MEMORANDUM

RM-4074-PR
MAY 1964

A BASIC APPROACH TO

THE USE OF CANONICAL VARIABLES
AND VON ZEIPEL’S METHOD IN
PERTURBATION THEORY

J. H. Hutcheson

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

The Q-ﬂ n D&%WW

SANTA MONICA « CALIFORNIA —- -




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAY 1964 2. REPORT TYPE 00-00-1964 to 00-00-1964
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Basic Approach to the Use of Canonical Variablesand Von Zeipel’'s £b. GRANT NUMBER

Method in Perturbation Theory
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rand Cor poration,Project Air Force, 1776 Main Street, PO Box REPORT NUMBER
2138,Santa M onica,CA,90407-2138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 57
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18






MEMORANDUM

RM-4074-PR
MAY 1964

A BASIC APPROACH TO

THE USE OF CANONICAL VARIABLES
AND VON ZEIPEL’S METHOD IN
PERTURBATION THEORY

J. H. Hutcheson

This rescarch v sponsored by the United States Air Foree under Project RAND
contract Noo AF 190638 T monitored by the Directorate of Development Planning.
Deputy Chicf of Staff. Research and Development. Hg USAF. Views or conclusions
contaiped 1 this Memorandum should not be interpreted as representing the ofhicial
opiion o1 policy of the United States Air Foree,

DO AVATLABILTTY NOTICE
Qualified vequesters may obtain copies of this report from the Defense Documentation
Center iDDO

- The Qﬂ l ] I)éoz/wwm

SV SANTA MONICA © CAIIFUENIA « #0400






i1

PREFACE

Bystematic methods of obtaining spproximate solutions to com-
plicated ron-linear problems are the subject of perturbstion theory.
This theory probably resches its highest dsvelopment in celsstial
mechsnics vhers detalled complexities must be takep fwto account tn
;t,mhr to achieve the dasired accuracies. Within receat years there !
‘hes been & considersble revival of interest in the spplicstion &2
classical mechanics tﬁoory to practical problems involving sstellites
snd spece flight, using the Hamilion-Jucobl theory, canenical verds
'auu, end von Zeipel's perturbation method o provide scme very el-
sgant solutions to artificial satellite problems. '

Mr,mmnuwmmww o
" perience in the subject have &ifficulty in following this work. Prob-
-ably most of the difficulty arises becsuse of their unfamilierity with
‘both the mathematical snd astronemical jargon involved (e.g., "deter-
mining funetions,” "secular,” "periodic,” “cancnic,” ete.) mnd be-
camuse of the cmplexity introduced vhen several degrees of fresdom
‘are involved. |
~ The ven Zaipel perturbation technique st the time of this writing
is a specialised tool available prineipally to astronomers and those
‘tra.ined in celestial mechanics. It is a powerful method vhich lhoun
bave vide spplication to problems involved in other fields. magn. .
ingly, this Nemorsntum presents the subject from an engineering rether
than mathematical point of view, using relatively sizple exmmples to
1llustrate the method. /
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LIST OF SYMBOLS

work engular frequency of a simple harmonic mtan'

q‘.}' gensralized coordinate 3=, 2 3; sos

B v ‘the Hamiltoniane~equal to the sum of the kinetic and
: . potential energles of the lystan tmthe- duisnctod
- PFby astmncura) . ‘.

Vv

L ca.nonica.l vnriabh izpreunting momentum conjugate to

the angle varieble 4 _ | . i
y 3 . canonical variable repmcntins a ooordina.te u@le con-}
Jugatatothemntmvariablel. . S
m mass of e particle
P genemline?l momentum ‘J - 1; 2y 3y o

e a mall positive number (& < 1)

Dots symbols represent derivatives with respect to time






I. IWTRD

or more than a century sstrotomers and mathematicians bave used
the Emmilton-Jacobl theory and related perturbation techuiques in ex-
pnmng and predicting the motiom of celsstial bodies. Many of the
poverful suxiliary perturbstion methods and techmiques developed by
men such as Delmunsy, Hill, Brown, Shook, and ven Zeipel vers evelved.
tn solving highly epecialized problems in celestisl mechanics relsted
to lunar theory, phaetm th-or.r, ‘and solar system stability. These
problems vere very compncatod, umlvim three (and sometimes four)
Gegrees of freedom and entailing an enormous amount of detailed der-
ivation and calculation. Accordingly, it is not surprising that some
of these mathematical tools have been fmmiliar over the years only to
persons astronomically oriented md indoctrinated in the theory of
classical noehanicl. m, widsr interest has developed as en-
gineers and spplied mathematicians have encountered practical problems
in epace flight guidance.

In the past, it was the astronomer wio was interested in pre-
dicting the motion of some celestial body for an extensive period of
time, say 50 or 100 years. Today, space flight or satellite systems
are being plamned to operate for periods ef several years. The pro-
cedure of using a crude mathematical model and making many iterstions
on an electronic computer usually breeks dowvn in problems of this type
because of truncation end round-off errors. There has, therefore, been
& need for the use of more sophisticated mathematics. Within the past
four years notable contributions along these lines have been made by
rouver, (1) garrinke1,(® Bort,(3) xozas,(*) and meny others using tue
Hamilton-Jacobi theory and a perturbation tecknique usually ascribed to



ven Zeipel, (5) a1tvougn others'®7) contributed metiods along very
similar lines. Bruwer, Nori, snd Oarfinkel developed » complste first-
om solution for the perturbed motion of an artificial satellite with-
out air drag. Osuplete second-onder solutisus of this preblem have been
Gavelaped by others.(") hese publicetions wnxm@mm
8 mmber of pepers have sgpeared describing the Mmotthheniqm,
to varieus perturbation problems in celsstial mechanics (see references).
tafortunately, many of these problems are complicated in detail, and by
ghovmnatanofwnmmmam smount of analytic
derivation snd develepment, vhereas the method itself is simple snd
calculus of varistions is necessary %o understand the underlying thmry
involved, but only an elementary acquaintance is necesssry in order to
epply the technique successfully u-q,nctscal enginesring prodleas.
mmmuumwwmumm
sr than s mathematical, point of view, using relatively simpls ex=mples
involving only ene degres of fresdsm {1.e., the harmonic oscillater end
the Van der Pol equations). The mathematical theory spd derivation may
be found in texts on classical or celestial mchmica.("7’9;m)

Because of the .mm-zty of the von 2eipel perturbation method to
thet of Kryloff and Bogoliuboff metbod(12713) wnich 15 vell knovn ia the
fields of physics end engineering, ‘ons’ sectisn is deveted to a comparison
of the two.

e et

of the coefficiant of the second

"ielerring to the m
1al functisn, veriously desigasted 3,

hamonic of the earth's
k

2’ ’ Btc.



'II. CANORICAL VARTABLES AND TRANSFORMATIONS

The von Zeipel nethod consists of meking successive mathemstical
transformations of varisbles ef a canonical system of differeatial
equations. The transformatisens are performed in a methodical vay
scoording te established general rules, so that the final solutien
is obtained in a certain desired ferm. For exsmple, in celestial
mechanics it 1s expedient to describe the variation of an orbital

parmmeter, say Ggy)) 1n the form:

Yg) = % * ao(t-to) + long-period trigonometric terms
+ short-perisd trigonometric terms

where q_, &0, and t are constants of the motion. The linear time
varying termm is referred to as being "gecular."” '.B\e‘lnaa-ptrhd_
terms may involve periodicities very grest in magnitude relative to
the unperturbed two-body period, vhereas the ‘short-period tems are
usually commensurable with this period. To an astropomer, it is
important to be able to separate methematically the long-peried
from the secular terms, for if the "long peried” were say, 100 er |
1000 years, the periodic effect would be Alfficult te separate from
the secular effect by observational means.

A system of differential equahicns describing e mechanical
system is said to be canonical if:

. . OH . -3H

q_d - SJ "1 = Fq-; Jmleeem (1)

vhere H is the Hamiltonien equal to the sum of the kinetic and

potential energies of the system; pJ is the generalized momentum



and q:’ the generalirzed coordinate. The system has n degrees of freedom.
Hevinumthn.tnmben'ittensdthat it does not contain the

time explicitly. That is,

H-B(pj’qj) J =l...n

Eqations (1) sre a set of 2n first-order differentisl equations. Their
solution gives p'j and q as functions of the time and 2n arbitrary com~
stants. As an exsmple, consider the simple linear spring vhere a par-
ticle of mass m is constrained to move along & path, its displacement

from a fixed point being q. The spring comstant is ke.

The kinetic energy is: % n&i

The potential energy is: %ka qi

Designating the momentum as p_ = n&z, the Hamilionien 1s:

2
P
Ho(px’qx) - 'a‘t M %ke q:2: (2)

Fote that p_ and q, are both functions of time but t is mot explieitly

contained in Ho' The 2n canonical equations are

Py

N e—
m

E,x-

3| &
% o

(3)
OH

° [o)

px'-r.-kqu
Y

These two first-order equations may be reasdily solved for qx(t) end px(t)

in terms of 2n = 2 arbitrary constants. The first appears to be rather



trivial, merely restating the definition of momentum; the second equa~
tion can be combBined with the first to form one single seconé-order

equation which is that of the spring or simple harmonic oscillator.

S (%)

We shall be concernsd here vith obtaining soluticus to the first order
Egs. (3) rather than Bq. (4). For the perw case (1.e., non-
linear spring) to be considered in the next section, the Hemiltonian
of Bg. (3) 4s not in & form smenable for perturbation techniques. A
fundemental theorem i{n the tramsformation theory of classical mecheanics
iz that & transformation of variables may be made such that the funec-
tional form of the Hamiltonien is changed, although its value is mot,
providing t is not explicitly present in H. If en appropriate trans-
formation method is used, the differential equations describing the
system will remsin canonical although of a different functional fom.
For example, let us assume thet the Hamiltonian lo is to be trans-

formed to one having & new functional form B(; with nev variables p;

B (p,rq,) = B (prrap) (5)
anl . axl

Lot g ®
o, O,

In stationary state Heamilton-Jacobi (B-J) perturbation theory, the
first step is to transform the Hamiltonian of the unperturbed prob-
lem (i.e., Ho) 80 that 1t contains the "asction” variables only (i.e.,

momenta, in our case). In»rpractice, the mathematics of this step



can usually be circumvented by intuitive reasoning or, better yet, by
‘starting with someone else's results that will guarentes the desired
functional form of H as well as the H-J equations remaining canonical.
This procedure will be 1llustrated later in Section Y, Gealing witn :
spplications to celestial mechanics. )
Returning to the exmmple of the linear spring, the Hemiltonian
may be transformed so as to contain only a momentum variable by intu-

itive reasoning. That is

B (g @)K (py) - ) vhere B = B (7

First consider the solution of Eq. (3) with the conditions m = 1,
iy = O |
¢ (t) = ¢ cos k(t-t ) -
8)
px(t) - E;x(t) = - kq_ sin k(t—to)

At time to, the kinetic energy is zero and the total energy of the
system is equal to the initial potentisl emergy or
k2 qm2

'
H = —=— =g = total system energy (9)

For convenience, we shall designate p; end its conjugate q;: as L and
£ respectively. The canonical conditions of Eq. (6) and the desired
transfomation of Eq. (7) may be determined intuitively by letting:

kqon

5 (10)

L =




L = k(t-t) (1)

B, (Pprq) = Eg(L, - ) =k L (12)

Then, the canonical equations are

. oE

Le--—3=0 or L = const., (13)
anl

1.-6% =k (lk)

The solution to the linear, i.e., unperturbed, problem may be con~
sidered as mixiliary equations connecting the transformation. That
is
Q- Jz cos £
(15)
q =~/2kKL sin ¢

In the unperturbed case, L and the anguler variable { are "elements,"”
or "parsmeters,” specifying and defining the simple hermonic motion
of Bq. (15). It is logical to asmme that if this simple motion is
suddenly perturbed by s mmall disturbing force, Eqs. (15) could still
be used to describe or approximate the resulting motion; however, the
elements would require 8 slight adjustment to represent the motion
accurately for & given short interval of time. This subject is dis-

cussed further in the next section.



IIX. THE VARIATION OF PARAMETERS TECHNIGUE

In order to clarify the material which is to be presented in the

next section, it mey be worthvhile to reviev briefly the variation of
peremeters technique. In the preceding section the solutions of Egs.
(3) were of the fom

qx(t) = A cos (kt + B)
(16)

p(t) = Z;x(t) = ~ Ak sin (xt + B)

vhere A end B are constants of integration and k is the angular fre-
quency or in tems of other variables which have been used

: 2L
A
Bm o kto

so that Eq. (16) corresponds to Eqs. (8) or (15). It was suggested
that, if the simple bhermonic motion described by these equations was
perturbed by e small disturbing force, these solutions could still be
used to describe or approximate the resulting motion. However, the
elements or constants A and B would require slight adjustments to
represent the motion accurately for a given short interval of time.
Moreover, as time progresses, one would expect that adjustments to

the elements would be contimocusly or periodically necessayy to achieve
this purpose. Therefore, these "constants" of the above equations

may be thought of in the perturbed cmse as slowly time-verying. In

perturbation theory this concept is ususelly referred to as the



"variation of parsmeters” method. Gaenerally, one masy expect that the
adjustments to the elements will consist of additive tems: & lineer

time-varying term plus periodic terms of several different frequencies
as in s Fourier series. To i1llustrate this technique, consider an

equation ot»the form
4+ Mo, Py t) =0 (x7)

vhere the solution is nearly simusoidal or quasi-harmonic so that

o, Py t) = k° g + € X(q, Py t) (18)

In the above, £ is a parsmeter characterizing the smallness of
the devietion of ¥ from k° q_. Next, if we examine the case vhere t
is not explicitly present in X, Bq. (17) becomes

q +k° g +EX(g, p) =0 (29)

where, for & = 0, Eqs. (16) are the solution. For & =mall and positive,
A and B may be considered new unknown functions of time and determined

in such a manner that Eqs. (16) are forced to be solutions of Eq. (19).

. To do this we assume

qx - qx(tp A, B)
where

A = A(t) and B = B(t)

so that differentiating the first of Eqgs. (16) with respect to time

d.qx

—f = 3f cos (kt + B) - Ak sin (Kt + B)

- A%% sin (kt + B)
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Nov examining the above equation and considering the requirement for
:’x(t’) of Egs. (16), 1t 1s necessary that

'pi(t) -d-%- = Ax sin (xt + B)

Foos(xt+8) - AL ata(xt +3) =0 (20)

8imilerly, differentiating p, of Egs. (16) with respect to time re-
sults in

By ==~k 38 ot (kt + B) - &P cos (kt + B)

'-Ak-g%eos (xt + B)

Examining the above equation and considering the requirements for qx
of Bg. (19) and for q, (see Eqs. 16), it 1s necessary that

;x %‘g sin (kt + B) + Ak i‘% cos (kt + B) = &x(qx, px) (21)

Solving Rqs. (20) and (21)'for $A ena g-’%

%.% sin (xt + B)
(22)

%.%m. (xt + B)

where
X= x(qx) Px)



ll .

Note that §f and 3 being proportional to £ will be slowly time-
verying during the period 2u/k.

Sumaarizing, 1f Egs. (22) can be integrated so that A and B are
known or epproximated as functions of time, then Egs. (16) would rep
resent a solution to Eq. (19). In other words, Eqs. (16) can serve
to represent the perturbed £ ¥ O solution if the parameters A and B
are considered to be time-varying according to Egs. (22). Now re=
turning to the canonical variables L and £, it is clear that since

- ] 2L
A .»&(. ‘\/Y
then
aL dA
T/ g
and since
Bm .kt
[
thex L =k(tet)) =kt +3B
al 4B
ZTEtw

Fote that Eqs. (22) could be substituted in the sbove expressions for
-gl‘{md%é Therefore to obtain a solution to the caponic equations

aL O
¢ S |
aL o
®TTE

vhere H is the Hamiltonian of the non~linear or perturbed problem, is

equivalent to solving Egs. (22). In the next section we shall con-



sider von Zeipel's method for epproximating the solution of the above

cancnic equations. The results, of course, with Bq. (16) (equivelent
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IV. THE VON ZETPEL PERTURBATIOR TECHNIQUE

NON-LINEAR SPRING EXAMPLE
So far the equation of motion of a mass attracted to an equi-
1librium position by a force proportional to the distance has been
used as an example (i.e., the linear spring). Suppose now that a
perturbation tem proportional to the cube of the displacement is
added to spproximaste a npon-linsar spring or the motion of a pendulum.
The equation of the system is now
m¢';;+k2qx+eqi-0 (23)
,z N
U
vhere € is a amall parasmeter. It is necessary to add the tau-r—
to the Hamiltonian of Bq. (2) se that the canonical equation for

becomes equivalent to the above. That is

22 ¢ 4
H-f‘iékzéi-—tqz (2#)
80 that o
o Begetenid @

Taking the results of section II in expressing the new xz-ﬂ.toniun- 8

H(L, 4) = B, (L) + [B(L, L) - E (L)]

where

e 4

H-Ho s -5
The portion of the Hamiltonien representing the perturbation (H-Ho)
contains both action and angle variables. The unperturbed portion

contains only the action or momentum veriable., Using the definjitions



1k
of L and £ and the unperturbed solution for q of Eqs. (15)

2
H(L, 2) = kL + -:-Ié'— cos” ¢ (26)

The first step of von Zeipel's method consists of transfoming a
Hemiltonien H (vhich may be a function of several action and angle
variables) into a nev Emniltonian H 8o thet one or more of the en-
gular variebles present in H are eliminated from B . The solution
may progress in steges by transforming !I. into H", etc., until no
angle varisbles are present in the finsl result. For example, in the
above equation H(L, £) would be transformed to H (L', - ), (the dash
indicating the absence of £’). L’ is now a nev action variable. The

resulting H-J cancnical equatiens are

L 4%
1'-1‘1—-002151’.. i.’--ég--o
oL’ ar’

The time veristioa im £’ 1s linesr (secular) whereas L’ is a constant
of the motion. It may sppear that part of the solution has been lost,
but it will become apparent later in carrying through the transformation
fram H to H‘ that the periodic part of the sclution is obtained in the
process. The final results of the problem will be in the form

L= 1'(t-t°) + trigonometric terms periodic in £

L= L' + trigonometric terms periodic in £

| qx-\/-z;l‘:coaz(usingz,l,ofahow)

The transformetion technique is described as follews. Assume thet
H=8 + (H-Ho) may be expanded in sn infinite series, each tem

having & coefficlent involving scme power of the small parsmeter &.



]

That is
HuB +H +H+ -
‘where the subecript refers to the pewer of £ imvolved in the coef-
ficient and H(€%), for example, 1s designated as “of order 2".
Vithout defining its mathemstical significance, (&0 %11) g gn.
 troduce s "dstermining function” Maving s nev variedle L’ end the

'oldurhhhl

s = s5(1/, L) =8 +8 + 8,4 ot

The subscripts have the same meaning as before. The following re-
lationships are imposed on S:

98 ¢ 08
Les3 1 " (27)

It is desireble that £ = t'vhen £ = O (the umperturbed cese)
Therefore ,S° i1s arbitrarily defined as

s =L" 2 (28)

T™e canonical transformation is to be

B(L, £) = E (L', - )
or

(L) + [H(L, 1) - B (1)] @ BS (L) +B] (L) + - (29)

Nov, using the relstionships from Egs. (27) snd (28)

28, 38, -
H(L, 4) = B(L' + 7= + ar*'” L) | {30)

-”HO +ﬁxl + H; + con
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and expanding the Hamiltcnien of Eq. (30) in & Taylor series about 1A
and collecting terme of corresponding order in both right and laft

members
Zero order HO(L') - E:(L') {n)
) p 8 rder a‘ﬂo 331 (L', £) .(L') (32)
m ——  cnt— L 3 » :
First order S0’ 32 K 5 {32)
o, 35 2%, (3s)2
2 1 :
Second order BL:_ Yy +3 BL'% <az> (33)

The object of this expansion is to solve the resulting partial
differential equations (ordinary differential equations in this spe-
cial case) for 8 82, etc., depending on the order of accuracy de-
sired. When this is done, the main difficulty of the problem is over-
come and the solution follows at once. It 1s very important to ob-
serve in the work thst follows that, 81, 82, ete., vill be obtained
by solving linsar equations. That is, 8, vill be determined from
Bq. (32) and then substituted into Bq. (33) which is linear in 8,
Similarly the third order equations can be solved from an equation
linear in S, using the previously determined velues of 5 and 8,.

Consider the {irst-ordsr tem

2 :
By ) = e’ s (3%)

It may be expressed as the sum of two terms, one constant (i.e.,



Y

"sacular” or pon-periodic in %) and the other periodic in L. These

_tem axe sasily ebtained by expressing

cosklsé-o%cuaz-t%mhl

(L', 2) =B + H
vhere

B, -1;—:; H, " i’;[m- 2L +%-fm u] S ¢ -))

or alternatively

&LIZ x " Ll?
H, = . cos L dl = .29
1s xk ’ro 8x°

E1;; =g - H,
The first-order Eq. {32) may be expressed as

oH, 8
0 . »
-a_]-:;',a‘-."ﬂll’nlp Bl

end separated inte two equations:

* ’ L
He = B(L) = %k'r (%)
oH asl .
--—2_2 (3
"ip 3L’
o o |
In the above, -a-?; stends mr;;-vm: L’ replacing L after the
L /¢
derivative is taken or in our exmxple, simply:
,raa O

e X

aLI



Hence frem Rqs. (35) s (37)

3 | oy 18
.a..:_l.---‘iy(coa 2£+%coa Le) (ﬁ)
and
2 o
sl--ii‘-r(sin 2L +§ainu)+const. (391

The constant of integration is not significant to ?the problem
since we are only concerned with the derivatives o} sl Fov the
part of the solution periodic in L is obtained to first order
(1.e., 0(€) from . mas. (27).

A +8) .2 &
o8 (") Bl. ¢ 8L 1
L » o o v ® ], - (@82‘4‘ coahl-) “
.Y ot a:3 ¥ ¢ -)“
os_+ 8) ' |
¢+ Q8 o * 8 eL 1
L = = -t (sin 24 + x ein kf) k1
T or 2 B )

or

PRI > %% 1
- +—-3(sin21.+gsin L)
2k

If first-order accuracy is sufficient in calculating the periodic
terms, there is no interest in determining 82., At this point, the
Hamiltonian H 1is frem Bgs. (31) and (36)

* ) * »

E(L)-H°+Kl+...

2

.kLl +l§%‘_'+ LN ]
8k
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E; may be obtained in a similar menner from Eq. (33).

,fou.,vmmhpweulnlm

ano

—x = 0
oL’

i
3

rn;(l.'} = the part independent of L of -1
- oL’
3s,
Mw —“-a is given w “o (ﬁ)’ ad from no (5)

?’" 8 %oy ff _

38

.Y

so it is necessary to detemine the non-periodic part of

2 /3 :
2e° 1, 4 3
cos L (# - cos £)
k5 g

Considering the infinite series for o8t 2 (see prior to Eq. 3%)

=13

-mgsl --(&-ﬁéfﬁ)--
1. 1d
Hence
- 1 62 LI3

and H 1is given to second order, 0(82), by

H 1:I..+33L &62

(x2)
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The secular part of the solution is given by the camonical H-J

equations

) * 2 _,2
g-i‘-’:—.k# CL'. £ L *3‘
at oL’ g ;!‘ g% x5 )
&
-e'—L-:---—-O
4at o

Summerizing the complete perturbed solution we have

g (t) =/ & cos ¢ (bh)
vhere .
£ (bt ) + Ly (otn 20" + L gin be! »s)
- o ;j 8 + g sin ) (»5)
. r eL’ e? 172 o
L7 £(t-t)) = 'k + 3 ;ﬁ‘ - —:g— (*"t.) : (46)
and

L=L- e (cos 24’ + 3 cos be’)

&3 e
Note that £ has been replaced by L’ in Egs. (40) and (k1) simce the
difference between £ and £’ 1s O(€). The coefficients of the right-
hand terms are also 0(), making the discrepancy small.

Referring back to the original varisbles and substituting in
k92 ka2
L = ——5—— L' ™ : (h?)
'

2
qx02 - q;toe rl -2 i—l—‘%— (cos 24 +% cos kl')] - (h8)
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The physical interpretation of these results is as follows: q;o

may be interpreted as the sctual initiml displacement of a maas
attached to a nonlinear spring st time to. The displacement after
an interval (t-t ) may be determined from the simple linesr epring
equation Wy considering that the elsments (i.e., parmmeters) defining
the linear motion are time-varying due te the perturbation. The var-
iation of the linsar spring parsmeter Yo dafining the mplitude is
given by Eq. (M). The varistions in frequency of the motion are in-
herent 1n Eq. (3).

In the above example, the parturbation tem involves only the
displacement Qe? end the energy of the system is conserved. The so-
lution of Egq. (108) showvs the amplitude of the oscillatory motion to
have no secular terms. Thet is, 1t does not increase or decrease with-
out bound but is represented by a constant plus trigonometric tems
having frequencies vhich are mltiples of the fundmmentel frequency
of the system. As will be shown later, this is true whenever the per-
turbation tem 1s independent of Pye

Note that the secular part of the solution (Bg. %¥3) is accurate
to 0(£2) vherees the periodic part (Eq. A1) 1s sccurste to 0(¢). In
thoory; the solution may be extended indefinitely by collecting higher-
order tems in the Tsylor series expansion of H and solving the re-
sulting linear partiel equations for 82, 83, etc. For example, con-
timing on with Eqs. (31) through (33), the third-order terms are:

s 32111 <asl

aL' az ’a:,' az) o’ az - 50 (49)

(Mote: The first term involving 8y is periodic in 2).



5, has been dstermined from M. (32).»«1 , Bey be deternined by
' finding the part of K. (”L periodic in L. That is, the periedic
paxrt of

2 e, \° d T
SEaBE . e

gives a partial differentisl equstien vhich may be solved for 8

2°
o%m

(Wote: —3=0.) Kjnay be doterntned by seperating Ba. (M)

E;'s'mmofflznl(M) ax.’azaj ‘(»51);-

:mmuthhmtuamcmamthwuhw:

N~ AT SYSTEMS

So far the Mc@uhn has been restricted to conservative systems
vhere there is neither creation nor disipetion of energy. In the non~
linear spring example, the perturbation term was a function of a po-
sition coordinate only and did mot involve the time explicitly. Next,
let us consider a mechanical system to be perturbed by external forces
such that the equations describing the system are:

;%&- - #i! + X(qx: Py t)
b 4
(5e)

&
a'f!"g':-:'r(qxpro t)
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vhere

e . Eesig, )
ummpmm,htumgﬁanuuvmm
transform Bgs. (52) s0 that they are in terms of scme new verisbles
L, L and 20 that
g, p,) = B'(L, £)

(53)
&E--a-r

Pirst it vill be necessary to express X’ and Y’ ia terms of the new
variables L, 4. This transformation of varisbles can be done in the

op
folloving mesmner. First multiply Egs. (&)wf,-a-:émdam.
e s is ) ’ ' )
» & . T
o m e BeraEergy

If on the left side we substitate

§
4
= [
F
el



eh

ﬁheruulth

The hracket on the left side is & Lagrangien brecket [ £, L | ana

* equals unity for a cancnicsl trensforsation vhere the Emtltonisn
1s unchanged.(T) (mis nxy be 1llustrated by carrying out the adove
indicated operstions on g, D, 88 given by Eqs. (15) of the previous
section). Nence

d

Compearing the above with the first of Egs. (53) it is clear that

op
x'(L, 2) = x(Px’ q!) 3‘£§ + Y(Pz’ Qx) ;:Ix' ' 4 (W)

op o
If Egs. (52) uro-1.1.1:11:1.1ec11:y31E , -B;z-and similar operations
carried out the result is
.
Y'(r, 4) -xuior;)-" (%)
At this point we can consider an axample of a non-conservative sys-

tem such as a relaxation oncuhtor.." let this syetem be descrided
by van der Pol's equation wvhich is of the fom

’éx-ruaqx-t&(q:f-l) px-o
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Suppose the solution to be pericdic of the form

T gty |

Lol . - Coee (%)
Px'ax--qmmlinm(t-to)

end msbefore let

(571)

"-D(t-to)-wt-fﬁ

20 that Eqs. (%6) are transformed to

e Y
(8)

P,'-J_Zm— sin £

and the canonical equations are now

-

B

(>9)



26

Y = e(qf - Lp,

Upon differentiating Eqs. (58) it is clear that

a‘l::_' 1
& 7wy,

Substituting these results in Eqs. (54) snd (55) results in

e( - l)p,
- -—-—-—:;g———-

xl

2
-8[ta.n!.-qxosinlcos L]

e(qf - 1)1»,2‘

Y = - new[(q:)-bqi) cosez-q:Dcosh

Referring to Egs. (53), and expressing the above equations as a
trigonometric series, we find that

2
%‘E.,»,a[mz-%'ismuJ
(60)
L 4
%--%lﬁ(-;‘t—o--q:o>+qicos2£-;?icoskt}

Note that the first equation which involves the angular rate (end
hence the periodicity) contains only short periodic terms vhereas



a7

the second equation involving the amplitude contains & secular tem
Plus short periodic termms. Teking the values averaged over one period

l'llnr - w

b
i __&u[qm 2J
Av =z %

Using these aversge values in order to obtain a first approx~ :
imation to the solution, we mey obtain |

2
%-§%<1-3§9>
(lincef.-mqmc';m)

. Performing the integration(:™

te (t-t)
2 = e — (61)
B 1:30 (TFHL

The first spproximation is a harmonic oscillation
a9, - q:::o cos w(t-to)

vhere the emplitude varies eccording to Eg. (61) end the frequency
is constant. .

The preceding example was relatively simple becmise of the
simple form of the Namiltonian B (a2 function of L only). Instead

of Eq. 53, consider the case where the canonical equations are
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~ vhere X = B (L) + X, (£,L) + ...

the subscripts having the same significence as in the exmmple of the
previcus section. Oune oTr more successive cenonical transformations
wbeperfomdbythemhipelnethodaoutoelmmtcthamgle
varisbles from the new Nemiltonian.
Yor exsmple

®(L, 1) —B (L’ -)

Or, if two transformations are involved
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e o S
The non-linear spring and Yan der Pol equations were chosen de-
cause of the simplicity involved in having only ons degres of free-
don vhereas perturbation preblems in celestial mechenics usually in-
volvceitherthmormurdmlotm' As in the preceding
exzuples, the ultimate chjective 1s to express the effects of the
perturbation as time varistions in the twe-body orbital permmsters.
As a first step, the Bmiltonian is written in terms of a convenient

set of canonical variables. A usual procedure for doing this is to
start with the well-known and basic Delsunay variables: L,G,H rep-
resenting momenta end l,g,h representing the conjugate angle variables.
That ie

MOMENTA COORDINATES
L =+/pa 1= N (mesn anomaly)

5

G = LV 1-e g = o (long. of perigee)

H=G cos & h = 0 (node)

vhere a, e, i, O, ®», and T are the familiar non-canonical Keplerian
elanenta.”) These cancnical elements may then be regarded as & key
vhich allows the Hemiltonian to be written st once and leads to the
canonical H-J equations. A very important poinmt is that the Delasunay
variables may be transformed in a prescribed manner by simple algebraic
manipulation to one of many other different sets vhich may be more
adsptable to the particular problem (e.g., Poincaréd variables and
variations thenof).”)
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In cslestisl mechanics, fhmmrﬁtherthmlilmum;r‘
used to demote the Esmiltonisn 1in order to svoid confusion with
Delaungy's H.

Then letting

“2
:I‘o ‘- FO(L) - ;?

vill give the correct set of 2n = 6 camonical H-J differential equa~
tions leading to the wperturbed two-body solution. Since

ax_.br :.“_ar
® Rt
vhen F = ro, the time dsrivatives of all but one of the canoniecal

elements are zero, i.e.,

; F w2 e

w Tatam e
The familiar two-body elliptical equstions are used to obtain posi-
tion and velocity as a function of the orbitel elements and time.

In writing the Hamiltonian P in the general (1.e., perturwved)
case, if the time 1s present explicitly in »?, en additiomlf)dr of
conjugate variables X, k msy be introducsd for convenience as a de-

‘vice to elintnate t.(®) The solutien proceeds by successively trans-
forming the Hamiltonian F so as to eliminate the angle veriables 1,
g, h, or k. REach transformatien may invelve the removal of ene (or
more) of these varisbles. Such a transfomation might go as follows

*Actually, for convenience a mimus sign is associated with P.
That is, F = - ¥ (the Emuiltonian).



1.

»
Y(L:G:H: ‘nGrh)*’r (L',G',B’,-,g,-)
using 8 = 8°+‘1+_{-"
» s
b 4 (L-l-:a"":";&')"‘r (L'pa':H':":'r')
* » »
using 8 = Bo + 81 + oo

The short periodic part of the solution involving £ and h is obtained
bty solving the partial differential equations for S. Similarly, the
long periodic terms involving g come from 8°. The secular (1inear
time-verying) changes in the orbital parsmeters are obtained from
the resulting H-J equations.

o S
at oL’ a

N 2 4 ¥ o
at ¢’ at og
P 2 %%

g-h:.'--a-r-- ;“L'.-gz_.-o

at ) at
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VI. THE KRYLOFY AND BOGOLIUBCFF METHOD

It vas shown in Section III that the effects of a amall perturbing
force on a simple hamonic motion could be described or approximsted by
considering the elaments or constants of the linear solution to be time
variables. This ves expressed by Eqs. (22) which are repeated below
using the more common notation of m for angular frequency insteed of k.

i‘%-% sin (et + B)

cos (wt + B)

1]

a-
at

vhere
X= x(l’xr Qx)

The Xryloff-Bogoliuboff (X-B) first-order epproximation consists of
considering §f and §P constent during the interval from zero to
2s/wm. Accordingly, the cbjective is to find the average value of the
functions on the right-hand sides of the sbove equations during thie
time intervel. It may easily be shown that if X is & function of q
only, the averasge value of %‘{ will be zero and hence A will be a con-
stant.,

Mext, consider the canonicel equations as discussed in Sectiomn IV
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vhere
H = (L, &)--Ho-t'll1

H.-g.(L’, -)-n:+ﬂ;+x;+-°-
5 -5,
2
0
Le—

I-m(t-to)-'t+3

38 %, 2 am
Erap o

Referring to Bq. (19), it is clear that if the perturbation term
X is a function of Q only

%
B - f & x(qy) da

0

andtheseaﬂarormntantpartotﬁliagimby

2x 9
nh'éli f f e x(q) aq ot (62)
0 (o]
Using the £ = 0 solution

qx-qmcoal



2x amb
31."%,1; f f squ(qnm{'z) sin 4 &t da (63)
0 s/

viere & is & &mmy verisble of integrationm. mnron,%'énnm
to firet order in & Wy ”
ar’ 1 d
Ir'.%xg[‘o*“n] (64)
It is interesting to campere the above procedure with that of the

K-B first-order spproximation. Pirst it should be noted that by def-
inition

& aB
B "*'®

Using a prime, as in the preceding, to indicste the perturbed value,

the X-B first-order approximation is determined by averaging % over

the period 3‘5 so that

x
%é:-g-rm;-él-‘f x(qmeouz)eoaldu (6%)
[+

It is clear that for the special case vhere x(qx) 1s of the form

x(q,) = Cq: = &(q,, cos 0

vhere @ i some constant
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Then H,  of Eq. (64) beocmes
2%

ael
3% (&) [ =ia (e

0

snd Egs. (6h) and (65) give the same result

: o-1 x
, e
= -¢+-—-q;‘° = o™ 4 &y

The preceding may be extended for those eueamnx(qx)whr‘p-
resented as a pover series or polyncmial in Q-

NON- CONSERVATIVE SYSTEMS USING THE K-B METHOD

In S8ection IV, the Ven dsr Pol equation is considered, using a
canonical system of equations. The same solution mey be obtalned
using the K~B first spproximation by assuming, os before, that the
solution is of the fom

QY = 9, ©OB u(t-to)

ax--qxomama(t-to)
X(qx,px)--(l-q:)qx-Cl-qioeosngqmmainl

2 2
.qm.,,[@-%?i)amz-g‘é'ismu]
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Applying the general relationships of Eqs. (22) and finding the
mean value over the interval l-m(t-to) - 2x

2« 2 2
%-u+-§%f [(1-%):1111&;!-3?-!“3‘00!1:]“

1]
! 2 2
%-,qmam-—z-‘-—- [(1-5-?;>11n2t-3§3l1n31.11nl]u

These resulis agree with the averasge or secular terms as derived from
Eqs. (60).
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JORS

".lho .pncodixu‘mrial primarily concerns the use of canonical
variaebles and the Hamilton-Jacobi equations in finding spproximate
solutions to non-linear mechanics preblems. Since von Zeipel's per-
turbation technigue is similar in many respects to the Kryloff-
Bogoliuboff method, some discussion snd coaparison of the two 1s
given, particularly since the latter is popular for solving problems
in the fields of enginesering and physics vhereas the former is popular
in astronomy. Both methods allow the solution of a camplicated non-
linear problem to0 be separated into & preconceived desirsble 'hu .
(e.g., separstion of periodic temms into convenient groups).

As pointed out in Ref. (7), the use of a camonical system of
equations pemits a transformation to be applied to any mmber of
terms in the disturbing function sim:ltmmly, and the Hsniltonian
is obtained directly in the course of finding the detemining function.
Moreover, the new canonical variables resulting from the tramsformations
are related to the original non-canonical set by simple formulas arising
from the urperturbed solution. The solution may be carried out theo-
retically to any desired degree of accuracy in terms of povers of a
anall parmmeter €. JFrom & user's standpoint it is oconvenient btcanai
the solution is obtained in a very methodical wvay invelving no great
mathematical difficulty.

Another interesting peint is that the method of sclution does
not contribute erronsous secular temms to the solution. As pointed
out by Poincaré(!l) and others, the classical perturbation technique
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{due to Poiseon) gives rise to linear time-varying texms which do
not have physical meaning (e.g., & linsar time-increasing amplitude
in the non-linear spring problem).
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Appendix A
HIGHER-ORDER SOLUTION OF NON-LIMEAR SPRING PROELEM

As outlined in Sectism IV, the solution msy be carried out to

higher orders of accuracy by evaluating successively the partial
differential equstions resulting from the !‘wlar_ Sexies sxpansion
‘of the Homiltonisn. 8, has been detemined from Bg. (30) as

CL'e
S]'--E;T(mzl'kllalmhl)

8, may be deterined Uy finding the part of Bq. (33) periedic is 4.
That is, the periodic part of

f‘sasayzz’z“o(“l)a,,;’“_lasl.o
a’ 8T ATV

Pirst we accumilate the following relationships

oH

— =k

aL’

9

—2?'-_5 = 0

oL

OH)  ep b ok
— cos 2 (frnn Bq. 3»)
a’ ke

3 2
;I&.-%B.(m“z.ya) (from Eq. )



as

S.;.-+p.mucm.r“e“'3 [au 3-3»- z]

The trigomsmetric identity for cos,‘ L1 is given prier to Eg. (35)"-4 The

1dentity for cos® £ 18

coaaz-fm[cos&-o-aoo36£+28wah£+56m21+35]

from vhich we gy derive the following:

‘“2' CaL ‘3

—— cos 24 + cos 4L + & cos 64 + cos B2

Y [ '55 '5 s 35 ]
s e 5k oin 22 + 1L 1o bt o L ain 62 ¢ <2 -msz]
2 ;8"‘ 3! pi-] =

08

> 2,2 1 1 1
.__..-x-s- sin 2L + sin 84 4 sin 62 + sin 82
aLl k [ E‘ i E Lm‘ ]“

d 98
¥ote that 3;1- » 375> etc., being constrained to be purely periodic
in £, cannot contribute to Hl or 32 respectively. To detemine

83’, we refer to Bg. (49) which is repeated below:

- 5, (L")

a%( )3313'52

oY u 2t Y



5 ¢

%(a >2+an x

K;-putwmoflot —2\r) o

o

3L

3s,\2 , 28

-pmmacpendmotzor%_ coahl<a-;1-> +?%-ooa"zn-"’-
X k

Carrying out the indicated multiplication end retaining only the
constant or non-periodic terms, we obtain

b
s 375 e
Hy ";335‘13‘

aﬂ* &3L'3 83 6
gfl'z %8—5—

The seculer solution ofblqo. (*3) may nov be modified to include
tems of 0(83)

Py e’ 521.'2 z3L 3
1" m——mk o

The periodic portien of the solution (lql.‘ " kl) ney be
similarly modified to include terms of 0(¢7). The mean sngular rate
is expressed in terms of the initial displacement by using the

substitution

k12
e

to obtain

verfiede(B) - B (B g (B ]
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