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Abstract

The identification of paymeric materialsisimportant from several perspedives. Thefirstis
that the knowledge of the structure of apolymer yields a gred deal of information onthe
properties of that polymer. Thisinformationiscritical in determining if apolymer is suitable
for aparticular application. Identification d apoymer can alsoindicate changesin apoymer
arising fromin-service onditions. That is, have alditives sich as plasticizers or antioxidants
been depleted or has the pdymer absorbed compounds that alter its properties? Polymer
identificaionis also critical in failure analysis.

In this Tecdhnical Memorandum pyrograms of commoadity and engineeing thermoplastics are
presented. Pyrograms are chromatograms arising from a pyrolysis gas chromatography/mass
spectrometry analysis. The pyrograms are discussed with emphasis on pyrolytic degradation
products that are characteristic of the individual polymers. Often these can be related badk to
the structure of the polymer and can be used to differentiate between series of polymers with
similar chemistry or identify the mmponrents of polymer blends.

Résumé

L’identification des matériaux pdymeériques est importante aplus d’'un point de vue. Tout
d'abord, la cnnaissancede la structure d'un pdymeére donré fournit un grand rombre de
renseignements sur ses propriétés. Ces renseignements sont essentiels pour déterminer si un
polymeére peut étre utili sé dans une gplicaion particuliere. L’ identification d’ un polymere
peut aussi révéler les modifications aubies par celui-ci dans des conditions d utilisation
précises. Ainsi, onpeut éablir s lateneur du polymére en additifs, par exemple des
plastifiants ou des antioxydants, a é&é épuisée ous il aabsorbé des composés qui ont modifié
ses propriétés. L’identification des polymeéres constitue aussi un éément clé de |’ analyse des
défaillances.

Le présent document technique contient des pyrogrammes de thermoplastiques de grande
consommation et de thermoplastiques industriels. Les pyrogrammes ot des
chromatogrammes ohtenus lors de I’ anal yse par pyro-chromatographie en phase gazeuse
coupée aa spectrométrie de masse. La discussion portant sur les pyrogrammes met I’ accent
sur les produits de dégradation pyrolytique qui sont caradéristiques des différents polymeéres.
Dans de nombreux cas, la hature de ces produits de dégradation permet de déterminer la
structure du polymére d’ origine € elle permet de différencier des famill es de polymeéres ayant
des structures chimiques ssmblables ou d'identifier les composants de mélanges de
polymeéres.
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Executive summary

Introduction

The identification of polymeric materialsisimportant from several perspectives. Thefirstis
that the knowledge of the structure of a polymer yields a great deal of information on the
properties of that polymer. Thisinformationiscritical in determining if apolymer is suitable
for aparticular application. Identification of a polymer can also indicate changesin a polymer
arising from in-service conditions. That is, have additives such as plasticizers or antioxidants
been depleted or has the polymer absorbed compounds that alter its properties? Polymer
identification isalso critical in failure analysis.

Pyrolysis-gas chromatography/mass spectrometry is atechnique that has found widespread
application to the identification of polymeric materials. In this technigue the polymer to be
identified is heated rapidly and reproducible in an inert atmosphere to an operator selected
temperature. The resulting thermal degradation (pyrolysis) releases compounds that are
characterigtic of the structure of the polymer. These are used to identify and/or differentiate
between polymers.

Principal Results

Twenty thermoplastics polymers and three thermoplastic polymer blends have been analysed
using pyrolysis gas chromatography/mass spectrometry. The resulting pyrograms are
discussed with respect to degradation products that are characteristic of the polymer or
components of the polymer blends. The pyrograms and the characteristic degradation
products form a compendium that can be used to identify thermoplastic polymers and their
blends.

The pyrograms of the three polymer blends consist of the degradation products that are
characterigtic of the polymers that make up the blend.

The pyrograms of the thermoplastics with aromatic rings incorporated into the main polymer
chain are characterized by degradation products arising from the cleavage of non aromatic
main polymer chain bonds. The thermal/pyrolytic stability of the aromatic rings leads to
preferential cleavage of the polymer chain at non-aromatic main chain bonds.

Pyrolysis can identify or differentiate between polymers of a particular type. Three
poly(sulfone) samples, prepared from different starting materials, were distinguished on the
basis of their pyrolytic degradation products. Poly(phenylene oxide)s could also be
differentiated on the basis of their degradation products.

Nylons based on diacid/diamine chemistry can be easily distinguished from those based on
cyclic lactam chemistry. The cyclic monomers used to prepare Nylon 6, Nylon 11, and Nylon
12 are major degradation product of these lactam based poly(amide)s.

The diacid/diamine poly(amide)s rel eased series of compounds that were characteristic of

these nylons and could be used to identify the constituent diacids and diamines used to
prepare them.
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Significance of Results

A compendium of thermoplastic pyrograms has been prepared. The pyrograms and
degradation products analysis form a data base of well characterized polymers that can be
used to identify unknowns. Thisis particular significant when the accurate and rapid
identification of polymeric materialsis critica in failure analysis or scientific consulting
leading to the selection of materials for a particular application.

Hiltz, J. A., Power, J. J. 2002. A Compendium of Thermoplastic Polymer Pyrograms.
TM 2002-116. Defence R& D Canada Atlantic.
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Sommaire

Introduction

L'identification des matériaux pdymériques est importante aplus d'un point de vue. Tout
d'abord, la mnnaissancede la structure d'un pdymeére donré fournit un grand rombre de
renseignements ur ses propriétés. Ces renseignements sont essentiels pour déterminer si un
polymeére peut étre utilisé dans une gplicaion particuliere. L'identification d'un polymére
peut aussi révéler les modifications aubies par celui-ci dans des conditions d'utilisation
précises. Ainsi, onpeut éablir s lateneur du plymére en additifs, par exemple des
plastifiants ou des antioxydants, a é&té épuisée ousil aabsorbé des compasés qui ont modifié
ses propriétés. L'identificaion des polymeéres constitue aussi un élément clé de I'analyse des
défaillances.

La pyro-chromatographie en phase gazeuse @muplée ala spectrométrie de masse est une
technique qui est actuellement largement utiliséepour identifier des matériaux polymériques.
Elle oonsiste achauffer rapidement, sous atmosphére inerte, le polymeére devant étre identifié,
jusqu'a une température dhoisie par I'opérateur. La dégradation thermique (ou pyrolyse) subie
par le polymeére entraine un dégagement de aompasés caractéristiques de la structure de
cdui-ci. Ces produits de dégradation servent aidentifier des polyméres distincts et a
différencier des padymeéres ayant des gructures semblables.

Principaux résultats

On a analysé vingt polymeéres thermoplastiques et trois mélanges de polyméres
thermoplastiques al'aide de la pyro-chromatographie en phese gazeuse wupléeala
spectrométrie de masse. Les pyrogrammes obtenus nt I'objet d'une discusson portant sur
les produits de dégradation qu sont caradéristiques du pdymere d'origine ou des compaosants
du mélange de palymeres. Les pyrogrammes et les produits de dégradation caractéristiques
identifiés forment un abrégé qui peut étre utilisé pour identifier des paolymeres
thermoplastiques et des mélanges de ceux-ci.

L es pyrogrammes des trois mélanges de palyméres contiennent |es renseignements permettant
d'identifier les produits de dégradation qu sont caractéristiques des polyméres composant les
différents mélanges.

Les pyrogrammes des thermopl astiques dont la chaine palymeérique principale contient des
noyaux aromatiques s caractérisent par la présence de produits de dégradation qui
proviennent de la rupture de liens non aromatiques dans la chaine principale du polymeére. La
rupture préférentielle des liens nonaromatiques de la chaine principale du poymére est
attribuable ala stabilité thermique/pyrolytique des noyaux aromatiques.

Lapyrolyse permet d'identifier et, de cefait, de différencier des polyméres appartenant a une
méme cdégorie de maaomoléaules. On aréusd adistinguer trois édhantillons de
polysulfones préparés a partir de différentes substances de départ en se basant sur la nature de
leurs produits de dégradation pyrolytique. |l est auss possble de différencier des oxydes de
polyphényléne de la méme manieére.

De plus, on peut facilement distinguer les nylons dort la structure chimique est a base de
diacides et de diamines et ceux dant la structure chimique repose sur des lactames cycli ques.
Les monaméres cycli ques utili sés pour préparer le nylon 6, lenylon11et lenylon12
constituent des produits de dégradation importants de ces polyamides a base de |actames.

Les polyamides a base de diacides et de diamines ont dégagé des $ries de compasés

DRDC Atlantic TM 2002-116 Vv



caactéristiques de ces nylons, qui peuvent servir aidentifier les constituants de nature diacide
et diamine qui sont utilisés pour préparer les polymeres.

Importance desrésultats

On a organise un abrégeé des pyrogrammes des thermoplastiques. L es pyrogrammes et les
résultats de I'anal yse des produits de dégradation constituent une base de domées de
polymeéres nettement caractérisés, qu peut servir aidentifier des échantillonsinconnus. Cette
cgpacité est particulierement utile dans les casouil est esentiel didentifier rapidement et
sans erreur des matériaux polymériques, hotamment en analyse des défaillances ou dansle
cadre d'études scientifiques visant a sélectionrer des matériaux paur une gplicaion
particuliére.

Hiltz, J.A., Power, J.J. 2002. A Compendium of Thermoplastic Polymer Pyrograms. TM
2002116.CRDA.
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Introduction

Pyrolysis gas chromatography (py-GC) and pyrolysis gas chromatography/mass spectrometry
(py-GCIMYS) are routinely used to identify polymeric materials. Py-GC analysisyields
retention time and intensity data for the polymer pyrolytic degradation products. This data,
referred to as the fingerprint, can be used to identify or differentiate between polymers. When
the py-GC is coupled with M S detection, the amount of information in the pyrogram increases
significantly. Mass spectrometric detection alows the identification of the individual
compounds that give rise to the fingerprint. These compounds can be used to positively
identify the polymer if they can be linked through degradation mechanisms to the structure of
the polymer.

Pyrolysis can be used to differentiate between polymers that are generically the same but
differ in structure. Poly(ethylene) isan example. The pyrograms of straight chain and
branched poly(ethylene) samples are similar. However, chain branching leadsto fine
structure in the pyrogram that is not observed for straight chain poly(ethylene). Pyrolysis can
also be used to study differencesin polymer formulation. For instance, differencesin
additives, such as plasticizers and antioxidants, will be reflected in the pyrograms. If MS
detection is used the additives can be identified.

In the Emerging Materias Section DRDC Atlantic, py-GS/IMSis used on adaily basis. The
information derived is used to identify polymers and assure that the polymer has the required
chemistry for a particular application, to monitor changes in the polymer including loss of
additives or the absorption of solventsthat may make it unsuitable for use in a particular
environment, and to aid in polymer failure investigations.

Polymers degrade by four major mechanisms: 1) depolymerization, 2) random chain scission
followed by a) depolymerization from radical ends, b) disproportionation or c) cyclization, 3)
cleavage of side groups and main chain fragmentation and 4) interchain condensation. Many
polymers consist of blends of two or more polymers or are the product of copolymerization
reactions. Copolymers can be random, alternating or block. These factors complicate the
analysis of pyrolytic degradation products. When one adds to this the frequent requirement
that the material beidentified in a very short time, the analyst needs to have an in-depth
knowledge of polymers, their degradation pathways, and characteristic degradation products
to identify them.

One approach to gaining this knowledge is to construct libraries (compendia) of pyrograms of
well-characterized polymers. Degradation pathways and products, and even fingerprints of
these compounds are then available to aid in the analysis of unknowns. In thisreport the
pyrograms of a number of thermoplastic polymers are reported and discussed with respect to
characteristic degradation products, degradation pathways, and the effect of changesin
composition on the types and rel ative concentrations of degradation products.
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Experimental

Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-
GC/MS)

All pyrolysis were carried out in a platinum coil pyroprobe (Pyroprobe 2000, Chemical Data
Systems, Oxford, PA). The polymer sample (0.05 mg to 0.15 mg) was centered in a25 mm
guartz tube and heated with the temperature ramp off (maximum heating rate) to afina
temperature of 700°C. The hold time at the final temperature was 20 seconds.

GC/MS analysis was carried out on a Fisons Platform |1 quadrupole GC/M S with a Fisons
Model 8000 GC. The pyroprobe/GC interface temperature was 300°C. The pyrolysis
products were separated on a 30m long X 0.25 mm inside diameter capillary column with a
0.25um thick 5% phenyl-95% dimethylpolysiloxane stationary phase (Alltech Econo-Cap
EC-5). The GC was operated in the pressure control mode using Helium (linear flow rate
0.3m/s at 40°C) asthe carrier gas.

The GC oven was programmed to hold at 40°C for 5 minutes, then increase to 300°C at arate
of 10°C/min, and finally hold at 300°C for 10 minutes. The total run time was 41 minutes.

Materials

The high density poly(ethylene), medium density poly(ethylene), poly(phenylene sulfide),
poly(2,6-dimethyl-p-phenylene oxide), poly(styrene), poly(sulfone), poly(p-phenylene ether
sulfone), Nylon 6,6, Nylon 6,9, Nylon 6,10, Nylon 6,12, Nylon 6,T, Nylon 6, Nylon 11,
Nylon 12, poly(ethylene terephthal ate), and poly(carbonate) samples were purchased from
Scientific Polymer Products, Ontario, New Y ork.

Montel PDC 1234 and Union Carbide 5E89 poly(propylene) samples were supplied by
Montel and Union Carbide respectively.

Torlon poly(amide-imide), Radel [J R poly(arylsulfone), and Xydar[] aromatic poly(ester)
liquid crysta polymer were supplied by BPAmMoco.

Prevex poly(phenylene ether) was supplied by GE Plastics.

Makroblend[] poly(carbonate)/poly(ethylene terephthal ate) blend was supplied by Bayer.

2 DRDC Atlantic TM 2002-116



Results and Discussion

The retention time of degradation products are listed to aid the reader in finding them in the
pyrograms. Retention timeswill vary with column pressure (flow), age of the column, and
changesin length of the column following maintenance. However, the structure and relative
concentrations of degradation products vary little for a particular polymer. Because pyrolysis
products are identified using mass spectrometry, the applicability of this technique to the
identification of polymersis not dependent on retention times.

Poly(ethylene)

The chemical structure of poly(ethylene) is shown in Figure 1.

CH» \CHZ / CH»
n

Figure 1. Chemical structure of poly(ethylene).

Poly(ethylene) degrades by arandom chain scission mechanism followed by
disproportionation. The pyrogram of a high density poly(ethylene) sampleis shown in Figure
2.

HIGHDPEL Soan b
10- 188 20 28 113 958 1 59120
1444 2954 '
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e Time
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Figure 2. Pyrogram of a sample of high density poly(ethylene).

The pyrogram of poly(ethylene) is characterized by a series of triplets corresponding to an
alkadiene, an alkene, and an alkane containing the same number of carbons. For instance the
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peaks of thetriplet centered at 8.39 min correspond to nonadiene (8.15 min), nonene (8.39
min), and nonane (8.59 min) and the peaks of thetriplet centered at 10.71 min correspond to
decadiene (10.53 min), decene (10.71 min) and decane (10.90 min).

One method of controlling the density of poly(ethylene) isthrough the introduction of chain
branching. Small amounts of alkenes, such as 1-butene, 1-hexene or 1-octene, are
copolymerised with ethylene. Chain branching is reflected in the pyrogram of the sample’.
That is, chain branching promotes cleavage of the polymer chain at carbons adjacent to,

(), and two bonds from (3) the branch site. Cleavage of the polymer chain at carbons 3 and
y (three bonds) from the chain branch results in formation of methyl and ethyl substituted
alkanes respectively. These compounds give rise to the peaks between the
alkadiene/akene/akane triplets.

MEDPE2 Scan El+

2687 21.80 TIC
100+ 21.49
18.93 ,

10.71\ 1271 7N 3119 Area

UL

e e Ting
500 1000 1500 20.00 2500 30.00 35.00 40.00

Figure 3. Pyrogram of a sample of medium density poly(ethylene).

The pyrogram of a medium density poly(ethylene) sampleis shown in Figure 3. Comparison
of this pyrogram with that of high density sample indicates that they are similar (see Figure
4). However, the peaks between the major triplets are slightly more intense for the medium
density sample than for the high density sample. This suggests that the level of chain
branching in the medium density sample polymer is greater than in the high density sample.
It should be noted that parameters such as molecular weight and processing also have an
effect on poly(ethylene) density.
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Figure 4. Expansions of pyrograms of high (top) and medium density (bottom) poly(ethylene)
samples between 12 and 20 minutes..

Poly(propylene)

The chemical structure of poly(propylene) isshownin Figure 5. The mgjor degradation
mechanism of poly(propylene) is random chain scission mechanism followed by
disproportionation.

CHs CHs CHs

RN

CH CH, \CH CHz/ CH CH,

n

Figure 5. Chemical structure of poly(propylene).

Pyrograms of two poly(propylene) samples, Montel PDC 1234 and Union Carbide 5E89, are
shown in Figures 6 and 7.

Comparison of the programs indicates that the degradation products are similar although the
relative amounts of degradation products vary from one sample to the other. Characteristic
degradation products of poly(propylene) are a series of hydrocarbons corresponding to
propylene oligomers. Referring to the pyrogram shown in Figure 6, these include the trimer
of propylene (5.75 min) with a molecular weight (MW) of 126, isomeric tetramers of
propylene (11.56 min and 11.63 min) with aMW of 168, and isomeric pentamers of
propylene (15.34 min, 15.44 min, and 15.58 min) witha MW of 210.
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Figure 6. Pyrogram of a sample of Montel PDC 1234 poly(propylene).
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Figure 7. Pyrogram of a sample of Union Carbide 5E89 poly(propylene).

Poly(Ethylene/Propylene) Blend (30% ethylene)

It is difficult to distinguish between the programs of poly(ethylene)/poly(propylene) blends
and copolymers”. However the programs do contain compounds that are related to the
pyrolytic degradation of the poly(ethylene) and poly(propylene) portions of the polymer. The
pyrogram of an ethylene/propylene blend containing 30% ethylene is shown in Figure 8.
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Figure 8. Pyrogram of a poly(ethylene/propylene) blend (30% poly(ethylene)).

Expansions of the pyrograms of the poly(ethylene/propylene) blend, poly(ethylene) and
poly(propylene) between 5 and 18 minutes are shown in Figure 9. Comparison of the
pyrograms of the blend and poly(ethylene) samples indicates that the characteristic
poly(ethylene) triplets (for instance, the triplets centered at 7.32 min, 9.80 min, and 11.80 min
in top trace of Figure 9) are present in the blend pyrogram (triplets centered at 7.32min, 9.79
min, and 11.59 min in the bottom trace of Figure 9). The characteristic poly(propylene)
degradation products are also present. For instance, the trimer (5.75 min), tetramer (11.59
min) and pentamer of propylene (15.36 min) seen in the middletrace of Figure 9 are also
found in the blend pyrogram.
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Figure 9. Expansions of pyrograms of top) poly(ethylene), middle) poly(propylene) and bottom)
poly(ethylene/propylene) blend (30% poly(ethylene)) between 5 and 18 minutes.

Poly(phenylene sulfide) or Poly(thio-1,4-phenylene)

Poly(phenylene sulfide) is prepared from the condensation of 1,4-dichlorobenzene and
sodium sulfide. The chemical structure of poly(phenylene sulfide) is shown in Figure 10.

Figure 10. Chemical structure of poly(phenylene sulfide).

The pyrogram of a sample of poly(phenylene sulfide) is shownin Figure 11.
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Figure 11. Pyrogram of a sample of poly(phenylene sulfide).

The major degradation products arise from main chain scission, i.e., the cleavage of bonds
between sulfur atoms and benzenerings. These include benzene (2.81 min), benzenethiol
(20.05 min), diphenyl sulfide (20.41 min), phenyl 4-thiophenyl sulfide (23.42 min), and 4-
(phenylthio)phenyl phenyl sulfide (30.75 min). Two degradation products, (4-chlorophenyl)
phenyl sulfide (22.70 min) and (4-thiophenyl)(4-chlorophenyl) sulfide (25.36 min), contain
chlorine. These compounds arise from partially reacted or residua 1,4-dichlorobenzene, one
of the starting materials used in the synthesis of Poly(phenylene sulfide). Other pyrolytic
degradation products, such as benzothiophene (22.52 min) and thianthrene (24.88 min), result
from secondary reactions of degradation products arising from main chain scission.

Poly(2,6-dimethyl-p-phenylene oxide)

Poly(2,6-dimethyl-p-phenylene oxide) is prepared by the oxidative coupling of 2,6-
dimethylphenol. The chemical structure of poly(2,6-dimethyl-p-phenylene oxide) is shown in
Figure 12. The pyrogram of a sample of poly(2,6-dimethyl-p-phenylene oxide) is shown in
Figure 13.

Pyrolytic degradation products arising from the scission of main polymer chain bonds include
xylene (7.67 min), 2,6-dimethylphenol and 3,5-dimethylphenol (13.10 min and 13.83 min),
2,6-dimethylphenyl 3,5-dimethylphenyl ether (24.02 min) and three compounds with
molecular weights of 242 at 24.94 min, 26.79 min and 27.14 min respectively. A molecular
weight of 242 is consistent with dimethylphenyl dimethylhydroxyphenyl ethers. Degradation
products arising from reactions following scission of main chain bonds include toluene (4.57
min), phenol (10.55 min), 2-methylphenol and 3-methylphenol (12.09 min and 12.46 min),
3,5-dimethylphenyl 4-hydroxy-2-methylphenyl ether (26.35 min).
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Figure 12. Chemical structure of poly(2,6-dimethyl-p-phenylene oxide).
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Figure 13. Pyrogram of a sample of poly(2,6-dimethyl-p-phenylene oxide).

Poly(phenylene oxide)/Poly(styrene) blend - Prevex[
Prevex[d isablend of poly(phenylene oxide) prepared from 2,6-di methylphenol and 2,3,6-

trimethylphenol and poly(styrene). The chemical structure of the poly(phenylene oxide)
portion of this polymer is shown in Figurel4.
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Figure 14. Chemical structure of co-poly-(oxy-2,6-dimethyl-1,4-phenylene)-(oxy-2,3,6-trimethyle-
1,4-phenylene). This is the poly(phenylene oxide) portion of the poly(phenylene
oxide)/poly(styrene) blend.

The pyrogram of a sample of Prevex is shown in Figure 15. The large number of
degradation products in the pyrogram of this sample result from two factors. Thefirst isthat
the poly(phenylene oxide) portion of the polymer is a copolymer of dimethyl- and
trimethylphenols. The second isthat it isablend of poly(phenylene oxide) and poly(styrene).
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Figure 15. Pyrogram of a sample of Prevex[J. This plastic is a blend of poly(phenylene oxide) and
poly(styrene).

There are a number of degradation products arising from the scission of main polymer chain
bonds of the poly(phenylene oxide) portion of the polymer. These include dimethylbenzene
(7.63 min), trimethylbenzene (9.21 min), phenol (10.57 min), dimethylphenols (13.04 min and
13.78 min), 2,3,6-trimethylphenol (14.73 min), and 2,6-di methyl-4-hydroxyphenyl 2,6-
dimethylphenyl ethers ( 24.87 min, 26.74 min, and 27.11 min). Degradation products arising
from the cleavage of bondsin addition to those in the polymer chain include benzene (2.10
min) and 2-methylphenol (11.47 min).
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Pyrograms of poly(styrene) and Prevex[] are shown in Figure 16. Comparison of the
degradation products of poly(styrene) and Prevex[] indicate that a number of the major
degradation products of Prevex[ arise from the poly(styrene) part of the copolymer. These
include styrene (8.53 min), the dimer of styrene (22.03 min) and the trimer of styrene (29.60
min.)
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Figure 16. Pyrograms of bottom) Prevex [J and top) poly(styrene).

Poly(amide-imide) - Torlon[

Poly(amide imide)s are prepared from trimellitic anhydride (benzene-1,2,4-tricarboxylic acid-
1,2-anhydride) and adiamine. The chemical structure of a poly(amide-imide) prepared using
4,4'-oxybis-benzenamine as the diamine is shown in Figure 14.

Figure 17. Chemical structure of a poly(amide-imde). The diamine is 4,4'-oxybis-benzenamine.

This polymer degrades through the loss of small molecules and interchain condensation. The
pyrogram of a sample of Torlon] is shown in Figure 17.
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Pyrolysis products that can be attributed to the loss of small molecules from this polymer
include aniline (9.37 min), phenol (9.90 min), 4-aminophenol (15.64 min), 1H-isoindole-
1,3(2H)-dione (17.73 min), diphenyl ether (18.14 min), 4-phenoxybenzenamine (21.07 min),
2-phenyl-1H-isoindole-1,3(2H)-dione (24.24 min), and 4,4'-oxybis-benzenamine (24.94 min).
Aswas abserved for poly(phenylene sulfide) and poly(phenylene oxide), these degradation
products arise from the scission of bonds along the polymer backbone. For instance 1H-
isoindole-1,3(2H)-dione, which contains the imide functionality, is released when the
nitrogen/benzene ring and the benzene ring/ C(O)NH- bonds are broken and 2-phenyl-1H-
isoindole-1,3(2H)-dione is released when the benzene ring/oxygen and the benzene ring/
C(O)NH- bonds are broken.
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Figure 18. Pyrogram of a sample of Torlon[J, a commercial poly(amide-imide).
Poly(imide)

Poly(imide)s are prepared from aromatic tetracarboxylic acids or aromatic tetracarboxylic
acid dianhydrides and adiamine. A typical poly(imide) based on benzene tetracarboxylic acid
dianhydride and methylene-bis-benzenamine is shown in Figure 19. Poly(imide)s degrade
through the loss of small molecules and interchain condensation. The pyrogram of a sample of
Solimidel], a high temperature poly(imide) insulating foam, is shown in Figure 20.

Pyrolysis products that can be attributed to the loss of small molecules from this polymer
include benzene (2.19 min), toluene (3.62 min), aniline (9.58 min), benzonitrile (9.62 min),
1,4-dicyanobenzene 15.30 min), 1H-isoindole-1,3(2H)-dione (17.85 min), fluorene (19.19
min), benzophenone (19.78 min), 2-phenyl-1H-isoindole-1,3(2H)-dione (24.42 min), and 2-
(4-methylphenyl)-1H-isoindole-1,3(2H)-dione (25.61 min).
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Figure 19. Chemical structure of a polyimde.

Aswas observed for poly(amide-imide), the majority of the major degradation products arise
from the scission of main polymer chain bonds. For instance, 1H-isoindole-1,3(2H)-dione
and 2-(4-methylphenyl)-1H-isoindole-1,3(2H)-dione, which contain the imide functionality
are both released from Solimide. However, the formation of cyanobenzene and
dicyanobenzene requires secondary reactions.
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Figure 20. Pyrogram of a sample of Solimide[J, a poly(imide) based insulating foam.

Poly(sulfone)

The chemical structure of apoly(sulfone) prepared from bisphenol A and 4,4'-
dichlorodiphenylsulfone is shown in Figure 21.
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Figure 21. Chemical structure of a poly(sulfone).

The pyrogram of a sample of poly(sulfone) is shown in Figure 22.
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Figure 22. Pyrogram of a sample of poly(sulfone).

A large number of the pyrolytic degradation products arise from the cleavage of polymer main
chain bonds. Theseinclude benzene (2.67 min), phenol (10.71 min), 4-(1-methylethyl)phenol
(15.02 min), diphenyl ether (17.79 min), 2-phenyl-2-(4-hydroxyphenyl)propane (21.31 min),
and diphenylsulfone (24.30 min). No bisphenol A was found in the degradation products.
Thiswould seem to indicate that bisphenol A was not used to prepare this polymer. However,
there are anumber of degradation products that are consistent with bisphenol A being
incorporated into this polymer. For instance, 4-(1-methylethyl)phenol (15.02 min) and 2-
phenyl-2-(4-hydroxyphenyl)propane (21.31 min) would arise from the degradation of the
bisphenol A portion of the polymer.

Chlorobenzene (6.94 min) arises from residual or partially reacted dichlorodiphenylsulfone
used to prepare this polymer.
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Poly(p-phenylene ether sulfone)

The chemical structure of a pay(p-phenylene aher sulfone) is sxownin Figure 23. This
polymer is prepared from diphenylene oxide sulfonyl chloride via aFriedel-Crafts «lf
condensation.

O

o—wm

n

Figure 23. Chemical structure of a poly(p-phenylene ether sulfone).
The pyrogram of a sample of poly(p-phenylene eher sulfone) is shown in Figure 24.

The major degradation products of this polymer include phenol (10.66min), diphenyl ether
(17.83min), dibenzofuran (19.44min) and dphenylsulfone (24.34min). All but
dibenzofuran arise from the scisdon o main pdymer chain bonds. Dibenzofuran is formed
by a secondary reaction of diphenyl ether. Chlorobenzene (6.99min) isaso found in the
degradation products of this poymer and arises from degradation of residual starting material
(diphenylene oxide sulfonyl chloride).
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Figure 24. Pyrogram of a sample of poly(p-phenylene ether sulfone).

It isinteresting to compare the pyrograms of the poly(sulfone) annd poly(p-phenylene ether
sulfone) samples. There are no degradation productsin the poly(p-phenylene ether sulfone)
sample that are cnsistent with bisphenol A being used to prepare this polymer. For instance
neither 4-(1-methylethyl)phenal (15.@ min) nor 2-phenyl-2-(4-hydroxyphenyl)propane
(21.31min), which were foundin the degradation products of the bisphenol A—based
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poly(sulfone) (Figure 22), were found in the pyrolysis products of the poly(p-phenylene ether

sulfone) sample.

Poly(arylsulfone) Radel R

The structure of atypical poly(arylsulfone) is shownin Figure 25. It isthe condensation
product of bis(4-chlorophenyl)sulfone and 4,4'-dihydroxybiphenyl.

@)

%OP O \_J

O

Figure 25. Chemical structure of a poly(arylsulfone).

The pyrogram of a sample of Radel R, acommercial poly(arylsulfone), is shown in Figure
26.

Pyrolysis products include phenol (11.03 min), biphenyl (17.75 min), diphenyl ether (18.14

min), dibenzofuran (19.72 min), 4,4'-dihydroxybiphenyl (22.25 min), diphenylsulfone (24.54

min), phenoxybiphenyl (25.20 min) and 4,4'-phenoxyhydroxybiphenyl (27.23 min).
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Figure 26. Pyrogram of a sample of RadelJ, a commercial poly(arylsulfone).

With the exception of dibenzofuran, these degradation products are released following the
scission of main polymer chain bonds. For instance, the release of diphenylsulfone requires
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the breaking of two benzene ring/oxygen bonds. Dibenzofuran isformed by a secondary
reaction of diphenyl ether.

The presence of pyrolytic degradation products containing the biphenyl moiety indicates that
Radel RL! is prepared using 4,4'-dihydroxybiphenyl asthe diol. Poly(arylsulfone)s are also
prepared using 2,2'-di(4-hydroxyphenyl)propane (bisphenol A) asthediol. Poly(arylsulfone)s
prepared using bisphenol A would not release pyrolytic degradation products containing the
biphenyl moiety.

Aromatic Poly(ester) Liquid Crystal Polymer - XydarQ

The structure of an aromatic poly(ester) liquid crystal polymer (LCP), prepared from 1,4-
benzenedicarboxylic acid (terephthalic acid), 4-hydroxybenzoic acid, and 4,4'-
dihyroxybiphenyl, is shown in Figure 27.

O

LOLO-0-10-

Figure 27. Chemical structure of an aromatic poly(ester) liquid crystal polymer.

The pyrogram of a sample of Xydar[], acommercial aromatic poly(ester) LCP, isshown in
Figure 28.

Pyrolytic degradation products of Xydar(l include benzene (3.14 min), phenol (10.92 min),
benzoic acid (14.64 min), 4-hydroxybenzaldehyde (17.13), biphenyl (17.74 min),
diphenylether (18.05 min), hydroxybenzoic acid (19.51 min), 2-hydroxybiphenyl (19.64 min),
dibenzofuran (19.70 min), phenylbenzoate (21.46 min), 4-hydroxybiphenyl (22.10 min), 2-
hydroxybenzophenone (22.38 min), xanthone (23.93 min), the phenyl ester of hydroxybenzoic
(25.62 min), and 4,4'-dihydroxybiphenyl (25.69 min).

The magjority of these degradation products are rel eased following the scission of polymer
chain bonds. For instance, two of the three compounds used to prepare this LCP,
hydroxybenzoic acid and 4,4'-dihydroxybiphenyl, are found in the pyrolytic degradation
products of this polymer and are released after scission of carbon-oxygen/carbonyl carbon-
oxygen and two carbonyl carbon-oxygen bonds respectively. Other degradations products,
such as benzofuran and xanthone, are formed by secondary reactions that follow the scission
of the main polymer chain bonds.
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Figure 28. Pyrogram of a sample of XydarJ, a commercial aromatic poly(ester) liquid crystal
polymer.

Polyamides

Polyamides are prepared from the condensation of diamines and diacids or by the
polymerization of cyclic amides (lactams). For instance Nylon 6,6 is synthesized from 1,6-
hexanediamine and 1,6-hexanedioic acid while Nylon 6 is synthesized from caprolactam. The
diamine/diacid based polyamides will be discussed separately from the lactam based
polyamides.

The diamine/diacid polyamides are named using the number of carbonsin the diamine
followed by the number of carbonsin the diacid. For instance, Nylon 6,10 is prepared from
1,6-hexanediamine and 1,10-decanedioic acid.

The lactam based polyamides are named using the number of carbons in the monomeric
lactams.

Polyamides degrade by a random chain scission mechanism.

Nylon 6,6

The chemical structure of Nylon 6,6 is shown in Figure 29. Nylon 6,6 is the condensation
product of 1,6-hexanediamine and 1,6-hexanedioic acid.
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Figure 29. Chemical structure of a sample of Nylon 6,6.

A pyrogram of aNylon 6,6 sampleis shown in Figure 30.
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Figure 30. Pyrogram of a sample of Nylon 6,6.
Cyclopentanone (4.19 minutes) is a characteristic degradation product of Nylon 6,6°.

Cleavage of a CH,-C=0 bond followed by CHj attack on the adjacent CH,-C=0 produces
cyclopentanone.

Nylon 6,9

The chemical structure of Nylon 6,9 is shown in Figure 31. The polyamideisthe
condensation product of 1,6-hexanediamine and 1,9-nonanedioic acid.
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Figure 31. Chemical structure of a sample of Nylon 6,9.

The pyrogram of a sample of Nylon 6,9 is shown in Figure 32. The pyrogram of Nylon 6,9 is
characterized by series of compounds with general formulas C,H,,:CN (n=6 and 7),
CsH1sNHCO-R (R= CsHo to C7H15), and RNHCO(CH2)7CN (R= C4Ho, C5H9, C6H11, and
CeH13). Theretention times of the compoundsin these three series arelisted in Tables 1, 2,
and 3 respectively.
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Figure 32. Pyrogram of a sample of Nylon 6,9.

Nylon 6,10

The chemical structure of Nylon 6,10 isshown in Figure 33. Nylon 6,10 is the condensation
product of 1,6-hexanediamine and 1,10-decanedioic acid.
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Figure 33. Chemical structure of a sample of Nylon 6,10.

The pyrogram of a sample of Nylon 6,10 is shown in Figure 34. Aswas observed for Nylon
6,9, the pyrogram of Nylon 6,10 is characterized by series of compounds with the general
formulas CiH>1CN (n=6 to 8), CeH1sNHCO-R (R= CsHq to C3H17), and RNHCO(CH2)3CN
(R= C4Hg, CsHg, CeH11 and CeH13). The retention times of these three series of compounds are
listed in Tables 1, 2, and 3 respectively.
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Figure 34. Pyrogram of a sample of Nylon 6,10.

Nylon 6,12

The chemical structure of asample of Nylon 6,12 is shown in Figure 35. Nylon 6,12 isthe
condensation product of 1,6-hexanediamine and 1,12 dodecanedioic acid.
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Figure 35. Chemical structure of a sample of Nylon 6,12.

The pyrogram of a sample of Nylon 6,12 is shown in Figure 36. The pyrogram of Nylon 6,12
issimilar to both that observed for Nylon 6,9 and Nylon 6,10 in that it is characterized by
three series of compounds with the general formulas C,H2,..CN (n=6 to 10), C¢H;sNHCO-R
(R= C4Hg to C10H21), and RN HCO(CH2)10CN (R= C3H5, C3H7' C4Hg, C5Hg' C6H11, and C6H13).
The retention times of these three series of compounds arelisted in Tables 1, 2, and 3
respectively.
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Figure 36. Pyrogram of a sample of Nylon 6,12.

Nylon 6,T

The chemical structure of Nylon 6, T is shown in Figure 37. This polyamide differs from the
preceding diamine/diacid based polyamidesin that an aromatic dicarboxylic acid isused in its
preparation. The aromatic dicarboxylic acid used to synthesize Nylon 6, T is 1,4-
benzenedicarboxylic acid (terephthalic acid).
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Figure 37. Chemical structure of Nylon 6,T.
The pyrogram of asample of Nylon 6, T is shown in Figure 38.
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Figure 38. Pyrogram of a sample of Nylon 6,T.

There are several pyrolytic degradation products that arise from secondary reactions of
compounds resulting from the cleavage of main chain bonds. These include benzonitrile
(9.60 min), isoquinoline (14.00 min), and dicyanobenzene (14.92 min).

Nylon 6
The chemical structure of Nylon 6 is shown in Figure 39.

The pyrogram of a sample of Nylon 6 is shown in Figure 40. The mgjor degradation product
of this polymer is caprolactam (broad peak between 14.7 min and 15.8 min), the monomer
used in its synthesis. Pyrolytic formation of the monomer isin contrast to the diamine/diacid
polyamides discussed above and is indicative of the difference in the degradation mechanisms
of polyamides prepared from cyclic amides and diamines and diacids. Depolymerization and
the release of the cyclic monomer isamajor pyrolytic degradation pathway of the polyamides
prepared from cyclic amides. Another characteristic pyrolytic degradation product is
CsHgC(O)NH(CH2)sCN (24.67 min).
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Figure 39. Chemical structure of Nylon 6.
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Figure 40. Pyrogram of a sample of Nylon 6.
Nylon 11

The chemical structure of Nylon 11 is shown in Figure 41.

The pyrogram of asample of Nylon 11 is shown in Figure 42. The cyclic monomer used to
prepare this polyamide, azacyclododecan-2-one, is amajor degradation product (20.75 min).

DRDC Atlantic TM 2002-116 25



AL

Figure 41. Chemical structure of Nylon 11.
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Figure 42. Pyrogram of a sample of Nylon 11.
Compounds with the general formulas CyoH19C(O)NHCHzn+1 and CioH10C(O)NHCH2,, are
also found in the degradation products. For instance, compounds with molecular weights of
321 and 323 give rise to the peak at 28.56 min and compounds with molecular weights 307

and 309 giveriseto the peak at 27.71 min. The retention times and molecular weights of
these two series of compounds are show in Table 4.

Nylon 12

The chemical structure of Nylon 12 is shown in Figure 43.
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Figure 43. Chemical structure of Nylon 12.

The pyrogram of a sample of Nylon 12 is shown in Figure 44. The pyrolytic degradation of
Nylon 12 releases a significant amount of the cyclic monomer, azacyclotridecan-2-one, used
to prepare this polyamide (21.70 min). There are also a series of peaks from degradation
products with the general formulas C11H,;C(O)NHCH2n1 and CyyH;C(O)NHC Hon s (n=2
to 10). For instance, compounds with molecular weights of 337 and 335 give rise to the peak
at 29.35 min, compounds with molecular weights 323 and 321 give rise to the peak at 28.62
min and so on. The molecular weights and retention times of these two series of compounds
are shown in Table 4.
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Figure 44. Pyrogram of a sample of Nylon 12.

Poly(ethylene terephthalate)
The chemical structure of poly(ethylene terephthalate) is shown in Figure 45. Poly(ethylene

terephthalate) is prepared from a condensation reaction of terephthalic acid or dimethyl
terephthalate and ethylene glycol.
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Figure 45. Chemical structure of a sample of poly(ethylene terephthalate).

X
(.
|

The pyrogram of a sample of poly(ethylene terephthalate) is shown in Figure 46.
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Figure 46. Pyrogram of a sample of poly(ethylene terephthalate).

One of the mgjor pyrolytic degradation products of poly(ethylene terephthal ate) is benzoic
acid (large peak between 14.00 and 15.45 min). Benzene (2.70 min), benzaldehyde (9.98
min), ethenyl benzoate (13.60 min), the diethenyl ester of 1,4-benzenedioic acid (20.04 min),
the monoethenyl ester of 1,4-benzenedioic acid (20.70 min) are other degradation products
released following the scission of main polymer chain bonds. The mono (MW 192) and
diethenyl (MW 218) esters of 1,4-benzenedioic acid are degradations products that reflect the
monomeric compounds (1,4-benzenedioic acid or terephthalic acid and 1,2-ethanediol) used
to synthesize this polymer.

Poly(carbonate)

The chemical structure of abisphenol A-based poly(carbonate) is shown in Figure 47.
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Figure 47. Chemical structure of a sample of poly(carbonate).
The pyrogram of a sample of poly(carbonate) is shown in Figure 48.
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Figure 48. Pyrogram of a sample of poly(carbonate).

Pyrolytic degradation products that are indicative of the main polymer chain scission are
phenol (10.90 min), 4-(isopropyl)phenol (15.27 min), 4-(2-propenyl)phenol (16.51 min),
diphenyl carbonate (21.72 min), 2-(4-hydroxyphenyl)-2-phenylpropane (23.70 min), and
bisphenol A (2,2-di(4-hydroxyphenyl)propane) (27.22 min). Many degradation products arise
following secondary reactions of products formed from main polymer chain scission. These
include methyl, dimethyl, and ethyl substituted phenols (between 12. 00 and 14.50 min), and
benzofuran (15.10 min).

Poly(carbonate)/Poly(ester) Blend (Makroblend[)

The structures of the polymersthat constitute this blend are shown in Figures 45 and 47. The
pyrogram of a sample of Makroblend is shown in Figure 49.
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The major degradation products of Makroblend include phenol (10.64 min), methylphenols
(12.29 and 12.46 min), ethenyl benzoate (13.60 min), benzoic acid (broad peak between 14.00
min and 15.50 min), 4-(1-methylethyl)phenol (15.11 min), 4-(1-methylethenyl)phenol (16.32
min), the mono and dietheny! esters of 1,4-benzenedioic acid (20.70 min and 20.10 min),
diphenylcarbonate (21.72 min), 2-(4-hydroxyphenyl)-2-phenyl propane (23.66 min), and
bisphenol A (27.10 min).
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Figure 49. Pyrogram of a sample of a poly(carbonate)/poly(ester) blend.

Pyrograms of Makroblend, bisphenol A based poly(carbonate), and poly(ethylene
terephthalate) samples are shown in Figure 50. As was observed for the
poly(ethylene)/poly(propylene) and poly(phenylene oxide)/poly(styrene) blends, the
pyrogram of the Makroblend sample is composed of degradation products characteristic of its
constituent polymers, poly(carbonate) and poly(ethylene terephthalate). For instance,
degradation products such as 4-(isopropyl)phenol, 4-(2-propenyl)phenal, diphenyl carbonate,
2-(4-hydroxyphenyl)-2-phenyl propane, and bisphenol A (2,2-di(4-hydroxyphenyl)propane)
which are characteristic of bisphenol A based poly(carbonates), and benzoic acid, ethenyl
benzoate, the diethenyl ester of 1,4-benzenedioic acid, the monoethenyl ester of 1,4-
benzenedioic acid , which are characteristic of poly(ethylene terephthalate) are found in the
pyrolytic degradation products of Makroblend.
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Figure 50. Pyrograms of top) Macroblend (poly(carbonate)/poly(ester) blend),middle)
poly(carbonate), and bottom) poly(ethylene terephthalate).
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Conclusions

There are anumber of general observations that can be made about the polymers and their
pyrograms discussed in this memorandum.

The pyrograms of the three polymer blends; poly(ethylene)/poly(propylene), Prevex(] -
poly(phenylene oxide)/poly(styrene), and Makroblend - poly(carbonate)/poly(ethylene
terephthalate), consist of the degradation products that are characteristic of the polymers that
make up the blend. For instance, the pyrogram of the poly(ethylene-propylene) blend has the
alkadiene/alkene/alkane triplets characteristic of the pyrolytic degradation of poly(ethylene)
and the dimer, trimer, tetramer and so on of propylene characteristic of the pyrolytic
degradation of poly(propylene). Similarly, the pyrograms of Prevex(] and Makroblend[]
consist of degradation products that are characteristic of their constituent polymers.

The pyrograms of the thermoplastics with aromatic rings incorporated into the main polymer
chain; poly(phenylene sulfide), poly(amide-imide), aromatic liquid crystal poly(ester),
poly(imide), poly(arylsulfone), poly(sulfone), poly(phenylene oxide) and poly(carbonate), are
characterized by degradation products arising from the cleavage of non aromatic main
polymer chain bonds. The thermal/pyrolytic stability of the aromatic rings leads to
preferential cleavage of the polymer chain at non aromatic main chain bonds. For instance,
pyrolytic degradation of poly(phenylene sulfide) rel eases benzene thiol, diphenyl sulfide,
phenyl 4-thiophenyl sulfide, and so on. These products arise from the cleavage of
sulfur/benzene ring bonds. The pyrolytic degradation products of poly(amide-imide) can aso
be directly related to the cleavage of non aromatic main chain bonds. Referring to Figure 17
it can be seen that the release of aniline, phenol, 4-aminophenol, 1H-isoindole-1,3-(2H)-dione,
diphenyl ether, 4-phenoxybenzenamine, and 2-phenyl-1H-isoindole-1,3(2H)-dione arise from
the cleavage of non aromatic main chain bonds.

The three samples of poly(sulfone) , referred to as poly(sulfone), poly(p-phenylene ether
sulfone) and poly(aryl sulfone), can be distinguished on the basis of their pyrolytic
degradation products. For instance, the poly(sulfone) sample releases pyrolytic products
characteristic of bisphenol A, while poly(p-phenylene ether sulfone) and Radel [ do not.
Although the degradation products of poly(p-phenylene ether sulfone) and RadelD are
similar, Radel (1 releases dihydroxyhbiphenyl while poly(p-phenylene ether sulfone) does not.

Nylons based on diacid/diamine chemistry can be easily distinguished from those based on
cyclic lactam chemistry on the basis of the presence of cyclic monomer as a major
degradation product of the lactam based poly(amide)s. Azacycloheptan-2-one (caprolactam),
azacyclododecan-2-one, and azacyclotridecan-2-one are major degradation products of Nylon
6, Nylon 11, and Nylon 12 respectively.

The pyrolytic degradations products of diacid/diamine based poly(amide)s released series of
degradations products whose structures were similar. For instance, Nylon 6,9, Nylon 6,10,
and Nylon 6,12 released unsaturated nitriles of the genera formula C,H,,.;CN that arose from
the degradation of the acid portion of the polymer. The maximum value of nincreased from 7
(Nylon 6,9) to 8 (Nylon 6,10 and to 10 (Nylon 6,12). Nylon 6,6, Nylon 6,9, Nylon 6,10, and
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Nylon 6,12 also released a series of n-hexylamides with the general formula CsHisNHC(O)R
where R was a saturated (CHzn+1) Or unsaturated (C,Han.1) hydrocarbon. The maximum
value of ninfor any of the Nylons was two |less than the number of carbonsin the diacid used
to prepare that poly(amide), for instance, n had a maximum value of 10 for Nylon 6,12.
These same Nylons also released a series of N-alkenyl or N-alkyl nitrile amides of the general
formula RNHC(O)(CH,).CN with n =4, 7, 8, and 10 for Nylon 6,6, Nylon 6,9, Nylon 6,10
and Nylon 6,12 respectively.

Nylon 11 and Nylon 12 released series of N-alkyl or N-alkenyl amides with the general
formulas C10H19C(O)NHR and C11H21C(O)NHR reSpeCtlver
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Table 1. Retention times of unsaturated nitriles released from the pyrolytic degradation of Nylon 6,9,
Nylon 6,10, and Nylon 6,12.

CnHan1CN MOLECULAR NYLON 6,9 NYLON 6,10 NYLON 6,12
WEIGHT
n g/mol Retention Retention Retention
Time (min) Time (min) Time (min)
5
6 109 9.40 9.33 9.34
7 123 11.45 11.51 11.42
8 137 13.27 13.18
9 151 14.79
10 165 16.28

Table 2. Retention times of hexyl amides of the general formula CsH13NHC(O)R released by the pyrolytic
degradation of Nylon 6,6, Nylon 6,9, Nylon 6,10, and Nylon 6,12.

CesH1sNHC(O)R MOLECULAR NYLON 6,6 NYLON 6,9 NYLON 6,10 NYLON 6,12
WEIGHT

R g/mol Retention Retention Retention Retention

Time (min) Time (min) Time (min) Time (min)
CsHs 169 17.10 17.05 17.07 17.06
CsH7 183 18.51 18.50 18.44 18.46
CsHq 197 19.73 19.67 19.67
CeH11 211 20.91 20.88 20.86
C7His 225 21.99 22.00 21.99
CgHis 239 23.04 23.06
CoH17 253 24.08
CioH1o 267 25.08
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Table 3. Retention times of the compounds with the general formula RNHC(O)-(CH2)NCN released from
the pyrolytic degradation of Nylon 6,6, Nylon 6,9, Nylon 6,10, and Nylon 6,12.

RNHC(O)- NYLON 6,6 NYLON 6,9 NYLON 6,10 NYLON 6,12
(CH2)nCN
n 4 7 8 10
R RT MW RT MW RT MW RT MW
(min) (g/mol) (min) (g/mol) (min) (g/mol) (min) (g/mol)
CsHs 26.16 250
CsHy 26.30 252
C4H7 222 236
C4Ho 20.86 182 24.28 224 25.36 238 27.15 266
CsHq 25.20 236 26.16 250 28.04 278
CsHu1 21.96 196 238 252 28.04 280
CeHu 26.19 250 27.08 264 28.82 292
CeHis 23.04 210 26.19 252 266
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Table 4. Retention times and molecular weights of the compounds with the general formulas
C10H19C(O)NHR and C11H21C(O)NHR released from the pyrolytic degradation of Nylon 11 and
Nylon 12 respectively.

SAMPLE NYLON 11 NYLON 12
R C10H1eC(O)NHR C11H21C(O)NHR
Molecular Retention Molecular Retention time (min)
Weight time (min) Weight
CsH7 237 23.06 251 24.08
CsHo 239 23.06 253 24.08
CsHog 251 23.97 265 25.06
CsH11 253 24.04 267 25.06
CeH11 265 24.93 279 26.00
CeHiz 267 25.02 281 26.00
C7H13 279 25.95 293 26.91
C7H1s 281 25.95 295 26.91
CgHis 293 26.85 307 27.77
CgHi7 295 26.85 309 27.77
CgoH17 307 27.71 321 28.62
CgHio 309 27.71 323 28.62
CioH19 321 28.56 335 29.42
CioH21 323 28.56 337 29.42
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