventral surface of the bat optimizes visibility 
of bats flying overhead, and enables the bat to readily remove the tag after flight. 

Figure 7. Time-lapse photograph of the light tag track from a silver-haired bat released 
in a montane meadow (Ochoco National Forest, OR). Note the interruptions of the track 
from the bat’s wingbeat. Subsequent return flights of light tagged bats provide the most 
representative samples of free-flight bats.  
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We more readily acquired calls on the short end of each species’ repertoire as bats generally use 
shorter calls when closer to the ground, or when accelerating as during a hand release (Parsons 
and Szewczak 2009). Unfortunately, although these readily acquired shorter duration calls 
helped to fill out the full repertoires of species’ call types, they do not provide representative 
samples of longer duration free-flying search phase calls that are the type more typically 
recorded from unknown bats. We collected some longer duration call types by visual 
recognition, spot lighting, and light tagging. Some species have coloration or flight 
characteristics that render them distinguishable from sympatric species in ambient light at dusk 
when bats first emerge or when illuminated by spotlight.  

Mini-cyalume light sticks attached to species-confirmed captured bat enabled us to track them 
after release, and maintain species recognition (Figures 6 & 7) (Hovorka et al. 1996). 
Occasionally, a light-tagged bat returned later in the night, was recognized and recorded 
providing ideal call specimens representative of free foraging bats. We attached different colored 
light tags to different species captured during a session to enable species differentiation after 
release. Light tagging provided the best method for acquiring standard reference calls because 
the recordings were acquired from bats foraging naturally. Unfortunately, the recovery rate of 
light tagged bats proved disappointingly low and required substantial effort and diligence. Light-
tagged bats often flew off never to be 
seen again, or reappeared too far out 
of range to render suitable specimen 
calls. 

Low light visual tracking, spot light, 
and light tagging may have produced 
some multiple recordings from the 
same individuals but we deemed 
these as acceptable (and beneficial to 
the project goal of robust species 
recognition) as they would provide 
further coverage of intraspecies and 
intra-individual variation, i.e., no one 
call typically represents an individual 
bat because of inherent variation and 
differences in recording conditions 
(Figure 8). With some individuals we 
deliberately included multiple 
recordings, but of different 
representative parts from their call 
repertoires, e.g., shorter duration calls 
recorded on a zipline and subsequent 
longer duration call sequences from a 
light tagged recording if acquired.  

We used Pettersson D240x, D500x, or D980 (Pettersson Elektronik AB, Uppsala, Sweden) and 
Binary Acoustic Technology FR125 (Tucson, AZ) ultrasonic detectors to acquire echolocation 

Figure 8. Call sequences from an individual 
western yellow bat (top) and an individual 
Yuma myotis (bottom). No one call represents 
the vocalization of the individual because of 
inherent variation and differences in signal level 
recorded as the bat changes its orientation and 
distance relative to the microphone.  
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calls. We saved recorded sequences as digital files direct to digital memory, directly to laptops 
using SonoBat software (Arcata, CA), or with D240x and D980 detectors to digital recorders 
(iriver H320 and IFP series recorders, Seoul, Korea; Samson Zoom H2 recorders, Hauppauge, 
NY), at a sampling rate of 44.1 kHz (effective rate 441 kHz) with 16-bit precision. As the iriver 
units recorded only in mp3 format, we later converted files into wav format (44.1/16 bit, 
effective rate of 441 kHz for the x10 time expansion output of D240x and D980 detectors, 
although this over sampled the sampling frequencies of 307 and 350 kHz of these detectors, 
respectively). We recorded with the iriver units set to the highest mp3 quality setting of 320 kbps 
and found no functional difference in signal quality between files recorded directly as .wav or 
first as .mp3 format for the type of data extracted from these signals. 

We used field recordings from locations 
across the North American United States 
(Figure 9) acquired by PI Szewczak dating 
back to 1991, confirmed recordings from 
colleagues, and recordings made as part of 
this project in collaboration with survey 
intitatives such as the US Forest Service 
Bat Grid Inventory and Monitoring Project. 
We aimed to optimize sample size and 
represent as many species as possible, with 
an emphasis on including sufficient 
recordings from TE species to fill out their 
call repertoires and variation. We 
designated recordings with a filename 
including species code (e.g., Mylu for M. 
lucifugus) recording location, date, and a 
designation of recording type; HR: hand 
release, ZL: zipline, LT: light tag, SL: 
spotlight, and FF: free-flight. We included field notes describing the recording location, habitat 
elements, and environmental conditions in the note field that SonoBat embeds in the metadata 
header of the wave files. 

Laboratory work 
Long duration recording hardware 
Recording hardware development for this project accelerated along a moving trajectory from 
changes in available audio recording technology and recording format licensing requirements. 
The project’s ultimate goal of a high-capacity, high audio quality recorder with a programmable 
recording schedule to optimize data storage and analysis required a longer research and 
development cycle than originally anticipated for this project. To enable field testing and 
development of long duration recording methodology and application, we developed and 
deployed prototype recording units that also provided a testing platform to direct specifications 
of final production recording equipment to be produced by collaborating suppliers.  

Figure 9. Geographic distribution of species-
known bat recordings supporting the SonoBat 
classifiers discussed in this project (including 
Alaska, not shown on map). 
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Figure 11. Second generation 
prototype long-duration field 
recording unit. Arrow points to 
programmable recorder.  

We based the initial audio data storage prototype units on 
DMC Xclef HD-500 digital mp3 player/recorders (Digital 
Mind, Corp., Carlsbad, CA) (Figure 10). The DMC mp3 
units had 100 GB of storage, sufficient to store 
approximately 700 hours of data. We collected mono audio 
data at 320 kbps with a sampling frequency of 44.1 kHz. 
This audio format setting provided sufficient quality for 
species identification using comparative analysis and data 
extraction from sonograms displayed with SonoBat. While 
mp3 compression can distort signal quality, the 320 kbps 
“high quality” format provided ample signal integrity for 
species detection and analysis while extending recording 
time by a factor of three compared to 44.1 kHz wave format 
having no data compression, i.e., lossless. As “dumb” units, 
these DMC-based units could only record continuously once 
activated, as opposed to “smart” units with programmable 
scheduling and autotriggering to only record bat passes. 
With continuous recording, these dumb units recorded many 
unnecessary hours of non-bat content that was later 
discarded during post processing to parse out bat passes. 
This strategy ultimately limited their unattended duration of 
field deployment.  

Although these dumb units did enable us to acquire long duration recordings to advance this 
project during its initial stage, we ultimately superseded this recording approach with a second 
generation prototype. Despite their rated 700-hour capacity, in practice the DMC-based units 
often stopped recording after fewer than 100 hours. Additionally, after we began with these 
units, the mp3 licensing regulations changed such that they required paying royalties for software 
and devices that decoded mp3 files rather than just those devices that created them. These 
developments, coupled with the availability of alternative recording options (and reduced cost of 
digital memory), convinced us to abandon the original 
mp3-based recording approach. Although we had a 
programmable digital recording option under 
development in cooperation with Binary Acoustic 
Technology (Tucson, AZ), already had format 
collaboration with Pettersson Elektronik AB, and had 
begun cooperation with Wildlife Acoustics (Cambridge, 
MA), those units had yet to become available. We 
continued field recording by replacing the DMC Xclef 
digital recorders with iriver H320 units (ReignCom, 
Seoul, South Korea) with Rockbox firmware (Rockbox 
Version 5, 2007) on each H320 to enhance recording 
functions, including programming a recording schedule 
(Figure 11). These recorders had internal 20-GB hard 
drives that we programmed to record in lossless 16-bit 
WavPack format at a sampling frequency of 44.1 kHz. 

 
Figure 10. Initial mp3-based 
prototype long-duration field 
recording unit.  
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Each recorder had an integral real time clock that conveniently labeled the recordings with a date 
and time stamp. Although these units had less hard drive capacity than the DMC units, they 
could record longer because they could be programmed to autotrigger and record only when the 
bat detector captured a signal.  

The audio recording units were 
powered by two 12 volt, 12 Amp-
hour batteries (24 Amp-hour total 
capacity) maintained with a 20-watt 
solar panel connected via a charge 
controller. We housed the power and 
recording equipment in a waterproof 
NEMA 3R enclosure (12” H X 10” 
W X 6” D, McMaster-Carr part 
number 7649K12). The prototype 
recording units successfully 
collected data in weather below 
freezing, above 100 degrees 
Fahrenheit, and also during 
inclement wind, rain, and snow 
conditions (Figure 12).  

We provided collaborator Binary Acoustic Technology with our prototype recording unit and 
specifications of recording formats and scheduling logic to develop a recording unit that 
integrated the prototype concept and components into a final deployable unit. We also 
cooperated with Pettersson Elektronik AB and Wildlife Acoustics to provide feedback with their 
parallel field recording equipment development and they worked with us to ensure compatibility 
with our needs and analysis software. We directed these efforts toward a final end product that 
would meet the recording needs of this project and be a readily available and sustainable 
commercial device that would not require custom assembly or specialized work to place into 
service.  

Bat software development 
We built upon the user interface, processing, call detection (Figure 13), parameter extraction, and 
analysis software kernel of SonoBat acoustic software developed by PI Szewczak. We adapted 
processing routines originally coded to extract and display the subtle differences in the time-
frequency and time-amplitude domains of bat echolocation calls to automate call trending 
analysis and parameter extraction. We also enabled the user interface to automate batch 
processing of recorded files. We coded and tested signal processing and analysis algorithms 
using MATLAB (Mathworks, Natick, MA) and LabVIEW (National Instruments, Austin, TX), 
and used SPSS Statistics software for discriminant function analysis (versions 13–19, IBM, 
Armonk, NY). All final algorithms were ported to LabVIEW for integration with the user 
interface. We implemented the final products of this project in LabVIEW to ensure and facilitate 
its sustainability and adaptability beyond the duration of this project, and because this coding 
platform readily enables compiling standalone executable software for both Windows and 
Macintosh operating systems.  

Figure 12. Field 
testing prototype 
automated recording 
units. Here shown 
with microphones 
on poles near agave 
blooms to acquire 
reference recordings 
of the federally 
listed lesser long-
nosed bat 
(Leptonycteris 
yerbabuenae), Ft. 
Huachuca, AZ.  
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We first refined automated batch 
processing and call quantitative 
parameter extraction routines as 
these enabled processing and 
analysis of the reference 
collections to generate the data 
needed for building classifiers to 
identify unknown bat calls to 
species. Using the existing logic 
in SonoBat to recognize calls 
from non-call content in 
recordings, we added a ranking 
system from best to worst of calls 
recognized in each sequence. The 
ranking routine assesses a 
combination of signal quality 
indicators such as amplitude, 
frequency bandwidth, tonal trend 
of the signal, signal to noise ratio, 
and saturation (i.e., clipping or 
overloaded signals). Call 
assessments for ranking that 
indicate clipping, excessive noise, 
or signal distortion may exclude a 
call from batch parameterization 
or classification. A preference 
selection enables the number of calls to consider per sequence during batch runs for parameter 
extraction (and for classification); we used a default value of 8 calls. During a batch processing 
run, calls undergo parameter extraction by order of ranking from the best ranked call onward 
until reaching the specified number of calls for the sequence, or running out of available calls. 
The parameter extraction steps assess additional signal quality indicators that can reject a call as 
unsuitable, and move on to the next call in the ranking.  

Initial testing of early generation classifiers performed poorly on field-acquired data because of 
the highly variable quality of calls, signal level, unanticipated non-bat sounds, noise, and other 
signal distortions. In practice, classification could correctly identify to species most well 
recorded bats (like those used to build the classifiers), but many misclassifications and errors 
resulted from poorly rendered recordings and other non-bat acoustic phenomena. Basically, 
actual field recordings can cripple classifier performance even if that classifier has proven to 
perform well with test sets of good, species-known recordings. Determining when not to output a 
classifier decision on an unknown signal (or accept call parameter data from known calls) 
provides a vital quality control step in processing data. This prompted the addition of multiple 
signal condition and quality indicators to recognize the acoustic situations and signal 
characteristics that rendered unreliable results (Figures 14–19).  

Figure 13. Fringed myotis sequence as recorded 
showing the actual spacing between calls (top). Same 
sequence after SonoBat detected the calls and 
compressed the time between calls (bottom). This 
facilitates call viewing of a sequence, but also call 
detection for ranking and parameter extraction.  
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The complete information content of full-
spectrum data facilitated signal assessment by 
enabling indicators sensitive to signal 
strength and multiple frequencies such as 
dynamic range and signal-to-noise ratio 
measurements. Additionally, because call 
harmonics typically have lower signal 
strength relative to the first harmonic 
(fundamental), the presence of harmonics can 
indicate that the recording captured the lower 
signal level elements of the call and thus 
indicate the presence of a fully-formed call 
rather than a fragment. Full-spectrum data 
also serves as a voucher of sorts for assessing 
ambient acoustic conditions during the time 
of a recording. It enables inspecting 
recordings to manually intrepret, confirm, or 
reject classification or parameterization 
results.  

  

 
Figure 15. Example of an overloaded, or 
clipped, recording in which signal level 
exceeded the maximum sensitivity of the 
recording device. SonoBat signal 
assessment would reject such a signal as it 
would provide inaccurate time-amplitude 
information. The multiple harmonics arise 
from an artifact of the digital processing of 
the overloaded signal.  

 
Figure 16. Example of a recorded call 
with low signal strength as indicated by a 
low signal to noise ratio. SonoBat signal 
assessment would reject such a signal as it 
indicates a probable out of range bat and 
likely an incomplete call that would render 
unreliable data.  

 
Figure 14. Example of a well recorded 
call having full rendering of call details 
for accurate trending and parameter 
extraction. For most species, the second 
harmonic has much lower amplitude than 
the first, and its presence indicates the 
recording captured low amplitude 
components of the call.  
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Figure 19. Example of how a low signal quality, or out of range recording of one species 
can mimic another species and lead to misclassification. Bats vary the amplitude through 
their calls. A recording from a close approach to a microphone will capture the full call as 
vocalized by the bat (left panel). However, only a call fragment from the higher amplitude 
portion of a call may be recorded if farther from the microphone (middle panel). The call 
fragments of some species can mimic the full-featured calls of other species, e.g., fringed 
myotis and Townsend’s big-eared bat (right panel). Assessing signal quality indicators can 
provide essential quality control to prevent misclassification, particularly when working with 
highly variable field recordings. 

Figure 17. Example of a call with 
multiple echoes that interfere with 
resolving details of the end of the call. 
SonoBat signal assessment would reject 
such a signal for some types of calls that 
depend upon such ending details for 
reliable classification. 

Figure 18. Example of a call having a 
high level of distortion. SonoBat signal 
assessment would reject such a signal as it 
prevents reliable tracking of the call 
frequency sweep and extraction of call 
parameters such that it would likely yield 
unreliable data.  
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Bat call trending analysis 
Biologists have classified bats to species from their echolocation calls by both qualitative 
inspection (O’Farrell 1999) of sonogram displays and by using a variety of quantitative 
approaches (e.g., Krusic and Neefus 1995, Betts 1998, Parsons and Jones 2002; Preatoni et al. 
2005, Redgwell et al. 2009). Qualitative inspection by an experienced expert can still rival or 
outperform quantitative attempts in some cases, but becomes impractical with large data sets, 
and from limitations of expert personnel costs and availability (Queheillalt et al. 2002). 
Qualitative inspection and call recognition can perform well in many situations because of the 
superior ability of our own human visual perception and pattern recognition. Machine image and 
pattern recognition (e.g., facial recognition) remains a computational challenge. Those with 
experience analyzing bat echolocation calls can readily see the pattern of a call and the trend of 
its content buried in a noisy sonogram, but distilling that process down to a reliable algorithm 
presents a nontrivial challenge.  

Although human users can readily discern and recognize call content and trends in visual 
sonogram displays, qualitative species discrimination falters for species having very similar 
acoustic signatures, e.g., some call types for big brown bats vs. silver-haired bats or most calls 
from little brown bats vs. the federally listed Indiana bat. Quantitative analysis that 
simultaneously considers multiple parameters can outperform qualitative discrimination for such 
acoustically similar and cryptic species. Quantitative methods depend upon automatically 
extracting call descriptive parameters, and this in turn depends upon automatically recognizing 
call content from non-call content. Developing and implementing an intelligent machine call 
trending routine represented a keystone element to achieve this project’s objectives. The 
development of species identification classifiers requires confident extraction of echolocation 
call quantitative parameters, and that depends upon a robust and reliable call trending routine. 
Moreover, a robust and reliable call trending routine can minimize misclassification from field 
recordings that have highly variable quality and non-bat signal content. Simply building a 
classifier from a library of manually selected species-known exemplar recordings can yield 
respectable classification performance in the lab, but stumbles when applied to field recordings if 
it cannot accurately extract the call parameter data from those recordings.  

To reach this objective, we developed and implemented an intelligent call trending algorithm 
sensitive to multiple frequency content, signal amplitude, quality, and other signal 
characteristics. This trending algorithm seeks the organized tonal content of echolocation calls 
and follows that to discern the track of the signal, even through competing noise and echo 
signals. After this routine determines a call’s start, end, and sweep of the time-frequency trend, 
then quantitative static and dynamic (i.e., functions quantifying shape) parameters can be 
calculated in both the time-frequency and time-amplitude domains.  

A peak energy detector provides a simple approach to finding the trend of echolocation calls. A 
peak energy routine recognizes the strongest amplitude frequency content at each time interval in 
a recording and then accepts content from sequential intervals if they are maintained within some 
acceptable trend, i.e., do not jump so much in frequency that they indicate another signal. A 
commonly used system for detecting bats, the Anabat system (Titley Electronics, Ballina, NSW, 
Australia) developed by Chris Corben, determines call trends in this way by virtue of its 
operating principle, zero-crossing analysis. Zero-crossing rapidly extracts the basic time-
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frequency content of the dominant frequency by measuring the timing of period oscillations by 
detecting when the peak energy signal oscillates across the zero axis (Figure 20).  

In practice this approach works well for 
strong, clear signals (Figure 21). However, 
field recording does not often yield data 
with perfectly strong and clear signals. 
Other signal sources contribute to the 
overall acoustic soundscape and interfere 
with discerning the bat calls from the 
background signals. In the worst of cases 
the situation can become the ultrasound 
equivalent of trying to record a voice 
interview next to a busy highway. In 
addition, the short wavelengths of 
ultrasound render it more susceptible to 
distorting effects from atmospheric 
thermal convection and wind (Parsons and 
Szewczak 2009). Even in acoustically 
quiet environments a simple peak energy 
tracking algorithm can fail to properly 
discern the trend of a call when echoes 
from ground clutter obscure the ending 
details of a call (Figure 22). With access 
to the multiple frequency content available 
in full-spectrum data, the more sophisticated intelligent call trending routine we developed can 
track call content even when portions of a call fall below the peak amplitude of other signals in 
the same time interval (Figures 22–24).  

Background signals such as insect sounds can severely compromise peak energy call detection 
and trending. The SonoBat intelligent call trending routine can still render complete call trends in 
such situations (Figure 23). This can provide an augmented ability to detect and discriminate 
calls from mobile surveys, which have recently increased in use. Vehicle sounds, road noises, 
and the changing soundscape from moving can all exceed at least parts of the signal amplitude of 
bat calls. The ability to track the trend of a call independent of peak energy also enables 
complete rendering of species that oscillate peak energy between the fundamental and second 
harmonic, such as the federally listed lesser long-nosed bat (Leptonycteris yerbabuenae) (Figure 
24).  

The intelligent call trending routine we developed and used with this project also benefits from 
the amplitude domain and multiple frequency content to more accurately determine where calls 
end (Figure 25). This task can challenge simple peak energy call trending when echoes obscure 
the ends of calls. Finally, if needed for confirmation of results, full-spectrum data also provides 
an effective voucher for interpretation of the full acoustic soundscape at the time of the 
recording.  

 
Figure 20. Zero-crossing analysis rapidly 
extracts a moving average of the dominant 
frequency content of a signal. With multiple 
frequency content, the strongest frequency 
component controls axis crossing and that 
frequency gets measured. Zero-crossing 
analysis cannot detect signal amplitude.  
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Figure 22. Example of echoes from higher amplitude earlier portions of a call 
obscuring the call ending details. This often occurs because most bats end their 
calls with diminishing amplitude. A peak energy call trending routine would 
follow the stronger echo content (right). In this example zero-crossing tracked 
upward with the echo leaving a call trend that would indicate a lasiurine-type call 
(e.g., red bat) rather than following the actual downward ending of the call trend 
that indicates a Myotis spp., e.g., Indiana bat (left).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. SonoBat intelligent call trending shown as yellow trace superimposed 
on full-spectrum sonogram (left) compared with divide by eight zero-crossing 
(Z-C) analysis of the same signal (right). With strong signals and no confounding 
additional signals or noise, full-spectrum time-frequency trending and zero-
crossing produce similar results. 
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Figure 23. Example of an Indiana bat call recorded in the presence of insect 
noise. A peak energy call trending routine would only reveal the call fragment 
that exceeds the energy level of the background insect noise (right) and miss the 
lower energy call components. Intelligent call trending with full-spectrum data 
can reveal the full call (left). The full-spectrum data also provides documentation 
and interpretation of the full acoustic soundscape at the time of the recording.  

 

 
Figure 24. Example of a lesser long-nosed bat call with peak energy shifted to 
the second harmonic in the middle of the call. A peak energy call trending 
routine would jump between the harmonics leaving an interrupted call trend 
(right). Intelligent call trending with full-spectrum data can reveal the full 
uninterrupted call trend (left) that better supports automated analysis.  
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Bat call quantitative parameter extraction  
Once the call trending routine has determined the location of the call in the time-frequency 
domain, then that data and accompanying waveform was passed to the parameter extraction 
routines to evaluate quantitative static and dynamic (i.e., functions quantifying shape) parameters 
in both the time-frequency and time-amplitude domains. Traditional static call parameters 
include measures such as call duration, highest frequency, lowest frequency, characteristic 
frequency, steepest slope, and lowest slope. These traditional measures all assess only the time-
frequency domain and provide single point measures that provide little quantification of the 
shape of call structure as a function of time. We derived a number of additional parameters with 
the aim toward more extensive and detailed shape-sensitive quantification of echolocation call 
structure in both the time-frequency and time-amplitude domains (Table 1).  

Table 1. Quantitative descriptive echolocation call parameters determined and calculated in 
the parameter extraction routines, and used in building and implementing species 
classifiers.  

Parameter Description of parameter 
PrecedingIntrvl Time between the current call and the previous call (milliseconds). 

CallsPerSec Mean calls per second of the recording or section of recording 
displayed. The accuracy of the reported value depends both on the 
quality of the recording and the absence of other bats and other signals 
in the recording. Any other signal components that pass through the 
discrimination logic will be counted as calls and contribute to (and 
reduce the accuracy of) the calculation. 

CallDuration Duration of the call (milliseconds).  
Fc Characteristic frequency of the call. Determined by finding the point in 

the final 40% of the call having the lowest slope or exhibiting the end 
of the main trend of the body of the call (kHz).  

HiFreq Highest apparent frequency of the call.  
LowFreq Lowest apparent frequency of the call.  
Bndwdth Total frequency spread of the call. Calculated from the difference 

between the highest and lowest frequency.  
FreqMaxPwr The frequency of the maximum amplitude of the call.  

PrcntMaxAmpDur Percentage of the entire call duration at which the maximum amplitude 
occurs.  

 
Figure 25. Low bandwidth call with a strong echo trailing the call. Intelligent 
call trending with full-spectrum data can correctly discern the endpoint of the call 
(left) that would be ambiguous with a simpler call trending routine (right).  
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Table 1 (continued). Quantitative descriptive echolocation call parameters determined and 
calculated in the parameter extraction routines, and used in building and 
implementing species classifiers.  

Parameter Description of parameter 
TimeFromMaxToFc Time from the point at which the maximum amplitude occurs to the 

point in the call of the characteristic frequency.  
FreqKnee Frequency at which the initial slope of the call most abruptly transitions 

to the slope of the body of the call.  
PrcntKneeDur Percentage of the entire call duration at which the knee occurs, i.e., 

the point at which the initial slope of the call most abruptly transitions 
to the slope of the body of the call.  

StartF Frequency of the start of the call. Typically the same point as the 
highest frequency, but different if the call initially rises in frequency.  

EndF Frequency of the end of the call. Typically the same point as the lowest 
frequency, but different if the call ends with a rise in frequency.  

DominantSlope Slope of the longest sustained trend in slope of the call. Determined by 
finding the segment of the call having the minimum residue for a linear 
regression of a segment of the call of 20% the duration of the call 
(kHz/msec).  

SlopeAtFc Instantaneous slope at the point of the characteristic frequency.  
StartSlope Slope at the start of the call, calculated from the first 5% of the call 

duration.  
EndSlope Slope at the end of the call, calculated from the final 5% of the call 

duration.  
SteepestSlope Steepest slope of the call, calculated from a linear regression of a 

segment of 10% the duration of the call.  
LowestSlope Lowest slope of the call, calculated from a linear regression of a 

segment of 10% the duration of the call.  
TotalSlope Total slope of the call, calculated from the difference in frequency and 

time from the point of highest frequency to the point of the 
characteristic frequency.  

HiFtoKnSlope Slope of the call calculated from the difference in frequency and time 
from the point of highest frequency to the point of the knee.  

KneeToFcSlope Slope of the call calculated from the difference in frequency and time 
from the point of the knee to the point of the characteristic frequency.  

CummNmlzdSlp Average of the instantaneous slopes of the call.  
HiFtoFcExpAmp Amplitude parameter of an exponential fit of the call from the point of 

high frequency to the point if the characteristic frequency.  
HiFtoFcDmp Damping parameter of an exponential fit of the call from the point of 

high frequency to the point if the characteristic frequency.  
KnToFcExpAmp Amplitude parameter of an exponential fit of the call from the point of 

the knee to the point if the characteristic frequency.  
KnToFcDmp Damping parameter of an exponential fit of the call from the point of 

the knee to the point if the characteristic frequency.  
HiFtoKnExpAmp Amplitude parameter of an exponential fit of the call from the point of 

the high frequency to the point if the characteristic frequency.  
HiFtoKnDmp Damping parameter of an exponential fit of the call from the point of 

the high frequency to the point if the characteristic frequency.  
FreqLedge Frequency of the ledge, i.e., the most abrupt transition to the most 

extended flattest slope section of the body of the call preceding the 
characteristic frequency, also referred to as the "ledge" of the call.  

LedgeDuration Duration of the ledge, i.e., the most extended flattest slope section of 
the body of the call preceding the characteristic frequency. 

FreqCtr Frequency at the center of the duration of the call.  
FBak32dB Frequency of the call 32 dB below the point of maximum amplitude of 

the call, and preceding the point of maximum amplitude of the call.  
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Table 1 (continued). Quantitative descriptive echolocation call parameters determined and 
calculated in the parameter extraction routines, and used in building and 
implementing species classifiers.  

Parameter Description of parameter 
FFwd32dB Frequency of the call 32 dB below the point of maximum amplitude of 

the call, and after the point of maximum amplitude of the call.  
FBak20dB Frequency of the call 20 dB below the point of maximum amplitude of 

the call, and preceding the point of maximum amplitude of the call.  
FFwd20dB Frequency of the call 20 dB below the point of maximum amplitude of 

the call, and after the point of maximum amplitude of the call.  
FBak15dB Frequency of the call 15 dB below the point of maximum amplitude of 

the call, and preceding the point of maximum amplitude of the call.  
FFwd15dB Frequency of the call 15 dB below the point of maximum amplitude of 

the call, and after the point of maximum amplitude of the call.  
FBak5dB Frequency of the call 5 dB below the point of maximum amplitude of 

the call, and preceding the point of maximum amplitude of the call.  
FFwd5dB Frequency of the call 5 dB below the point of maximum amplitude of 

the call, and after the point of maximum amplitude of the call.  
Bndw32dB The total bandwidth covered from the point of the call 32 dB below and 

before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

Bndw20dB The total bandwidth covered from the point of the call 20 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

Bndw15dB The total bandwidth covered from the point of the call 15 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

Bndw5dB The total bandwidth covered from the point of the call 5 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

DurOf32dB The duration of the call from the point of the call 32 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

DurOf20dB The duration of the call from the point of the call 20 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

DurOf15dB The duration of the call from the point of the call 15 dB below and 
before the point of maximum amplitude and the point of the call 32 dB 
below and after the point of maximum amplitude of the call.  

DurOf5dB The duration of the call from the point of the call 5 dB below and before 
the point of maximum amplitude and the point of the call 32 dB below 
and after the point of maximum amplitude of the call.  

Amp1stQrtl Total amplitude of the first quartile of the call (relative units).  
Amp2ndQrtl Total amplitude of the second quartile of the call (relative units).  
Amp3rdQrtl Total amplitude of the third quartile of the call (relative units).  
Amp4thQrtl Total amplitude of the fourth quartile of the call (relative units).  

Amp1stMean Mean of the first quartile amplitude (relative units).  
Amp2ndMean Mean of the second quartile amplitude (relative units).  
Amp3rdMean Mean of the third quartile amplitude (relative units).  
Amp4thMean Mean of the fourth quartile amplitude (relative units).  

LnExpA_StartAmp Amplitude parameter of an exponential fit of the time-amplitude trend 
of the call from the start of the call to the point of maximum amplitude.  

LnExpB_StartAmp Damping parameter of an exponential fit of the time-amplitude trend of 
the call from the start of the call to the point of maximum amplitude.  
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Table 1 (continued). Quantitative descriptive echolocation call parameters determined and 
calculated in the parameter extraction routines, and used in building and 
implementing species classifiers.  

 
  

Parameter Description of parameter 
AmpStartLn60ExpC Time parameter of an exponential fit of the time-amplitude trend of the 

call from the start of the call to the point of maximum amplitude.  
LnExpA_EndAmp Amplitude parameter of an exponential fit of the time-amplitude trend 

of the call from the point of maximum amplitude to the end of the call.  
LnExpB_StartAmp Damping parameter of an exponential fit of the time-amplitude trend of 

the call from the start of the call to the point of maximum amplitude.  
AmpEndLn60ExpC Time parameter of an exponential fit of the time-amplitude trend of the 

call from the point of maximum amplitude to the end of the call.  
AmpK@start Slope of a logarithmic plot of the time-amplitude trend of the call from 

the start of the call to the point of maximum amplitude.  
AmpK@end Slope of a logarithmic plot of the time-amplitude trend of the call from 

the point of maximum amplitude to the end of the call. 
AmpKurtosis Kurtosis of the time-amplitude trend.  

AmpSkew Skew of the time-amplitude trend.  
AmpVariance Variance of the time-amplitude trend.  
AmpMoment Moment of the time-amplitude trend.  
AmpGausR2 R-squared of a Gaussian fit of the time amplitude trend.  



 
 

26 

Bat species classifier development  
Collaborating researcher Stuart Parsons (University of Auckland) experimented with the 
reference recordings to develop and test a variety of machine learning approaches for species 
signal recognition including discriminant function analysis, artificial neural networks, ensembles 
of neural networks, and support vector machines. However, in the initial proof of concept trials 
no one method could discriminate all species at or above the project goal of a 90% correct rate of 
identification (see Table 2 as an example for western bat species).  In addition, the performance 
with the little brown bat caused particular concern as this species has calls very similar to the 
federally listed Indiana bat. Initial tests of discriminating little brown bats and Indiana bats 
yielded results of 66.5 and 49.1%, respectively.  

Inspection of two primary 
parameters of the call data sets 
from the US northeastern and 
US northwestern species shows 
the overlap in many species’ 
call repertoires (Figures 26 and 
27). Inspection of plots like 
these with other parameters and 
corresponding quantitative 
analysis also revealed 
assemblages of call types across 
many species’ repertoires, or 
groups of species that provided 
natural breakpoints or 
separations in data space that 
optimized classification 
performance. For example, for 
both northeastern (Figure 26) 
and northwestern (Figure 27) 
data sets, a cluster of higher 
frequency bats separate well 
from a cluster of lower 
frequency bats. That breakpoint 
provides a higher performing 
initial classification step than 
any other separation. Somewhat akin to constructing a dichotomous key, we iterated the highest 
performing classification choices at each step in a hierarchical classification scheme to build 
optimized classifiers. This directed hierarchical classification approach ultimately outperformed 
standard classification methods of discriminant function analysis and other machine learning 
approaches initially tested. Unlike a pure dichotomous hierarchical classification, some decision 
steps branch. We iterated to optimal decision performance at each step; in some cases this 
involved more than one different classification method that required agreement for acceptance, 
i.e., an ensemble classifier.  

 

Table 2. Initial results (%correct) of classifiers 
based on discriminant function analysis (DFA) and a 
prototype artificial neural network (ANN) compared 
with final project classifier (see results for more 
details).  

 Initial Proto Final 
western bat species DFA ANN Classifier 

Yuma myotis 86.5 91.3 93.4 
California myotis 64.5 66.7 98.2 

Western small-footed myotis 76.6 73.3 98.5 
Hairy-winged myotis 65.5 91.7 96.0 

Little brown bat 76.0 73.5 95.3 
Canyon bat 91.9 98.3 99.3 

Western long-eared myotis 94.9 89.7 100.0 
Western red bat 71.0 88.5 96.3 

Pallid bat 68.1 66.7 89.3 
Big brown bat 51.2 74.5 96.0 

Silver-haired bat 66.8 78.2 93.9 
Fringed myotis 89.9 94.1 100.0 
Free-tailed bat 69.2 100.0 99.4 

Hoary bat 76.2 90.6 99.0 
Townsend's big-eared bat 93.1 85.7 99.5 

Spotted bat 98.8 100.0 100.0 
Mastiff bat 90.3 100.0 100.0 
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Figure 26. Characteristic frequency as a function of call duration for the northeastern 
species call data in the reference data set. Note the considerable overlap of call 
repertoires, but also regions of discriminating data space.  

 
 Figure 27. Characteristic frequency as a function of call duration for the northwestern 
species call data in the reference data set. Note the considerable overlap of call 
repertoires, but also regions of discriminating data space.  
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We tested iterations of classifier steps and full hierarchical classification using different groups 
from our reference data sets and field data to find optimal approaches and to uncover signal types 
on which the classifier would stumble. The stumbles directed further logic steps and redundant 
checks of results to recognize and avoid the misclassification situations and improve overall 
classification performance.  

We implemented the hierarchical decision algorithms with an acceptance threshold setting to 
adjust tolerance. Most decision steps are implemented using discriminant function analysis that 
reports a discriminant probability (DP) for classification. Each decision step must meet or exceed 
the designated DP threshold to proceed to the next decision level. If any decision step does not 
meet or exceed the threshold, then SonoBat displays the species or hierarchical groups of that 
decision step that sum to the threshold at that step, e.g., with a default threshold of 0.90, 0.775 
MycaMyyu, 0.225 MyciMyvoMylu. This indicates an ambiguous decision and replicates the way 
bat biologists have traditionally classified calls and sequences manually, i.e., bin them into 
similar groups such as 50 kHz Myotis vs. 40 kHz Myotis spp. in this example. The classifiers 
report a single species decision only if it successfully passes the DP threshold at each decision 
step in the hierarchical classification, and passes post-decision checks of known call 
characteristics. SonoBat then reports the DP of the final hierarchical decision.  

Classifying an entire sequence (i.e., bat pass) typically provides more confident results than 
individual call classification as this method benefits from the combined information within the 
sequence. For a sequence classification, SonoBat first ranks the calls in a sequence based on 
coarse time-frequency and time-amplitude assessments and then classifies the individual calls in 
descending order of rank up to a designated number of calls to consider per file. If any of these 
calls result in a rejected classification, the sequence classification will move on to the next call in 
the ranked order until reaching the designated number of calls to consider per file or the end of 
the available ranked calls in the file. SonoBat reports two results for sequences, a decision by 
vote and a mean sequence decision. The vote requires a minimum of two calls per majority 
species (except for open air foraging bats that have low rates of call repetition such as 
Lasionycteris noctivagans, Lasiurus cinereus, or Tadarida brasiliensis) and requires the majority 
species to have equal to or better than twice the number of calls as the sum of the second and 
third most prevalent species (if classified). The mean sequence decision calculates mean 
parameter values of the most prevalent hierarchical classification group (e.g., MyvoMyluMyci or 
PaheLabl) of accepted calls with a minimum of two calls (except for low cycle open air foragers) 
and sends those mean values through the hierarchical classifier (Figure 28). Sequences that 
achieve an agreement by both decision approaches provide the most reliable classification results 
(see Results).  
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Figure 28. Sequence classification result of a recording from a federally listed gray 
bat (M. grisescens) in which the sequence decision by vote and the mean sequence 
decision reached a consensus.  

 

Bird Software Development 
With support from a parallel project for the California Department of Transportation (Caltrans 
CFS Number 2045DRI, XB05) we built upon the user interface and analysis software kernel of 
SonoBat acoustic software coded by PI Szewczak. We adapted search routines originally coded 
to interpret the subtle differences in the time-frequency and time-amplitude domains of bat 
echolocation calls to interpret lower frequency audible bird vocalizations. We also co-opted the 
user interface and automated batch processing functions of SonoBat and incorporated them into 
SonoBird to automatically process batches of recording files.  

As with the development of the bat call classification, we worked with collaborating researcher 
Parsons to experiment with the reference bird recordings and test a variety of machine learning 
approaches for species signal recognition. Although these methods performed well on 
discriminating the limited data sets of proof of concept trials, these methods could not practically 
scale up to classify actual field data with extensive species and signal variations. Training 
machine learning systems to classify species requires a suitable library of representative 
reference signals encompassing everything likely to be encountered, and these methods also 
depend upon extracting quantitative descriptive parameters from those signals to feed into the 
training system. The quantitative parameters we considered included contextual characteristics 
such as time-frequency and time-amplitude measures and patterns, pulse interval, diagnostic 
signal patterns, harmonics, and amplitude modulations. Although these methods have 
demonstrated successful classification performance when applied to other acoustic signals such 
as bat echolocation calls (Redgwell et al. 2009), classifying bird songs presented a different and 
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more complex problem. Machine learning methods for signal classification also depend upon 
quantitative descriptors for every type of signal likely to be encountered or else the 
uncharacterized signals will likely get classified as one of the characterized known signals in the 
absence of discriminating data for the unknown signal. With just two dozen or less sympatric bat 
species for a given geographic region such a data set can be achieved, but with hundreds of 
sympatric birds species, the variety of vocalizations they produce, and the considerable 
confounding noise at audible frequencies, assembling a sufficient data set for a machine learning 
approach to succeed exceeded the resources available for this project.  

As an alternative approach to meet this project’s goal of providing a system to recognize target 
signals from select species, we redirected our approach to developing a more flexible system that 
could efficiently and effectively search long duration recordings for similar signals to those 
provided as templates, or search terms. That is, instead of attempting to classify each and every 
signal encountered in a recording, this approach seeks only signals of a specified type. This 
provided a more computationally efficient and exacting approach. In practice more than one 
signal may be sought with each pass through recorded data, and ultimately this approach can 
form the basis of a multi-species classifier.  

Searching for target signals in large files from long duration recordings generated conflicting 
demands of search accuracy and search speed. The more accurate the search, the more 
computational overhead required, thus slowing the search process. We addressed this conflict by 
implementing a two-step search procedure: a coarse resolution search to first seek candidate 
signals, and then a fine-scale, more discerning signal classification only applied to the candidate 
signals. By first parsing out candidate signals, this method applies the more processor-intensive 
but accurate signal discrimination algorithms to only a subset of the entire recording, thereby 
increasing processing throughput.  

High-resolution, detailed interpretation of signal frequency and amplitude information content 
typically employs CPU-intensive Fast Fourier Transform (FFT) processing of recorded signals to 
generate sonograms (Figure 29). Searching through hundreds or thousands of hours of field 
recordings for the acoustic signatures of species of interest using high resolution sonogram-
processed signals requires substantial dedicated computer time (or high-speed computers). As an 
alternative, we implemented an initial low resolution search that rapidly extracts just the basic 
time-frequency content of the signal with a less processor-intensive approach, and enhanced this 
search with frequency bandpass filtering to emphasize the frequency band of the signal of 
interest. Bandpass filtering removes extraneous signal content to improve signal detection. This 
provides particular advantage for revealing target signals in situations with a high ambient noise 
level, such as that typical of transportation corridors, where signals of interest, e.g., bird songs, 
can be masked by the ambient noise and lost (Figure 30). 

This initial low resolution post-processing of full-spectrum recordings provides a methodology 
for rapidly scanning large data streams for candidate signals of interest. The candidate signals 
can then be subjected to secondary high-resolution processing for confident species identification 
and confirmation. We implemented this as an initial coarse search procedure with the facility to 
direct searches for any species (or signal) of interest to seek sections of the data stream, for 
example a custom template for southwest willow flycatcher (Empidonax traillii extimus) (Figure 
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31). We also implemented the coarse search to seek species-specific templates for multiple 
species or multiple song types of the same species as combinations to more efficiently search 
large data streams.  

 

 

 

Figure 29. Example of a Bewick’s wren (Thryomanes bewickii) song recorded in the presence 
of high amplitude low frequency noise, typical of that encountered near transportation 
corridors (top panel). This song was recorded using CD quality recording characteristics, i.e., 
44.10 kHz sampling frequency and 16 bit resolution to fully capture the acoustic information 
with the full-spectrum sonogram processed using overlapping windows of frequency spectra 
analyzed from Fast Fourier Transforms. The lower panel provides the same example wren 
song after processing with a frequency bandpass filter to eliminate the low frequency noise. 
This is possible because the two signal components occupy different frequency regimes. The 
wren song becomes clearly rendered after filtering, even though the noise amplitude in the 
original signal exceeded that of the wren signal. 
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Figure 30. (Upper panel) the same example Bewick’s wren song in the previous figure with 
rapid low resolution processing without initial bandpass frequency filtering. Much of the song 
was not revealed because the higher amplitude signal content of the lower frequency noise 
overwhelmed and masked the lower amplitude wren signal. (Lower panel) The same example 
wren song after first processing with a frequency bandpass filter to eliminate the low 
frequency noise, and then processed with rapid low resolution processing. Although this 
method yields a low-resolution rendering of the wren song, it reveals sufficient detail to enable 
recognition and selection of candidate signals for higher resolution full-spectrum processing as 
that shown in Figure 1. This enables rapid searching of candidate signals, but still depends on 
having a high-resolution recording with all frequency content intact.  

 

Figure 31. Likelihood of southwest willow flycatcher calls detected in a recording using low 
resolution processing and detection after frequency bandpass filtering. High points in the plot 
indicate sections of the recording to secondarily process with high-resolution FFT-based 
sonograms for final species identification and confirmation.  
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Results and Discussion 

Northeastern United States bat classifier  
Even among the known species of the library reference data, the rate of correct classification 
varies by species, situation, recording quality, and settings. The SonoBat classifiers allow users to 
control call discrimination settings and in general, more discriminating settings increase the rate 
of correct species classification (up to a point) but decrease the percentage of accepted files. The 
results reported here represent idealized classification performance based on good quality 
recordings (i.e., low noise, high signal-to-noise ratio, only one bat in sequence). Classification 
performance will vary depending upon recording quality. Although derived from a robust data set 
acquired from a variety of environments and conditions, the data used to construct the classifiers 
nevertheless encompasses a finite set of vocalizations from each species covered, and recording in 
nature will provide a virtually unlimited variety of vocal variants with an expectation that some 
will exceed that covered by any classifier. Each regional classifier only “knows” the data and call 
types used to build it, and many spurious signals may generate a parameter set that can fall into 
one of the known data spaces and be recognized as a species. In practice, automated batch 
processing should still receive oversight to confirm results, particularly for unexpected species 
and species with similar acoustic characteristics (refer to the documents in Appendices A and C 
for more detailed guidance).  

SonoBat based the 11 species US Northeast classifier on an exemplar reference library set of 
1,444 recordings1 that yielded 8,116 parameterized calls using a maximum of 8 calls considered 
per sequence, a quality acceptance threshold of 0.80, and discriminant probability threshold 
settings for acceptance of 0.90, 0.95, and 0.98. The classification algorithm based on these data 
yielded different performance results for individual calls for different DP thresholds (Table 3). 

  

                                            
 
1 The results reported here represent idealized classification performance based on high quality recordings 

made with Pettersson D240X and D500X detectors, and with Binary Acoustic Technology AR125 
detectors. Actual performance will decline along with recording quality (see Recommendations for quality 
recording in this document). 
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Table 3. Northeastern bat species classification results for individual echolocation calls.  
 0.90 DP 0.95 DP 0.98 DP 
 %correct %accp1  %correct %accp %correct %accp 
 All Spp 97.3 53.8 98.0 47.7 98.7 41.3 

 Myle 97.7 37.7 99.2 28.2 100.0 18.5 

 Myse 99.4 42.2 99.6 34.0 99.4 22.8 

 Myso2 91.1 12.9 90.3 8.9 87.7 4.8 

 Mylu2 90.6 14.9 89.4 8.5 90.7 4.6 

 Pesu 98.7 93.0 99.2 90.7 99.4 87.3 

 Nyhu 91.6 96.9 94.4 40.8 94.8 35.4 

 Labo 96.9 54.1 97.3 41.6 98.8 30.1 

 Epfu 98.9 83.6 99.6 79.1 100.0 67.5 

 Lano 99.0 87.9 99.6 83.9 99.6 77.7 

 Cora 99.1 70.0 99.0 68.7 99.0 63.3 

 Laci 95.6 86.6 96.6 86.0 97.6 84.8 

 Myso/Mylu2,3 98.8 71.9 98.8 71.9 99.2 57.2 
1 Values listed as %correct considered just those results that emerged from the classifier 
at or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information. 
3Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or incorrect 
for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly discriminating this 
species pair from other species.  
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To prevent outputting null species identification results, the SonoBat classifier uses this rubric: 
when a species decision for either of these species does not exceed the threshold discriminant 
probability setting (DP, SonoBat uses 0.90 as the default setting), and if the second potential 
species comes out as the opposite of this pair, and their combined discriminant probability score 
meets or exceeds the threshold setting, then SonoBat will output this result using the ambiguous 
designation “MysoMylu.” This will indicate the call or sequence probably came from one of 
these two species, but presented call characteristics within overlapping data space that prevented 
disambiguation.  

As species adjust their call characteristics across their repertoires from short to long calls, some 
similar species will discriminate better or worse for different duration calls. Generally, Myotis 
species discriminate better at the longer end of their repertoires in which they present more 
robust features. In contrast, Pesu, Nyhu, and Labo, which all have simple feature-thin calls, can 
present calls that discriminate better at the shorter end of their repertoires in which they present 
greater bandwidth (i.e., sweeping through a greater range of frequencies) and provide greater 
differences in shape and amplitude distribution. At the longer end of their repertoires Pesu, 
Nyhu, and Labo all present lower bandwidth more feature-thin flatter calls that do not 
discriminate as well. Refer to the special characteristics listed in the region-appropriate table of 
echolocation call characteristics for specific guidance (Appendix A), and use the results that 
follow for general guidance for classification performance for different duration calls to assess 
confidence in classification results.  

Using the same 11 species US Northeastern exemplar reference library set of 1,444 recordings 
that yielded 8,161 parameterized calls using a maximum of 8 calls to consider per file, a quality 
acceptance threshold of 0.80 and a discriminant probability setting threshold of 0.90, the 
classification algorithm based on these data results varied in performance on individual calls for 
different ranges of call duration (Table 4).  

Proper interpretation of these classification results requires an appreciation that species 
discrimination by echolocation calls uses a probabilistic process. Although called a “discriminant 
probability,” a DP = 1.00 does not indicate 100% confidence of the species classification result. 
Rather, it indicates that the quantitative parameters measured from the call or sequence under 
consideration fall completely at the centroid of the multi-dimensional data space of all the data 
known for that species. A species with similar call characteristics can occasionally (or often 
depending on the overlap) produce calls with data on the fringes of its parameter space that 
intrudes into the parameter space of another species, or even falls at the centroid of the other 
species’ parameter space. But, a DP = 1.00 probably indicates the classified species, and that 
confidence increases for species having more unique parameter space. Although SonoBat may 
report a result indicating a greater likelihood of one similar species over the other, e.g., 0.85 
Myso versus 0.15 Mylu, such a result only indicates the relative distances from the centroid of 
the known multivariate data space for each species. Because these species have their centroids 
buried in the multivariate data clouds of the other species (Figure 32), they never clearly 
separate, and either species could just have well vocalized a call producing those results, despite 
lying closer to the mean values of one over the other.  
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Table 4. Northeastern bat species classification results for individual calls by ranges of 
echolocation call duration using a discriminant probability threshold settings for 
acceptance of 0.901. (Empty cells indicate no calls in data set for that duration.) 

 <4 msec 4–5 msec 5–6 msec 6–8 msec >8 msec 
 %correct %correct %correct %correct %correct 
 %accp1 %accp %accp %accp %accp 

All Spp 97.0 96.0 95.0 97.7 97.9 
 29.8 32.0 50.4 47.7 82.0 

Myle 98.6 96.0 75.0   
 39.8 27.6 60.0   

Myse 100.0 99.3 94.7 100.0  
 36.8 50.6 40.9 70.0  

Myso2 33.33 92.33 96.9 90.2 100.0 
 0.7 5.6 23.9 54.1 100.0 

Mylu2 61.53 86.03 92.5 94.4 100.0 
 2.3 6.7 21.3 44.5 41.3 

Pesu 100.0 93.3 96.8 99.7 99.2 
 55.6 80.0 92.9 97.6 88.7 

Nyhu 100.0 98.0 90.0 66.7 90.0 
 33.3 87.7 65.9 17.8 17.6 

Labo 100.0 97.3 94.9 98.7 96.7 
 25.0 85.5 68.5 51.7 35.3 

Epfu 100.0 100.0 99.0 99.5 98.1 
 41.2 82.2 88.8 89.7 80.5 

Lano 97.6 100.0 100.0 100.0 98.1 
 71.4 87.6 97.9 92.4 84.9 

Cora 100.0 94.7 100.0 100.0 100.0 
 61.9 81.8 85.7 100.0 83.3 

Laci 100.03 86.4 81.3 93.4 97.6 
 20.8 55.9 78.0 83.2 92.4 

Mylu/Myso2 97.8 99.1 99.2 97.8 100.0 
 42.3 72.9 91.1 83.1 100.0 

1 Values listed as %correct considered just those results that emerged from the classifier at 
or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2 Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
3 Limited rate of acceptance for this duration; better to use longer calls to assess this 
species. 

 
Combining the cumulative information of all calls in a sequence performs better than individual 
calls. SonoBat outputs sequence results from batch processing of recorded sequences. Using the 
same 11 species US Northeast classifier on an exemplar reference library set of 1,444 recordings 
using a maximum of 8 calls to consider per file, a quality acceptance threshold of 0.80, yielded 
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different performance results for discriminant probability setting thresholds for acceptance of 
0.90, 0.95, and 0.98 (Table 5). 

Table 5. Northeastern bat species classification results for sequences of echolocation 
calls, i.e., bat passes.  

 0.90 DP 0.95 DP 0.98 DP 
 %correct  %accp1  %correct  %accp %correct  %accp 

 All Spp by vote: 98.0 82.0 97.7 80.6 97.9 78.1 
  mean sqnc: 96.9 85.7 97.7 78.0 98.3 69.6 
  agreement: 98.8 74.5 99.0 69.5 99.4 62.8 
 Myle by vote: 97.4 57.4 90.9 61.5 91.5 66.2 
  mean sqnc:  95.0 58.5 96.4 50.4 100.0 38.2 
  agreement:  97.1 52.3 96.3 40.0 100.0 32.3 
 Myse by vote: 97.2 56.1  96.9 51.2 96.3 42.3 
  mean sqnc:  94.0 63.4 96.4 50.4 100.0 38.2 
  agreement:  98.3 48.0 100.0 38.2 100.0 26.0 
 Myso2 by vote: 95.2 14.1 100.0 7.0 100.0 3.5 
  mean sqnc:  95.5 14.8 92.9 9.2 100.0 4.2 
  agreement:  100.0 12.7 100.0 5.6 100.0 3.5 
 Mylu2 by vote: 100.0 15.6 100.0 8.9 100.0 3.6 
  mean sqnc:  90.3 12.5 94.7 8.0 85.7 2.7 
  agreement:  100.0 10.3 100.0 6.7 100.0 2.2 
 Pesu by vote: 100.0 86.0 100.0 86.0 100.0 86.0 
  mean sqnc:  99.0 96.0 98.9 93.0 98.9 89.0 
  agreement:  100.0 84.0 100.0 82.0 100.0 79.0 
 Nyhu by vote: 94.7 41.9 100.0 41.9 100.0 41.9 
  mean sqnc:  87.1 62.8 85.7 41.9 93.8 34.9 
  agreement:  100.0 37.2 100.0 32.6 100.0 30.2 
 Labo by vote: 98.3 62.8 98.3 61.7 98.3 61.7 
  mean sqnc:  96.7 61.7 100.0 43.6 100.0 26.6 
  agreement:  97.7 45.7 100.0 31.9 100.0 20.2 
 Epfu by vote: 99.1 91.3 99.1 92.1 99.1 88.9 
  mean sqnc:  99.1 87.3 99.0 79.4 98.9 69.0 
  agreement:  100.0 83.3 100.0 77.0 100.0 64.3 
 Lano by vote: 94.6 98.8 94.0 98.8 93.5 98.8 
  mean sqnc:  94.9 93.8 95.4 91.3 95.7 83.8 
  agreement:  96.8 93.8 96.7 91.3 97.1 83.8 
 Cora by vote: 100.0 82.9 100.0 82.9 100.0 74.3 
  mean sqnc:  100.0    100 100.0     100 100.0 97.1 
  agreement:  100.0 82.9 100.0 82.9 100.0 74.3 
 Laci by vote: 100.0 92.7 100.0 92.3 100.0 91.9 
  mean sqnc:  100.0 88.7 100.0 87.9 100.0 85.4 
  agreement:  100.0 87.9 100.0 87.0 100.0 85.0 

1 Values listed as %correct considered just those results that emerged from the classifier at or 
above a discriminant probability threshold of 0.90. The %accepted reports the proportion of the 
sample that met or exceeded the discriminant probability threshold, whether correct or incorrect. 

2 Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
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Classification of Indiana Bats 
The geographic range of the federally listed Indiana bat, Myotis sodalis (Myso) lies entirely 
within that of the morphologically and acoustically similar little brown bat, M. lucifugus (Mylu). 
The substantial overlap in their echolocation call characteristics renders only a small portion of 
their repertoires with a tendency toward discriminating characteristics. Sample bivariate plots 
display the considerable overlap and range of call characteristics from this species pair (Figure 
32).  

Although the overlapping call characteristics of these two species present a challenge to 
discriminate, as with most species, longer duration calls provide more information content and 
consistent data that enhances discrimination performance (Table 4). Classification results parsed 
by call duration for 366 Indiana bat (Myso) and little brown bat (Mylu) sequences recorded in 
IN, IL, MO, KY, TN, PA, NJ, and VT that yielded 2,680 parameterized calls using a maximum 

Figure 32. Sample bivariate plots of overlapping call parameters of Indiana bats and little 
brown bats showing the similarity in acoustic characteristics between these species.  
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of 8 calls to consider per file, and a quality acceptance threshold of 0.80 reveal classification 
confidence improved with longer duration calls (Table 6).  
 

Table 6. Individual echolocation call classification results for 
Indiana bats (Myso) and little brown bats (Mylu) with 
discriminant probability threshold of 0.90. 

 call duration (msec) %correct %accepted1 

   Myso   0.0 0.0 
 ↓ Mylu  100.02 2.5 
 3.5 Myso/Mylu3 100.0 24.8 
 
 3.5 Myso   37.5 0.7 
 ↓ Mylu 60.6 3.6 
 4.5 Myso/Mylu 100.0 52.9 
 
 4.5 Myso   93.5 11.7 
 ↓ Mylu  78.0 5.8 
 5.5 Myso/Mylu 100.0 92.2 
 
 5.5 Myso   96.0 36.9 
 ↓ Mylu  89.7 32.1 
 6.5 Myso/Mylu 100.0 92.3 
 
 6.5 Myso   96.2 71.4 
 ↓ Mylu  97.2 73.4 
   Myso/Mylu 100.0 75.2 

1 Values listed as %correct considered just those results that emerged from the 
classifier at or above a discriminant probability threshold of 0.90. The %accepted 
reports the proportion of the sample that met or exceeded the discriminant 
probability threshold, whether correct or incorrect. 

2 Although correct, just 3 calls of the 118 in the sample accepted. 
3 Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or 
incorrect for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly 
discriminating this species pair from other species. 

Calls less than 5.5 msec achieved high rates of correct classification. However, note the very low 
%accepted. Although correct, very few calls of the data set contributed to this result, and 
performance may reflect an artifact from the classifier being based on these data set rather than 
absolute performance. Accepting less than ~33% of the sample indicates a weak, non-robust 
discrimination that will likely produce unreliable results with actual field data, i.e., the inherent 
nature of the call characteristics do not separate well for confident discrimination.  

For the acoustically difficult discrimination between Indiana and little brown bats, the results 
indicate diminishing confidence for calls less than 5.5 or 6 msec and increasing confidence for 
calls of longer duration. These results were from individual calls. The combined result of 
sequence classification based on longer calls would provide the most confident classification 
results.  
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Northwestern United States bat classifier  
SonoBat based the 16 species US Northwest classifier on an exemplar reference library set of 
1,854 recordings that yielded 11,026 parameterized calls using a maximum of 8 calls considered 
per sequence, a quality acceptance threshold of 0.80, and discriminant probability threshold 
settings for acceptance of 0.90, 0.95, and 0.98. The classification algorithm based on these data 
yielded different performance results for individual calls for different DP thresholds (Table 7). 

 
Table 7. Northwestern bat species classification results for individual echolocation calls. 

 0.90 DP 0.95 DP 0.98 DP 
 %correct %accp1  %correct %accp %correct %accp 

 All Spp 98.2 60.1 98.8 54.3 98.9 50.0 

 Myyu 93.4 45.0 95.7 35.4 97.1 31.1 

 Myca 98.2 41.4 99.4 32.5 98.6 25.7 

 Myci 98.5 51.0 99.0 42.7 99.3 34.0 

 Myvo 96.0 29.1 99.1 19.6 99.0 17.0 

 Mylu 95.3 30.3 97.1 22.6 99.3 19.1 

 Pahe 99.3 88.9 99.3 86.8 99.2 84.8 

 Labl 96.3 27.1 96.0 25.0 91.7 22.9 

 Myev 100.0 79.9 100.0 79.1 99.8 77.3 

 Anpa 89.3 7.1 91.1 5.8 92.2 5.0 

 Epfu 96.0 32.5 95.9 26.2 95.6 21.9 

 Lano 93.9 59.1 95.1 47.3 96.7 38.2 

 Myth 100.0 80.3 100.0 78.6 100.0 77.4 

 Tabr 99.4 68.9 99.6 62.9 99.5 57.6 

 Laci 99.0 70.7 99.3 68.2 99.4 65.4 

 Coto 99.5 69.5 99.5 67.5 99.0 64.0 

 Euma 100.0 96.0 100.0 96.0 99.8 95.4 

 Eupe 100.0 93.0 100.0 93.0 98.7 90.7 
1 Values listed as %correct considered just those results that emerged from the classifier at or 
above a discriminant probability threshold of 0.90. The %accepted reports the proportion of the 
sample that met or exceeded the discriminant probability threshold, whether correct or incorrect. 

Generally, species discriminate better at the longer end of their call repertoires in which they 
present more robust features. Using the same 16 species US Northwestern exemplar reference 
library set of 1,854 recordings that yielded 11,026 parameterized calls using a maximum of 8 
calls considered per sequence, a quality acceptance threshold of 0.80, and discriminant 
probability threshold settings for acceptance of 0.90, individual call discrimination performance 
varied with species for different ranges of call duration (Table 8).  
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Table 8. Northwestern bat species classification results for individual echolocation calls 
by ranges of call duration. (Empty cells indicate no calls in data set for that duration.) 

 <4 msec 4–5 msec 5–6 msec 6–8 msec >8 msec 
 %correct %correct %correct %correct %correct 
 %accp1 %accp %accp %accp %accp 

All Spp 99.0 97.8 98.4 97.8 97.8 
 55.5 53.5 58.1 62.4 75.9 

Myyu 93.82 80.6 98.3 100.0 100.0 
 8.9 46.3 79.2 84.1 100.0 

Myca 97.8 98.5 100.0 100.0  
 42.9 39.4 37.5 46.2  

Myci 98.6 99.4 96.4 66.7  
 49.7 53.7 52.9 28.6  

Myvo 93.9 94.8 100.0 100.0 100.0 
 22.5 31.1 19.0 58.9 50.0 

Mylu 90.02 85.7 92.9 100.0 100.0 
 10.3 20.2 27.7 53.9 41.2 

Pahe 97.2 100.0 98.7 100.0 100.0 
 90.2 92.9 91.9 85.0 63.4 

Labl 0.03 0.03 0.03 100.0 96.0 
 0.0 0.0 0.0 20.0 66.7 

Myev 100.0 100.0 100.0 100.0  
 77.0 88.9 68.0 100.0  

Anpa 100.02 100.0 100.0 83.6 96.0 
 7.4 19.0 16.3 50.5 64.9 

Epfu 100.02 100.02 100.0 96.4 94.7 
 5.3 8.3 20.6 34.8 54.0 

Lano 100.0 100.0 97.4 94.4 91.9 
 44.2 24.3 52.8 63.2 70.5 

Myth 100.0 100.0 100.0 100.0  
 81.2 79.4 80.0 75.0  

Tabr 0.03 0.03 0.03 100.0 99.4 
 0.0 0.0 0.0 23.6 74.3 

Laci 100.02 100.02 100.0 99.1 99.0 
 5.6 13.8 46.5 65.9 85.2 

Coto 100.0 100.0 98.1 100.0 100.0 
 63.3 65.0 74.3 89.7 84.6 

Euma 100.0 100.0 100.0 100.0  
 95.9 98.2 90.9 100.0 

1 Values listed as %correct considered just those results that emerged from the classifier at or 
above a discriminant probability threshold of 0.90. The %accepted reports the proportion of 
the sample that met or exceeded the discriminant probability threshold, whether correct or 
incorrect. 

2 Limited rate of acceptance for this duration; better to use longer calls to assess presence of 
this species. 

3 No calls of this duration met or exceeded threshold for acceptance; better to use longer calls 
to assess presence of this species. 
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Using the same 16 species US Northwest classifier on an exemplar reference library set of 1,854 
recordings using a maximum of 8 calls to consider per file, and a quality acceptance threshold of 
0.80 yielded different performance results for discriminant probability setting thresholds for 
acceptance of 0.90, 0.95, and 0.98 (Table 9). 

 

Table 9. Northwestern bat species classification results for sequences of echolocation calls, 
i.e., bat passes.  

 0.90 DP 0.95 DP 0.98 DP 
 %correct  %accp1  %correct   %accp %correct   %accp 

 All Spp by vote: 98.1 72.2 97.8 75.1 97.6 77.3 
  mean sqnc: 99.0 62.4 99.3 57.1 99.6 49.1 
  agreement: 99.0 62.3 99.0 57.1 99.6 49.1  

 Myyu by vote: 93.5 65.2 95.2 60.6 95.6 65.2 
  mean sqnc:  96.6 42.4 100.0 37.9 100.0 43.9 
  agreement:  96.6 42.4 100.0 37.9 100.0 30.3  

 Myca by vote: 97.8 57.1 100.0 58.4 97.9 61.0 
  mean sqnc:  100.0 49.4 100.0 39.0 78.5 66.2 
  agreement:  100.0 49.4 100.0 39.0 100.0 26.0 

 Myci by vote: 97.9 76.7 99.0 79.2 99.0 79.2 
  mean sqnc:  100.0 60.8 100.0 52.5 100.0 66.7 
  agreement:  100.0 60.0 100.0 51.7 100.0 25.8 

 Myvo by vote: 95.8 52.3 95.7 51.1 96.0 54.5 
  mean sqnc:  96.3 29.5 100.0 19.3 93.1 30.7 
  agreement:  100.0 28.4 100.0 19.3 100.0 10.2 

 Mylu by vote: 98.0 45.9 96.2 45.9 96.6 52.3 
  mean sqnc:  100.0 34.9 100.0 25.7 100.0 35.8 
  agreement:  100.0 32.1 100.0 25.7 100.0 18.3 

 Pahe by vote: 99.5 97.8 99.5 98.4 99.5 98.4 
  mean sqnc:  100.0 94.1 100.0 93.0 99.5 98.4 
  agreement:  100.0 94.1 100.0 93.0 100.0 89.8 

 Labl by vote: 100.0 55.6 100.0 22.2 100.0 22.2 
  mean sqnc:  100.0 22.2 100.0 22.2 100.0 22.2 
  agreement:  100.0 22.2 100.0 22.2 100.0 22.2 

 Myev by vote: 100.0 93.8 100.0 85.0 100.0 85.0 
  mean sqnc:  100.0 77.5 100.0 75.0 100.0 83.8 
  agreement:  100.0 77.5 100.0 75.0 100.0 73.8 

1 Values listed as %correct considered just those results that emerged from the classifier at or 
above a discriminant probability threshold of 0.90. The %accepted reports the proportion of the 
sample that met or exceeded the discriminant probability threshold, whether correct or incorrect. 
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Table 9 (continued). Northwestern bat species classification results for sequences of 
echolocation calls, i.e., bat passes.  

 0.90 DP 0.95 DP 0.98 DP 
 %correct   %accp  %correct   %accp %correct   %accp 

 Anpa by vote: 96.0 42.1 95.7 38.6 89.3 43.9 
  mean sqnc:  100.0 24.6 100.0 19.3 100.0 31.6 
  agreement:  100.0 24.6 100.0 19.3 100.0 17.5 

 Epfu by vote: 100.0 47.6 100.0 53.2 97.5 61.9 
  mean sqnc:  100.0 32.5 100.0 26.2 100.0 40.5 
  agreement:  100.0 32.5 100.0 26.2 100.0 17.5 

 Lano by vote: 90.1 86.4 90.1 87.1 91.0 89.8 
  mean sqnc:  94.9 63.9 96.1 50.3 91.9 77.6 
  agreement:  94.9 63.9 96.1 50.3 98.2 36.7 

 Myth by vote: 100.0 93.2 100.0 89.8 100.0 89.8 
  mean sqnc:  100.0 88.1 100.0 86.4 100.0 91.5 
  agreement:  100.0 88.1 100.0 86.4 100.0 86.4 

 Tabr by vote: 98.3 85.2 98.2 83.7 98.2 84.8 
  mean sqnc:  99.5 71.6 100.0 65.9 98.2 84.5 
  agreement:  99.5 71.2 100.0 65.9 100.0 53.8 

 Laci by vote: 97.3 77.7 98.6 75.5 98.6 75.5 
  mean sqnc:  98.4 67.6 98.4 65.1 98.5 71.9 
  agreement:  98.4 67.6 98.4 65.1 98.8 61.5 

 Coto by vote: 97.4 78.7 97.2 74.5 97.2 74.5 
  mean sqnc:  97.1 70.2 97.1 70.2 97.4 80.9 
  agreement:  97.1 70.2 97.1 70.2 97.0 68.1 

 Euma by vote: 100.0 75.8 100.0 75.8 100.0 75.8 
  mean sqnc:  100.0 75.8 100.0 75.8 100.0 75.8 
  agreement:  100.0 75.8 100.0 75.8 100.0 75.8 
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Midwestern United States bat classifier  
The Midwestern classifier comprises a subset of the Northeastern classifier species set. Based on 
an exemplar reference library set of 1,274 recordings that yielded 7,577 parameterized calls 
using a maximum of 8 calls to consider per file and a quality acceptance threshold of 0.80, it 
includes all the same species as the Northeastern classifier with the exclusion of the eastern 
small-footed myotis, M. leibii (Myle), and Rafinesque’s big-eared bat, Corynorhinus rafinesquii 
(Cora). One less myotis species operating in 40 kHz range (Myle) modestly increased the 
classifier performance for the three remaining 40 kHz range myotis species, the northern long-
eared bat, M. septentrionalis (Myse), the Indiana bat, M. sodalis (Myso), and the little brown bat, 
M. lucifugus (Mylu). Applying the default classifier settings of a discriminant probability 
threshold of 0.90 for acceptance and a quality acceptance threshold of 0.80 correctly classified 
96.9% and 98.2% of all bat calls and sequences, respectively, with acceptance rates of 58.0% and 
62.2%, respectively (Tables 10 and 11).  

 
Table 10. Midwest bat species classification results for individual echolocation calls 
using a discriminant probability threshold setting for acceptance of 0.901. 

 %correct   %accp1  

   All Spp 96.9 58.0 

   Myse 99.1 55.2 

   Myso2 94.0 16.3 

   Mylu2 90.1 15.7 

   Pesu 99.1 89.8 

   Nyhu 95.2 72.8 

   Labo 95.9 67.7 

   Epfu 98.4 85.2 

   Lano 98.1 86.5 

   Laci 95.4 86.4 

 Myso/Mylu2,3 99.1 86.1 

1 Values listed as %correct considered just those results that emerged from the classifier 
at or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
3Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or incorrect 
for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly discriminating this 
species pair from other species.  
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Table 11. Midwest bat species classification results for sequences of echolocation 
calls, i.e., bat passes, using a discriminant probability threshold setting for 
acceptance of 0.901. 
 %correct     %accp1  

 All Spp by vote: 91.4 74.3 
  mean sqnc: 97.7 67.0 
  agreement: 98.2 62.2  

 Myse by vote: 93.5 65.2 
  mean sqnc:  96.6 42.4 
  agreement:  96.6 42.4  

 Myso2 by vote: 97.8 57.1 
  mean sqnc:  100.0 49.4 
  agreement:  100.0 49.4 

 Mylu2 by vote: 97.9 76.7 
  mean sqnc:  100.0 60.8 
  agreement:  100.0 60.0 

 Pesu by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Nyhu by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Labo by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Epfu by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Lano by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Laci by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

 Myso/Mylu2,3 by vote: 95.8 52.3 
  mean sqnc:  96.3 29.5 
  agreement:  100.0 28.4 

1 Values listed as %correct considered just those results that emerged from the classifier 
at or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
3Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or incorrect 
for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly discriminating this 
species pair from other species.  
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Ozark to northern Georgia bat classifier 
The Ozark-northern Georgia classifier adds the federally listed gray bat, M. grisescens (Mygr) 
and the free-tailed bat, Tadarida brasiliensis (Tabr). This classifier’s exemplar reference library 
set of 1,810 recordings yielded 10,821 parameterized calls using a maximum of 8 calls to 
consider per file and a quality acceptance threshold of 0.80. Using default classifier settings of 
the discriminant probability threshold at 0.90 for acceptance and a quality acceptance threshold 
of 0.80 correctly classified 97.6% and 98.5% of gray bat calls and sequences, respectively with 
acceptance rates of 77.1% and 93.1% respectively (Tables 12 and 13). 

 
Table 12. Ozark-northern GA bat species classification results for individual 
echolocation calls using a discriminant probability threshold setting for acceptance 
of 0.901. 

 %correct   %accp1  

   All Spp 97.0 57.2 

   Mygr 97.6 77.1 

   Myle 98.0 31.4 

   Myse 98.2 49.5 

   Myso2 92.0 15.5 

   Mylu2 89.6 18.4 

   Pesu 99.4 89.8 

   Nyhu 96.2 72.4 

   Labo 95.5 61.6 

   Epfu 98.5 76.9 

   Lano 98.6 72.4 

   Cora 96.0 55.3 

   Tabr 97.9 71.2 

   Laci 96.9 79.4 

 Myso/Mylu2,3 99.8 55.8 

1 Values listed as %correct considered just those results that emerged from the classifier 
at or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
3Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or incorrect 
for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly discriminating this 
species pair from other species.  
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Table 13. Ozark-northern GA bat species classification results for sequences of 
echolocation calls, i.e., bat passes, using a discriminant probability threshold setting 
for acceptance of 0.901. 
 %correct     %accp1  

 All Spp by vote: 97.7 84.6 
  mean sqnc: 97.6 72.0 
  agreement: 98.5 64.9  
 Mygr  by vote: 98.5 93.1 
  mean sqnc:  97.1 91.7 
  agreement:  100.0 90.3 
 Myle by vote: 100.0 53.8 
  mean sqnc:  95.2 61.5 
  agreement:  100.0 46.2 
 Myse by vote: 95.4 66.9 
  mean sqnc:  94.6 71.0 
  agreement:  95.9 57.3 
 Myso2 by vote: 92.6 17.5 
  mean sqnc:  95.0 13.3 
  agreement:  100.0 10.5 
 Mylu2 by vote: 98.4 27.4 
  mean sqnc:  97.4 16.1 
  agreement:  97.0 13.9 
 Pesu by vote: 97.6 81.2 
  mean sqnc:  98.9 92.1 
  agreement:  98.8 79.2 
 Nyhu by vote: 100.0 68.1 
  mean sqnc:  90.9 85.1 
  agreement:  100.0 61.7 
 Labo by vote: 98.5 71.0 
  mean sqnc:  98.6 76.3 
  agreement:  98.3 61.3 
 Epfu by vote: 97.4 87.4 
  mean sqnc:  96.3 82.7 
  agreement:  97.1 78.7 
 Lano by vote: 91.0 93.2 
  mean sqnc:  96.0 88.9 
  agreement:  96.0 88.3 
 Cora by vote: 100.0 75.5 
  mean sqnc:  100.0 91.8 
  agreement:  100.0 73.5 
 Tabr by vote: 99.7 88.3 
  mean sqnc:  99.7 89.7 
  agreement:  100.0 83.0 
 Laci by vote: 98.7 89.1 
  mean sqnc:  98.6 85.4 
  agreement:  98.6 85.0 
 MyluMyso2,3 by vote: 97.5 75.5 
  mean sqnc:  97.6 75.0 
  agreement:  98.5 67.6 
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Table 13 (continued). Ozark-northern GA bat species classification results for 
sequences of echolocation calls, i.e., bat passes, using a discriminant probability 
threshold settings for acceptance of 0.901. 

 

1 Values listed as %correct considered just those results that emerged from the classifier 
at or above a discriminant probability threshold of 0.90. The %accepted reports the 
proportion of the sample that met or exceeded the discriminant probability threshold, 
whether correct or incorrect. 

2Refer to “SonoBat Discrimination of Myso vs. Mylu” for more information (Appendix A). 
3Myso/Mylu indicates a result of MysoMylu, Myso, or Mylu, whether correct or incorrect 
for Myso (if Mylu) or Mylu (if Myso), i.e., the overall rate for correctly discriminating this 
species pair from other species.  

 

Bat analysis application 
The user operation of SonoBat software provides a comprehensive tool for analyzing and 
comparing high-resolution full-spectrum sonograms of bat echolocation calls recorded from full-
spectrum and time-expansion bat detectors. SonoBat has an intuitive and direct interface that 
enables users to process, display, and analyze calls and sequences, and progress to sophisticated 
analysis.  

After opening a file to view a bat pass sequence, users may select individual calls to reprocess 
into high resolution sonograms for call by call comparison with reference calls or for parameter 
extraction (and data export to a spreadsheet), or have the individual call classified (Figure 33). 
Users may elect to classify an entire sequence (i.e., bat pass) as that typically provides more 
confident results than individual call classification as this method benefits from the combined 
information within the sequence (Figure 34). SonoBat will also batch process sequence 
classifications (Figure 35) and output a spreadsheet of the results (Figure 36). For overviews of 
SonoBat software, classification, and operation, refer to links in Appendices A and C. 
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Figure 33. SonoBat high resolution display of an individual call analyzed and displaying the 
classification decision.  

 

 
Figure 34. SonoBat display of a full call sequence after classification analysis and displaying 
the classification decision. Note the progression from call fragments to fully formed calls and 
back to fragments as the bat approached, passed, and then receded from the microphone.  
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Figure 35. SonoBat batch process setup panel. Directories or directories of directories can be 
dropped to populate the batch job list.  

 

Figure 36. Spreadsheet output from a SonoBat batch process run of call sequence 
classification analysis. Columns B and C display the lowest level of bat recognition even if 
there was no species decision to enable tallying of bat passes. Additional columns to the 
right display individual call results and other data to support post processing analysis and 
vetting of results.   
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Recording hardware 
The prototype recording units developed by this project supported the initial field studies for 
validation of long term acoustic monitoring methodology and directed the development of 
programmable recording units that were developed in collaboration with Binary Acoustic 
Technology (BAT). BAT will continue to provide them under the product designation FR125 
(Figure 37). These programmable recording units store audio data on any USB memory device 
and, when implemented with a power connection or a self-powered (e.g., by photovoltaic panels) 
system, enable long duration recording for weeks or months, limited only by memory 
configuration. The FR125 also has capability to remotely relay data.  

The Binary Acoustic Technology supports recording of ultrasound for bats using the matching 
AR125 ultrasonic microphone unit. The FR125 also supports audible frequency recording for 
birds and other signals, and accepts any standard line-in signal from a microphone.  

We collaborated with Pettersson Elektronik to maintain compatibility with SonoBat software and 
requested features for the D500X automated detector (Figure 38). Pettersson Elektronik has 
produced bat detectors since 1983 and has established a reliable standard of acceptance for 
ultrasound recording. These units are weatherproof and can operate self-contained with built in 
microphones, power, and digital memory. They accept remote microphones to enable flexible 
deployment options.  

The other domestic maker of recording equipment with whom we cooperated, Wildlife 
Acoustics, has begun supplying a similar programmable long duration recording hardware under 
the trade name Song Meter SM2 (Figure 39). These units provide an all-in-one recording 
solution with a built in controller panel and batteries (with capability for external power input for 
longer duration recording).  

                                                                                                                                                                                                                            
 

Figure 37. Binary Acoustic Technology FR125-III 
field recorder. The FR125 has a line in audio jack for 
connecting to a microphone and has two high-speed 
USB 2.0 ports for connecting to external USB hard-
drives, Compact Flash devices, or USB thumb-drives. 
This unit can also control and operate an AR125 
ultrasonic receiver to record bat echolocation calls. 
When writing to solid state memory the FR125 
consumes only 6.5 Watts of power. This unit separates 
the microphone from electronics for flexible deployment. 

CrystalFontz USB controller for FR125. 
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Figure 38. Pettersson D500X ultrasound recording unit intended for long-term, 
unattended recording of bat calls. The recorder is equipped with four slots for CF 
cards. The triggering system allows the device to start recording as a sound is detected. 
The recording length can be selected in steps from 0.3 up to 20 seconds. The recorder 
is normally operated in a low-power mode with no pre-trigger (i.e. the recording starts 
as the sound exceeds the chosen threshold level), but both pre-and post-trigger 
functions are available in the standard (not low-power) mode. This unit accepts an 
external microphone for flexible deployment.  

 
Figure 39. Wildlife Acoustics Song Meter SM2 recorder. The SM2 can be 
programmed to record on simple time-of-day schedules or more complex monitoring 
protocols such as recording relative to local sunrise, sunset and twilight. This unit 
accepts an external microphone for flexible deployment. 
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Bat mobile transects 
The SonoBat batch process output supports integration with gps track data from mobile transect 
surveys. The Myotisoft Transect software (Myotisoft, Morgantown, WV) combines the SonoBat 
batch processed automated species identification output with the transect’s gps file (even from an 
iPhone, e.g., using MotionX-GPS) to generate tabulated location, time, and species data. 
Myotisoft Transect will also output a .kmz file for viewing the transect in Google Earth with 
SonoBat metadata popups for each classified bat along the transect (Figure 40).  

 

 

Figure 40. Screenshot of a mobile transect displayed in Google Earth showing the 
distribution of bats along the Catalina Highway, Coronado National Forest, AZ. Myotisoft 
Transect (Morgantown, WV) prepared this Google Earth .kmz file from a SonoBat batch 
processed automated species identification output file integrated with a gps track file of the 
transect.  
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Bird analysis software operation 
SonoBird acoustic analysis software provides a tool to rapidly view, assess, and qualitatively or 
quantitatively analyze bird vocalizations. SonoBird presents visual displays of acoustic data as 
sonograms with color mapping of amplitude. An intuitive graphic interface provides full control 
of display characteristics such as frequency scale, time scale, and filtering. To facilitate 
recognition and identification of signals, SonoBird automatically reprocesses zoomed signal 
selections to optimize display resolution and then enables comparative side by side viewing of 
reference signals (Figure 41). A moving cursor tracks the position on the display when playing 
sounds for recognition and comparison by ear.  

The batch processing and signal searching capability of SonoBird provide automated processing 
of long duration recordings to seek and locate target signals of interest (Figure 42) from specified 
search terms and criteria (Figure 43). SonoBird extracts these and compiles them as separately 
saved hit file snippets or marked sections in the search file to then confirm by inspection, 
listening, or comparison with reference files. By default, SonoBird presents hit files sorted by 
correlation ranking with the search term. This sorts them for additional inspection by quality of 
match with the search term for inspection and facilitates presence/absence surveys by 
minimizing the potential data burden to inspect for confirmation. Alternately, hit files may be 
sorted by name, which because of the naming convention sorts them by chronological occurrence 
in the search file. This enables an evaluation of the time course of the vocalizations. SonoBird 
facilitates generating new search terms from any recording to seek any particular bird or signal 
of interest.  

Figure 41. Zoomed song selection from a recorded file (left) displayed next to an appended 
reference file (right) invoked from a library of species-known recording samples. SonoBird 
automatically normalizes the amplitude and adjusts the time and frequency scales to enable 
an equal comparison.  
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Figure 42. SonoBird search panel. SonoBird seeks signals similar to a known species search 
term (upper left sonogram) by first running a coarse search to select file segments having 
basic similarity, then performs a more discriminating comparison with the candidate signal 
(lower left sonogram) using user-defined criteria. SonoBird saves search criteria in the search 
term file to facilitate repeated searches.  

In practice, depending upon search term and criteria, a moderately fast desktop computer can 
search one hour of recorded data in about one minute. The ability of the searches to correctly 
find specific signals varies according to signal characteristics, search sensitivity settings, 
competing and overlapping signals, and recording quality. Generally, search terms with more 
distinctive and consistent time-frequency characteristics perform better. Indistinctive signals 
such as single note owl calls that have substantial overlap with competing low frequency noise 
will generate many false hits. However prudent selection of time-power characteristics as 
primary search criteria can still reduce long term recordings down to a much smaller subset of 
target calls to manually inspect and accept or reject.  

A one hour example recording from a Sierra meadow searched to find willow flycatchers and 
Lincoln’s sparrows found 76.1% of the signals recognized by a careful manual listening and 
visual inspection of sonograms through the recording (Tegeler-Amones et al. 2011). The search 
process missed signals having variation in pattern or when overwhelmed by competing signals. 
Additional new search terms could be used to find all types in such an example. Reducing the 
tolerance settings for acceptance can boost the acceptance of signals with competing noise, but 
generate more false hits to inspect. Presence/absence surveys require the recognition of only a 
single confident signal. If the target species is present and vocalizing, even with only a small 
percentage of signals recognized, the probability of signal recognition (detection) will be very 
high with long duration recording.  
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Figure 43. SonoBird search settings panel. Dropping individual files or directories of 
files onto the search file listing field (upper left) loads files for a batch run. Dropping 
search terms onto the path display fields (light blue) loads up to three search terms. The 
settings control search criteria to optimize for each signal type. SonoBird provides 
manual oversight of search progress to initially determine settings, and then saves the 
selected settings within the search term files for subsequent searches.  

 

The SonoBird search algorithm has demonstrated excellent robustness to find search targets even 
with low amplitude signals that occur among noise (Figure 44).  
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Figure 44. Examples of search results for federally listed golden-cheeked warbler (Setophaga 
chrysoparia formerly Dendroica chrysoparia) songs in a four hour recording made in central 
Texas. The search revealed 211 accepted hits (matching signals). The strong signal in the top 
panel displays an obvious and easily discernible match. However note that the search 
algorithm also found the matching golden-cheeked warbler calls amid noise from other birds 
(center panel) and at very low signal levels (bottom panel). Even with high pass filtering this 
last signal becomes barely discernible from background noise, yet the search algorithm still 
found it. 
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Conclusions and Implications for Future Research/Implementation 

We compiled and analyzed a large and diverse collection of species-known high resolution full-
spectrum reference recordings of bats from North America. This full-spectrum data format 
captured the full information content of the calls, optimizing the potential to reveal species 
discriminating characteristics and enabling analysis with sophisticated signal processing 
algorithms to recognize and extract quantitative parameters. We used a parameter extraction 
routine employing an intelligent and reliable call trending routine that minimized incorrect trends 
(and resulting misclassifications) such as can occur when echo clutter overwhelms the 
diminishing signal amplitude at the ending of many bat calls (e.g., Figures 22 and 23). This data 
extraction approach supported the development of a novel expert system classification approach 
that outperformed machine learning classification systems. Furthermore, we implemented 
multiple signal quality and decision confidence indicators to control and guide classification 
decisions to make the system perform optimally with unpredictably variable field-acquired 
recordings. We also demonstrated the extension of these approaches to avian vocalizations.  

Even with the best data and analysis, the considerable plastic range in the calls from each species 
fills out a broad repertoire that unavoidably overlaps in characteristics with parts from the 
repertoire of one or more other species (e.g., Figures 26 and 27). This leaves the discrimination 
of some species a probabilistic rather than absolute process over much of their repertoire of call 
types. Definitive species recognition relies upon unique subsets of data space within each 
species' repertoire. However, some species such as the Indiana bat (M. sodalis) and the little 
brown bat (M. lucifugus) overlap completely in their repertoires and this prevents unambiguous 
discrimination (Figure 31). For such acoustically cryptic species, identification remains in the 
realm of calculating a statistical likelihood. However, initial field studies show promise for 
confident results (see Addendum, Appendix D). Continued expansion of the call reference 
collection to provide a greater sample pool and additional refinements in signal processing and 
classification should ultimately lead to increased throughput and higher confidence in results. 
These improvements should also lead to the need for less oversight and vetting of post-processed 
results. Eventually, field deployed detectors may perform analysis “in the box” and merely report 
results.  

Continued expansion of reference collections of known bat species recordings will facilitate 
improving classifier species discrimination, particularly for acoustically ambiguous species, such 
as the Indiana bat and little brown bat. Finally, additional data sets of species-known recordings 
from the field distinct from those used to build the classifiers would provide demonstration and 
validation of the methodologies developed by this project.  

Recording and classification implementation recommendations 
Successful classification of the many bat species having overlapping acoustic characteristics 
depends upon discerning subtle nuances in their calls, and that depends upon clear, strong, and 
undistorted signals that rise above the background noise level. The reference data used to 
generate the SonoBat classifiers are based on recordings from electret condenser microphones 
and electrostatic condenser microphones (e.g., the types used in Pettersson, Binary Acoustic 
Technology, and Avisoft detectors) as these produce recordings having good contrast between 
the bat echolocation signals and background noise, both external and internal to the microphone 
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(i.e., the microphone’s noise floor). A sensitive microphone with a low noise floor will retain and 
enable discernment of lower amplitude call details from bats at greater distances from the 
microphone, and so provide a larger volume of airspace from which to acquire species-
discriminating recordings that classify without error. SonoBat classification performance will 
decrease and the number of misclassifications will increase with degraded signals that cannot 
reveal low amplitude components of call structure. The comments that follow provide general 
guidance for interpreting call classification results, and recommendations for recording. Refer to 
the classification notes linked in Appendix A for more detailed region-specific guidance.  

Both the orientation of a bat relative to a microphone (Surlykke and Kalko 2008) and its distance 
from a microphone will affect the strength of a recorded call. Because bats vary the amplitude 
through their calls, typically initiating a call at low amplitude, intensifying to a peak, then ending 
with diminishing amplitude, more weakly recorded calls become truncated to just their strongest 
portions (Figures 19 and 34). In some cases these fragments of fully formed calls can mimic 
other species, e.g., the body fragment of a little brown bat (M. lucifugus) may render as a simple 
curved call missing the final downward “toe” and so mimic the simple curve of a fully formed 
red bat (Lasiurus borealis). SonoBat performs a number of signal quality checks to reject weak 
and poorly formed calls, overloaded calls, and those with distorted signals or too much noise. 
However, any analysis remains limited to the available information and poor recordings with 
missing or obscured information content can produce spurious results. As a general 
recommendation, if a classification result seems unexpected, check it or reject it.  

As the quality of call recordings strongly affects classification performance, achieving faithful 
and confident results begins with proper deployment of recording devices. Avoid recording with 
a detector’s microphone placed directly on the ground. Simply elevating a microphone one or 
two meters above ground level can dramatically improve recording quality by reducing surface 
echoes, avoiding thermal layering, or near-ground air convection currents, all of which can 
distort ultrasound signals. In general, the longer duration calls that most species produce in open 
air flight, i.e., away from clutter, provide more information content and greater species-
discrimination confidence. Bats flying in confined spaces or near roosts will generally provide 
shorter, less discriminating and perhaps ambiguous call variants. When bats must be identified in 
such situations, try to record them on approach to such a space or follow them out and away 
from a roost to acquire longer and more representative search phase calls.  

To record search phase call sequences of bats along a flyway, place detectors out of the flyway 
as bats may investigate the novel object resulting in many recorded sequences of short 
"inspection calls." Where possible, place detectors to blend in with vegetative clutter (but clear 
from it) to listen out into a flyway. Avoid placing detectors near large echo-producing surfaces 
such as asphalt, building facades, bridge structural surfaces, or flat water. When you must record 
near such surfaces, attempt to position the detector to listen away from these surfaces rather than 
toward them. When possible, use a handheld detector to acoustically sample the potential 
detector placement site to reveal sources of ultrasonic noise before a recording session. Many 
things that seem quiet to our human ears can emit overwhelming ultrasonic noise, e.g., dried 
leaves or other vegetation rustling in a breeze, insects, loose cables and other windblown 
components, or metal structures cooling in the evening. Detectors with microphones remote from 
the detector electronics provide the best options for placement and best results (Figure 45). 
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Transition, continued development, and software maintenance 
Initial development of SonoBat software and collection of reference recordings began in 1991 
and full commercial distribution in 1998. Access and availability of SonoBat and SonoBird 
software will continue through commercial distribution of the software (www.sonobat.com). The 
income from commercial distribution will support ongoing maintenance, support, continued 
fieldwork and recording, and continued development and improvement of processing algorithms 
and classifiers. We have completed seventeen regional classifiers and have four in beta 
development that cover most of the United States (Tables 14 and 15). We have six more 
additional regional classifiers in development for which we have sufficient data to build and then 
test to determine performance and assess whether these classifiers will require additional data to 
complete (Tables 14 and 15). This project will also contribute samples of recording data to 
augment the collection of the Cornell Laboratory of Ornithology’s Macaulay Library. 

  

 

Figure 45. Bat detector remote 
microphones enable placement up 
and away from ground clutter and 
other surfaces that can generate 
echoes that distort recordings. 
Elevating the microphone can 
also increase the vertical 
coverage, from the microphone to 
the ground, and from the 
microphone upward; rather than 
just from the ground upward.  
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Table 14. Species matrix of eastern bat classifiers indicating build status (√ = complete). Proper 
selection of a regional classifier with the appropriate species known for an area will provide the 
best performance and minimize misclassifications1. Applying a classifier to a geographic region 
outside the range of a species may result in some misclassifications of the out of range species 
from the overlap of species’ call characteristics over parts of their call repertoires and the 
probabilistic nature of classification (see text).  

 
NY- north 

  
Missi- Great Great Isle IL-IN-OH south 

 north PA- north KY- Ozark ssippi Lakes Lakes Royale lower east south 
east WV east TN –nGA Basin / MW / nMW / nnMI MW -AL east 

   
Mygr Mygr Mygr 

   
Mygr Mygr 

 Myle Myle Myle Myle Myle Myle 
      

     
Myau 

    
Myau Myau 

Myse Myse Myse Myse Myse Myse Myse Myse Myse Myse 
  Myso Myso 

 
Myso Myso Myso Myso 

  
Myso 

  Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu 
  Pesu Pesu Pesu Pesu Pesu Pesu Pesu Pesu Pesu Pesu Pesu Pesu 

Nyhu 
  

Nyhu Nyhu Nyhu Nyhu Nyhu 
 

Nyhu Nyhu Nyhu 
Labo Labo Labo Labo Labo Labo Labo Labo Labo Labo Labo Labo 

    
Lase 

     
Lase Lase 

Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu 
Lano Lano Lano Lano Lano Lano Lano Lano Lano Lano Lano Lano 

          
Lain Lain 

Cora Cora Cora Cora Cora Cora 
    

Cora Cora 

            
    

Tabr 
     

Tabr Tabr 
Laci Laci Laci Laci Laci Laci Laci Laci Laci Laci Laci Laci 
√ √ √ √ √ (√) √ √ √ (√) in in 

     
beta 

   
beta prog- prog- 

          ress ress 
          2013 2013 

 
Key to species codes. 

Myotis grisescens (Mygr) Lasiurus borealis (Labo) 
M. leibii (Myle) L. seminolus (Lase) 

M. austroriparius (Myau) L. intermedius (Lain) 
M. septentrionalis (Myse) Eptesicus fuscus (Epfu) 

M. sodalis (Myso) Lasionycteris noctivagans (Lano) 
M. lucifugus (Mylu) Corynorhinus rafinesquii / C. townsendii (Cora / Coto) 

Perimyotis subflavus (Pesu) Tadarida brasiliensis (Tabr) 
Nycticeius humeralis (Nyhu) L. cinereus (Laci) 

1 Classifiers use a nominal nomenclature designating a core region of their coverage. Users 
should select the most appropriate classifier for their needs based on the known expected 
occurrence of species for their location. Because of the intraspecies and intra-individual 
variation in calls, interspecies overlap of call characteristics, and probabilistic nature of 
many classifications, in most cases acoustic data alone can not provide reliable evidence 
of bat species occurrence outside of known ranges.   
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Table 15. Species matrix of western bat classifiers indicating build status (√ = complete). Proper 
selection of a regional classifier with the appropriate species known for an area will provide the 
best performance and minimize misclassifications1. Applying a classifier to a geographic region 
outside the range of a species may result in some misclassifications of the out of range species 
from the overlap of species’ call characteristics over parts of their call repertoires and the 
probabilistic nature of classification (see text). The US west and Great Basin classifiers cover 
most of the western states. The additional classifiers cover specific areas with different species 
assemblages.  
  Great          
 

 
Basin 

          US OR OR WA WA WY WY NW MT MT MT 
 west east west east west east west montane core south plains 
 Myyu Myyu Myyu Myyu Myyu Myyu Myyu Myyu 

    Myca Myca Myca Myca Myca Myca Myca Myca 
    Myci Myci 

 
Myci 

 
Myci Myci Myci Myci Myci Myci 

 Myvo Myvo Myvo Myvo Myvo Myvo Myvo Myvo Myvo Myvo Myvo 
 Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu Mylu 
 

          
Myse 

 Pahe Pahe 
 

Pahe 
        Labl Labl Labl 

  
Labo 

 
Labo 

  
Labo 

 Myev Myev Myev Myev Myev Myev Myev Myev Myev Myev Myev 
 Anpa Anpa Anpa Anpa 

 
Anpa Anpa 

  
Anpa 

  Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu Epfu 
 Lano Lano Lano Lano Lano Lano Lano Lano Lano Lano Lano 
 Myth Myth Myth Myth Myth Myth Myth Myth Myth Myth 

  Tabr Tabr Tabr 
         Laci Laci Laci Laci Laci Laci Laci Laci Laci Laci Laci 

 Coto Coto Coto Coto Coto Coto Coto Coto Coto Coto Coto 
 Euma Euma Euma Euma Euma Euma Euma Euma Euma Euma Euma 
 Eupe                     

status √ √ √ √ √ √ √ √ (√) (√) √ 
 

        
beta beta 

  
Key to species codes. 

M. yumanensis (Myyu) L. xanthinus (Laxa) 
M. californicus (Myca) M. evotis (Myev) 
M. ciliolabrum (Myci) Antrozous pallidus (Anpa) 

M. volans (Myvo) Eptesicus fuscus (Epfu) 
M. lucifugus (Mylu) Lasionycteris noctivagans (Lano) 
M. occultus (Myoc) M. thysanodes (Myth) 

M. septentrionalis (Myse) Tadarida brasiliensis (Tabr) 
M. velifer (Myve) L. cinereus (Laci) 

M. auriculus (Myar) Corynorhinus townsendii (Coto) 
Parastrellus hesperus (Pahe) Euderma maculatum (Euma) 

Choeronycteris mexicana (Chme) Idionycteris phyllotis (Idph) 
Macrotus californicus (Maca) Nyctinomops femorosaccus (Nyfe) 

Leptonycteris yerbabuenae (Leye) N. macrotis (Nyma) 
Lasiurus blossevillii (Labl) / L. borealis (Labo) Eumops perotis (Eupe) 
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Table 15 (continued). Species matrix of southwestern bat classifiers indicating 
build status (√ = complete).  
 CA AZ AZ AZ 
 south north southwest southeast 
 Myyu Myyu Myyu Myyu 
 Myca Myca Myca Myca 
 Myci Myci 

 
Myci 

 
 

Mylu 
 

Myvo 
 

  
Myoc Myoc 

 Myve 
 

Myve Myve 
 

   
Myar 

 
   

Chme 
 Maca 

 
Maca Maca 

 
  

Leye Leye 
 Pahe Pahe Pahe Pahe 
 Labl Labl Labl Labl 
 Laxa 

 
Laxa Laxa 

 Myev Myev 
   Anpa Anpa Anpa Anpa 

 Epfu Epfu Epfu Epfu 
 Lano Lano 

 
Lano 

 Myth Myth 
 

Myth 
 Tabr Tabr Tabr Tabr 
 Laci Laci Laci Laci 
 Coto Coto Coto Coto 
 Nyma Nyma Nyma Nyma 
 

   
Idph 

 Nyfe 
 

Nyfe Nyfe 
 Euma Euma Euma Euma 
 Eupe Eupe Eupe Eupe 

status In progress In progress In progress In progress 
 2013 2013 2013 2013 

1 Classifiers use a nominal nomenclature designating a core region of their 
coverage. Users should select the most appropriate classifier for their needs 
based on the known expected occurrence of species for their location. Because 
of the intraspecies and intra-individual variation in calls, interspecies overlap 
of call characteristics, and probabilistic nature of many classifications, in most 
cases acoustic data alone can not provide reliable evidence of bat species 
occurrence outside of known ranges.  
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Western US Classification notes: 
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Appendix C. Other Supporting Materials 

Protocols/User Guides 
Quick start guides to using SonoBat: 
http://www.sonobat.com/download/SonoBatBasicOperations.ppt 

http://www.sonobat.com/download/SonoBat_3.ppt 

http://www.sonobat.com/download/SonoBatUtilities.pdf 

http://www.sonobat.com/download/OpeningAndUsingSonoBatchFilesv313.ppt 

http://www.sonobat.com/SonoBatch_Output_Descriptors.htm  

http://www.sonobat.com/SonoBat parameters.html  

http://www.sonobat.com/SonoBat_batch_workflow.pdf  

User's Guide:  
http://www.sonobat.com/download/SonoBat_userguide_Aug2008.pdf 

Addendum to User's Guide: 
 http://www.sonobat.com/download/SonoBatEnhancementsSinceUsersGuide.pdf 

Background information on full-spectrum analysis: 
http://www.sonobat.com/download/FullSpect_and_Zero-Crossing.ppt 

Recording and classification notes: 
Eastern North America: 

http://www.sonobat.com/download/SonoBatClassificationNote-NE-v3.1.pdf 
http://www.sonobat.com/download/MysoMyluClassificationNote-NE-v3.1.pdf 

Western North America: 
http://www.sonobat.com/download/SonoBatClassificationNote-NW-v3.1.pdf 

Tables of species’ acoustic characteristics: 
Eastern US bat echolocation call characteristics: 

http://www.sonobat.com/download/EasternUS_Acoustic_Table_Mar2011.pdf 

Western US bat echolocation call characteristics: 
http://www.sonobat.com/download/WesternUS_Acoustic_Table_Mar2011.pdf 

Arizona region bat echolocation call characteristics: 
http://www.sonobat.com/download/AZ_Acoustic_Table-Mar08.pdf 

Rocky Mountain region bat echolocation call characteristics: 
http://www.sonobat.com/download/RockyMtn_Acoustic_Table-Mar08.pdf 
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Guides to using SonoBird: 
http://www.sonobird.com/download/SonoBirdBasicOperations-1.6.ppt 

http://www.sonobird.com/download/SonoBirdSearches-v1.6.ppt 

http://www.sonobird.com/download/SonoBirdSearches-v1.6-tutorial.ppt 

 



 
 

75 

Bat echolocation call recording and analysis workflow: 
   

 

 
Transfer field data to store and process 
using a hardware-specific SonoBat 
Attributer utility to name files and 
embed metadata for data management. 

Record 
bats in 
the 
field. 

 
As an option during attributing, or 
as a separate operation with the 
SonoBat Scrubber utility, remove 
non-bat noise-triggered files.  

 
Set up a batch processing job to analyze and 
classify recorded sequences to species and execute.  

Inspect output, sort, and manually confirm results 
as needed for acoustically ambiguous species 
following recommendations in Echolocation Call 
Characteristics Tables and Classification Notes.   
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Appendix D. Addendum 

Preliminary field test of discriminating Indiana bats (M. sodalis) 
Abstract from presentation at the Northeast Bat Working Group meeting, Albany, NY January 
10, 2013:  

 

A FIELD TEST OF TWO ACOUSTIC CLASSIFICATION SYSTEMS TO DISCRIMINATE 
INDIANA BATS (MYOTIS SODALIS) 

Joseph M. Szewczak1 and Leila S. Harris2, 1Humboldt State University, Arcata, CA 95521, 2ICF 
International, Sacramento, CA 95814 

(Oral presentation) 

With the proposed US Fish and Wildlife Service Indiana bat summer protocol, interest and 
concern has grown regarding the effectiveness of different hardware and software systems for 
acoustic recognition for this species. As management decisions depend upon the assessed 
presence of Indiana bats, determining the rates of false positives from various systems becomes 
imperative. Field recordings of free-flying bats made outside the expected range of Indiana bats, 
but in the presence of acoustically similar species as Indiana bats, e.g., little brown bats (M. 
lucifugus), can provide a direct means for testing and comparing the rates of Indiana bat false 
positives. We had the opportunity to perform a preliminary test of this approach on three 
overnight recording sets from a site near a known little brown bat roost in southern Maine 
approximately 100 miles beyond the reported range of Indiana bats. We analyzed full-spectrum 
data acquired from Pettersson D500X detectors using SonoBat 3.1 NE and converted the 
recordings to Anabat format using Myotisoft ZCANT for analysis using EchoClass 1.1. The 
three recording sets yielded 112, 177, and 73 high frequency bat passes. Despite an expectation 
of no Indiana bats at these sites, EchoClass reported twice as many Indiana than little brown bats 
at site one, 10 times as many at site two, and 1.7 times as many at site three, and concluded >= 
99% probability of presence for Indiana bats at all sites. In contrast, SonoBat reported 4% 
Indiana to 88% little brown bats at site one, and only little brown bats and no Indiana bats at sites 
two and three. As the 4% Indiana bat result lies within the expected 8–10% Indiana to little 
brown bat error rate by SonoBat, the SonoBat results would indicate that Indiana bats do not 
likely occur at these sites.  
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