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An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks:
The rf-Discharge as a Complex Permeability Medium

J. Camparo,' F. Wang,” Y. Chan,? and W. Lybarger'

!Physical Sciences Laboratories

’Communications Networking Division
The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA
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Figure 1: A feedback model for the Colpitts or Hartley oscillator used to drive rf-discharge lamps in vapor-cell
atomic clocks. For the Colpitts oscillator, Z, and Z; are capacitors with Z, an inductor. For the Hartley oscillator,
Z, and Z; are inductors with Z; a capacitor. In either case, an inductor is assumed to surround the glass bulb of
the rf-discharge lamp, thereby providing energy to ionize the Rb atoms and generate resonant light.

Abstract

In the rf-discharge lamp of an atomic clock, the
inductor of a Colpitts or Hartley oscillator surrounds a
glass bulb containing a vapor of Rb and a noble gas
(typically Xe or Kr). Rf-energy is extracted from the
field leading to ionization of the Rb, and in
recombination with electrons these Rb ions produce the
resonant light necessary for atomic signal generation.
From an electrical perspective, the discharge can be
viewed as a permeable medium located inside an
inductor’s coils. This permeable medium, however,
must have both a real and an imaginary part: not only
does the discharge alter the phase of the circuit’s rf-
field, it also extracts energy from the resonant circuit.
Here, we consider the manner in which this complex
permeability enters the electrical description of the
oscillator, and its likely dependence on discharge
parameters.

1. Introduction

We consider the very general oscillator feedback
circuit illustrated in Fig. 1, where an external AC
voltage V', is added to a feedback signal, Vg, to produce
the input voltage V; for an amplifier. Of course, the key
element in the figure is the network of complex
impedances in the feedback loop, which typically take
one of two configurations [1]: a Colpitts oscillator
configuration, where Z, and Z; are capacitors with Z,

the loop-inductor surrounding a lamp’s glass bulb; or a
Hartley oscillator, where Z, is a capacitor, and Z, and
Z; are inductors (one of which corresponds to the wire
loops surrounding a lamps’ glass bulb [2,3]).

Figure 2: Figure 1 redrawn. Here, V; is the input
voltage to the amplifier.

Focusing for the moment on the feedback portion
of Fig.1, this can be redrawn as Fig. 2, and from this
figure it is straightforward to show that



vV = ViZ,Z, Eﬁ. (1)
° R(z,+2Z,+2,)+2,(z,+2,) «x
Then, returning to Fig. 1, we see that
v, = gV, = g(V/+V, ), (2a)
and from Eq. (1) this yields
v =8V . (2b)

[:] 1 = gl(

The only way V, can be non-zero without an input
signal V' (i.e., the only way the circuit can self-
oscillate) is if gk = 1. Since g is real, self-oscillation
implies that ¥ must also be real. In other words, the
feedback signal must return to the amplifier input in
phase (i.e., with V= |V{e®®, 6 must equal 2nm where n
is an integer). Thus, for self-oscillation we require that

Ref]= L and Imf<]=0. @)
g

If, to first order, we assume that the Z; are pure
inductors and capacitors, then from Eq. (1) it is clear
that

Imk] = Z,+Z,+2Z, = 0. (4a)
Re[x] = % . L g- (4b)

2 1

Thus, in order for g to be positive, we see from Eq.
(4b) that oscillation limits the choices for the Z;: if Z, is
an inductor then Z; must be a capacitor; alternatively, if
Z, is a capacitor than Z, must be an inductor.

II. The Inductor in a Real Discharge Lamp
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Figure 3: In a real rf-discharge lamp, the impedance
Z; that corresponds to the loops of wire surrounding
the lamp’s glass bulb should be replaced with the
RLC circuit shown here. For the Colpitts lamp
oscillator that we used in our experiments (i.e., L =
650 nH), one of us (FW) measured C; = 3.7 pF, R; =
8Q, and C, =9 pF.

Recent measurements made by one of us (FW)
clearly demonstrate that in a real rf-discharge lamp
oscillator there is a subtlety that must be included in
the model of Section I. Briefly, whatever element in the
feedback network corresponds to the loop inductor
surrounding the lamp’s glass bulb, we must consider

this as a resonant RLC circuit as illustrated in Fig. 3.
Briefly, C; and R, are the series capacitance and
resistance, respectively, which must exist for real loops
of wire; while the parallel capacitor, C,, represents the
capacitance that must exist between the loops of wire
and the lamp’s metal housing.

Defining Z as the complex impedance of the RLC
circuit, it is straightforward to show that in the absence
of a discharge (i.e., the inductor loops simply surround
air) that

f-1)C.R 5a
Re[Z,] = (E-1)C.R, — (5a)
©’C,CIR? +f2cp(-‘°—2—1)
oy,
2 2
f(m—zf—l)[l——z]—mZCfR:
Im(z, ] = oy Oy . (5b)

In these expressions,

o = |St% ad (_S*G )
" yLcg, C,

Figure 4 shows plots of Re[Z;] and Im[Z; ] as functions
of frequency for the parameters that were measured for
our experimental setup, and which are given in the
caption of Fig. 3.
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Figure 4: Real (blue) and imaginary (red) parts of the
complex impedance for the RLC model of the
inductor loops that surround the lamp’s glass bulb
(assuming no discharge). We employed the
parameters given in the caption of Fig. 3.

As illustrated in Fig. 5, to include the influence of
the discharge in Eqs. (5), we let L — pL, where p is a
complex scalar permeability: u = o — ip [4]. Here,
describes that part of the plasma discharge that gives



rise to a phase shift of the rf-field, and which we expect
will influence the resonant frequency of the RLC
circuit, ©;. B describes rf-energy extraction by the
discharge, and so we expect it to contribute to R..

Figure 5: In the rf-discharge lamp of an atomic
clock, the inductor coils of the Colpitts or Hartley
oscillator surround a glass bulb that contains Rb and
a noble gas (e.g., Xe or Kr). Since rf-energy is
extracted from the field to ionize the Rb, the
permeability of the material inside the inductor must
have an imaginary part that leads to resistance.

Without going into all the details here, an analysis
of Fig. 3 including a term for the discharge’s
permeability gives credence to these expectations.
Thus, in order to include the discharge in Eqgs. (5) and
(6) we need only make the replacements

o =9 _ |GG (7a)
Y Ja alC,C,
and
R, - Rs+(EJ ‘ff - (7b)
a /o C,

Figure 6 shows plots of Re[Z;] and Im[Z;] with a
discharge present: o = 1.2 and B/o = 0.01. Figure 7 is
similar, but with /o = 0.03.
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Figure 6: Real (blue) and imaginary (red) parts of the
complex impedance for the RLC model of Fig. 3 witha=1.2
and /o =0.01.

3000 +

2500
2000 £— | | S T S
1500 - I T E

=
[ =)
(= =)
o O

Impedance, Ohms
o

-500 £—
-1000 +

-1500 *E-'

2000 e e
SO 60 70 80 90 100 110 120 130 140 150

Frequency, MHz

Figure 7: Real (blue) and imaginary (red) parts of the
complex impedance for the RLC model of Fig. 3 witha=1.2
and B/c =0.03.

As illustrated in Figs. 5, 6, and 7, Im[Z;] crosses
zero at two locations near w;. From Eq. (5b), it is
straightforward to calculate these zero crossings in the
case that oC;R; << 1, which will typically be the case
(even when the discharge is present). We define o, as
the series resonant frequency and o, as the parallel
resonant frequency:

ms,mp=%J1+f-'if-'Jf2-2f+ . ®

Here, the plus and minus signs refer to o, and o,
respectively, and we note from Eq. (6) that f > 1.
Typically, the oscillator will resonate at o, since it is
at this frequency that the real part of the impedance is
minimized.

III. The Colpitts Oscillator
As a consequence of the considerations presented in
Section II, and referring to Fig. 2, for a Colpitts
oscillator we take

i i
Z, =R.-— ., Z.=R.- > (%)
g ¥ oC, : ¢ oC,
Z, = Re[z, ]+ilm[z, ]. (9b)

Here, Rc is the equivalent series resistance that we
expect for a real capacitor, but which we will
henceforth assume is zero.

To determine the resonant frequency of the Colpitts
oscillator we employ Eq. (4a) along with Egs. (5), (7)
and (8). First, however, we note that in Colpitts
oscillator circuit used in our experiments we have C; =
150 pF and C, = 30 pF. Thus, if we define a “Colpitts
capacitance,” Ccp, as



Cop = CCZA (10)
'2+C3

then in our case we have Ccp = 25 pF, so that C/Ccp =
0.36 and CJ/Ccp = 0.15. Thus, while the Colpitts
capacitance is greater than the capacitances occurring
in the RLC circuit of the lamp’s coils, it is not
significantly greater. Consequently, the complex
impedance of these capacitors cannot be ignored, and
we have from Eq. (4a)

1 1

oC, oC,

2 2
fl 2 f-1][1-2 |-0’CR?
o o 1

2 )Y eC
©’C,CR? +03f2Cp(0)—2—1J «

o
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Figure 8: The parallel resonant frequency (red), o,
and series resonant frequency (blue), o, of the
Colpitts oscillator.
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Figure 9: The difference between the parallel
resonant frequency (red) and the series resonant
frequency (blue) from their values in the case of Ccp
— o0, Notice that the units for the parallel resonant
frequency difference are kilohertz.

Solving Eq. (11) numerically for the series and
parallel resonant frequencies, o, and w,, respectively,
Figs. 8 and 9 show o, and w, as functions of C¢p with
o = 1.2 and B/a = 0.01. Figure 8 shows the actual
resonant frequencies, while Fig. 9 shows the difference
between these frequencies and the resonant frequencies
in the case that Ccp — oo. (Notice in Fig. 9 that the
units for Awm, are kHz) Clearly, the Colpitts
capacitance has a small but non-negligible effect on w;,
affecting its value by ~ 4 % in our case of C¢p = 25 pF.
Alternatively, the Colpitts capacitance has hardly any
effect on o, affecting its value by ~ 0.016 % in our
case. Thus, while the Colpitts capacitors C; and Cs
cannot be ignored, the resonant frequency of the
oscillator is primarily determined by the RLC circuit of
the lamp coils illustrated in Fig. 3. This will most
certainly vary from lamp to lamp (even for the same
circuit design), and likely gives rise to some of the
variability among Rb clock lamp oscillators.

1V. Physical Model for

In this section, we attempt to tie § to physical
characteristics of the discharge. To begin, we first note
that as a resistance term, we expect [3 to be proportional
to the circuit’s power loss. More specifically, we
expect P to represent electrical power that flows out of
the circuit, into the discharge, and from the discharge is
irreversibly lost.

Without too much difficulty, we can imagine at
least three processes that lead to irreversible energy
flow out of the discharge: discharge heating of the
bulb’s glass walls [5,6], electron excitation of Xe and
the resulting Xe photon emission [7], and electron/Rb*
recombination leading to photon emission [7]. We do
not include Rb ionization in this list, since ionization
by itself does not represent energy loss; energy is only
lost by the discharge when those ions recombine with
electrons and emit a photon that escapes the discharge.
In this regard, it is important to note that radiation
trapping [8,9] likely limits the discharge’s energy loss
by electron/Rb" recombination, since the energy
carried by the radiation-trapped photon has a high
probability of getting back into the discharge.

We therefore write

B~ ym(T—TDC)+(k—;:"537 _[«/;e'%ndx

+ (Ynnz - rRT([Rb])) - (12)

The first term on the right-hand-side of Eq. (12)
represents rf-heating: Tpc is the temperature of the



discharge when the rf-field supplies no additional heat
(i.e., it is the temperature of the discharge as defined by
a DC heater around the lamp bulb) and 1/yry is a
thermal time constant. The second term on the right-
hand-side of Eq. (12) corresponds to electron excitation
of Xe: €, is the first excited state of Xe at 8.4 eV, and
T. is the electron temperature. From our lamp’s spectra
we estimate T, ~ 3500 K [5], so that kT, ~ 0.3 eV.
Finally, the last term in brackets on the right-hand-side
of Eq. (12) represents electron/Rb* recombination.
Since we expect charge neutrality in the discharge, the
density of Rb* should equal the density of free
electrons, and the rate of recombination should be
proportional to those two densities multiplied by an
ambipolar diffusion time constant, 1/yp. Further, we
reduce the loss of electron/Rb" recombination by a
radiation-trapping term, ['ry, which we expect will be
some complicated function of the neutral rubidium
atom density in the discharge, [Rb].

Focusing on the Xe excitation term, we write

Yxe AT,
R 0

Then, evaluating the integral we get

Bre _ ,-E—'-c'“""”'+£Erfc S|, (14
Txe VKT 2 kT,

where Erfc[...] is the complimentary error function
[10]. Note, however, that €/kT, ~ 28, so that the first
term on the right-hand-side of Eq. (14) has a value of ~
4x10™"2, while the second term on the right-hand-side
of Eq. (14) has a value of ~ 6x10™*. Thus, to good
approximation for our limited range of T. values we
can ignore the second term on the right-hand-side of
Eq. (14) and write

" € e, (15)
@ = Txey e 0
Bxe = Yxe kT,

Figure 10 shows AB/ABmax and APBxe/ABxemax as
functions of lamp temperature from our measurements
of a Colpitts-oscillator lamp. Briefly, we measure the
complex impedance of the lamp coils illustrated in Fig.
3 at the oscillation frequency, and from that
measurement determine o and . Here, we define
AB/ABax as

BXe =

&

ABmu Bma\ - Bmin

with a similar expression for ABxe/ABxemax. The fact
that AB/AB.x and ABxe/APxemax track each other so
well suggests that our physical model for B has value.

A BPBan | (16)

Additionally, it suggests that at low lamp temperatures
(i.e., T < 138 °C) changes in B derive principally from
changes in electron temperature. Though we don’t as
yet have a good understanding of why [ increases at
high temperatures (i.e., T > 138 °C), it may be that the
electron density in the discharge increases at these
higher temperatures, or that radiation-trapping is less
efficient at returning the energy of electron/Rb"
recombination photons to the discharge (and hence the
electrical circuit).
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Figure 10: AB/ABn.c (yellow squares) and
ABxe/ ABxemax (orange circles) as a function of lamp
temperature for our lamp operating at nominal rf-
power.

V. Summary

In analyzing an atomic clock’s rf-discharge lamp
oscillator, we found that the lamp coils must be
modeled as an RLC circuit if the electrical
characteristics of the oscillator are to be properly
understood. Further, from an electrical perspective, the
plasma inside the lamp cannot be ignored, and that this
should be included in the circuit analysis as a
permeable medium with a real and an imaginary part: p
= a — if. Re[u] plays a primary role in determining the
lamp circuit’s resonant frequency, while Im[p] plays an
important role in determining the circuit’s energy loss
(i.e., the circuit’s Q). Finally, we considered the
discharge processes that likely contribute to Im[p], and
presented evidence for a primary played by electron
temperature.
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