
A RAND NOTE

RAND

PSE: An Object-Oriented Simulation
Environment Supporting Persistence

Stephanie J. Cammarata, Christopher Burdorf

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1991 2. REPORT TYPE

3. DATES COVERED
 00-00-1991 to 00-00-1991

4. TITLE AND SUBTITLE
PSE: An Object-Oriented Simulation Environment Supporting
Persistence

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rand Corporation,1776 Main Street, PO Box 2138,Santa
Monica,CA,90407-2138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The research described in this report was sponsored by the Defense Advanced
Research Projects Agency under RAND's National Defense Research Insti
tute, a federally funded research and development center supported by the
Office of the Secretary of Defense and the Joint Staff, Contract No. MDA903-
90-C-0004.

This Note contains an offprint of RAND research originally published in a journal
or book. The text is reproduced here, with permission of the original publisher.

The RAND Publication Series: The Report is the principal publication doc
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of RAND do not necessarily reflect the opin
ions or policies of the sponsors of RAND research.

Published 1991 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

A RAND NOTE

RAND

N-3385-DARPA

PSE: An Object-Oriented Simulation
Environment Supporting Persistence

Stephanie J. Cammarata, Christopher Burdorf

Prepared for the
Defense Advanced Research Projects Agency

Approved for public release; distribution unlimited

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I
j

j

PSE: an object-oriented
simulation environment
supporting persistence1

by Stephanie J Cammarata & Christopher Burdorf
The RAND Corporation, 1700 Main St., Santa Monica, C4 90407-2138 and School of Mathematical Sciences, Univerity of Bath, Bath, Avon BA2 7A Y, England

T
his paper describes the Persistent Simulation En
vironment (PSE), which combines object-oriented
simulation with a persistent object repository and
domain-dependent object prefetching facilities.
The goals of PSE are threefold: (1) to augment a

contemporary object-oriented programming language with discrete
event and process-based simulation facilities equaling those found
in simulation languages such as Simscript and Simula; (2) to
tightly couple an object-oriented simulation language with a sec
ondary storage faciliry to achieve the persistence of simulation
objects; and (3) to improve the swapping of persistent simula
tion objects between main memory and secondary storage through
the use of object prefetching. The PSE protorype we developed is
implemented in the Common Lisp Object System (CLOS) and
runs in Allegro Common Lisp on Sun/3 and Sun/4 workstations.
This environment is a complete, yet flexible, set of CLOS class def
initions and methods fulfilling these objectives.

The results of this research will contribute to the Productivity
Improvements in Simulation Modeling (PRISM) project sup
ported by the Air Force Human Resources Laboratory. The goal
of the PRISM project is to improve productivity and respon
siveness of organizations within the Air Force that provide mis
sion capability assessments through discrete event simulation
models. The simulation facilities ofPSE were modeled predom
inantly after those available in Simscript and Simula [Russe79,
Dahl67]. In addition, we incorporated many traditional simula
tion features that were not supported in the Lisp-based Ross ob
ject-oriented simulation language such as probability distribu
tions and process-based simulation [McArt84].

1 This project was sponsored by the Air Force Human Resources Laboratory through
the Defense Advanced Research Projects Agency under the auspices of RAND's

National Defense Research Institute, a federally funded research and develop

ment center sponsored by the Office of the Secretary of Defense and Joint Chiefs

of Staff. Views and conclusions contained in this document are those of the au

thors and should not be interpreted as representing the official opinion of DARPA,
AFHRL, the U.S. Government, or any person or agency connected with them.

Reprinted by permission from Journal of Object-Oriented Programming,
Vol. 4, No. 6, October 1991, pp. 30-40. Copyright© 1991 by SIGS
Publications, Inc.

1

Persistent object systems (POSs), such as PSE, have the ad
vantage that objects are no longer tightly coupled to the simula
tion system, i.e., objects reside in their own repository and can be
independently perused before, during, or after a simulation ses
sion. Therefore, input and output simulation data may be main
tained permanently in the persistent store ofPSE. Moreover, per
sist~nt object systems enable object-oriented simulations to be
scaled up to efficiently support and maintain many more objects
than memory-based object-oriented languages. For example,
large-scale simulations, such as those done at RAND, may con
tain thousands of objects. Our laboratory has generated 80,000+
map objects for terrain-based modeling. We find that up to 20,000
of these objects can be loaded into the CLOS environment on a
workstation with 16mb of main memory before the virtual mem
ory system will need to perform excessive paging to manage the
size of the virtual image. Such excessive paging can greatly de
grade the performance of the simulation. Our initial results indicate
a fourfold speedup when reading 20,000+ previously formatted
objects stored in our PSE object management system, compared
to reading and formatting the same objects each time for non
persistent CLOS.

Many POS projects are concerned with seamless integration of
simulation language features and traditional data management
capabilities such as transaction management and multiuser ac
cess [Atkin87, Ford88, Khosh89]. Although these issues are crit
ical to the success of persistent object systems, much of our efforts
were focused on a different problematic aspect ofPOS: efficient
access of persistent simulation entities from secondary storage.
In a POS, persistent objects entail disk accesses when the simu
lation requires objects not resident in the simulation's virtual im
age. PSE incorporates techniques for reducing the number of
"object faults" through object usagt prediction and prefetching.

In the next section, we present the simulation facilities sup
ported by PSE including examples that demonstrate the use of
events, processes, and resources. The following sections address the
persistent object system within PSE and describe the methodol-

ogy we developed for object prefetching. We discuss two PSE

applications and identifY limitations and future work in the final

two sections.

SIMULATION CAPABILITIES IN PSE

PSE supports both event-based and process-based discrete simu

lation. Events are actions that occur instantaneously; processes

are actions that have a time duration and that may or may not con

sume resources. Events are scheduled programmatically (or by

the user) to occur at the current simulation time or at some time

in the future. Processes are also scheduled to begin at a certain time;

however, depending on the availability of necessary resources and

the priorities of competing processes, their activation cannot al

ways be predicted. Instead, the PSE scheduler controls the acti

vation, interruption, reactivation, and termination of processes.

The event scheduling methodology and simulation primitives

are based on those found in the Ross object-oriented simulation

language. A global clock object maintains the scheduling and

processing of events. However, because PSE is CLOS-based, PSE

takes advantage of CLOS generic functions described in more

detail in the following section. In contrast to message-passing

languages like Ross, which discriminate methods on only a single

argument, generic functions allow methods to discriminate on

multiple arguments. In addition, we have incorporated into PSE

routines for sampling from normal, Poisson, and exponential

probability distributions to facilitate nondeterministic stochas

tic processing not available in Ross.

PSE's process facilities are modeled after those found in Sim

script and Simula. Once a process is scheduled, control is turned

over to PSE for activating the process. In many cases, processes uti

lize resources; and, if a required resource is not available, indefi

nite delays can occur. When the resource is relinquished by another

process, it is then assigned to the scheduled process and activation

begins. Below, we discuss the simulation capabilities of PSE in

more detail and present some explanatory examples.

EVENT-BASED SIMULATION

PSE's event-based simulation facilities include a global clock and

built-in functions for scheduling and processing events. The clock

object maintains information about events that are scheduled for

the future such as the objects referenced by the event and the

time at which the event is to occur. The clock advances to the

time at which the next scheduled event is to occur. The scheduler

then executes the event. The simulation continues executing un

til all scheduled events are processed. An example of an event de

fined as aPSE method is the following:

; ; ; add an auto to a carwash' s input queue.

(defmethod add-to-queue ((carwash resource) (object auto))

< other functions associated with adding an auto to a carwash queue>

.)

2

The method add-to-queue can be scheduled as an event by

the PSE do-at function:

;;; schedules the method "add-to-queue" to occur every 10 time
;;; units
(defun run-carwash (carwash list-of-vehicles)

(setq wash-time (current-time))
(do list (object list-of-vehicles)

(do-at carwash wash-time '(add-to-queue ,carwash ,object))
(setq wash-time(+ wash-time 10)))

.)

The function do-at will add the method add-to-queue to the list

of scheduled events. Because the first add-to-queue event is sched

uled for the current time, the scheduler will process the event be

fore the clock advances. Another similar PSE function for schedul

ing events is do-after. The function do-after has the same format

as do-at; however, the time parameter indicates a time in the fu

ture relative to the current time.

CLOS generic functions give additional modeling power to

PSE's simulation facilities not found in message-based simula

tion languages like Ross. For example, in Ross there can be only

one method for add-to-queue defined on a resource object. In the

example below, we show how PSE (and CLOS) supports addi

tional methods for add-to-queue that discriminate on the second

parameter object. This version of the method is invoked for add

to-queue events where the second argument, object, is an instance

of type truck.

;;; add a truck to a carwash's input queue.

(defmethod add-to-queue ((carwash resource) (object truck))

< other functions associated with adding a truck to a carwash queue>

.)

PROCESS-BASED SIMULATION

The operational differences between processes and events stem

from the definition of a process as an activity that occurs over a

duration of time rather than an event that is instantaneous. Pro

cesses, like events, are defined as methods and activated as func

tion calls. However, most processes include a resource argument.

Resources are declared as a subclass of the built-in class resource

and therefore inherit methods defining their behavior within pro

cess calls. When a PSE process is activated, the system determines

if a required resource is free. If an instance of the necessary resource

is available, it is automatically assigned to the active process. Con

trol of the resource belongs to the process until it terminates.

Scheduling of processes and allocation and deallocation of re

sources is controlled exclusively by PSE and is transparent to the

JOOP OCTOBER 1991

PSE

user and programmer. In Simscript and Simula, resources must

be requested and relinquished by the programmer within the

process definition code.

Another feature ofPSE processes is the assignment and man

agement of process priorities. Priorities are useful when modeling

a scenario with processes of differing precedence. For instance, in

a job shop simulation critical time-dependent tasks should be

serviced immediately when they are scheduled. However, lower

priority "busy work" tasks can be performed at any time or in

terrupted if higher priority tasks are waiting. Suppose an active pro

cess is utilizing a resource, and, subsequently, a higher priority

process, requesting the same resource, is scheduled. PSE will sus

pend the lower priority process, execute the higher priority pro

cess, and then resume the suspended process. All process sus

pension and resumption is managed internally by the PSE system.

A user need only specifY priorities as an optional argument when

defining processes. Simscript and ModSim also support process

priorities but require that the simulation application code com

pare priorities of processes and explicitly suspend processes when

necessary [Herri90]. Simula has no built-in capabilities for pri

oritizing processes.

SINGLE RESOURCE QUEUE VS. MULTIPLE RE
SOURCE QUEUES
Two variations of process-based simulation are available in PSE:

single queue and multiple queue. Single queue processes utilize a

single queue for each class of resource that has been declared. In

voking a process that requires a resource instance results in schedul

ing the resource request on a queue associated with the class of the

resource. When a resource instance of the class becomes avail

able, the system will activate the scheduled process. When the

resource is relinquished, PSE will select the queued process with

the highest priority to execute next.

For resource classes with multiple queues, a request by a pro

cess is queued directly on an instance of the resource class. The sys

tem determines which resource instance on which to queue the

process request by first looking for a free resource and, if none ex

ist, scheduling the process for the resource instance with the short

est queue. The differences between the implementation code and

simulation results for single queue and multiple queue simula

tions are illustrated below in a simple bank teller simulation.

;;; Code segments for teller simulation comparing single and multiple teller

;;; queues

;;; Choose one of the following two resource declarations:

(defresource teller single () ())

;;;(defresource teller multiple()())

; ; ; Define a customer class

(defclass customer ()

((name :accessor name :initform (gensym))

(service-time :accessor service-time)))

;;; Define a "service" process whereby a customer is serviced by a teller

(defprocess service 1 :resource (tel teller) ((cu customer))

(work tel 'service (service-time cu)))

;;; The top level function which creates tellers and customers, schedules

;;; service processes, and executes the teller simulation

(defun run-teller ()

(setq *clock* (make-clock))

(let ((customers nil))

(setf (get 'teller 'resources) nil)

(make-resource 'teller)

(make-resource 'teller)

(setq customers (cons (make-instance 'customer :service-time 100)

customers))

(setq customers (cons (make-instance 'customer :service-time 30)

customers))

(setq customers (cons (make-instance 'customer :service-time 30)

customers))

(setq customers (cons (make-instance 'customer :service-time 30)

customers))

(dolist (c customers)

(process-at 'teller (current-time) '(service ,c)))

(run *clock*))

In the above code, defresource defines a teller resource class. The

first argument of defresource declares the resource class name; the

second argument indicates whether the resource is a single or

multiple queue resource. The remaining arguments for defre

source are identical to those for the CLOS defclass function. The

function defprocess defines a simulation process. The first argument

passed to defprocess is the process name, the second argument of

the process definition provides the process priority, and the list fol

lowing the :resource keyword indicates the required resource. The

other parameters of defprocess are the same as the parameters of

the CLOS defmethod statement. A call to the function work within

the process definition is used for advancing time during a process.

In the function run-teller, the code first creates two tellers and

four customers with service times of 100, 30, 30, and 30 units re

spectively. The call to process-at for each customer queues four ser

vice processes. In addition to process-at, which schedules pro

cesses at an absolute time, the analogous function process-after

schedules processes at a time in the future relative to the current

time. Finally, run puts the clock into motion.

Figure 1 shows the results of two versions of the teller simu-

3

PSE

Single queue simulation utilizes 100 time units

Figure 1. Results of two versions of teller simulation.

lation: one using a single teller queue and the other with multi

ple teller queues, one per teller. In the single queue version, the cus

tomers are placed on a single queue based on their order of arrival.

Customers are removed from the queue and assigned to the first

available teller. With multiple queues, customers are assigned to

the shortest individual teller queue upon arrival. For the given

service times, the single queue version will terminate in 100 time

units; the multiple queue version requires 130 units to process

all customers.

In all our examples so far, processes have required a single in

stance of a resource class; however, processes can also be defined

without the need for resources using the following functions:

(process-without -resources-at <time> ' (<process-name>

<process-parameters>))

(process-without -resources-after <time> ' (<process-name>

<process-parameters>))

In such a case, the scheduler will execute the process at the

scheduled time. No waiting is necessary because no resources

need to be assigned to the process.

MULTIPLE RESOURCE INSTANCES PER PROCESS

Another unique feature ofPSE, not available in Simscript or Sim

ula, is the abiliry to schedule processes requiring multiple in

stances of a single resource class. For example, in a job shop sim

ulation, a work process may require more than one instance of an

identical machine tool or other resource. This feature can be uti

lized only for single queue resource classes and only for processes

without a priority parameter. Each process waiting on a resource

queue advances through the queue in the same sequence as it was

scheduled. A queued process waits until the required number of

resource instances is available before it begins processing. When

the resources are free, they are assigned to the waiting process

and cannot be used or interrupted by other processes. When the

process terminates, all resource instances are relinquished and

4

available for use by other processes. The following PSE functions

for dispatching a process with multiple resources correspond to pro

cess-at and process-after:

(process-mres-at <resource-class> <time>

<number-of-resource-instances>

' (<process-name> <process-parameters>))

(process-mres-after <resource-class> <time>
<number-of-resource-instances>

' (<process-name> <process-parameters>))

MIXED PROCESSES AND EVENTS

Similar to most other simulation languages, PSE supports the

combination of processes and events in a single simulation. An ex

ample of mixing processes and events is illustrated in the follow

ing code, which is part of a carwash simulation. We have pre

sented a segment of the code representing the beginning of the

simulation when the driver of the automobile pays the attendant

for the carwash before the car is queued for washing. The activ

ity of paying the attendant could be modeled by a process that rep

resents the exchange of money, transfer of receipt, etc.; however,

since none of these individual activities are critical to the simu

lation, we choose to model carwash payment by use of a single

event. As the code describes, the driver first pays the attendant and

subsequently a carwash process is scheduled. This example also

demonstrates stochastic processing by the use of a normal prob

ability distribution for sequencing autos and for the duration of

the carwash process.

;;; Before an auto can get washed, the driver must pay the attendant. This

; ; ; is the method for the event "pay-attendant".

(defmethod pay-attendant ((dr driver) (au auto))

(setf (attendant-paid au) (current-time))

;;; After attendant is paid, the car is scheduled for washing

(process-after 'vacuumer

(nonnal *attendant -delay-mean* *attendant -delay-sd *)

'(vacuum ,au)))

;;; The top level function which initiates the carwash simulation. The

;;; parameter auto instances is a list of autos to be dispatched for washing.

(defun run-carwash (autoinstances)

(let ((start 0))
(do list (auto auto instances)

;;; schedules the "pay-attendant" event

(do-at (driver auto) start '(pay-attendant,(driver auto) ,auto))

;;; payment of attendant for each auto is time sequenced

(setq start (+ start (nonnal *start-mean* *start -sd *))))

(run *clock*)))

JOOP OcTOBER 1991

RECORDING SIMULATION EVENTS AND

PROCESSES IN PSE

Collecting and analyzing the results of simulation trials is a crit

ical component of a simulation lifecycle. Most simulation lan

guages have statistics-gathering routines that can be included in

the simulation application code during implementation. PSE has

adopted a different approach by transparently maintaining a

database of simulation activities. Every simulation activiry, in

cluding event dispatching, process activation, process suspension,

and resource utilization, is recorded in PSE' s activity database.

With such a complete audit trail of the simulation's activity, a

postsimulation trace can be produced in many different formats.

Below we illustrate two different formats that can be modified

by users to accommodate their own analysis requirements. The first

trace is a time-based account of the single queue teller simula

tion presented in the section on single vs. multiple resource queues.

Note, however, that this trace is not generated during simula

tion processing; rather, the required data is recorded during the

simulation and the trace is recreated by retrieving data from PSE's

activity database.

Time: 0.0
process service g392 is scheduled with args (#<customer 42346236>)
process service g392 is started on #<teller 42325446> with args

(#<customer 42346236>)
process service g393 is scheduled with args (#<customer 42345606>)
process service g393 is started on #<teller 42322436> with args

(#<customer 42345606>)
process service g394 is scheduled with args (#<customer 42345156>)
process service g395 is scheduled with args (#<customer 42347291>)

Time: 30.0
process service g393 is terminated on #<teller 42322436> with args

(#<customer 42345606>)
process service g394 is started on #<teller 42322436> with args

(#<customer 42345156>)

Time: 60.0
process service g394 is terminated on #<teller 42322436> with args

(#<customer 42345156>)
process service g395 is started on #<teller 42322436> with args

(#<customer 42347291>)

Time: 90.0
process service g395 is terminated on #<teller 42322436> with args

(#<customer 42347291>)

Time: 100.0
process service g392 is terminated on #<teller 42325446> with args

(#<customer 42346236>)

An alternate trace format, presented below, is organized by

process identifier and process status. For each process that is gen

erated, a set of associated data is recorded. This format provides

a different organization of the same data presented above:

pid = g392

pname = service

scheduled-time = 0.0

start-time= 0.0

resources= #<teller 42325446>

end-time= 100.0

suspended = nil

work-time= (100)

arguments= (#<customer 42346236>)

pid = g393

pname = service

scheduled-time = 0.0

start-time= 0.0

resources= #<teller 42322436>

end-time= 30.0

suspended = nil

work-time= (30)

arguments= (#<customer 42345606>)

pid = g394

pname = service

scheduled-time= 0.0

start-time= 30.0

resources= #<teller 42322436>

end-time= 60.0

suspended = nil

work-time= (30)

arguments = (#<customer 42345156>)

pid = g395

pname = service

scheduled-time = 0.0

start-time= 60.0

resources= #<teller 42322436>

end-time= 90.0

suspended = nil

work-time= (30)

arguments= (#<customer 42347291>)

PERSISTENCE IN PSE
Persistent object systems support four major functions: sharing,

maintaining, inspecting, and reusing objects. Sharing allows the

concurrent use of persistent objects by more than one applica

tion program similar to a database management system that sup

ports access by multiple programs. Object maintenance (inser

tion, deletion, and updating of simulation objects) can be

performed during simulation processing or through maintenance

routines applied directly to objects in the persistent object repos

itory external to any simulation program. Objects modified dur

ing simulation processing will be transparently updated in the

persistent repository so that consistency is maintained between vir

tual objects in the simulation and secondary storage persistent

objects. Likewise, objects can be retrieved and inspected during

simulation processing and at any time before or after the simu

lation. Finally, with a persistent object repository simulation ob-

5

PSE

jects can be reused without recreating and initializing objects for
each simulation trial. For simulations with thousands of objects,
reusability contributes significantly to performance improvement.
PSE supports three of the four functions described above; sharing
of persistent objects has not been addressed because it involves is
sues of transaction management and is not one of our primary
goals. Nevertheless, other persistent object languages are pursu
ing this topic and their results will contribute to the success of per
sistent object systems.

PSE ARCHITECTURE

An object that is declared to be a persistent object is retained in
secondary storage after program execution terminates. In PSE,
once a class has been declared to be persistent those persistent
objects are referenced identically to nonpersistent simulation ob
jects. Furthermore, fetching and instantiating a persistent object
from secondary storage is performed transparently by the under
lying PSE kernel. We based the kernel implementation ofPSE on
Rowe's shared object hierarchy (SOH) methodology [Rowe86,
Rowe88).

PSE is composed of the following components pictured in
Figure 2: persistent object files, object space, and an object directory.
The object files store an ASCII representation of the objects in sec
ondary storage. Object space denotes the area in main memory
where the virtual memory object structures reside and the object
directory contains one handle per object, which maps an object
identifier into the object handle. The object handle contains
metainformation about the object and always remains in main
memory. A handle includes information such as a pointer to the
object's memory location (which is "nil" if the object is not in
the object space), the object's location in the object file, whether
or not the object has been modified, and the object's update
mode. The update mode indicates how the object will be modi
fied on disk. If the mode is "direct-update" the object will be up
dated immediately upon modification. If it is "deferred-update,"
the persistent object will be updated when the number of objects
in the object space reaches capacity thereby triggering garbage
collection of the object directory and updating of necessary objects.
"Local-copy" objects only exist in main memory and therefore
are not updated on disk.

During program execution, object handles are used as pa
rameters to represent simulation objects. When a slot in an object
is referenced, one of two actions is taken. If it is determined that
the object is not in main memory, then it is fetched and instan
tiated before the slot value is returned. Alternatively, if the object
is already in main memory the value of the slot is simply returned.
As discussed earlier, the determination of the object's location,
fetching, and instantiation are handled by the persistent object sys
tem and are transparent to the programmer. For more detailed dis
cussion concerning the architecture ofPSE, see [Burdo90).

PSE SYSTEM PARAMETERS

PSE's persistent object system includes a set of parameters that can
be modified by the user to tune performance and to measure the

6

Figure 2. Components of PSE.

system's behavior. The parameter *memory-full* is a global variable
that indicates the size of the object space, i.e., the maximum
number of objects that the system will allow in memory (or ob
ject space) before garbage collecting the object directory. Another
useful parameter, *instance-count*, indicates how many persis
tent objects are currently in the system. The variable *object
faults* records the number of times any object was requested by
an application but was not in primary memory and, therefore,
needed to be read and instantiated by the system. Finally, -"di
rectory-size* is the size of the object directory. If a larger directory
structure is needed due to the creation of persistent objects, the sys
tem will dynamically allocate more space for the object directory.
The combination of these system parameters, with the three
choices of update modes, provides users with facilities for com
paring performance under different PSE system constraints.

PREFETCHING IN PSE

One goal of PSE is to streamline the access of secondary storage
objects by "object prefetching." During the execution of a typi
cal POS, objects are retrieved from secondary storage when re
quired by the application program. Object replacement algo
rithms similar to those used for virtual memory, such as "least
recently used," are generally employed for swapping objects in
and out of memory. Our methodology promotes a "supply
driven" model of object swapping rather than traditional "de
mand-driven" algorithms. A supply-driven methodology predicts
in advance which objects the simulation will need and loads them
into primary memory before the simulation requests them. How
ever, to make predictions about the simulation's future data re
quirements, knowledge of the application and simulation sce
nario is needed. Therefore, we categorize our work as
"semantic-based object prefetching." Our techniques are based
on the identification of a "working set" of objects for any active
object being processed by the simulation. The working set con
sists of objects that have the potential to be subsequently re
quested. A working set can be defined by geographic locale, tem
porallocale, or semantic similarity with respect to the active
object. One of the two testbed applications, described in the fol
lowing section, utilizes a working set based on geographic local
ity; the other application incorporates temporal locale.

The rules for semantic-based prefetching differ depending on

JOOP OCTOBER 1991

PSE

the application. Therefore, PSE does not incorporate any spe

cific prefetching algorithms but instead provides entry points and

a set of prefetching methods that application developers can use

to enable prefetching. A programmer needs to identify an "ac

tive" object and have associated rules for identifying the work

ing set corresponding to a particular object. Many persistent ob

ject systems support a concept called "clustering" that tries to

attain results similar to those obtainable with prefetching. Clus

tering, performed by the programmer, is a process by which ob

jects that are frequently referenced together are stored on the

same disk page. When one object on the page is retrieved during

object fetching, the entire page is loaded into main memory.

Clustering is a predominantly static-based organization of ob

jects for improving object fetching. Prefetching in PSE, on the

other hand, takes a more active approach to supplying application

programs with the objects they may need in the future.

APPLICATIONS
We developed two applications for testing PSE that cover a range

of application characteristics. A route planning application re

quired a large number of objects and the processing time was

consumed predominantly with object maintenance tasks, like in

stantiating objects from secondary storage and storing objects

back into the object files. A second application, activity networks,

required more compute-bound processing and fewer resources

for object maintenance. Below, we describe the applications in

more detail and contrast the differences in prefetching perfor

mance between the two simulations. The results of our simulation

experiments and detailed analysis of performance data for both ap

plications will be presented in a forthcoming paper.

ROUTE PLANNING

A common operation in terrain-based simulations is the genera

tion of shortest path routes. For this reason, we chose the com

putation ofDijkstra's shortest path algorithm as one testbed ap

plication for PSE. The goal of this simulation was to determine

the shortest path through a map network of roads where inter

sections correspond to graph vertices and roads are represented as

edges. Dijkstra's algorithm, executing in a traditional persistent ob

ject system, results in excessive disk-to-memory thrashing when

applied to a large road network (e.g., 10,000 or more objects)

because the number of referenced objects quickly exceeds the

maximum number allowed in main memory.

In this application, PSE prefetching predicts the future use of

objects based on the geographic locale of objects. Geographic lo

cale relates objects that geographically reside "near" each other. Our

underlying premise is that as a vehicle traverses the terrain it is

more likely to interact with objects in nearby geographic loca

tions. The algorithm based on this premise prefetches any object

(edge or vertex) that is directly connected (in the graph) to the ob

ject currently being processed by PSE. Our initial results indi

cate that object maintenance in the PSE implementation ofDi

jkstra's algorithm accounts for 97% of the total execution time.

By using geographic-based prefetching, PSE, on average, can pre-

diet the need for 20% to 25% of the objects which previously

resulted in object faults. Although this percentage is relatively

low, two additional factors must be considered. First, for an ap

plication that is so heavily "object-bound" predicting even 20%

of the object faults can result in a significant improvement. Finally,

in subsequent analysis we have recognized that "smart" prefetch

ing requires more than simply accessing an object before it is

needed; the prefetching algorithm should be synchronized so that

(1) the object is fetched before it is accessed and (2) the object is

not swapped out of memory between the time when it has been

fetched and the time when it will be referenced. In future ver

sions, we will be refining our heuristics to incorporate these

factors.

ACTIVITY NETWORKS

Activity networks serve as an abstract model of the operation of

a logistics maintenance task. Simulating the traversal of tokens in

an activity network, therefore, corresponds to throughput in a

logistics task. By developing activity networks as an abstract

model, the simulation user can parameterize an activity network

corresponding to a particular logistics task or set of tasks. Simu

lation proceeds by the nondeterministic traversal of a given activity

network by "tokens." As a token traverses an activity network, it

decides along the way (1) what activity it should pursue, (2) what

and how many resources to consume, (3) how much time to uti

lize within a given activity, and (4) what subsequent transition to

select (i.e., what activity to traverse next).
Although we are using a network-based simulation model,

the edges in activity networks represent temporal sequencing and

synchronization of processes rather than spatial distances. There

fore, in contrast to the geographically-based network prefetch

ing, this application requires temporal-based prefetching rules.

The rules we have included in our activity network model are

based on (1) the resources that are utilized by a process node and

(2) the probability of transition between nodes. PSE prefetches all

resources J.ssociated with an activity node currently being pro

cessed. In addition, the process that has the highest probability of

subsequently being traversed to is also prefetched. Although ac

tivity networks are unlimited in their size, those that we have ex

perimented with contain fewer objects than the map networks

used by the shortest path traversal; nevertheless, more computa

tion occurs at each node. The results show a much lower per

centage of object maintenance time (20%) compared to map

traversal (97%). However, we found that prefetching perfor

mance was substantially higher for activity networks. PSE pre

dicted approximately 60% of object faults. Although object pre

diction is better, prefetching only improves the performance of

object maintenance time, which in this application is a smaller per

centage of total execution time. By contrasting these two appli

cations, we have determined the wide range of factors that con

tribute to the overall effectiveness of prefetching.

LIMITATIONS AND FUTURE WORK
PSE is a proof-of-concept prototype. During its design, we focused

7

PSE

on our original goals and, therefore, sidestepped some of the crit
ical issues facing persistent object systems. Future work toward im
proving the robustness, flexibility, and generality ofPSE will ad
dress the limitations described in this section.

PSE does not incorporate or interface with a true object man
agement system or object-oriented database management system.
It currently interfaces with a system of flat files shown in Figure
2 as "persistent object files." Thus, it is difficult to examine objects
in the "database" and PSE has no facilities for modifying the file
based objects. All object editing must be performed through PSE
application programs. Furthermore, PSE does not support the
modification of class objects once they are declared persistent.
Routines for propagating the modifications to all subclasses and
instances is necessary to support class modification. Finally, be
cause PSE has no facility for insuring the integrity of competing
transactions PSE objects cannot be shared between simulation
programs simultaneously. Consistency maintenance of chis type,
across applications, may also be provided by future object man
agement systems.

The second major shortcoming that affects potential perfor
mance improvements afforded by PSE's object prefetching is its
uniprocessor architecture. When executing PSE on a single pro
cessor, prefetching has no positive effect on performance. How
ever, since the costs of accessing and instantiating an object from
secondary storage are high and can have a major impact on per
formance it would be advantageous to interface object prefetch
ing with a parallel or multiprocessor system. A multiprocessor

PSE architecture with prefetching will provide a separate pro
cessor to handle the input and instantiation of objects before they
are requested by the simulation.

The PSE extensions and refinements discussed above suggest

8

additional directions and goals toward providing simulation de
velopers with even more power and flexibility.

REFERENCES

[Atkin87] Atkinson, M.P. and O.P. Buneman. Types and persistence in database

programming languages, ACM Computing Surveys, 19(2), 105-190, 1987.

[Burdo90] Burdorf, C. and S. Cammarata. Prefetching simulation objects in a per

sistent simulation environment, Proceedings of the Society of Computer Simu
lation Multiconference on Object-Oriented Systems, San Diego, 1990, pp. 68-7 4.

[Dahl67] Dahl, E. and K. Nygaard. Simula: A Language for Programming and
Description of Discrete Event Systems, Norwegian Computing Center, Oslo, Nor

way, 1967.

[Ford88] Ford, S.].]., S.E. Langworthy, D.P. Lively, G. Pathak, E. R. Perez,

R. W. Peterson, D.M. Sparacin, S.M. Thatte, D.L. Wells, and S. Agarwala.

Zeitgeist: database support for object-oriented programming, Proceedings o
the 2nd International Workshop on Object-Oriented Database Systems, Bad

Munster am Stein-Edernburg, FRG, September 1988, pp. 22-42.

[Herri90] Herring, C. ModSim: a new object-oriented simulation language, Pro
ceedings of the Society of Computer Simulation Multiconference on Object-Ori

ented Systems, San Diego, 1990.

[Khosh88] Khoshafian, S. A persistent complex object database language, Data

Knowledge Engineering, 3, 225-243, 1989.

[McArt84] McArthur, D., P. Klahr, and S. Narain. Ross: An Object-Oriented

Language for Constructing Simulations, R-3160-AF, The RAND Corpora

tion, Santa Monica, CA, 1984.

[Rowe86] Rowe, L.A. A shared object hierarchy, Proceedings of the IEEE Inter
national Workshop on Object-Oriented Database Systems, Pacific Grove, CA,

September 1986.

[Rowe88] Rowe, L.A. Picasso shared object hierarchy, Proceedings of the First
CLOS Users and Implementors Workshop, Palo Alto, CA, 1988.

[Russe79] Russel, E. Simulating with Processes and Resources in Simscript Il.5,

CACI, San Diego, CA, 1979.

JOOP OCTOBER 1991

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

RAND/N-3385-DARPA

