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ABSTRACT 

Telescope images of astronomical objects and man-made satellites are frequently characterized by high dynamic 
range and low SNR.   We consider the problem of how to enhance these images, with the aim of making them 
visually useful rather than radiometrically accurate.  Standard contrast and histogram adjustment tends to strongly 
amplify noise in dark regions of the image.  Sophisticated techniques have been developed to address this problem 
in the context of natural scenes.  However, these techniques often misbehave when confronted with low-SNR scenes 
that are also mostly empty space.  We compare two classes of algorithms: contrast-limited adaptive histogram 
equalization, which achieves spatial localization via a tiling of the image, and gradient-domain techniques, which 
perform localized contrast adjustment by non-linearly remapping the gradient of the image in a content-dependent 
manner.  We extend these to include a priori knowledge of SNR and the processing (e.g. deconvolution) that was 
applied in the preparation of the image.  The methods will be illustrated with images of satellites from a ground-
based telescope. 

 
 

1. INTRODUCTION 

Ground based telescope images of astronomical objects are generally destined for either computational or visual 
analysis. The latter process is hindered by the fact that many such images have a high dynamic range (HDR). This 
makes many image features virtually impossible to display via low dynamic range media such as printed pages and 
computer monitors. To maximize the visual quality of the image, the dynamic range must be compressed.  Uniform 
contrast and histogram adjustment techniques will do this, but the artifacts left behind by some processing 
techniques can be overly emphasized by some compression schemes. More recent work in the gradient domain has 
shown exceptional results for high SNR images [2], compressing the dynamic range without the halo effects 
typically present. However its performance on images with a very low SNR is unknown. In this paper we examine 
the effectiveness of gradient domain methods on noisy images with low SNR as well as comparing Contrast Limited 
Adaptive Histogram Equalization (CLAHE) methods to these Gradient Domain High Dynamic Range Compression 
(GDHDRC) algorithms, and to a simple unsharp mask of the log image.                                                                            
 

 

2. DESCRIPTION  

The three compression schemes used here are described in sections 2.1-2.3. Section 2.4 details the scoring method 
used to determine the quality of the HDR compressed image.  
 

 
2.1 Contrast-Limited Adaptive Histogram Equalization 

CLAHE methods separate the image into a number of tiles, and then adjust the contrast such that the tile histogram 
has the desired shape. The tiles are then stitched together using bilinear interpolation [1]. The specific 
implementation used here is that found in the 2012b version of Matlab, in the function ‘adapthisteq’.   In order to 
optimize the algorithm for a specific image, the number of tiles, number of histogram bins, and clipping level are 
adjusted. The histogram distribution can also be varied between Poisson, exponential, and uniform. Increasing the 
number of tiles decreases the size of each individual tile and the size of the features that are present in each tile. 
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Thus increasing the number of tiles allows the compression to better differentiate small features from the 
background, while making large features less uniform, as they consist of many independently normalized small tiles. 
The number of histogram bins affects the smoothness of the image, setting the number of gray levels that can be 
used. The clipping level “clips” the distribution at the user defined limit, helping adjust contrast. 

 
2.2 Gradient-Domain High Dynamic Range Compression 

The GDHDRC algorithm applied here is based on the paper by the same name [2].  The technique applies a 
nonlinear mapping to the gradient of the image, so that large gradients are attenuated more strongly than small 
gradients.  The intention of this is to reduce the contrast change between adjacent sharply-defined areas of light and 
darkness while preserving visible detail in both the light and dark areas.  The image is then reconstituted from the 
modified by solving a Poisson equation. The gradient attenuation is determined by two variables, referred to in the 
work by Fattal et. al. as α and β. The former variable determines which gradient magnitudes are attenuated, and the 
latter variable determines the degree of attenuation. To normalize the behavior of the process as a function of spatial 
frequency, the gradient of the (log) image is evaluated at each level of a Gaussian pyramid. The number of pyramid 
levels can be adjusted to reduce the low frequency components present in the recombined image, thereby 
emphasizing the smaller features of the image. In some cases adjusting the pyramid levels improves the quality of 
the HDR compressed image, but it is a far less pronounced change than one achieves by modifying variables α and 
β.   
 
2.3 Unsharp Mask of log Image 

UMLI is a homomorphic filtering [3] technique that involves subtracting a blurred copy of the log image from the 
log image.  The effect of subtracting the blur is to remove large-scale brightness variations in the image, leaving 
local contrast unimpaired.  A multiplicative factor is applied to the unblurred log image, i.e. 

 
Corrected Image = exp ( µ log(I) - log(I) * G )                                                         (1) 

 
Where G is a Gaussian function with a known, user defined width (σ), and µ is a user defined constant. The 
corrected image is optimized by varying the values of µ and σ. The variable σ has an effect similar to the number of 
tiles in the CLAHE code, and the Gaussian pyramid level in the GDHDR code, where adjusting it changes the 
feature size that the compression is sensitive to. Increasing σ reduces the frequency threshold of the information 
being removed from the corrected image, this serves to sharpen the image much the same as a traditional unsharp 
mask, while working in tandem with the effect of µ to reduce the dynamic range.    

 
2.4 Scoring Visual Improvement 

In order to quantify the effectiveness of each method, the Visual Information Fidelity (VIF) [4] metric was 
computed. VIF measures the visual quality of the image by calculating the mutual information between a reference 
scene and a processed scene in a perceptually relevant wavelet basis.  Unfortunately, since VIF requires a pristine 
reference image, it is not possible to use it to score processed field data.  Instead, we used renderings of CAD 
models of satellites as our reference images.  These include bright areas (sun-illuminated shiny metal) as well as 
deep shadows.  Simulated telescope data were generated by convolving the pristine images with two ensembles of 
simulated point spread functions (PSFs) to represent very good and very poor seeing conditions (i.e. weak and 
strong turbulence). The degraded images were then processed with a multi-frame blind deconvolution (MFBD) 
algorithm to produce scenes representative of typical reconstructed images. A third dataset was generated by adding 
Gaussian noise to the pristine image convolving with a Gaussian kernel. The result is an approximation of an 
unreconstructed satellite imaged from a ground based telescope. All three test images (reconstructed with poor 
seeing, reconstructed with good seeing, and blurred) have a dynamic range large enough that very few details are 
visible without post-processing. A pristine image with dynamic range such that all features are visible is used as the 
reference for computing the VIF score. The test images were processed by each HDR compression algorithm and 
the variables adjusted until the VIF score was maximized. This was considered to be the optimal image for that 
algorithm.  
 



 
 

 
 

3. RESULTS 

3.1 Natural Scenes 

The performance of gradient domain methods on high SNR scenes is very good. Figure 1 compares the three 
different compression schemes optimized by eye on the image used by Fattal et. al. to illustrate their GDHDRC 
algorithm. As expected, the GDHDR processed image is visually pleasing. The other enhancement schemes are less 
effective.  Some features are too dark to make out (note the building directory on the wall) and others too bright to 
distinguish (the courtyard seen through the window in the CLAHE image). 
 
The low SNR case in Figure 2 is more interesting to those working with astronomical scenes. To produce the source 
image, noise and blur were added to the scene from Figure 1. The GDHDR image is still a great improvement over 
the original, however the increased acutance in the UMLI is much more noticeable in this case, and serves to 
improve the visual appearance of the result. The CLAHE image has enhanced the contrast in the noise as well as in 
the image features, making it more difficult to distinguish between the two. This comparison illustrates that the 
optimal HDR compression scheme for high SNR images is not necessarily the best for the low SNR case.  
 
 

 
Figure 1. High SNR scene compressed with (clockwise from upper left): no processing, gradient domain high 
dynamic range compression, contrast limited adaptive histogram equalization, and the unsharp mask of the log 
image. 

 



 
 

 
 

 
Figure 2. Low SNR scene compressed with (clockwise from upper left): no processing, gradient domain high 
dynamic range compression, contrast limited adaptive histogram equalization, and the unsharp mask of the log 
image. 
 

 
3.2 VIF Scored Images 

The three HDR images described in section 2.4 were HDR compressed with each method and the result scored with 
VIF. The results are summarized in Table 1 and displayed in figures 3-5. Figure 3 displays the compressed image 
representing good seeing. All of the images are a large improvement over the original, however the GDHDR and 
CLAHE methods display some artifacts not present in the UMLI compression. In the GDHDR processed image 
there is a noticeable blur around all features with a black background, this blur is introduced by the MFBD 
reconstruction; however the GDHDR code makes it more visible than either UMLI or CLAHE codes. The CLAHE 
compressed image has irregular blotches that are a result of the tiles being stitched back together. This effect can be 
minimized by reducing the number of tiles, but doing this reduces the contrast between small features such as the 
antennae towards the center of the image. None of the compressions are perfect, however the UMLI compression is 
appears superior, and this is supported by the VIF score.  
 
Figure 4 shows the performance of these techniques with an image representing bad seeing. The GDHDR image still 
displays the halo present in Figure 3; however it succeeds in suppressing much of the halo visible in the UMLI 
image. This is at the expense of the visibility of small features such as antennae, which are more visible in the UMLI 
and CLAHE images.  The CLAHE image retains the blotchy appearance seen in Figure 3, but using a large number 
of tiles means that it can reduce the majority of the halo without reducing the contrast on the small features.  
 



 
 

 
 

Table 1. VIF scores for each compression method for the three scored image. Highlighted cells represent the best 
visual image as scored by VIF. 

	  
VIF	  Score	  

	  
GDHDR	   UMLI	   CLAHE	   Unprocessed	  Image	  

Simulated	  
Reconstruction	  

With	  Good	  Seeing	  
0.435	   0.488	   0.422	   0.12	  

Simulated	  
Reconstruction	  
With	  Bad	  Seeing	  

0.197	   0.188	   0.203	   0.073	  

Simulated	  Un-‐
Reconstructed	  

Image	  	  
0.086	   0.095	   0.088	   0.037	  

 
 
 

 
Figure 3. Reconstructed image representing good seeing conditions compressed with (from left to right): no 
compression, gradient domain high dynamic range compression, unsharp mask of the log image, and contrast 
limited adaptive histogram equalization. 
 

 
Figure 4. Reconstructed image representing poor seeing conditions HDR compressed with (from left to right): no 
compression, gradient domain high dynamic range compression, unsharp mask of the log image, and contrast 
limited adaptive histogram equalization. 
 



 
 

 
 

 
Figure 5. Image  representing poor seeing conditions HDR compressed with (from left to right): no compression, 
gradient domain high dynamic range compression, unsharp mask of the log image, and contrast limited adaptive 
histogram equalization. 

 
      
The images in Figure 5 are compressions of an image representing an unreconstructed image from a ground based 
telescope. The GDHDR image has emphasized the background much more than both the UMLI and the CLAHE 
methods.  The GDHDR and CLAHE compressions both retain the noise in the object, where the UMLI compression 
has minimized this. Although the object is quite visible in all compressions, in the UMLI image the object is much 
smoother.  

 
 

3.3 Ground Based Telescope Images 

The difference compression schemes were applied to actual ground based telescope images. The image in Figure 6 
is an MFBD reconstructed image, the image in Figure 7 is an AO compensated image that has not been 
reconstructed.  

 
Figure 6. Reconstructed image HDR compressed with (from left to right): no compression, GDHDR, UMLI, and 
CLAHE methods.  

Figure 6 continues the trend seen in figures 3-5. The UMLI image is the smoothest image, with less noise in the 
object itself, while bringing out some of the halo. The CLAHE compression has some non-uniformity but brings the 
object out from the background well with little halo. In contrast the GDHDR image brings out the halo quite 
strongly In Figure 7 the object in the CLAHE image is brighter, while in the UMLI image it is displayed with 
greater acutance. The GDHDR image displays the object, but with a distinct blur present. 



 
 

 
 

 
Figure 7. AO compensated image HDR compressed with (clockwise from upper left): no processing, gradient 
domain high dynamic range compression, contrast limited adaptive histogram equalization, and the unsharp mask 
of the log image. 

 

4. CONCLUSIONS  

By qualitatively viewing the images, as well as examining the VIF scores for the three scored images, of the 
approaches examined here the most consistent compression method for use with astronomical scenes appears to be 
UMLI. It is clear that there is no single solution for all images, as illustrated by the comparison in section 3.1. The 
criteria that make an algorithm work well for natural scenes can and do inhibit performance when compressing 
sparse images with a low SNR. Astronomical scenes, which are typically blurry and containing artifacts, require a 
compression scheme that can reduce the dynamic range in a manner that accentuates the object while actively 
reducing any halo or artifacts. Compressing natural scenes requires that all features be emphasized, as there is little 
noise or blur to take into account. The low SNR nature of astronomical scenes means that a global approach to 
dynamic range compression will always have difficulty making very dim object features (i.e. the central antenna in 
Figure 6) visible without also making visible the surrounding noise. While the methods detailed here all improve the 
visual quality of the image, a “smart” algorithm that can distinguish between the object and the surrounding noise 
and preferentially adjust the contrast is the ideal solution.  
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