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EXECUTIVE SUMMARY 
 
 
It is the intent of this document to foster technical discussion with the original equipment 
manufacturer of the Q800 Dynamic Mechanical Analyzer (DMA) and materials engineers in the 
Composites Branch of the Air Force Research Laboratory’s Materials and Manufacturing 
Directorate (AFRL/RXCC).  The AFRL/RXCC has observed anomalies in DMA testing of fiber-
reinforced PMCs related to both temperature dependence of the storage and loss moduli and to 
dependency of these data on specimen thickness using the dual-cantilever beam (DCB) clamp.  
Two factors are examined in detail: shear area factors used in the DCB stiffness calculations and 
CTE mismatch between the test specimen and the test frame.  
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1.0 INTRODUCTION 
 
This is an informal document intended to serve as a basis for technical discussions between TA 
Instruments and engineers in the Composites Branch (RXCC) of the Materials and 
Manufacturing Directorate of the Air Force Research Laboratory (AFRL).  The AFRL/RXCC 
routinely uses the Q800 DMA system to perform characterization of advanced fiber-reinforced 
composite materials for use in advanced models of thermo-chemical and thermo-mechanical 
behavior.  In recent studies1 we have observed anomalous responses in DMA tests using the 
double cantilever beam (DCB) specimen configuration.  A parallel effort using the same 
approach is also addressing similar anomalies seen using the standard 50 mm three-point bend 
(3PB) clamp configuration but will not be reported here.  The focus of the DCB apparent 
anomalies are related to both temperature dependence of the storage and loss moduli and to 
dependency of these data on specimen thickness.  We have begun to perform systematic studies 
of the test procedure to assess the relative importance of several potentially significant factors.  
To date, we have examined only a subset of the possible factors that appear to affect the accuracy 
of the measured data or its interpretation and have noticed a few items that are worthy of some 
discussion.  This note will focus on two issues that seem relatively uncomplicated, but which 
may affect the data we are collecting in a significant way.   
   (1) Shear area factors used in the DCB stiffness calculations are appropriate for isotropic 

materials, but not for composites.  Assumed values are embedded in the test system 
software or firmware, and may cause reported modulus values to be significantly in error. 

   (2) Coefficient of thermal expansion (CTE) mismatch between the test specimen and the test 
frame may produce large artificial modulus variations in high-temperature tests. 
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2.0 EXPERIMENTAL 
 
2.1 DCB Shear Factors 

 
In the data reported by the Q800 system, beam stiffness values computed from the deflection 
amplitude and applied load are used first to define a stiffness (load/deflection), and then 
converted to storage modulus using a geometry factor that accounts for the response 
characteristics of the DCB configuration.  If the specimen is very thin, it behaves approximately 
like an ideal Bernoulli-Euler beam, and the measured deflection is essentially due to pure 
bending.  As the thickness of the specimen increases, transverse displacement caused by the 
shear forces may become significant, and the geometry factor attempts to include this effect.  We 
believe that the assumptions built into the geometry factor calculation within the Q800 test 
system software or firmware may be inappropriate for fiber-reinforced polymer matrix 
composite (PMC) materials. 
 
Appendix A contains a summary of our understanding of the development of the geometry factor 
and modulus equations used in the Q800 system, based on shear-deformable beam theory2.  The 
calculation of the geometry factor as it is performed in the Q800 test system may be 
inappropriate for a composite specimen.  The ratio E/G, which can be estimated with reasonable 
accuracy for metallic, or even homogeneous polymeric specimens, as 2(1+ν), may be quite 
 different for a PMC material.  Also, the value ν = 0.44 apparently used in this calculation in the 
Q800 system is reasonable for some polymers, but not for either metals or reinforced composites. 

As an example, we consider an 8HS weave composite tested recently at RXCC.  The storage 
moduli reported using the standard data reduction procedure, Equation (A.15)2, 

3
s

c

K L LE 2 (1 )
F 24I 2A

 
= + α + ν 

 
 

with the shear factor α=6/5 and effective Poisson’s ratio 0.44, for specimens of thickness 0.5, 
1.5, 2.5, and 4.5 mm, at temperatures 20°C, 316°C, and 343°C, are shown in the solid curves in 
Figure 1 below.  Note the artificially low values obtained from the thicker specimens, which 
exhibit a much larger proportion of transverse shear deformation than the thin specimens.  A 50 
to 70 percent reduction in storage modulus is calculated for the thickest specimens in this 
example (Figure 1). 
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Figure 1.  Reported moduli for 8HS weave, normalized with respect to room temperature 

value obtained from 0.5-mm specimen. 
 

If we avoid the use of an effective Poisson’s ratio in interpreting the measured data, the 
appropriate relationship for calculating the modulus is Equation (A.13)2, 

3
s

c

K L E LE
F 24I G 2A

 
= +α 

 
 

Obviously the use of this relationship presents a problem, because knowledge, or at least an 
estimate, of the ratio E/G is required.  However, even a rough estimate of this parameter provides 
significantly better results for the composite modulus.  Based on data for a similar 8HS weave3, 
the ratio E/G varies from about 15 at room temperature to approximately 50 at 343°C.  Using 
this additional information in the data reduction produces the dashed lines in Figure 1, which are 
significantly improved over the original data. 
 

2.2 DCB Thermal Expansion Effects 
 

The DMA test fixture is anchored to a metal base that is positioned in the bottom of the test 
chamber, and which is exposed to nominally the same temperature as the test specimen (Figure 
2).  The end and center supports of the DCB fixture are attached at their bases to the metal base, 
and above this point, the only connection between the supports is via the specimen, whose 
modulus and CTE are typically quite different from that of the base for a fiber-reinforced PMC.  
When the fixture and specimen are heated, differences in thermal expansion between the base 
and the specimen will result in potentially significant net tension in the specimen, and possibly 
additional bending deformation.  A further possible side effect of this motion is a change in 
clamping forces that would affect the appropriate value of the clamping factor used in the 
stiffness calculation. 
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Figure 2.  DCB test fixture including metal base. 
 
AFRL/RXCC has performed preliminary finite element analyses (FEA) of the test configuration, 
including clamping forces and thermal expansion of the entire system, to assess the possible 
magnitude of these thermal effects.  The specimen stiffness and modulus have been calculated 
from the finite element results using the same procedure outlined in the Q800 documentation 
(including the “standard” shear factor of α=6/5).  For two temperatures (23°C and 316°C) and 
four specimen thicknesses (0.5, 1.5, 2.5, 4.5 mm), Figure 3 shows the ratio of the modulus 
reported when thermal expansion is taken into account compared to that reported if thermal 
expansion of the base is eliminated.  At room temperature, there is no effect; at elevated 
temperatures, the estimated error in the reported modulus can approach 20 percent.  The modulus 
is underestimated for thinner specimens and overestimated for thicker ones. 

 
Figure 3.  Approximate effect of fixture base thermal expansion on reported modulus. 
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3.0 CONCLUSIONS 
 
We hope this paper fosters discussion and provides possible explanations for the anomalies seen 
in DMA testing of fiber-reinforced PMCs of various thicknesses using the DCB clamp.  
Specifically, it is believed that the effective Poisson’s ratio of 0.44 and use of the elastic to shear 
modulus relationship used for the geometry factor calculation in the Q800 software contributes 
to the observed artifacts.  In addition, the contributing effects of the bulky metal base thermal 
expansion on the reported modulus of the PMC specimens at elevated temperatures was analyzed 
via FEA modeling.  While not quite as significant as the geometry factor calculation, the FEA 
results indicate that the modulus is notably underpredicted for thin specimens and overpredicted 
for thick specimens.   
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APPENDIX A   
Beam Theory Solutions 

 
Classical Bending Solution for DCB 
 
The deflection equation for a Bernoulli-Euler beam with 

no distributed load is 
4

4

d vEI 0
dx

= , for which the solution 

is a cubic polynomial 2 3
0 1 2 3v(x) a a x a x a x= + + + .  For 

the dual cantilever beam, a typical half of the specimen 
has an imposed displacement v(0)=δ  at its left end, 

zero displacement at the opposite end, v(L) 0= , and zero slope at both ends, 
dv dv(0) (L) 0
dx dx

= = .  

Applying these four boundary conditions gives the deflection solution for v(x), which may be used 
directly to evaluate the remaining response variables of interest: 

 

( )

( )

( )

( )

3 2 3
3

2
3

3

3

3

3

v(x) 2x 3Lx L
L
dw 6v (x) x Lx
dx L
6v (x) 2x L
L
12v (x)
L

6EIM(x) EIv (x) 2x L
L

12EIV(x) EIv (x)
L

δ
= − +

δ′ = = −

δ′′ = −

δ′′′ =

δ′′= = −

δ′′′= =

  (A.1) 

The applied force on this half of the specimen is simply 3P V(x) 12EI / L= = δ .  The maximum moment, 
stress, and strain occur at each end, and are 

 

max 2

max
max 2 2

max
max 2

6EI PLM
L 2

M t 3Et 3PL
2I L wt

3t
E L

δ
= =

δ
σ = = =

σ δ
ε = =

  (A.2) 

The bending flexibility, or displacement per unit applied force, is  

 
3L

P 12EI
δ
=   (A.3) 

 
Beam Stiffness and Flexibility including Shear Deformation 
 
When the beam is relatively short compared with its depth, additional transverse displacements may occur 
that are associated with shear strains (short beam shear).  The relevant shear strain is 



  

9 
Approved for public release; distribution unlimited.  

 xy
u v
y x
∂ ∂

γ = +
∂ ∂

  (A.4) 

In classical (Bernoulli-Euler) beam theory, the rotation of the cross section, u / y∂ ∂ , is equal and 
opposite to the slope v / x∂ ∂ , so that the shear strain vanishes.  For shear deformable beams, we account 
for the additional displacement by adding up the additional contribution to the deflection over the length 
of the beam.  To obtain an estimate simply, we use the average shear strain at each cross section 

 AVG
xy

V
GA

γ =   (A.5) 

and scale it by a shear area factor that relates the variable shear strain within the cross section to the 
average.  Normally the shear factor is chosen such that the shear strain energy, shear wave speed, or other 
macroscopic shear response characteristic is equal to the value obtained from a more detailed model of 
the beam.  The resulting shear deflection contribution for the DCB is simply 

 
L

shear 0

V PLdx
GA GA

δ = α = α∫   (A.6) 

Here α is the shear area factor.  The combined deflection of the beam is the sum of the bending and shear 
displacement contributions, 

 
23 3

total bending shear
PL PL PL E t1

12EI GA 12EI G L
  δ = δ +δ = + α = +α  

   
  (A.7) 

The corresponding beam stiffness that can be obtained from measurements in the DMA test is 
(considering only one beam, which is half the experimental specimen): 

 s 2
total 3

P 12EIK
E tL 1
G L

= =
δ   +α  

   

  (A.8) 

In practice the measured value of Ks is modified to account for the effects of clamped boundary 
conditions that are not realized perfectly in the experiment, giving a corrected stiffness K defined by 
 s cK K / F=   (A.9) 
This corrected stiffness replaces the measured value for purposes of further data reduction, so we have 

 s
2

c 3

K 12EIK
F E tL 1

G L

= =
  +α  

   

 (A.10) 

In the Q800 manuals, Fc is called the clamping factor and is obtained using a fit to finite element analysis 
results for various combinations of length and thickness, 
 ( )cF 0.7616 0.02713 L / t 0.1083ln L / t= − +   (A.11) 
The details of the finite element calculations leading to this approximation of the clamping factor are not 
covered in the documentation, but presumably the analyses account for the differences between idealized 
beam bending boundary conditions and the actual contact constraints and shear lag that occur at the grips, 
and possibly the effects of rounded edges of the grips, and similar fine-scale details. 
The calculation of the stiffness and modulus in the DMA system uses Equation (A.10) directly, with one 
adjustment; the value of Ks (or K) is defined based on the total force from both halves of the experiment, 
so the factor of 12 in the numerator of the right side is doubled.  Therefore 
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 s
2

c 3

K 12EIK
F E tL 1

G L

= =
  +α  

   

 (A.12) 

The resulting modulus equation is 

 
23 3

s s

c c

K KL E t L E LE 1
F 24I G L F 24I G 2A

    = +α = +α         
 (A.13) 

It is worth noting that, for an isotropic material obeying the relation G E / 2(1 )= + ν , equations (A.12) 
and (A.13) become 

 2
3

24EIK
tL 1 2 (1 )
L

=
  + α + ν  

   

 (A.14) 

 
3

s

c

K L LE 2 (1 )
F 24I 2A

 
= + α + ν 

 
 (A.15) 

which are the same forms appearing in the Q800 documentation (compare Equation A.14 with the 
expression for K on page B-1, and Equation A.15 with the expression for the geometry factor GF = E/K 
on page B-4). 
The shear factor used in the stiffness expression (page B-1) appears to correspond to α = 6/5, which is the 
value one obtains by equating the shear strain energy per unit area in the simplified model to the actual 
energy based on a parabolic shear stress distribution through the thickness, for a rectangular section and 
isotropic material.  In the modulus equation (page B-4), the shear factor S corresponds to 2α, and the 
nominal value listed (S = 1.5) would imply α = ¾.  The second of these (S = 1.5) does appear to be used 
in computing the reported data values from the Q800 system. 
The value of Poisson’s ratio used in the GF calculation is listed (page B-4) as being 0.44, and this value 
does appear to be embedded in the GF used to compute the Q800’s reported data. 
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APPENDIX B 

Excerpts from Q800 Documentation: Sample Stiffness and Modulus Calculations 
 
The material below is reproduced from the Q800 electronic documentation for reference3. 
 

 
 (material deleted) 
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The stiffness model equation assumes that the ends of the sample are fixed, or that there is no 
deformation of the sample beyond where the sample enters the clamps This is never achieved 
in practice, to do so would require a discontinuity in the strains within the sample at the clamp 
face. To account for th is error, a sample stiffness correction factor can be defined as 

F " Ks 
c K 

Where 

K = stiffness or spring constant 

Ks = measured stiffness 

F c = clamping correction factor 

Substituting for K in the model equation and solving for the modulus: 

E"-·-· 1 +- (1 +- v) -Ks L3 [ 12 (1)21 
Fe 24·1 5 L 

Fe = 0.761 6 -0.02713 x #" + 0. 1083ln Ef) 
Where: 

E = elastic modulus 

L = sample length (one side) 

In = natural log 

K, = measured stiffness 

= sample thickness 

=sample moment of inertia 

v OJ= Poison's ratio 

Fe= clamping correction factor 

The clamping correction factor, Fe, was determined by finding the sample stiffness using Finite 
Element Analysis of the sample deformation and calculating Fe using the sample stiffness 

equation and the FEA stiffness. This was done by studying many cases including a variety of 
materials and geometries with corresponding fit applied to the result. 

NOTE: Poisson's ratio accounts for the shear deformation taking place in flexure, when 
using samples of relatively small length-to-thickness ratios. It is introduced in the 

equation using the standard equation relating E and G: E = 2 ( 1 + v ) G 
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 (material deleted) 
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