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Abstract 

The GAIM-GM model assimilates observed data and ingests it into the IFM 

background ionosphere, which is highly dependent on Kp and F10.7.  The Air Force 

Weather Agency typically uses a daily Kp and F10.7 when running the IFM.  This study 

used Kp and F10.7 values at 1-hourly, 3-hourly, and daily cadence intervals in the IFM and 

the resulting GAIM-GM model total electron content (TEC) output was verified using 

skill scores.  This study showed that while the IFM produced different output for 

different cadence configurations, the GAIM-GM model output showed little or no 

variation.  It also showed that when ingested data was suddenly removed from the 

GAIM-GM model, skill scores decayed to those of the model’s background ionosphere at 

the same rate, regardless of cadence configuration.  In addition, alternate sources of Kp 

and F10.7 data were investigated, to include data from the ACE satellite as an alternate to 

Kp, and F11.1 data as an alternate to F10.7.  While the use of ACE Kp data had little effect 

on GAIM-GM model output, the use of F11.1 data showed improvement in three of the 

five periods tested, with a reduction in root mean square error of up to 1.17 TEC units. 
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SENSITIVITY OF IFM/GAIM-GM MODEL TO  

HIGH-CADENCE Kp AND F10.7 INPUT 

I.  Introduction 

Motivation and Background 

Over the past few decades, the reliance on communication technology has 

expanded.  This has spurred an increase in the number of satellites and space-based 

communication systems that orbit in the near-Earth environment.  In order to 

communicate with ground-based sensors, these satellites and communication systems 

must transmit electromagnetic waves through Earth’s atmosphere.  This includes 

propagating waves through a region of highly dynamic charged particles known as the 

ionosphere. 

Ionized atoms and electrons in the ionosphere interact with electromagnetic 

waves, creating potentially detrimental impacts on both ground-based and space-based 

communications.  The region of the ionosphere that most significantly affects 

communications extends from about 60 km to 600 km above the Earth’s surface 

(Rishbeth, 1988).  Within this region, the ionosphere exhibits a background state and a 

wide range of small scale ionospheric disturbances.  Ionospheric disturbances can vary 

significantly with latitude, longitude, altitude, time, season, and solar and geomagnetic 

activity (Schunk et al, 2004).  These variations, especially small-scale ionospheric 

disturbances, can create significant impacts on numerous man-made systems, to include 

the Global Positioning System (GPS), high frequency (HF) communications, satellite 

tracking, power grids, pipelines, and Federal Aviation Administration (FAA) tracking 
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systems.  Impacts on these systems affect civilian, military, and other government 

operations. 

In order to more thoroughly understand Earth’s ionosphere and predict its effects, 

several techniques have been developed to model ionospheric properties such as electron 

density distribution and total electron content (TEC).  Some of these techniques include 

empirical, analytical, and parameterized computer models, global numerical models that 

interact with adjacent atmospheric regions and the magnetosphere, localized numerical 

models, tomographic models, and physics-based data assimilation models (Schunk et al, 

2003).  As the availability of real-time data measurements has increased, more focus has 

been placed on physics-based data assimilation models.  In particular, this research uses 

the Ionospheric Forecast Model (IFM) created by Space Environment Corporation, along 

with the Global Assimilation of Ionospheric Measurements - Gauss Markov (GAIM-GM) 

model developed at Utah State University (USU).  In addition, the International 

Reference Ionosphere (IRI), which is a climatological model sponsored by the Committee 

on Space Research and the International Union of Radio Science, is used as a reference 

for comparison (Bilitza, 2013). 

The IFM is a physics-based model which uses geophysical input parameters to 

empirically predict electron density distributions in the ionosphere.  The output from the 

IFM serves as the specification input for the GAIM-GM model.  Some of the geophysical 

input parameters that the IFM uses include the F10.7 index (as a proxy for solar activity) 

and the Kp index (as a proxy for geomagnetic activity).  The IFM uses a single F10.7 value 

for each model run and can use a different Kp value for each individual time step within 

the model run (Space Environment Corporation, 2002).  However, multiple IFM model 
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runs can be executed in sequence, each using fewer time steps and allowing the user to 

provide new F10.7 index values at a higher cadence.  Changes in solar and geomagnetic 

activity occur regularly and can have a significant impact on ionospheric conditions.  

Therefore, adjusting the input cadence of these indices may better represent real-world 

conditions. 

The Air Force Weather Agency (AFWA) currently uses the IFM and GAIM-GM 

model as its operational forecast models for space weather operations.   Due to time and 

resource limitations, AFWA typically runs the IFM using a single, daily averaged Kp 

value, along with a daily F10.7 value.  This technique has brought about the question of 

how the cadence of Kp and F10.7 values influences the IFM, and thus GAIM-GM model 

output. 

Research Objective 

The objective of this research is to determine the IFM and GAIM-GM model 

sensitivity to Kp and F10.7 input cadence.  This is done by running the IFM and 

GAIM-GM model using various cadence configurations of Kp and F10.7 values.  In 

addition, the use of alternate proxies of solar and geomagnetic activity, which are 

observed more frequently, are investigated for use in the models.  All cadence 

configurations are run for 3-day periods of varying solar and geomagnetic activity.  The 

output from the GAIM-GM model is verified using globally distributed observations.  

The verification of the various cadence configurations will determine the optimal proxies 

and input cadence for Kp and F10.7 for various environmental conditions. 
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Preview 

This thesis is organized into five chapters.  An overview of the motivation for this 

research and the research objective is presented in the first chapter.  Chapter II discusses 

the relevant background on the ionosphere, solar and geomagnetic impacts on the 

ionosphere, and details on the IRI model, IFM, and GAIM-GM model.  The third chapter 

outlines the methodology for completing this research.  Chapter IV discusses the analysis 

and results while Chapter V provides the conclusions. 
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II.  Background 

Chapter Overview 

 This chapter provides the background information relevant to research on the 

GAIM-GM model’s sensitivity to Kp and F10.7 input.  The first two sections will describe 

the basics of Earth’s neutral atmosphere and ionosphere.  Next, Earth’s magnetic field 

and the relevant indices will be covered.  The fourth section will discuss solar activity 

and indices.  The following three sections will discuss the three ionospheric models used 

in this research, to include the IRI model, IFM, and GAIM-GM model.  Finally, the last 

section will briefly highlight previous validation studies done on the IFM and GAIM-GM 

model. 

Earth’s Neutral Atmosphere 

Neutral gas particles in the atmosphere play a key role in the formation of 

planetary ionospheres.  The type and number of particles present at each altitude regulate 

how much ionization can take place when ionization sources are available.  On Earth, 

layers of the atmosphere can be stratified using many different methods.  The most 

practical way to stratify the atmosphere for this research is based on particle types and 

relative concentrations.  In this sense, the atmosphere can be divided into the homosphere 

and heterosphere.  The homosphere is the region from the surface to approximately 

100 km above the surface where gas species are well mixed.  Vertical temperature 

profiles in this region remain fairly constant, between 200 K and 300 K, regardless of 

solar activity (Schunk & Nagy, 2009).  Therefore, the species concentrations in the 

homosphere vary little between periods of high and low solar activity. 
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The heterosphere extends from approximately 100 km to 500 km above Earth’s 

surface and is characterized by diffusive separation of neutral species (Schunk & Nagy, 

2009).  The various species in the heterosphere are separated by mass differences, with 

the concentration of heavier particles decreasing more rapidly with altitude than the 

concentration of lighter particles.  Temperatures in this region increase rapidly with 

altitude until becoming nearly constant above 200 km, but vary significantly with solar 

activity.  The average temperature of the heterosphere can fluctuate between 800 K and 

1200 K during periods of low and high solar activity, respectively (Schunk & Nagy, 

2009). 

The physics behind the species separation in the heterosphere begins with 

hydrostatic equilibrium – the balance between the upward force due to the vertical 

pressure gradient and the downward force of gravity.  Using the ideal gas law, one can 

derive an equation for the neutral number density of a specific species as a function of 

altitude, 𝑧, as 

Equation 
1 

𝑛(𝑧) ≈ 𝑛(𝑧0)exp �
−(𝑧 − 𝑧0)

𝐻
� (1) 

 

where 𝑛(𝑧0) is the neutral number density at a reference altitude, 𝑧0, and 𝐻 is the scale 

height, defined as 

Equation 
2 

𝐻 =
𝑘𝐵𝑇
𝑚𝑔

 (2) 
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For the scale height, 𝑘𝐵 is the Boltzmann constant, 𝑇 is temperature, 𝑚 is the single 

particle mass for that species, and 𝑔 is gravitational acceleration for that altitude.  An 

example of neutral number density as a function of altitude is shown in Figure 1.   

 

 
Figure 1.  Neutral atmosphere density profile.  Particle number densities are from the surface to 
1,000 km taken in 10-km steps.  Specific species include atomic Oxygen (O), molecular Nitrogen (N2), 
molecular Oxygen (O2), Helium (He), Argon (Ar), Hydrogen (H), and atomic Nitrogen (N).  This data 
is for Dayton, OH on 1 January 2013 at 1200L.  Density values were obtained from NASA’s 
MSIS-E-90 Atmosphere Model. 

 

This plot demonstrates the different rates at which the concentration decreases 

with altitude for different atmospheric species.  For example, the number density of a 

heavy particle, such as Argon (Ar), decreases at a faster rate with altitude than that of a 

lighter particle, such as Hydrogen (H).  This variation in species concentration allows for 
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differing ionization rates at various altitudes.  It should also be noted that some species 

have negligible densities at altitudes below 80 km.  Data for this plot was acquired from 

the MSIS-E-90 Atmosphere Model (VITMO, 12 May 2013). 

Earth’s Ionosphere 

Extreme ultraviolet (EUV) and X-ray radiation from the sun enters Earth’s 

atmosphere and interacts with the neutral gases.  Depending on the wavelength of the 

incoming photons, absorption of this radiation can lead to dissociation and/or ionization.  

When photoionization occurs, free electrons and ions create a plasma. The region of 

Earth’s atmosphere where this plasma is dense enough to affect radio wave propagation 

is the ionosphere. 

For practical purposes, Earth’s ionosphere is defined as extending from 

approximately 60 km to 600 km above the surface (Rishbeth, 1988).  The intensity of the 

ionosphere is characterized by the electron density (or electron concentration) at specific 

altitudes.  While the physics in determining electron density values is very complex, the 

most important considerations are the production, loss, and transport of electrons.  Of 

these three, the production rate (or photoionization rate), 𝑃(𝑧,𝛸), can be represented by 

the highly simplified equation 

Equation 
3 

𝑃(𝑧,𝛸) = 𝐼(𝑧,𝛸)𝜂𝜎𝑎𝑛(𝑧) (3) 

 

Referred to as a Chapman production function, this equation incorporates the photon flux, 

𝐼, as a function of altitude, 𝑧, and solar zenith angle, 𝛸, the probability of photon 

absorption resulting in the production of an ion-electron pair, 𝜂, the absorption 
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cross-section, 𝜎𝑎, and the neutral number density, 𝑛, as a function of altitude (Schunk 

and Nagy, 2009).  This Chapman production function simplification can be made by 

assuming: (1) monochromatic solar radiation, (2) a single absorbing species, (3) a 

constant scale height, and (4) a plane and horizontally stratified atmosphere.  Figure 2 

shows the altitude of maximum photoionization, known as the Chapman Layer, as 

determined by the neutral density and incoming solar photon flux. 

 

 
Figure 2.  Photoionization rate in Earth’s atmosphere.  The photoionization rate, P(z), indicated by 
the red, dashed line, is a function of neutral density, n(z), and incoming solar photon flux, I(z).  The 
altitude of maximum production, called the Chapman Layer, occurs where there are both numerous 
neutral gas particles and a large incoming solar photon flux. 

 

Photons of different wavelengths penetrate to different depths of the atmosphere 

depending on their absorption cross-sections.  In addition, a given photon can only ionize 

gases that have an ionization wavelength threshold longer than the wavelength of the 

photon.  Since different regions of the atmosphere have different concentrations of 
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neutral gases, ionization rates vary with altitude.  In some regions, the combination of 

ionization rate and loss mechanisms produces a larger average electron density than in 

adjacent regions.  In addition, electron density is highly dependent on solar zenith angle 

(time of day and season), solar cycle and activity, and geomagnetic activity.  When these 

production and loss mechanisms are combined with transport mechanisms and collisions 

with neutral particles, distinct ionospheric layers are formed.  These layers include the D, 

E, and F (subdivided into F1 and F2) regions and are normally defined as relative peaks in 

the electron density profile.  Figure 3 illustrates a vertical profile of these distinct regions. 

 

 
Figure 3.  Typical ionospheric electron density profiles.  These profiles show electron density as a 
function of altitude along with the D, E, F1, and F2 regions.  The comparison between day and night 
shows which layers decay and which layers persist throughout a 24-hour period. 
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The D region extends from about 60 km to 100 km above the surface and is the 

most complex layer of the ionosphere.  It is controlled by chemical processes between 

molecular ions and neutral gases (Schunk and Nagy, 2009).  The total plasma density in 

this region consists of both positive and negative ions.  The D region usually decays at 

night, but can remain intact or become enhanced during periods of high solar or 

geomagnetic activity. 

The next layer, the E region, extends from 100 km to 120 km in altitude and is 

dominated by photochemistry processes.  Dominant ions include NO+, O2
+, and N2

+ 

(Schunk and Nagy, 2009).  Like the D region, the E region decays at night.  However, 

thin, dense layers of enhanced ionization can appear, called Sporadic E layers.  These 

layers form in an irregular and unpredictable fashion, but can have significant impacts on 

radio wave propagation (Rishbeth, 1988). 

The highest layer, the F region, is subdivided into the F1 region (150 km-250 km), 

the F2 region (250 km-600 km), and the topside ionosphere (600 km-1,500 km).  This  

region, along with its subregions, is dominated by different transport processes.  The F1 

region is dominated by O+ and photochemistry processes (Schunk and Nagy, 2009).  A 

transition from chemical to diffusion process dominance takes place in the F2 region 

while diffusion dominates in the topside ionosphere.  Electron density increases in the F1 

region, reaches a peak in the F2 layer where chemical and diffusion processes are in 

equilibrium, and then continually decreases as the topside ionosphere eventually merges 

with the magnetosphere.  The F1 region vanishes at night while the F2 region varies 

between day and night, but remains present throughout an entire 24-hour period. 
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The ionosphere is often depicted as a profile of electron density, which was 

demonstrated in Figure 3.  Another way of depicting the ionosphere is in terms of total 

electron content (TEC).  This measurement represents the total number of electrons along 

a one square meter path between any two points.  These two points are typically the 

Earth’s surface and the top of the ionosphere.  TEC is measured in TEC units (TECu), 

with 1 TECu corresponding to 1016 electrons/m2.  Figure 4 provides an example of 

global TEC values, plotted using Matrix Laboratory (MATLAB).  By analyzing temporal 

and geographic changes in TEC values, one can study variations of the ionosphere.   

 

 
Figure 4.  Global TEC values for 24 September 2011 at 1200 UTC.  Specific geophysical conditions 
for this time include: Kp = 1.7, Ap = 4, F10.7 = 159 sfu, and F10.7a = 128 sfu.  TEC values are given in 
TEC units (TECu) where 1 TECu = 1016 electrons/m2. 
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Earth’s Geomagnetic Field 

The processes governing ion and electron concentrations in the ionosphere are 

largely influenced by Earth’s magnetic field.  This field can be approximated as a dipole 

inclined about 12° to the Earth’s axis of rotation (Rishbeth, 1988).  At low and 

mid-latitudes, the geomagnetic field lines are closed, allowing few charged particles to 

enter the atmosphere in this region.  However, at higher latitudes, the geomagnetic field 

lines are open and are connected to Earth’s magnetosphere.  Charged particles flow into 

the atmosphere along these field lines.  Thus, the high latitude ionosphere can experience 

significant variations in incoming charged particles, producing aurora and geomagnetic 

storms.  Large changes in charged particle influx at high latitudes can significantly alter 

the density, composition, and circulation of the ionosphere on a global scale for up to 

several days (Schunk and Nagy, 2009). 

K and Kp Indices 

Several indices have been developed to characterize geomagnetic activity, the 

magnetic field deviations on Earth’s surface due to external forces on Earth’s 

geomagnetic field.  One such index, the K index, measures the amplitude of disturbance 

in Earth’s magnetic field at observatories around the world.  Natural variations occur 

daily and are purposely neglected so that only irregular geomagnetic disturbances are 

reported.  The K index is expressed as a unitless number between 0 and 9 on a 

quasi-logarithmic scale and is calculated every 3 hours (Perrone and Franceschi, 1998). 

The Kp index is a planetary index of geomagnetic disturbances.  It is obtained by 

averaging the K index from 13 globally distributed, mid-latitude observatories.  Kp values 

are also calculated every 3 hours and expressed on a quasi-logarithmic scale with values 
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between 0 and 9.  However, unlike the K index, Kp is reported in one-third integer values 

(00, 0+, 1-, 10, 1+, …, 90) (Perrone and Franceschi, 1998).  These values are often 

converted into decimal form (0.0, 0.3, 0.7, 1.0, 1.3, …, 9.0) for use in numerical models. 

ap and Ap Indices 

Another planetary geomagnetic index is the ap index.  This index has the same 

meaning as Kp, but is converted to a linear scale with values between 0 and 400.  Each 

unit corresponds to an approximate flux density change of 2 nT (Perrone and Franceschi, 

1998).  Finally, the Ap index is derived by taking the arithmetic mean of the eight 

previous ap values.  It is reported on the same scale as ap and reflects a 24-hour average of 

geomagnetic activity. 

ACE Kp Index 

This research also investigates an alternate source of Kp index data for use in 

ionospheric models.  The Advanced Composition Explorer (ACE) satellite, positioned 

between the sun and Earth near the L1 Lagrange point (1.5 million km from Earth), 

collects solar wind data to include velocity and magnetic field strength and orientation 

(Caltech, 2013).  Using over two decades of observed Kp data and magnetic flux 

measurements from ACE and similar satellites, Newell et al (2007) developed a coupling 

function to relate these two parameters.  The coupling function used is the rate at which 

magnetic flux is opened at the magnetopause.  Using this function, magnetic flux data 

from the ACE satellite can be used to calculate a corresponding Kp index.  For a more 

detailed description and derivation of this coupling function, see the paper by Newell et al 

(2007). 
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Solar Activity 

The sun undergoes a periodic variation in intensity and activity known as the solar 

cycle.  The period of this cycle varies between 9 and 14 years (Perrone and Franceschi, 

1998).  During this cycle, the sun experiences a period of quiet conditions (solar 

minimum) which increases to a period of active conditions (solar maximum).  The 

frequency of solar flares, coronal mass ejections (CMEs), and charged particle events 

from the sun increases during solar maximum and causes significant variations in Earth’s 

magnetosphere and ionosphere. 

F10.7 Index 

Background solar emissions are represented by the F10.7 index.  This index is a 

measure of the power flux of solar radio noise at the 10.7 cm wavelength (2800 MHz).  

Radio energy at this wavelength originates from the sun’s upper chromosphere and lower 

corona.  It is measured daily at local noon at the Dominion Radio Astrophysical 

Observatory in Penticton, Canada, by scanning the solar disc (Perrone and Franceschi, 

1998).  The flux is reported in solar flux units (sfu), where 1 sfu is equal to  

10−22 W/m2s (Space Weather Prediction Center, 11 May 2013).  The F10.7 index is 

highly correlated with the sunspot number, and is thus considered a proxy for solar 

activity. 

F11.1 Index 

The United States Air Force’s Radio Solar Telescope Network (RSTN) measures 

solar radio noise at a wavelength of 11.1 cm (2695 MHz) using four globally distributed 

solar radio observatories.  The 11.1 cm data includes any power flux associated with solar 

flares that take place during the interval of measurement.  In order to achieve a value 
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similar to the F10.7 index, solar flare data is removed so that only the background solar 

flux is represented.  Acebal and Sojka (2011) found that the background power fluxes 

measured at 10.7 cm and 11.1 cm are closely related.  Therefore, the 11.1 cm power flux 

data, dubbed the F11.1 index, can also be used as a proxy for solar activity.  As with the 

F10.7 index, the F11.1 data is measured in solar flux units.  However, with global coverage 

of four observatories, F11.1 data can be calculated at any interval.  A more frequent 

cadence of F11.1 data, versus the daily measurement of F10.7 data, may produce different 

results when used in place of the F10.7 index in numerical models.  For additional 

information on the F11.1 index, see the paper by Acebal and Sojka (2011). 

International Reference Ionosphere 

The International Reference Ionosphere (IRI) is an empirical standard model of 

the ionosphere with an annually updated database.  Given a specific date, time, and 

location, the IRI provides average ionospheric values of electron density, composition, 

temperature, and TEC from 50 km to 2,000 km.  The IRI gathers data from a worldwide 

network of ionosondes, incoherent scatter radars, topside sounders, satellites, and rockets 

(Bilitza, 2013).  In this research, the specific version used is IRI-2012 which serves as a 

reference model for determining the skill of the more complex physics-based and data 

assimilation models. 

Ionospheric Forecast Model 

The Ionospheric Forecast Model (IFM) is a physics-based, numerical computer 

model that provides a global representation of the ionosphere, given a set of geophysical 

conditions (Space Environment Corporation, 2002).  The model covers altitudes from 
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90 km to 1,600 km and calculates three-dimensional, time-dependent density 

distributions of electrons, H+, He+, NO+, O2
+, N2

+, and O+, as well as ion and electron 

temperatures.  Additional outputs include global distributions of maximum electron 

density values for both the F2 and E regions (NmF2 and NmE), the altitude of these 

maximum electron densities (hmF2 and hmE), as well as vertical TEC values.  The IFM’s 

spatial resolution is 3° latitude by 7.5° longitude, with a vertical resolution that varies 

from 4 km in the E region, to 16 km in the F region, and up to 64 km in the topside 

ionosphere.  The temporal resolution of the model is determined by the user which can be 

as short as 5 minutes (Space Environment Corporation, 2002). 

After using an initial IRI representation of the ionosphere, the IFM is driven by a 

few simple geophysical indices, including 3-hourly Kp, daily Ap, F10.7, and F10.7a (90-day 

average of F10.7 values).  The F10.7 and F10.7a values are used to acquire neutral 

atmospheric densities from the MSIS-E-90 Atmosphere Model, which along with the 

3-hourly Kp and daily Ap values, are used in numerically solving the ion and electron 

continuity, momentum, and energy equations.  Numerical solutions take into account 

several physical processes, including field-aligned diffusion, cross-field electrodynamic 

drifts, ultraviolet (UV) and EUV ion production, auroral electron precipitation, chemical 

reactions, thermospheric winds, neutral density changes, thermal conduction, and elastic 

and inelastic heating and cooling processes (Space Environment Corporation, 2002).  

These physical processes are given different considerations in different regions of the 

ionosphere.  For example, in the E region, transport processes are purposely neglected 

while chemical processes dominate (Space Environment Corporation, 2002).  The output 
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of the IFM provides a background ionospheric state for use in various data assimilation 

models. 

The specific version of the IFM used in this research is IFM v4.8.  At the start of 

this research, the mid-latitude Storm-Time model within this version of IFM only 

accepted 3-hourly Kp values (Zhu, 2013).  In order to provide the ability to test 1-hourly 

Kp values, Dr. Lie Zhu at USU adjusted the Storm-Time model to accept Kp values at a 

1-hourly cadence. 

Global Assimilation of Ionospheric Measurements – Gauss Markov Model 

The Global Assimilation of Ionospheric Measurements – Gauss Markov 

(GAIM-GM) model developed at USU is the primary model of interest in this research.  

The specific version of the model used in this research is USU GAIM-GM 3.0.3.  The 

GAIM-GM model uses the IFM and a Kalman filter for assimilating real-time 

ionospheric measurements.  The primary output is a three-dimensional reconstruction of 

electron density distribution from 92 km to 1,380 km in altitude.  Spatial resolution is 

4.667° latitude (3° latitude poleward of 70°) by 15° longitude for global mode.  Higher 

resolutions can be used for regional modes.  Figure 5 shows the global grid spacing of the 

GAIM-GM model, with the grid points representing the geographical locations of output 

data.  The vertical resolution is 4 km in the E region and 20 km in the F region and above 

(Scherliess et al, 2006).  The model provides output at 15-minute intervals and can be run 

in real-time or historical modes (Schunk et al, 2012).  

In real-time mode, the GAIM-GM model ingests a diverse set of real-time or near 

real-time (within 3 hours of specification) ionospheric measurements from a variety of  
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Figure 5.  Global grid spacing of the GAIM-GM model.  Each gray dot represents the coordinates of 
model output data.  Spatial resolution is 4.667° latitude (3° latitude poleward of 70°) by 
15° longitude. 

 

sources.  For historical mode, which is used in this research, the same set of archived data 

is ingested and the GAIM-GM model produces a single specification (or nowcast) for 

each time step.  In both cases, the uncertainty of the observed data is also ingested for use 

in the Kalman filter analysis. 

GAIM-GM Model Ingest Data Types 

The data sources ingested into the GAIM-GM model include slant TEC 

observations from GPS ground receiver sites, electron density and UV emission 

observations from Defense Meteorological Satellite Program (DMSP) satellites, electron 

density profiles from ionosondes, and TEC from occulting satellites (Schunk et al, 2012).   
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GPS Ground Receivers 

TEC observations are taken by measuring the signal delay along the line of sight 

(LOS) between a GPS satellite and a receiver on the ground (Leonovich, 2002).  A longer 

delay means a greater TEC.  Specifically, each 1 ns of delay corresponds to a TEC of 

2.85 TECu (Mannucci et al, 1998).  In addition, since 1 TECu correlates to a single 

frequency GPS positioning error of 0.162 m, a delay of 1 ns corresponds to a positioning 

error of up to 0.46 m (Garcia-Fernandez, 2006).  The TEC value measured by the signal 

delay is called slant TEC since the LOS may be at any elevation angle.  The intersection 

of the LOS with a thin spherical shell surrounding the Earth at an altitude of 300 km is 

used to scale this value to vertical TEC.  This intersection point is dropped vertically in 

altitude to the surface of the Earth where it is assigned corresponding latitude and 

longitude coordinates (Mannucci et al, 1998).  The resulting location is called the 300 km 

pierce point and the resulting TEC is the vertical TEC.  For the remainder of this thesis, 

TEC will refer to vertical TEC. 

At any moment, a single GPS ground receiver will have a LOS with up to 12 GPS 

satellites.  This means that a given ground receiver can report multiple TEC observations, 

each with a different 300 km pierce point, at the same time.  An example of multiple 

300 km pierce points surrounding the ground receiver location for a single observation 

time is shown in Figure 6. 

COSMIC 

TEC values are also measured by the Constellation Observing System for 

Meteorology, Ionosphere, and Climate (COSMIC).  These occulting, low-Earth orbiting 

satellites measure slant TEC between themselves and GPS satellites (UCAR, 2013).  The  



 

21 

 
Figure 6.  GPS TEC observation 300 km pierce points.  Locations of individual 300 km pierce points 
(blue) associated with a single GPS ground receiver - apbo (red) - located in Antananarivo, 
Madagascar.  The observation time is 1500 UTC on 17 February 2011. 

 

LOS typically grazes the ionosphere from one side of the Earth to the other, making a 

nearly horizontal slant TEC measurement. 

Ionosondes 

Ionosondes transmit electromagnetic waves of varying frequency vertically into 

the atmosphere and then receive any energy reflected from the ionosphere.  The time 

between transmitting and receiving the signal determines the altitude of the reflection and 

the specific frequency used is converted into an electron density.  Using this method, an 

electron density profile of the ionosphere can be generated.  Observations from 

ionosonde sites include the electron density profile, along with hmF2 and NmF2. 
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SSIES 

The Special Sensor for Ions, Electrons, and Scintillation (SSIES) is an instrument 

located on several DMSP satellites.  The sensor measures the ambient electron density 

and temperature, the ambient ion density, and the average ion temperature and molecular 

weight (NGDC, 6 December 2013). 

SSUSI 

UV emissions from the ionosphere are measured by the Special Sensor Ultraviolet 

Spectrographic Imager (SSUSI) (Paxton et al, 1992).  These sensors are located on the 

DMSP-18 satellite.  

SSULI 

Finally, the Special Sensor Ultraviolet Limb Imager (SSULI), located on the 

DMSP-18 satellite, measures UV and EUV emissions from the upper atmosphere and 

ionosphere (NRL, 2013).  It also provides electron density and ionospheric temperature 

data. 

Gauss-Markov Kalman Filter 

The Gauss-Markov Kalman filter uses ionospheric densities obtained from the 

IFM as the background ionospheric density field.  Superimposed on this field are 

perturbations based on observational measurements and their errors.  A statistical model, 

called the Guass-Markov process, is used to evolve the perturbations and the associated 

errors over time.  The total electron density, (𝑁𝑒), at each grid point can be written as 

Equation 
4 

𝑁𝑒 = 𝑁𝑒𝐼𝐹𝑀 + 𝑁𝑒𝑝𝑒𝑟𝑡  (4) 
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where 𝑁𝑒𝐼𝐹𝑀 is the electron density obtained from the IFM and 𝑁𝑒𝑝𝑒𝑟𝑡 represents the 

electron density perturbation derived by the Kalman filter (Scherliess et al, 2006).  The 

perturbation densities evolve over each 15-minute time step and are adjusted as additional 

observations become available.  In addition, a model error covariance evolves in the 

Guass-Markov Kalman filter using the same process as the density perturbations.  This 

error covariance includes the uncertainty of the density perturbations and, in the absence 

of ingested data, simply represents the uncertainties in the specification of the IFM 

background densities.  In order to model the IFM uncertainties, USU performed 1,107 

individual 2-day runs of the IFM with varying external parameters and a wide range of 

climatological variations (Scherliess et al, 2006).  Since these IFM uncertainties are used 

in the absence of ingested data, GAIM-GM model output will not exactly mirror the IFM 

density background when no assimilation data is ingested (Gardner, 2013). 

 When assimilation data is ingested, a quality control analysis of the observations 

is performed.  Observations that are unrealistic or show a large difference from the IFM 

background are rejected and appropriate data uncertainties are assigned.  These 

uncertainties include an instrumental error associated with taking the measurement and 

an error associated with the representativeness of the observation.  The errors are 

assumed to have a Gaussian distribution and are unrelated to each other. 

In short, the Gauss-Markov Kalman filter essentially combines the observation 

data with the physics-based IFM output.  While taking into consideration the 

uncertainties of these measurements, it conducts a least-squares procedure to find the best 

estimate of electron density values.  This best estimate of electron density has the least 
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expected error given the observational measurements, model data, and error statistics 

(Schunk et al, 2004). 

GAIM-Full Physics Model 

USU has also developed a GAIM – Full Physics (GAIM-FP) model which uses 

the Ionosphere-Plasmasphere Model (IPM) as the background physics-based model.  As 

with GAIM-GM, GAIM-FP also uses a Kalman filter for data assimilation, but also 

includes multiple ensemble members and provides output from 90 km to 30,000 km in 

altitude (Schunk et al, 2011).  This thesis does not include any analysis of the GAIM-FP 

model since it is not yet operational. 

IFM/GAIM-GM Validation Studies 

Several validation studies have been done on the IFM.  One study shows that the 

IFM consistently provides a better representation than the IRI when attempting to 

forecast ionospheric densities (Sojka et al, 2007).  Another study compares the IFM TEC 

output to TEC values measured by the Ocean Topography Experiment (TOPEX) satellite.  

The results indicate that the features of the IFM TEC are systematically consistent with 

those of the TOPEX TEC (Zhu et al, 2006).  Other validation studies accomplished by 

Schunk et al (1997) showed overall good agreement with observed features.  Some minor 

discrepancies that were found have been resolved through several IFM revisions. 

The GAIM-GM model has also undergone numerous validation studies to test 

model performance for a variety of geophysical conditions.  Validation of F region peak 

plasma densities (NmF2) over a data-rich region in the mid-latitudes and TEC over data 

sparse regions was accomplished by Scherliess et al (2006).  Sojka et al (2007) verified 
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the GAIM-GM model’s ability to accurately specify NmF2 over Australia.  Another study, 

performed by Decker and McNamara (2007), showed that NmF2 values in Australia 

improved as additional TEC data from nearby GPS sites was ingested into the model.  

Schunk et al (2011) completed a study showing how the GAIM-GM model can overcome 

deficiencies in the IFM and successfully reconstruct specific ionospheric features. 

A unique study was accomplished by Thompson et al (2009) that investigated the 

differences between assimilating raw slant TEC measurements into the GAIM-GM model 

versus assimilating corrected slant TEC measurements, where the TEC contribution from 

the plasmasphere was subtracted.  The study found that subtracting the plasmasphere 

contribution of TEC significantly improved model derived quantities.  The version of the 

GAIM-GM model used in this thesis subtracts plasmasphere TEC.   

All of these studies compared GAIM-GM model output data with independent 

observations that were not ingested into the GAIM-GM model.  One additional study 

found model performance differences between the types of data that were ingested 

(Thompson et al, 2006).  However, the GAIM-GM model was found to be an overall 

improvement on the IFM.  



 

26 

III.  Methodology 

Chapter Overview 

This chapter describes the methodology used in this research.  The first section 

discusses the setup necessary to run the IFM/GAIM-GM model.  In the next section, 

specific analysis periods and IFM configurations are defined.  The third section describes 

the selection of ingest and verification data sources for use in the GAIM-GM model.  The 

specifics of extracting model output data is explained in the fourth section.  Finally, 

various comparison methods used for analysis are discussed. 

IFM/GAIM-GM Model Setup 

The overall method of this research consisted of running the IFM and then using 

the output to run the GAIM-GM model in historical mode.  To examine the sensitivity of 

the IFM and GAIM-GM model to varying Kp and F10.7 cadences, the IFM was provided 

with different input data through the use of data files, which varied how often new Kp and 

F10.7 data was provided to the model.  The resulting IFM output was then used as the 

background for the GAIM-GM model data assimilation process.  For this research, both 

models were run in global mode, using a 15-minute time step. 

The IFM and GAIM-GM model used in this research are both hosted at USU.  A 

Secure Shell Client was used to connect to the USU model servers from the AFIT Linux 

network.  Once the appropriate setup and configuration files were updated, the IFM and 

GAIM-GM model were run and the output files were saved on the USU server.  These 

output files were then transferred to the AFIT network for analysis and plotting using 

MATLAB. 
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IFM/GAIM-GM Model Configurations 

In this research, the IFM and GAIM-GM model were run using several different 

input cadence configurations of Kp and F10.7 values.  In order to test how these different 

cadence configurations impact the models in various environmental conditions, each 

cadence configuration was tested for five 3-day periods representing varying levels of 

solar and geomagnetic activity. 

Cadence Configurations 

Multiple input cadence configurations were used in this study to determine which 

configuration provided the most accurate results.  Each individual configuration provided 

the IFM with updated Kp and F10.7 values at specified intervals.  Currently, AFWA runs 

the IFM using a single, daily forecast value for Kp and F10.7.  When geomagnetic 

storming is expected, AFWA will provide the IFM with a new forecast Kp value for every 

12 hours of the model run (Fenton, 2013).  Since historical mode was used in this 

research, observed Kp and F10.7 values, instead of forecast values, were used.  While the 

Kp index is officially observed every 3 hours and the F10.7 index is officially observed 

daily, both of these indices can be interpolated to provide updated values at a higher 

cadence. 

In order to interpolate these indices, MATLAB’s intrinsic linear interpolation 

function was used on the daily F10.7 observations to provide 3-hourly and 1-hourly F10.7 

values.   Similarly, the 3-hourly Kp observations were linearly interpolated to 1-hourly Kp 

values.  In addition, the eight Kp values observed in a single day were averaged to 

provide a daily Kp value.  An example of the linear interpolation of F10.7 values is shown 

in Figure 7.  The daily, 3-hourly, and 1-hourly F10.7 values were plotted for a 9-day  
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Figure 7.  Daily and interpolated F10.7 values for 19-27 September 2011.  The blue line represents 
daily observed F10.7 values; the red line represents 3-hourly interpolated F10.7 values; and the green 
line represents 1-hourly interpolated F10.7 values.  The first data point at 21 UTC on 19 September 
correlates to the time of day when the daily F10.7 value is officially observed.   

 

period.  The plot demonstrates how linearly interpolating F10.7 values provided a more 

gradual increase or decrease in solar activity versus the observed data which essentially 

created a daily step function. 

Combining the averaged and interpolated Kp and F10.7 values, five cadence 

configurations were created.  These configurations are defined in Table 1. 

Alternate Data Source Configurations 

Alternate sources for solar and geomagnetic activity are available and were used 

in addition to interpolating observed Kp and F10.7 values.  Solar wind speed and magnetic 

configuration data from the ACE satellite was used to derive an alternate Kp value,  
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Table 1.  List of cadence configurations used in the IFM. 

 
Configuration Code Kp Cadence F10.7 Cadence 

KdFd Daily Daily 
K3Fd 3-hourly Daily 
KdF3 Daily 3-hourly 
K3F3 3-hourly 3-hourly 
K1F1 1-hourly 1-hourly 

 

available at a 1-hourly cadence.  F11.1 data, used in place of F10.7 data, was calculated at a 

1-hourly interval.  Unfortunately, some F11.1 data were missing due to the relocation of 

the RSTN observatory in Palehua, Hawaii.  With only three other observatories, this 

produced a data void of up to 5 hours daily.  Using 1-hourly F11.1 data would have 

required interpolation of up to five values per day.  Therefore, 3-hourly F11.1 values were 

used in this research so that at most, only one value per day required interpolation. 

These alternate Kp and F11.1 values were used to create three additional IFM input 

cadence configurations.  Table 2 defines these additional configurations. 

 

Table 2.  List of alternate data source cadence configurations used in the IFM. 

 
Configuration 

Code 
Kp 

Cadence 
ACE Kp 
Cadence 

F10.7 
Cadence 

F11.1 
Cadence 

K1Fd(ACE) - 1-hourly Daily - 
K3F3(F11) 3-hourly - - 3-hourly 

K1F3(ACE/F11) - 1-hourly - 3-hourly 
 

Analysis Periods 

In order to properly analyze the sensitivity of IFM/GAIM-GM over a range of 

environmental conditions, five 3-day periods were chosen for analysis so that different 

levels of solar and geomagnetic activity could be tested.  Daily observations of Kp, F10.7, 
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and solar flare count, gathered from the National Weather Service’s Space Weather 

Prediction Center (SWPC), were used to determine the optimal periods for analysis 

(Space Weather Prediction Center, 25 July 2013).  The SWPC data sets from the years 

2000 to 2012 was filtered in order to find the desired conditions.  Periods combining high 

and low solar flare activity with high and low geomagnetic activity were selected.  In 

addition, a period of low solar flare activity with a high F10.7 (representative of quiet solar 

maximum conditions) and low Kp was tested. 

Table 3 summarizes the periods selected for analysis.  The periods covering low 

solar activity include as few solar flares as possible, while the two periods of high solar 

activity include multiple C-class and M-class flares, with one X-class flare during the 

High Solar / Low Geo period.  The high F10.7 period includes a few C-class flares, but a 

fairly consistent high F10.7 through the period.  As for Kp, both periods of high 

geomagnetic activity include observations were the Kp index is at least 5.0, indicative of 

geomagnetic storming conditions.  The low geomagnetic periods include Kp values of 2.0 

or below. 

 

Table 3.  List of periods selected for analysis based on the number of solar flares (C-class, M-class,  
X-class), range of F10.7, and range of Kp. 

 
Environmental 

Condition Analysis Days # Flares 
(C,M,X) 

F10.7 Range 
(sfu) 

Kp 
Range 

Low Solar / Low Geo 19 – 21 Aug 2010 0,0,0 77 – 80 0.0 – 1.3 
Low Solar / High Geo 2 – 4 May 2010 1,0,0 81 – 83 1.0 – 6.0 
High Solar / Low Geo 23 – 25 Sep 2011 17,17,1 159 – 192 0.0 – 2.0 
High Solar / High Geo 17 – 19 Feb 2011 39,5,0 107 – 122 0.0 – 5.0 
High F10.7 / Low Geo 10 – 12 Nov 2011 12,0,0 165 – 175 0.0 – 2.0 
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Because the IFM and GAIM-GM model require one “warm-up” day before the 

output is usable for analysis, both models were actually run for more than three days.  All 

GAIM-GM model runs were executed for four days, starting the day prior to the first day 

of each analysis period listed in Table 3.  Likewise, each IFM run was completed for five 

days, starting the day prior to the first day of the GAIM-GM model run.  This method 

ensured that the IFM solution was not contaminated by an initial IRI representation of the 

ionosphere and that the GAIM-GM model had ingested a full 24 hours worth of data 

prior to providing output values for analysis (Space Environment Corporation, 2002). 

IFM/GAIM-GM Model Test Cases 

A list of IFM/GAIM-GM test cases was generated to combine the cadence 

configurations with the selected analysis periods.  In addition to these test cases, the 

GAIM-GM model’s response to a lack of ingested data was analyzed.  Since the output of 

the GAIM-GM model without ingested data differs from the IFM output, two additional 

GAIM-GM model runs were completed to analyze how various cadence configurations 

respond to the lack of ingested data.  The first of the additional GAIM-GM model runs 

did not provide any ingested data for the entire 3-day analysis period, while the second 

run used ingested data only for the first and third analysis days, with no ingested data on 

the second analysis day.  This was done to examine how the GAIM-GM model output 

responds when ingested data is abruptly discontinued and reintroduced.  Both of these 

additional model runs were completed for the “High Solar / High Geo” period and for all 

five cadence configurations listed in Table 1.   

Table 4 summarizes all IFM/GAIM-GM model runs.  Model runs 1-40 required 

running both the IFM and GAIM-GM model, while model runs 41-50 required only  
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Table 4.  List of all IFM/GAIM-GM model runs. 

 
Run # Period IFM Configuration GAIM-GM Notes 

1 Low Solar / Low Geo KdFd - 
2 Low Solar / Low Geo K3Fd - 
3 Low Solar / Low Geo KdF3 - 
4 Low Solar / Low Geo K3F3 - 
5 Low Solar / Low Geo K1F1 - 
6 Low Solar / Low Geo K1Fd(ACE) - 
7 Low Solar / Low Geo K3F3(F11) - 
8 Low Solar / Low Geo K1F3(ACE/F11) - 
9 Low Solar / High Geo KdFd - 
10 Low Solar / High Geo K3Fd - 
11 Low Solar / High Geo KdF3 - 
12 Low Solar / High Geo K3F3 - 
13 Low Solar / High Geo K1F1 - 
14 Low Solar / High Geo K1Fd(ACE) - 
15 Low Solar / High Geo K3F3(F11) - 
16 Low Solar / High Geo K1F3(ACE/F11) - 
17 High Solar / Low Geo KdFd - 
18 High Solar / Low Geo K3Fd - 
19 High Solar / Low Geo KdF3 - 
20 High Solar / Low Geo K3F3 - 
21 High Solar / Low Geo K1F1 - 
22 High Solar / Low Geo K1Fd(ACE) - 
23 High Solar / Low Geo K3F3(F11) - 
24 High Solar / Low Geo K1F3(ACE/F11) - 
25 High Solar / High Geo KdFd - 
26 High Solar / High Geo K3Fd - 
27 High Solar / High Geo KdF3 - 
28 High Solar / High Geo K3F3 - 
29 High Solar / High Geo K1F1 - 
30 High Solar / High Geo K1Fd(ACE) - 
31 High Solar / High Geo K3F3(F11) - 
32 High Solar / High Geo K1F3(ACE/F11) - 
33 High F10.7 / Low Geo KdFd - 
34 High F10.7 / Low Geo K3Fd - 
35 High F10.7 / Low Geo KdF3 - 
36 High F10.7 / Low Geo K3F3 - 
37 High F10.7 / Low Geo K1F1 - 
38 High F10.7 / Low Geo K1Fd(ACE) - 
39 High F10.7 / Low Geo K3F3(F11) - 
40 High F10.7 / Low Geo K1F3(ACE/F11) - 
41 High Solar / High Geo KdFd No ingested data 2nd day 
42 High Solar / High Geo K3Fd No ingested data 2nd day 
43 High Solar / High Geo KdF3 No ingested data 2nd day 
44 High Solar / High Geo K3F3 No ingested data 2nd day 
45 High Solar / High Geo K1F1 No ingested data 2nd day 
46 High Solar / High Geo KdFd No ingested data entire period 
47 High Solar / High Geo K3Fd No ingested data entire period 
48 High Solar / High Geo KdF3 No ingested data entire period 
49 High Solar / High Geo K3F3 No ingested data entire period 
50 High Solar / High Geo K1F1 No ingested data entire period 
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GAIM-GM model runs, using the same IFM output from model runs 25-29.  With both 

the IFM and GAIM-GM model providing an output data file for every 15-minute time 

step, 288 output files were generated for each the IFM and GAIM-GM model for each 

3-day analysis period.  Overall, a total of 25,920 model output files were analyzed for this 

study. 

Ingest Data Sources 

A diverse set of archived ingest data sources was available through USU for use 

in this research, which included most of the sources that the GAIM-GM model is capable 

of ingesting.  Because the specific ingest data sources used in a particular GAIM-GM 

model run are controlled by the user, the GAIM-GM model can be run using all ingest 

data sources, a subset of ingest data sources, or no ingest data sources at all.  For this 

research, GAIM-GM model runs 1-45 used a small subset of ingest data sources while 

GAIM-GM model runs 46-50 were completed without using any ingest data sources.  

Ingest Data Sites 

In order to run the GAIM-GM model in a similar manner as AFWA, a similar set 

of data sources was used in this research.  The data sources used by AFWA include 72 

GPS ground receiver sites, 18 ionosonde sites, SSIES sensors on DMSP satellites 15-18, 

SSUSI sensors on DMSP-18, SSULI sensors on DMSP-18, and radio occultation data 

from COSMIC (Fenton, 2013).  Unfortunately, SSUSI and SSULI data was not available 

to USU.  Therefore, these two data sources were not ingested into the GAIM-GM model 

for this research (Gardner, 2013).  In addition, several of the GPS and ionosonde sites 

currently used by AFWA were unavailable to USU.  Therefore, 23 GPS sites and 2 
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ionosonde sites were replaced with nearby available sites in order to maintain the same 

number of ingest data sites used by AFWA. 

To find replacement sites, a list of the non-ingested 2,849 GPS sites and 47 

ionosonde sites available to USU was filtered to find the closest sites, via the Great Circle 

distance, which had available data during the analysis periods.  Data availability was 

determined by viewing the raw data archives available through multiple agencies online 

(CDDIS, 2013;  NGDC, August 2013;  NGS, 2013;  UCSD, 2013).  Once replacement 

sites were selected, the final list of ingest data sites was prepared for use in the 

GAIM-GM model.  Figure 8 shows the difference in location of the ingest GPS and 

ionosonde data sites used by AFWA and the GPS and ionosonde data sites used in this 

research. 

Verification Data Sites 

Data sources used for verification in this study included GPS ground station TEC 

measurements and ionosonde electron density profile measurements.  The specific GPS 

and ionosonde sites used were selected from the remaining data sites available to USU 

(not including the selected ingest data sites).  It was desired that verification data sites be 

globally distributed, have abundant data available, and not be in regions directly 

influenced by the ingest data sites.  By choosing verification data sites away from ingest 

data sites, this study could better analyze how the GAIM-GM model perturbs the global 

ionosphere based on the ingested data. 

A correlation study was performed to ensure verification data sites were not 

located in regions of the model output directly influenced by ingest data sites.  To 

accomplish this, the GAIM-GM model was first run without ingested data for a 3-day  
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Figure 8.  Locations of GAIM-GM model ingest data sites.  The 72 GPS ground receiver sites used by 
AFWA are depicted as black triangles, while the 72 GPS sites used in this research are depicted as 
red circles.  The 18 ionosonde sites used by AFWA are depicted as black squares, while the 18 
ionosonde sites used in this research are depicted as blue stars. 

 

period and then was run a second time for the same period, but included a single GPS 

ingest data site for only one specific time step (0015 UTC on the second day).  The 

output from both model runs was compared by subtracting TEC values of the model run 

without ingested data from the TEC values of the model run using the single GPS ingest 

data site at 0015 UTC.  The difference in TEC values highlighted the region of the model 

output that was directly influenced by this single GPS ingest data site.  Figure 9 illustrates 

this region of influence, or correlation length, near the actual GPS ingest data site. 

Introducing a single GPS ingest data site results in a region of influence that 

encompasses approximately the four closest GAIM-GM model grid points to the ingest 

data site.  Therefore, in order to select verification data sites outside of this correlation 

length, the four closest grid points to any of the 72 GPS ingest data sites were identified.   
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Figure 9.  GAIM-GM model TEC difference between model run without ingested data and model 
run using a single GPS ingest data site at 0015 UTC on 23 September 2011.  In this example, the GPS 
ground receiver site (bogt), indicated by the red dot, is located in Bogota, Columbia.  GAIM-GM 
model grid points are represented by the gray dots.  The TEC difference is given in TEC units 
(TECu) where 1 TECu = 1016 electrons/m2.  Note that the TEC difference was multiplied by 100 in 
order to more easily identify the region of influence. 

 

Any of the remaining GPS sites that were closest to any of these identified grid points 

were eliminated.  This reduced the list of possible GPS verification data sites from 2,826 

to 313.  The same process was done with the ionosonde sites and the list of possible 

ionosonde verification data sites was reduced from 45 to 26. 

All of the selected GPS and ionosonde data sites were run through the GAIM-GM 

model as ingest data sites for each analysis period so that the raw data was decoded, and 

thus usable for analysis.  For example, raw GPS TEC observations include TEC from the 

surface to the GPS satellite (at approximately 20,000 km).  Running the raw data through 

the GAIM-GM model reduced the TEC observation to only include TEC from the surface 

to 1,380 km (the upper boundary of the GAIM-GM model output).  The remainder of the 

output from these GAIM-GM model runs was discarded. 
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Finally, since GPS and ionosonde data was not available for each individual time 

step for each analysis period, sites with limited data availability were also eliminated.  To 

determine which data sites to eliminate, the number of time steps with available data was 

counted for each site.  Each day had ninety-six 15-minute time steps, or 288 time steps 

for each 3-day analysis period, which equated to a total of 1,440 time steps for all five 

analysis periods.  For the GPS data, any site that provided data for less than 85% of the 

time steps in any single analysis period or less than 95% of the entire 1,440 time steps 

was eliminated.  Using these thresholds reduced the list of 313 GPS data sites to 60. 

For the ionosonde sites, data availability was much more limited, because some 

locations did not report any data during the analysis periods.  This left 22 of the 

remaining 26 ionosonde data sites with some, but very limited, data available for 

analysis. 

 This final list of 60 GPS and 22 ionosonde data sites was used for verification 

throughout this research.  Figure 10 shows the locations of the GPS and ionosonde 

verification sites. 

In order to illustrate the distribution between ingest and verification data sites, 

Figure 11 shows the locations of all ingest and verification GPS data sites and Figure 12 

shows the locations of all ingest and verification ionosonde data sites. 
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Figure 10.  Locations of selected verification data sites.  The 60 GPS ground receiver sites are 
depicted as red circles and the 22 ionosonde sites are depicted as blue stars. 

 

 

 
Figure 11.  Locations of selected ingest and verification GPS data sites.  The 72 ingest data sites are 
depicted as green squares and the 60 verification data sites are depicted as purple diamonds. 
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Figure 12.  Locations of selected ingest and verification ionosonde data sites.  The 18 ingest data sites 
are depicted as green squares and the 22 verification data sites are depicted as purple diamonds. 

 

Model Output 

Final analysis in this research required output from the IRI model, IFM, and 

GAIM-GM model.  IRI values were obtained by using a separate Fortran program, while 

IFM and GAIM-GM model output data was extracted using MATLAB. 

IRI Values 

Once observed data from all verification sites was collected, the corresponding 

IRI values were calculated for each data site.  For GPS data sites, this included 

calculating the IRI TEC value for each 300 km pierce point for every time step (see 

Figure 6).  For ionosonde data sites, IRI values of hmF2, NmF2, and Ne at various altitudes 

were calculated at each time step.  IRI Fortran subroutines available from NASA were 

used to calculate the IRI values for each GPS and ionosonde data site (VITMO, 
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10 September 2013).  For each observation, the subroutine read in the year, day, time, Ap, 

F10.7, and geographic coordinates, and then calculated Ne every 10 km from the surface to 

2,000 km in altitude.  The same subroutine used these values to find hmF2 and NmF2, as 

well as TEC from the surface to 1,380 km, which matched the upper boundary of the 

GAIM-GM model output.  The IRI model includes multiple options that can be turned on 

or off for use in these calculations.  See Appendix A for a list of specific IRI model 

settings used in this research. 

IFM/GAIM-GM Model Output 

After completing all IFM and GAIM-GM model runs, the corresponding output 

data was extracted from the NetCDF output files using a MATLAB toolbox called 

nctoolbox.  For TEC, hmF2, and NmF2 data, MATLAB’s intrinsic 2-dimensional linear 

interpolation function was used to interpolate the corresponding model value at the 

geographic coordinates of each verification site.  For Ne data, a similar 3-dimensional 

intrinsic linear interpolation function was used to interpolate model Ne values at the 

geographic coordinates and altitude of each Ne observation.  A single text file was 

created, using MATLAB, for each time step which included a list of all verification 

observations, along with each corresponding IRI value, and the GAIM-GM model TEC, 

hmF2, NmF2, and Ne value for each of the eight IFM cadence configurations.  A second 

text file created for each time step included the corresponding IFM TEC, hmF2, NmF2, and 

Ne values.  With all data for each time step collected and combined, analysis of the data 

could begin. 
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Analysis Methods 

Verification of the TEC, hmF2, NmF2, and Ne data was accomplished using several 

methods.  The overall goal of each analysis method was to identify differences in 

accuracy between the various cadence configurations. 

Mean Absolute Error 

One analysis method used was the Mean Absolute Error (MAE).  This method 

found the average difference between the observed values and the model output (Jolliffe 

and Stephenson, 2012).  For TEC values, MAE was calculated as 

Equation 
5 

𝑀𝐴𝐸𝑇𝐸𝐶 =  
∑ |𝑇𝐸𝐶𝑜𝑏𝑠 − 𝑇𝐸𝐶𝑚𝑜𝑑𝑒𝑙|𝑁

𝑁𝑇𝐸𝐶
 (5) 

where the summation was over 𝑁, the number of observed TEC values during the desired 

time period.  A separate MAE was calculated for each cadence configuration for each 

time period.  Lower MAE values indicate more accurate output.  The same calculations 

were completed for hmF2, NmF2, and Ne values. 

Root Mean Square Error 

Another analysis method used was the Root Mean Square Error (RMSE).  This 

method used the squared difference between the observed value and the model output 

value.  The RMSE was calculated for TEC values as 

Equation 
6 

𝑅𝑀𝑆𝐸𝑇𝐸𝐶 =  �
∑ (𝑇𝐸𝐶𝑜𝑏𝑠 − 𝑇𝐸𝐶𝑚𝑜𝑑𝑒𝑙)2𝑁

𝑁𝑇𝐸𝐶
 (6) 

The square of these differences was summed over all observed values of TEC during the 

desired time period.  As with the MAE, a separate RMSE was calculated for each 



 

42 

cadence configuration for each time period.  These calculations were done for all data 

types.  Lower RMSE values indicate greater accuracy. 

Skill Score 

 The primary analysis method used in this research was skill score.  The skill score 

compared the accuracy of the model output to the accuracy of a reference model or 

climatology.  The IRI model served as the climatological reference model in this 

research.  The first step in determining the skill score was to calculate the score of both 

the model of interest and the IRI model.  The score was simply the RMSE (see 

Equation 6).  The skill score was then given by 

Equation 
7 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  �1.0 −
𝑀𝑜𝑑𝑒𝑙 𝑅𝑀𝑆𝐸
𝐼𝑅𝐼 𝑅𝑀𝑆𝐸

� × 100 (7) 

As with the previous methods, a separate skill score was calculated for each cadence 

configuration and all data types for each time period.  Skill scores are expressed as 

percentages, where a skill score of 100% indicates that the model results exactly matched 

the observations while a skill score of 0% indicates that the model results were equivalent 

to the IRI model values.  Negative percentages indicate that IRI values were more 

representative of the observed conditions than the model output (Sojka et al, 2007). 

 In this research, a variety of skill score analyses were investigated.  These 

included calculating GAIM-GM model skill scores for each 15-minute time step, hourly, 

3-hourly, daily, and for the entire 3-day period.  In addition, skill scores were calculated 

for smaller regional areas.  Skill scores were also calculated using a fewer number of 

verification sites.  All of these analyses were done to examine whether different length 

time periods, different subregions of the Earth, or smaller verification datasets generated 
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different skill score values.  Finally, skill scores for the IFM were calculated as a way to 

quantify GAIM-GM model improvements over the IFM. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter presents the analysis and results of this research.  First, a thorough 

analysis is done on the various cadence configurations used in the IFM and GAIM-GM 

model using multiple comparison methods.  Next, the effect of eliminating data ingested 

into the GAIM-GM model is analyzed.  Finally, the results of using alternate sources for 

Kp and F10.7 data are discussed. 

Cadence Analysis 

The objective of the cadence analysis was to identify differences in model output 

between the various cadence configurations.   Therefore, a specific value of skill score, 

RMSE, or MAE is not necessarily important.  Rather, the variation in scores or errors 

between the different configurations is of interest.   Initially, all three analysis methods 

were tested to determine the optimal method for comparisons.   

GAIM-GM Model TEC Skill Scores 

The first comparison is done on the GAIM-GM model TEC output using skill 

scores.  Figure 13 shows the TEC skill scores for each cadence configuration for the High 

Solar / Low Geo period.  This figure contains a wealth of information worth explaining in 

detail since the majority of the figures in this chapter will contain the same types of 

information. 

The uppermost subplot shows the color-coded skill scores for each cadence 

configuration.  Skill score values are listed on the left vertical axis and range from -25% 

to 75%.  The black dashed line represents the number of individual observations used in  
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Figure 13.  GAIM-GM hourly TEC skill scores for High Solar / Low Geo.  The period ranges from 
23 September 2011 at 0000 UTC to 25 September 2011 at 2345 UTC.  Skill scores for the KdFd, 
K3Fd, KdF3, K3F3, and K1F1 cadence configurations are plotted in the uppermost subplot, along 
with the number of GPS observations used to calculate the skill scores.  The middle subplot displays 
daily observed F10.7 values (blue, solid line) and 3-hourly observed Kp values (red, dashed line).  The 
lower subplot displays solar flare activity during the period, with each flare plotted at the time of 
maximum flare emission. 

 

calculating each skill score.  In the case of hourly TEC skill scores, the number of 

observations is the number of individual GPS 300 km pierce point observations over the 

entire hour.  The right vertical axis lists the scale for this data and ranges from 0 to 2,000 

for TEC calculations.  The number of observations is plotted to ensure that substantial 

observational data is available for each calculation and that skill score variations are not a 

result of a sudden increase or decrease in available observations. 

The middle subplot shows the observed F10.7 and Kp values during the 3-day 

analysis period.  The observed, daily F10.7 values are represented by the solid blue line 

with corresponding values on the left vertical axis (ranging from 60 sfu to 200 sfu).  
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Observed, 3-hourly Kp values are shown by the red dashed line with corresponding 

values on the right vertical axis (ranging from 0 to 7). 

The lower subplot displays solar flare activity during the 3-day analysis period.  

Each individual asterisk symbol represents a single solar flare and is plotted at the time of 

maximum flare emission.  The asterisk is color coded to represent the class of solar flare, 

with green, orange, and red indicating C-Class, M-Class, and X-Class flares, respectively.  

Finally, the horizontal axis displays the number of hours since the beginning of the 3-day 

analysis period.  The format for the date is YYYY DDD HHMM UTC, representing the 

year, day of year, hour, and minute, respectively, in Coordinated Universal Time (UTC).   

As for the actual data, Figure 13 shows that even though the skill score values 

vary over the 3-day analysis period, they primarily stay above 0%.  This indicates that, 

overall, the GAIM-GM model performs better than the IRI model, which is consistent 

with previous validation studies.  The skill scores also show little variation between the 

individual cadence configurations.  A few of the data points show differences up to about 

8%, but no specific configuration is consistently better or worse during the entire period.  

Additionally, it appears that the period of greatest variation, between hours 45 and 51, 

occurs during and in the few hours following a period of multiple M-class solar flares. 

Since the skill score indicates how well the GAIM-GM model is performing 

compared to the IRI model, a low or negative skill score does not necessarily indicate 

poor GAIM-GM model output.  It simply means that the IRI model happened to be better 

at reproducing the ground truth value.  Similarly, a high skill score simply means that the 

GAIM-GM model outperformed the IRI model, but the GAIM-GM output may still have 

a large error when compared to observed values. 
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To demonstrate this point, Figure 14 shows an example of the TEC score (or 

RMSE) of a single GAIM-GM model run output, the TEC score of the IRI model, and the 

resulting TEC skill score.  Around hour 26, the skill score is close to 0%, since the 

GAIM-GM model and IRI model scores are nearly equivalent.  At this particular point, 

the GAIM-GM model has a RMSE of 4 TECu.  At hour 33, the skill score is nearly 25%, 

indicating that the GAIM-GM model has outperformed the IRI model.  However, at this 

point, the GAIM-GM model has a RMSE of 6.6 TECu.  Comparing hours 26 and 33 

indicates that the GAIM-GM model has more skill at hour 33, but has a lower RMSE 

(and thus more accuracy) at hour 26.  This means that skill score itself cannot be used as 

a quantitative comparison method.  However, since all cadence configurations are being 

compared to the same reference model (IRI), skill scores can be used to see variations 

between different model runs. 

 

 
 

Figure 14.  Comparison of skill score and RMSE.  The plot shows the GAIM-GM TEC skill score 
and RMSE for the KdFd cadence configuration, along with the IRI RMSE for 17 February 2011 at 
0000 UTC to 19 February 2011 at 2345 UTC.  Positive skill scores occur when the GAIM-GM RMSE 
is less than the IRI RMSE, and negative skill scores occur when the GAIM-GM RMSE is greater 
than the IRI RMSE. 
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The skill scores for the High Solar / High Geo period are shown in Figure 15.  

Skill scores for this period start off by showing slight variations between cadence 

configurations, but by hour 5, become very similar.  This continues through the period 

with no individual configuration showing any significant improvement over the others. 

  

 
Figure 15.  GAIM-GM hourly TEC skill scores for High Solar / High Geo.  The period ranges from 
17 February 2011 at 0000 UTC to 19 February 2011 at 2345 UTC.  The plot format is the same as 
Figure 13. 

 

Figure 16 displays the skill score results for the Low Solar / Low Geo period.  

Results for this period indicate only a few minor variations in skill score which are most 

noticeable for hours 6-9, 30-33, and 40-42.  The greatest range of skill scores during 

these periods only reaches about 4%.  Therefore, there is no significantly better or worse 

performing configuration during this period. 
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Figure 16.  GAIM-GM hourly TEC skill scores for Low Solar / Low Geo.  The period ranges from 
19 August 2010 at 0000 UTC to 21 August 2010 at 2345 UTC.  The plot format is the same as Figure 
13. 

 

 Similar results are seen during the Low Solar / High Geo period, displayed in 

Figure 17.  The most noticeable variation is seen between hours 40 and 44.  However, the 

maximum range of skill scores during this timeframe is just over 7% at hour 42.  The rest 

of the 3-day period shows fairly consistent skill scores, regardless of cadence 

configuration. 

TEC skill score results for the final analysis period, High F10.7 / Low Geo, are 

shown in Figure 18.  For this period, the greatest difference in skill score occurs at 

hour 1, with a range of 7.3%.  The remainder of the period shows little or no variations 

between cadence configurations.  It should also be noted that this is the only analysis 

period in which the skill score remains positive for the entire 3-day period. 
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Figure 17.  GAIM-GM hourly TEC skill scores for Low Solar / High Geo.  The period ranges from 
2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.  The plot format is the same as Figure 13. 

 

 
Figure 18.  GAIM-GM hourly TEC skill scores for High F10.7 / Low Geo.  The period ranges from 
10 November 2011 at 0000 UTC to 12 November 2011 at 2345 UTC.  The plot format is the same as 
Figure 13. 
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GAIM-GM Model hmF2, NmF2, and Ne Skill Scores 

 Next, a similar skill score analysis is done on hmF2, NmF2, and Ne profiles.  It 

quickly becomes apparent that skill score results for these parameters are quite variable, 

with rapid changes in skill scores from one hour to the next.  As seen in Figure 19, hmF2 

skill score values for the High Solar / High Geo period show a large variation over the 

3-day period.  This variation in skill score is partially due to the fact that the GAIM-GM 

model’s vertical resolution limits the model’s ability to capture the exact level of 

maximum electron density.  In addition, there are much fewer verification data sites for 

validating hmF2 values than there are when validating TEC measurements.  Also, since 

many ionosondes don’t report observations every hour, a different set of ionosonde 

observations is often used from one hour to the next.  Regardless of this large variation 

over the period, it is noted that all cadence configurations follow the same trend.  As seen 

with the TEC skill scores, there are only slight variations in hmF2 skill scores between the 

various configurations, with a maximum skill score range of 13% during the period.  

Also, overall hmF2 skill scores are much lower than TEC skill scores, with negative skill 

scores over much of the period.  This indicates that the hmF2 model output is less accurate 

than the IRI model for the majority of the period.  The same results are apparent in the 

hmF2 skill scores for the other four analysis periods, as well as NmF2 and Ne profile skill 

scores for all five analysis periods.  Therefore, these results are not included in this thesis. 

GAIM-GM Model TEC Skill Scores for Various Time Intervals 

 The analysis thus far shows little skill score variation between cadence 

configurations.  Furthermore, hmF2, NmF2, and Ne analysis produces results with greatly 

varying skill score values over the analysis period.  Therefore, since the availability of  
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Figure 19.  GAIM-GM hourly hmF2 skill scores for High Solar / High Geo.  The period ranges from 
17 February 2011 at 0000 UTC to 19 February 2011 at 2345 UTC.  The plot format is the same as 
Figure 13, except that the right axis of the upper subplot lists the number of hourly ionosonde 
observations used to calculate the skill scores. 

 

TEC verification data is more consistent, TEC is the sole parameter used for the 

remainder of this analysis. 

 The use of hourly skill scores has revealed only minor variations between cadence 

configurations.  Additional skill scores are now calculated using various time intervals in 

an attempt to identify greater variation between configurations.  Table 5 lists the skill 

scores for each analysis period and each cadence configuration, calculated for the entire 

3-day period, as well as the range of skill scores for each period. 

The largest skill score range of 1.60% occurs for the High Solar / Low Geo 

period, while the range for all other periods is less than 1%.  This confirms that there is  
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Table 5.  Skill scores (%) calculated for the entire 3-day period for each analysis period and each 
cadence configuration.  The range indicates the difference between the maximum and minimum 

cadence configuration skill score for each period.  Skill scores in red bold indicate the highest skill 
score for each period. 

 
Environmental 

Condition KdFd K3Fd KdF3 K3F3 K1F1 Range 

Low Solar / Low Geo 13.91 14.03 14.12 14.09 14.45 0.54 
Low Solar / High Geo 22.21 21.36 22.07 21.22 22.00 0.99 
High Solar / Low Geo 15.87 15.68 15.59 15.16 16.76 1.60 
High Solar / High Geo 16.28 16.23 16.14 15.94 16.10 0.34 
High F10.7 / Low Geo 43.84 43.78 43.69 43.61 43.16 0.68 

 

little variation between the five cadence configurations over the entire three days of each 

analysis period.  In addition, Table 5 indicates that using daily values of both Kp and F10.7 

results in the highest skill score in three of the five periods, while using hourly values of 

both Kp and F10.7 yields the highest skill scores for the remaining two periods. 

Additional skill scores are calculated for each 15-minute time step, 3-hour period, 

and 24-hour period.  However, none of these calculations produce any significantly 

different results from the hourly skill scores previously accomplished.    

GAIM-GM Model RMSE and MAE 

 As another attempt to identify variations between cadence configurations in the 

GAIM-GM model, the hourly TEC RMSE and MAE are calculated.  Figure 20 shows the 

RMSE for each cadence configuration for the Low Solar / High Geo period.  The RMSE 

of the IRI model is also plotted for comparison.  The RMSE error values of the 

GAIM-GM model output range from 3 TECu to 6 TECu over the period.  However, there 

is very little difference between the cadence configurations.  The greatest variation occurs 

at hour 19, where the range of RMSE is only 0.56 TECu.  A similar pattern of little or no 
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variation between cadence configurations is seen in the RMSE analysis of the other four 

periods, and is not included in this thesis. 

 

 
Figure 20.  GAIM-GM hourly TEC RMSE for Low Solar / High Geo.  The period ranges from 
2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.  RMSE values for the KdFd, K3Fd, KdF3, 
K3F3, and K1F1 cadence configurations are plotted in the uppermost subplot, along with the RMSE 
for the IRI model.  The plot format for the middle and lower subplots is the same as Figure 13. 

 

The MAE is also calculated for TEC for each analysis period.  The results for the 

Low Solar / High Geo period are displayed in Figure 21, along with the MAE of the IRI 

model for comparison.  As with the RMSE analysis, MAE values of the GAIM-GM 

model output range over a small interval (2.21 TECu-4.60 TECu).  In addition, the 

maximum range between cadence configurations occurs at hour 19, with a MAE range of 

only 0.53 TECu.  Not shown in this thesis are the MAE analyses for the remaining 

analysis periods, which all show very similar results. 
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Figure 21.  GAIM-GM hourly TEC MAE for Low Solar / High Geo.  The period ranges from 
2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.  MAE values for the KdFd, K3Fd, KdF3, 
K3F3, and K1F1 cadence configurations are plotted in the uppermost subplot, along with the MAE 
for the IRI model.  The plot format for the middle and lower subplots is the same as Figure 13. 

 

As a result of the TEC skill score, RMSE, and MAE analyses, it is apparent that 

the various comparison methods used provide similar results – little or no variation 

between cadence configurations.  In addition, it is determined that hmF2, NmF2, and Ne 

skill scores are too variable over each 3-day analysis period to provide useful 

interpretation.  Therefore, the remainder of this analysis will use hourly TEC skill scores 

to determine variations between additional model runs. 

Additional GAIM-GM Model TEC Skill Scores 

A few additional analyses of GAIM-GM model TEC skill scores is completed 

using separate geographical regions, time of day, a reduced number of GPS verification 

sites, and for single verification sites.  First, separate hourly TEC skill scores are 
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calculated using verification sites in equatorial latitudes (20°S to 20°N) and verification 

sites in the mid-latitudes (60°S to 20°S and 20°N to 60°N).  Next, separate skill scores 

are calculated for regions divided longitudinally, including Asia (0° to 160°E), Pacific 

(160°E to 130°W), Americas (130°W to 60°W), and Atlantic (60°W to 0°).  Third, skill 

scores are calculated separately for daytime and nighttime based on the local time of each 

GPS verification site.  Then, skill scores are calculated for a few individual GPS 

verification sites.  Finally, the number of global GPS verification sites is reduced from 60 

to 13 longitudinally distributed sites, and skill scores are calculated once again. 

The objective of these additional TEC skill score analyses is to determine if the 

different cadence configurations produce variations in the GAIM-GM model output on a 

regional scale, or with a reduced number of verification sites.  However, the results of 

each of these additional analyses, once again, showed very little skill score variation 

between the various cadence configurations.  

IFM TEC Skill Scores 

Since the GAIM-GM model output shows little variation between configurations, 

hourly TEC skill scores are calculated for the IFM to see if varying the cadence of Kp and 

F10.7 affects a physics-based model.  The analyses for all five periods show similar trends, 

with results for the Low Solar / High Geo period displayed in Figure 22.  The skill scores 

for the IFM show distinct, sometimes significant, variations between the five cadence 

configurations.  The largest differences in skill scores occur during the middle of the 

period, with a skill score range of up to 49.5% at hour 29.  This shows that varying the 

cadence of Kp and F10.7 does affect the IFM.  To assist in seeing this large range of skill 

scores, the left axis of this skill score subplot ranges from -50% to 50%. 
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Figure 22.  IFM hourly TEC skill scores for Low Solar / High Geo.  The period ranges from 
2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.   The plot format is the same as Figure 13, 
except that the left axis ranges from -50% to 50%. 

 

Figure 22 also shows that the greatest skill score variations occur when the Kp 

index is elevated.  When the Kp index is lower, around 2.3 or below, the variation 

between cadence configurations becomes much smaller.  This trend is also apparent in 

the High Solar / High Geo period.  In addition, it should be noted that, overall, IFM skill 

score values are much lower (primarily below 0%) than skill score values are for the 

GAIM-GM model, confirming that the GAIM-GM model is improving the ionosphere 

specification.  More discussion on these results is included in the next chapter. 

Ingested Data Reduction Analysis 

As discussed in Chapter II, if the GAIM-GM model is run without ingested data, 

the resulting output will be different from IFM output.  This is because the GAIM-GM 
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model uses IFM uncertainties to provide an improved ionospheric background state.  In 

addition, if ingested data is missing for only a small portion of the model run, there is a 

period over which the GAIM-GM model uses persistence to improve on the ionospheric 

background and gradually decays the perturbations over time.  Once this decay is 

complete, the resulting GAIM-GM model output will simply be the GAIM-GM model 

background ionosphere, as if there was no ingested data for the entire model run.  The 

decay time for ingested data is dependent upon ionospheric conditions over the previous 

24 hours (Gardner, 2013). 

In order to determine the influence of cadence configurations on ingested data 

decay times, two additional GAIM-GM model runs are analyzed.  The first analysis is 

done on a GAIM-GM model run for the High Solar / High Geo period, using no ingested 

data during the second day of the 3-day analysis period.  The resulting TEC skill scores, 

shown in Figure 23, show some variation between cadence configurations during the 

second day.  This becomes most noticeable between hours 40 and 44, as the GAIM-GM 

model begins to rely more heavily on the IFM background.   

When these results are compared to Figure 15, where the GAIM-GM model is run 

for the same period and uses ingested data for all three analysis days, the variations 

between configurations do not exist.  Skill scores in Figure 23 show the exact same 

values as skill scores in Figure 15 from hours 1 to 24, as expected.  After hour 24, skill 

scores in Figure 23 become slightly lower than skill scores in Figure 15, but follow a 

similar pattern until hour 38.  At this point, skill scores decrease significantly and begin 

to show variation between configurations.  Once ingested data is reintroduced at hour 48, 

skill scores quickly improve, and by hour 51, match up with the skill scores in Figure 15.   
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Figure 23.  GAIM-GM hourly TEC skill scores for High Solar / High Geo with no ingested data on 
day 049.  The period ranges from 17 February 2011 at 0000 UTC to 19 February 2011 at 2345 UTC.  
The plot format is the same as Figure 13. 

 

This result proves that ingesting data into the GAIM-GM model provides significant 

improvements in the model’s performance. 

An additional GAIM-GM model run is completed where no ingested data is 

assimilated for the entire 3-day analysis period.  The hourly TEC skill scores for this run 

are displayed in Figure 24, along with the previous results from Figure 23 for easier 

comparison.  This plot shows that at hour 38, the skill scores for the GAIM-GM model 

run using no ingested data on the second analysis day decay closer to the values of the 

GAIM-GM model run using no ingested data for the entire analysis period.  Both sets of 

skill scores then follow a similar trend through hour 48, with left over perturbations in the 

GAIM-GM model responsible for some differences between the two.  After ingested data 

is reintroduced at hour 48, the two sets of skill scores show significant differences 
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through the rest of the period.  The important thing to note is that skill scores for all five 

cadence configurations decay to the lower set of skill scores at the same rate.  This shows 

that varying the cadence of Kp and F10.7 does not change how quickly the GAIM-GM 

model decays in the absence of ingested data. 

 

 
Figure 24.  Comparison of GAIM-GM hourly TEC skill scores with no ingested data for one day and 
no ingested data for the entire period.  The High Solar / High Geo period ranges from 17 February 
2011 at 0000 UTC to 19 February 2011 at 2345 UTC.  Skill scores for the KdFd, K3Fd, KdF3, K3F3, 
and K1F1 cadence configurations are plotted in the uppermost subplot.  Solid lines represent skill 
scores when no data is ingested for one day (049) while dashed lines represent skill scores when no 
data is ingested for the entire period (EP).  The plot format for the middle and lower subplots is the 
same as Figure 13. 

 

Alternate Kp and F10.7 Analysis 

The final portion of this research is to determine if using alternate sources of Kp 

and/or F10.7 produces any improvement in the GAIM-GM model output.  As 
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accomplished in previous sections, a similar hourly TEC skill score analysis is done using 

only ACE Kp data, only F11.1 data, and both ACE Kp and F11.1 data.  In each analysis, the 

configuration of interest is compared to the KdFd and K3Fd configurations, representing 

typical AFWA procedures and the use of data at the current observation cadence, 

respectively. 

GAIM-GM Model TEC Skill Scores Using ACE Kp Data 

The first analysis is done on the K1Fd(ACE) configuration.  Hourly TEC skill 

scores are calculated for all analysis periods.  The results for the Low Solar / High Geo 

period are plotted in Figure 25.  In this figure, the middle subplot also displays the hourly 

ACE Kp index, represented by the purple, dashed line. 

The Low Solar / High Geo period is the only analysis period that shows any 

noticeable variation of the K1Fd(ACE) configuration.  This variation is most apparent 

between hours 36 and 43 and represents an improvement in skill score of up to 7% over 

the K3Fd configuration.  While this occurs partially during a period where the ACE Kp 

value is significantly less than the Kp index, there are other times where ACE Kp is also 

less than Kp, but no significant variation of the K1Fd(ACE) configuration appears.  The 

results for the other four analysis periods all show less variation of the K1Fd(ACE) 

configuration, and thus are not included in this thesis. 

GAIM-GM Model TEC Skill Scores Using F11.1 Data 

Next, analysis is done on the K3F3(F11) configuration.  Hourly TEC skill scores 

are calculated once again for all analysis periods.  The results of using F11.1 data varies 

for each analysis period, so results for all five periods are presented.  In each figure, the 

middle subplot now includes the 3-hourly F11.1 data, represented by a solid green line.   
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Figure 25.  GAIM-GM hourly TEC skill scores for Low Solar / High Geo using ACE Kp data.  The 
period ranges from 2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.  Skill scores for the KdFd, 
K3Fd, and K1Fd(ACE) cadence configurations are plotted in the uppermost subplot, along with the 
number of GPS observations used to calculate the skill scores.  The middle subplot displays daily 
observed F10.7 values (blue, solid line), 3-hourly observed Kp values (red, dashed line), and 1-hourly 
calculated ACE Kp values (purple, dashed line).  The lower subplot displays solar flare activity 
during the period, with each flare plotted at the time of maximum flare emission. 

 

Figure 26 shows the results for the Low Solar / Low Geo period.  The K3F3(F11) 

configuration shows a noticeable improvement in TEC skill score for the majority of this 

period.  The greatest improvement occurs at hour 33, where the K3F3(F11) configuration 

shows nearly a 10% improvement over the KdFd configuration.  The only time that the 

K3F3(F11) configuration shows a minor reduction in skill score is between hours 40 and 

43.  

Figure 27 shows results for the Low Solar / High Geo period.  During this period, 

the K3F3(F11) configuration shows some time periods of noticeable skill score 

improvement.  The greatest improvement occurs from hour 36 to hour 48, with the  
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Figure 26.  GAIM-GM hourly TEC skill scores for Low Solar / Low Geo using F11.1  data.  The period 
ranges from 19 August 2010 at 0000 UTC to 21 August 2010 at 2345 UTC.  Skill scores for the KdFd, 
K3Fd, and K3F3(F11) cadence configurations are plotted in the uppermost subplot, along with the 
number of GPS observations used to calculate the skill scores.  The middle subplot displays daily 
observed F10.7 values (blue, solid line), 3-hourly calculated F11.1 values (green, solid line), and 3-hourly 
observed Kp values (red, dashed line).  The lower subplot displays solar flare activity during the 
period, with each flare plotted at the time of maximum flare emission. 

 

maximum difference of 12.5% at hour 42.  In addition, at no point in this period does the 

K3F3(F11) configuration show a significant reduction in skill score. 

Results for the High Solar / Low Geo period are presented in Figure 28.  The 

K3F3(F11) configuration shows a noticeable improvement in skill score across the entire 

3-day period.  While some of the improvements are small, several significant 

improvements can be seen at or around hours 3, 21, 28, 49, 51, and 69.  Skill scores 

improve by as much as 17.7%, at hour 51.  In addition, there are 10 data points where the 

KdFd and K3Fd configurations produce negative skill scores.  The K3F3(F11) 

configuration raises 60% of these negative skill scores above 0%.  The middle subplot in  
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Figure 27.  GAIM-GM hourly TEC skill scores for Low Solar / High Geo using F11.1 data.  The period 
ranges from 2 May 2010 at 0000 UTC to 4 May 2010 at 2345 UTC.  The plot format is the same as 
Figure 26. 

 

 
Figure 28.  GAIM-GM hourly TEC skill scores for High Solar / Low Geo using F11.1 data.  The period 
ranges from 23 September 2011 at 0000 UTC to 25 September 2011 at 2345 UTC.  The plot format is 
the same as Figure 26. 
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the figure shows that for the entire period, the 3-hourly F11.1 values are significantly less 

than the daily F10.7 values.  In addition, some of the larger improvements occur during or 

shortly after periods of multiple M-class flares. 

In Figure 29, results for the High Solar / High Geo period are displayed.  Unlike 

what is shown in Figures 26-28, the K3F3(F11) configuration does not show an overall 

improvement in skill score during this 3-day period.  While some hours have minor 

improvements, as seen at hours 9, 36, and 55, many hours, such as hours 16, 42, and 63, 

have minor reductions in skill score or no difference at all.  However, as noticed in Figure 

28, the period of improvement from hour 35 to hour 39 correlates to a period of multiple 

M-class flares. 

 

 
Figure 29.  GAIM-GM hourly TEC skill scores for High Solar / High Geo using F11.1 data.  The 
period ranges from 17 February 2011 at 0000 UTC to 19 February 2011 at 2345 UTC.  The plot 
format is the same as Figure 26. 
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The final period, High F10.7 / Low Geo, is analyzed in Figure 30.  During the 

majority of this period, the K3F3(F11) configuration shows a noticeable reduction in skill 

score.  The largest reductions in skill score correlate with the time periods where the 

difference between F11.1 and F10.7 values is the greatest. 

 

 
Figure 30.  GAIM-GM hourly TEC skill scores for High F10.7 / Low Geo using  F11.1  data.  The period 
ranges from 10 November 2011 at 0000 UTC to 12 November 2011 at 2345 UTC.  The plot format is 
the same as Figure 26. 

 

Based on all the analyses using F11.1 data, the High Solar / Low Geo period shows 

the greatest improvement.  To quantify this improvement, the TEC RMSE for the KdFd, 

K3Fd, and K3F3(F11) configurations are plotted in Figure 31.  The K3F3(F11) 

configuration produces a lower RMSE during the entire period since an improvement in 

skill score translates to an improvement in RMSE.  The reduction in RMSE by the 

K3F3(F11) configuration is up to 1.17 TECu at hour 21.  This, in turn, reduces the single 
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frequency GPS positioning error by 0.19 m.  It should be noted that this RMSE and 

associated reduction in GPS positioning error is for vertical TEC only.  While the 

GAIM-GM model does not output slant TEC values, one can assume that a 1.17 TECu 

reduction in RMSE for vertical TEC would equate to an even larger reduction in RMSE 

for slant TEC values.  Since an actual GPS signal would likely travel through the 

ionosphere at some angle to the Earth’s surface, the actual single frequency GPS 

positioning error could be reduced by more than 0.19 m. 

 

 
Figure 31.  GAIM-GM hourly TEC RMSE for High Solar / Low Geo using F11.1 data.  The period 
ranges from 23 September 2011 at 0000 UTC to 25 September 2011 at 2345 UTC.  RMSE values for 
the KdFd, K3Fd, and K3F3(F11) cadence configurations are plotted in the uppermost subplot.  The 
plot format for the middle and lower subplots is the same as Figure 26. 
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GAIM-GM Model TEC Skill Scores Using Both ACE Kp Data and F11.1 Data 

The final step in analyzing alternate Kp and F10.7 data sources is to combine both 

ACE Kp and F11.1 data for use in the GAIM-GM model.  Since the ACE Kp data has little 

effect on the GAIM-GM model output, the results of the K1F3(ACE/F11) configuration 

mirror those of the K3F3(F11) configuration.  Therefore, since the K1F3(ACE/F11) 

results do not shed any new light on this research, they are not included in this thesis. 
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V.  Summary and Recommendations 

Chapter Overview 

This chapter discusses the conclusions of this research along with 

recommendations for further research.  The first section presents the conclusions of the 

cadence analysis, the effect of reducing GAIM-GM model ingested data, and the use of 

ACE Kp and F11.1 data.  The final section provides recommendations for furthering the 

research presented in this thesis. 

Summary 

Cadence Analysis 

The analysis done on the IFM and GAIM-GM model provides confirmations of 

previous research and several new findings.  First, of all the parameters analyzed, TEC 

values prove to have the highest and most consistent skill scores.  This is expected since 

the GAIM-GM model is designed primarily for the region of the ionosphere where 

maximum electron densities are normally found, which contributes the most to integrated 

TEC values.  The GAIM-GM model does not perform as well when calculating 

individual electron density values along an entire ionospheric profile (Gardner, 2013). 

Next, when IFM output was analyzed, overall skill scores are found to be mostly 

negative, as seen in Figure 22.  This indicates that the IRI model outperforms the IFM 

during most of this period.  It is expected that the IRI model will generally outperform 

any physics based model when nowcasting since the IRI model is based on a database of 

actual observations.  However, the IRI model is known to be poor at low and high 

latitudes, requiring the use of a physics-based model to give a global background for data 
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assimilation.  In addition, the majority of the verification data sites used in this research 

are located in the mid-latitudes, where the IRI model performs best, contributing to the 

low IFM skill scores (Gardner, 2013).   

For the GAIM-GM model, skill scores are found to be primarily greater than 0% 

throughout this research.  This indicates that the GAIM-GM model provides an 

improvement to both the IFM and IRI model.  In particular, the GAIM-GM model skill 

scores for the High F10.7 / Low Geo period (Figure 18) are the highest of all the periods 

analyzed.  This is because the IFM is designed to perform best during solar maximum 

(Gardner, 2013).  These results have been shown previously in other validation studies 

and are confirmed in this research. 

As for the cadence configurations studied, the IFM shows significant variations in 

skill score, indicating that changing the cadence of Kp and F10.7 data does affect the 

physics-based model (Figure 22).  However, the GAIM-GM model shows no significant 

variations in skill scores between the five cadence configurations.  This implies that 

providing the IFM with higher cadence Kp and F10.7 data does not affect the resulting 

GAIM-GM model output.  The GAIM-GM model’s data assimilation process clearly 

reduces the variation seen in the IFM and improves the overall skill score.  Therefore, 

AFWA’s current process of primarily using daily averages of Kp and F10.7 is sufficient, at 

least for producing model specifications.   

It should be noted that this research solely uses the GAIM-GM model in historical 

mode, where all available data is ingested, resulting in a model specification or nowcast.  

As with many numerical weather forecasting models, little to no variation in specification 

output will often lead to little variation in forecast output.  Thus, it is expected that when 
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running the GAIM-GM model in real-time mode, using various cadence configurations 

will likewise produce little or no variation in forecast skill scores.  However, this claim is 

not explicitly verified in this research. 

Ingested Data Reduction 

This research also includes analysis of the GAIM-GM model’s response to a lack 

of ingested data when various cadence configurations are used.  The results shown in 

Figure 24 indicate that regardless of cadence configuration, the GAIM-GM model output 

decays back to its background state at the same rate when ingested data is removed.  In 

addition, the skill scores begin to show variation between cadence configurations once 

the output decays to the background state.  This is because the GAIM-GM model 

background state, while different from the IFM output, still relies more heavily on the 

IFM, which does show significant variations between configurations.  The implication 

here is that if the GAIM-GM model begins to see a reduction in ingested data, especially 

when run in real-time mode, the resulting output may begin to differ, dependent upon 

cadence configuration.  Thus, a consistent, reliable, ingest data set is critical to sustaining 

consistent, accurate GAIM-GM model output. 

Alternate Data Sources 

Finally, the analysis on using ACE Kp and/or F11.1 data provides two main 

findings.  First, the use of ACE Kp data instead of the normally observed Kp data shows 

to have little effect on GAIM-GM model output.  Figure 25 indicates no significant 

improvement or reduction in skill by using ACE Kp data.  Therefore, ACE Kp data can be 

used in place of normally observed Kp data and the GAIM-GM model will provide 

equivalent results. 
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Analysis on the use of F11.1 data, in place of F10.7 data, also provides some positive 

findings.  GAIM-GM model skill scores when using F11.1 data show noticeable 

improvements during both periods of low solar activity and the High Solar / Low Geo 

period.  During both periods of high solar activity, the use of F11.1 data showed marked 

improvement during and immediately following a period of multiple M-class flares.  

While the use of F11.1 data showed either no overall change or a reduction in skill score 

for two analysis periods, it does show more potential than any other data source or 

configuration analyzed in this research.  One reason for the improvement shown by using 

the F11.1 data is that it is observed at a higher cadence than the F10.7 data (3-hourly vs. 

daily).  This provides the IFM with more up-to-date data, improving the IFM output, and 

thus improving the GAIM-GM model output.  Significant differences like this in the 

specification output may lead to large differences in forecast skill scores when the 

GAIM-GM model is run in real-time mode. 

Recommendations for Future Research 

While this research is successful in providing new findings on the IFM and 

GAIM-GM model, additional research can be done to further the results.  As mentioned 

earlier, this research is completed using the GAIM-GM model in historical mode.  

Additional studies can be done on using the GAIM-GM model in real-time mode.  This 

would primarily help establish the role cadence configuration plays in the GAIM-GM 

model decay rate when ingested data becomes limited.   

Further research can also be done on the use of alternate data sources.  In 

particular, the use of F11.1 data shows promise as an alternate data source for F10.7 data.  
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Since the results presented in this thesis only include one analysis period for each 

combination of solar and geomagnetic activity, additional testing should be completed.  

This could include testing additional analysis periods, as well as testing the use of F11.1 

data in the GAIM-GM model real-time mode.  This would establish if improved 

specification output translates to improved forecast skill scores. 

Finally, the GAIM-FP model may respond differently to cadence variations or 

alternate data sources.  With the GAIM-FP model expected to become operational in the 

next few years, additional testing using the GAIM-FP model is highly recommended. 
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Appendix A.  IRI Model Options 

The IRI model uses multiple options that can be defined by the user.  The IRI 

model used in this research is the IRI-2012.  The specific flags are listed in Table A1, 

with the bold, red text representing the selected option. 

 

Table A1.  List of options used in IRI model. 

 
Flag Number Option 1 Option 2 

1 Ne computed Ne not computed 
2 Te, Ti computed Te, Ti not computed 
3 Ne & Ni computed Ni not computed 
4 B0 – table option B0 – other models jf(31) 
5 foF2 – CCIR foF2 – URSI 
6 Ni – DS-95 & DY-85 Ni – RBV-10 & TTS-03 
7 Ne – tops: f10.7<188 f10.7 unlimited 
8 foF2 from model foF2 or NmF2 – user input 
9 hmF2 from model hmF2 or M3000F2 – user input 
10 Te – standard Te – using Te/Ne correlation 
11 Ne – standard profile Ne – Lay-function formalism 
12 Messages to unit 6 To messages.text on unit 11 
13 foF1 from model foF1 or NmF1 – user input 
14 hmF1 from model hmF1 – user input (only Lay version) 
15 foE from model foE or NmE – user input 
16 hmE from model hmE – user input 
17 Rz12 from file Rz12 – user input 
18 IGRF dip, magbr, modip Old FIELDG using POGO68/10 for 1973 
19 F1 probability model Critical solar zenith angle (old) 
20 Standard F1 Standard F1 plus L condition 
21 Ion drift computed Ion drift not computed 
22 Ion densities in % Ion densities in m-3 
23 Te_tops (Aeros, ISIS) Te_topside (TBT-2011) 
24 D-region: IRI-95 Special: 3 D-region models 
25 F107D from APF107.DAT F107D user input (oar(41)) 
26 foF2 storm model No storm updating 
27 IG12 from file IG12 – user 
28 Spread-F probability No computed 
29 IRI01-topside New options as def. by JF(30) see 36 
30 IRI01-topside corr. NeQuick topside model 
31 B0,B1 ABT-2009 B0 Gulyaeva h0.5 
32 F10.7_81 from file PF10.7_81 – user input (oar(46)) 
33 Auroral boundary model on Auroral boundary model off 
34 Messages on Messages off 
35 foE storm model No foE storm updating 
36 (29,30) = (1,1) IRIold, (2,1) IRIcor, (2,2) NeQuick, (1,2) Gulyaeva 
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Appendix B.  Acronym and Abbreviation List 

 
ACE – Advanced Composition Explorer 

AFIT – Air Force Institute of Technology 

AFWA – Air Force Weather Agency 

CME – Coronal Mass Ejection 

COSMIC – Constellation Observing System for Meteorology, Ionosphere, and Climate 

DMSP – Defense Meteorological Satellite Program 

EUV – Extreme Ultraviolet 

FAA – Federal Aviation Administration 

GAIM-FP – Global Assimilation of Ionospheric Measurements – Full Physics 

GAIM-GM – Global Assimilation of Ionospheric Measurements – Gauss Markov 

GPS – Global Positioning System 

HF – High Frequency 

hmE – Altitude of E region maximum electron density 

hmF2 – Altitude of F2 region maximum electron density 

IFM – Ionospheric Forecast Model 

IPM – Ionosphere-Plasmasphere Model 

IRI – International Reference Ionosphere 

LOS – Line of Sight 

MAE – Mean Absolute Error 

MATLAB – Matrix Laboratory 

NASA – National Aeronautics and Space Administration 
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Ne – Electron Density 

NmE – E region maximum electron density 

NmF2 – F2 region maximum electron density 

RMSE – Root Mean Square Error 

RSTN – Radio Solar Telescope Network 

sfu – Solar Flux Units 

SSIES – Special Sensor for Ions, Electrons, and Scintillation 

SSULI – Special Sensor Ultraviolet Limb Imager 

SSUSI – Special Sensor Ultraviolet Spectrographic Imager 

SWPC – Space Weather Prediction Center 

TEC – Total Electron Content  

TECu – Total Electron Content unit 

TOPEX – Ocean Topography Experiment 

USU – Utah State University 

UTC – Coordinated Universal Time 

UV – Ultraviolet 
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