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Abstract 

Multivariate a~aptive regression splines (MARS) is a methodology for nonparamet­
rically estimating (and interpreting) general functions of a high-dimensional argument 
given (usually noisy) data. Its basic underlying assumption is that the function to be 
estimated is locally relatively smooth where smoothness is adaptively defined depending 
on the local characteristics of the function. The usual definitions of smoothness do not 
apply to variables that assume unorderable categorical values. After a brief review of 
the MARS strategy for estimating functions of ordinal variables, alternative concepts of 
smoothness appropriate for categorical variables are introduced. These concepts lead to 
procedures that can estimate and interpret functions of many categorical variables, as well 
as those involving (many) mixed ordinal and categorical variables. They also provide a 
natural mechanism for modeling and predicting in the presence of missing predictor values 
(ordinal or categorical). 

l~O. Introduction. The problem of modeling and interpreting a general predictive relation­
ship between a "response" variable y and a large number of simultaneously measured "predictor" 

variables x = (Xl, .. " xn) is a challenging one studied in many disciplines. The objective is to use 
a given sample of "training" data {Yi, xdi" to derive a rule for estimating (missing) response values 

in future observations given only the values of the predictor variables. Another goal often present 

is that of trying to gain an understanding of the nature of the predictive relationship through an 
examination of the structure of the derived rule. This may reveal insight into the properties of the 
system that generated the data. 

* Research supported jointly by the U.S. National Security Agency under Grant MDA 904-88-M-2029 

and the U.S. Department of Energy under contract AC03-76SF00515. 
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This problem can be usefully cast as one of function estimation or approximation. The rela­
tionship between y and x is assumed to take the form 

y = I(x) + €(x) (1) 

where I is a single valued deterministic function of the n predictor variables and € is a random 
component reflecting the fact that the chosen predictor variables may not completely specify Yj it 
may depend on other quantities that vary, but are not observed. This "error" term is defined to 
have zero expected value for all x 

so that the assumed true underlying ("target") function I can be defined by 

I(x) == E(y I x) 

with the expected values taken over the population from which the training and future data are 
presumed to be random samples. In this framework the goal of the training procedure is to use 

the training sample of size N, {Vi, xi}f to derive a function j(x) that can serve as a useful 
approximation to I(x) . Here usefulness is usually defined in terms of accuracy and often, in 
addition, interpretability. 

For finite training samples the definition (1) for the true underlying function I(x) is incomplete. 
(Any quantity can be expressed as the sum of two other quantities.) This identifiability problem 
must be resolved by defining those characteristics that distinguish the "signal" I(x) from the "noise" 
€(x). In parametric fitting I(x) is assumed to be a member of a parametric family of functions 
whereas the noise is assumed to lie mainly outside that family. This is generally the case because 
the chosen parametric functions usually vary smoothly with changing x while the noise does not. 

The function estimation problem in this case then reduces to that of estimating the corresponding 
parameters from the training data. In nonparametric modeling the distinction between signal and 
noise is based solely on the notion of smoothnessj I(x) is taken to be that component of y that 
varies smoothly with changing values of x, whereas the noise is taken to be the leftover part that 
does not. The effectiveness of a nonparametric procedure is determined by how well it can gauge, 
the (local) smoothness properties of I(x) and exploit them so as to filter out most of the noise 
without altering too much of the signal. 

When the predictor variables all take on values in an ordered set there are many natural and 

exploitable definitions of smoothness, giving rise to a vast literature on nonparametric smoothing 
and function estimation. In high dimensional settings this exploitation has proven far more difficult, 
but some successes have been achieved [see for example Friedman (1991) along with the discussions 

and the many references therein.] When some (or all) of the predictor variables assume values for 
which there is no natural order relation (in the context of the problem) the notion of smoothness of 

the dependence of yon such variables is less readily apparent. In this paper a notion of smoothness 

of the dependence (of an ordinal variable) on (unorderable) categorical variables is introduced and 
then exploited (in the context of an adaptive algorithm) to model functions of (many) categorical 

variables, along with perhaps (many) ordinal predictor variables as well. When all of the predictor 
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variables happen to be categorical this approach gives rise to a new method for analyzing large 
(sparse) many-dimensional contingency tables. 

The tecl::lique presented in this paper is based on a modification of the multivariate adaptive 
regression spline (MARS) strategy (Friedman, 1991) for modeling functions of (many) ordinal vari­
ables. In order to be somewhat self contained, the paper begins with a brief overview of the MARS 
procedure. It next turns to a general discussion of smoothing on categorical variables introducing 
the basic ideas, followed by a description of the modifications to the MARS method necessary to 
implement them. The complete MARS algorithm for modeling functions with arguments of mixed 
ordinal and categorical variables is then described. Methods for interpreting models involving in­
teractions between categorical and ordinal variables are presented. This is followed by an extension 
of the procedure to incorporate nested variables, which in turn leads to a natural and very general 
method for dealing with missing values among the predictor variables. Finally, some simulation 
studies and illustrative examples are presented. 

2. Multivariate Adaptive Regression Splines. This section gives a brief overview of 
the multivariate adaptive regression spline (MARS) procedure described much more completely 
in Friedman (1991). It forms the basis for the techniques introduced in this paper. The MARS 
procedure is in turn based on a generalization of spline methods for function fitting. Splines have 
been extensively studied and have many desirable properties. [See for example, de Boor (1978), 
Shumaker (1976) (1984), Eubank (1988), and Wahba (1990).] We begin with a very brief review 
of traditional (fixed knot) regression spline fitting and then turn to the adaptive regression spline 
generalization. 

2.1. A Micro-Introduction to Spline Fitting. First consider the case of only one predictor 
variable, x (n = 1). An approximating (qth order regression) spline function jq (x) is obtained by 
dividing the range of x values into J( + 1 disjoint regions separated by K points (called "knots"). 
The approximation takes the form of a separate qth degree polynomial in each region, constrained 
so that the function and its q - 1 lowest order derivatives are everywhere continuous. Generally 
~he order of the spline is taken to be low (q ::;; 3). Each qth degree polynomial is defined by q + 1 
parameters so that there are a total of (K + 1)( q + 1) parameters to be adjusted to best fit the data, 
usually by least squares. The continuity requirement however places q constraints at each knot 
location making a total of K q constraints. The total number of free parameters is thus J( + q + ~. 

Regression spline fitting can be implemented by directly solving the constrained minimization 

problem described above. Usually, however, the problem is converted to an unconstrained opti­
mization problem by choosing a set of basis functions {Biq) (x)}{; +q that span the space of all qth 
order spline functions (given the chosen knot locations) and performing a (linear) least-squares fit 
of the response on this basis function set. In this case the approximation takes the form 

K+q 
jq(x) = L akBiq)(x) (2) 

k=O 

where the values of the expansion coefficients {ak}~(+q are unconstrained, and the continuity con­
straints are intrinsically embodied in the basis functions {Bkq)(x)}~(+q. One such basis ("truncated 

power basis") is comprised of the functions 
j q q K {x }j=o, {(x - tk)+h . (3) 
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Here {tk}f are the knot locations defining the J( + 1 regions and the truncated power functions 

are defined by 

The truncated power basis (3) is not the only basis appropriate for this application. Any set of 
J( +q+1linearly independent linear combinations ofthese basis functions (3) will also span the same 
space. The most popular basis is the (minimum support) "B-spline" basis owing to its superior 
numerical properties when used in conjunction with least-squares fitting. B-spline basis functions 
have support over, and are defined by, J( + 2 adjacent knot locations, wh:ereas the truncated power 
functions have maximal support but are each defined by a single knot location. This latter property 
has important algorithmic consequences for adaptive regression spline strategies (see below). 

Regression splines (of order q) are characterized by J( + 1 parameters: the number of knots 
J(, and in addition their locations {tk}f. This provides the user with a great deal of flexibility 
in specifying the nature of the approximating function. This is in contrast to other techniques 
such as kernel methods (Parzen, 1962) and smoothing splines (Craven and Wahba, 1979) which are 
characterized by a single (smoothing) parameter. If the user has a good deal of knowledge about 
the nature of the true underlying function f( x) (1) and sufficient intuition concerning the effect 

on the approximation of changes in the knot specification, this increased flexibility can be used to 
great advantage. On the other hand, lack of such knowledge can make choosing a good set of knots 

difficult. 

The variance of the function estimate j( x) in any local region is proportional to the ratio of 

the local knot density to the local data (predictor variable) density. The bias is proportional to 

the local second derivative of the true underlying function f" (x) divided by the local knot density. 
For any given f(x) (1) and distribution of (abscissa) data points there is an optimal specification 

for the knots. This is however usually unknown. Standard defaults often involve placing the knots 
equispaced along the abscissa or at the 1/J((x100) percentiles of the (x) data distribution. The 
regression spline approximation is then characterized by a single parameter (number of knots J() 

as are kernel and smoothing-spline methods. 

The flexibility of the regression spline approach can be enhanced by incorporating an automatic 
strategy for knot selection as part of the data fitting process. Many such strategies have been 
proposed, most of them involving a numerical minimization of the least squares criterion 

(4) 

jointly with respect to the expansion coefficients {ak}~(+q and the knot locations {tk}{(. Although 
sometimes effective, these approaches have many difficulties and can be computationally expensive. 

[See Eubank (1988) and references therein.] 

An especially simple and effective strategy for automatically selecting both the number and 

locations for the knots was described by Smith (1982). She suggested using the truncated power 
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basis (3) so that (4) becomes 

t, [Yi - t. b;x; - t. _.(x - t.lt r (5) 

Here the coefficients {bj}6, {ak}{( can be regarded as the parameters associated with a multiple 

linear (least-squares) regression ofthe response yon the "variables" {x j }6 and {( x -tk)~}f. Adding 
or deleting a knot tk is viewed as adding or deleting the (corresponding) variable (x -tk)~. Smith's 

strategy consists of starting with a very large number of eligible knot locations {tIl· .. , t](maJ (say 
one at every interior data point, J(max = N - 2) and considering the corresponding "variables" 
{(x-tk)~}fmu as candidates to be selected through a statistical variable subset selection procedure 

(Smith suggested a standard forward/backward stepwise approach). 
Although quite simple, this approach to knot selection is both elegant and powerful. It auto­

matically selects both the number of knots ]( and their locations t1,···, t K. It thereby not only 
estimates the overall (global) amount of smoothing to be applied (controlled by K), but in addition 
it uses the data to estimate the separate relative amount of smoothing to be applied at different 

(abscissa) locations. In a large simulation study comparing many different smoot hers over a wide 
variety of situations (Breiman and Peters, 1988), this method proved to be the best or among the 
best ovei"the situations (true underlying function, abscissa design) considered. This approach has 

the additional virtue of being very simple to implement and fast to compute. 
The adaptive regression spline strategy introduced by Smith (1982) was developed for the 

univariate (n = 1) smoothing problem. The real potential of this idea however is realized in the 
multivariate setting (n » 1) where the function to be estimated can depend on many (measured) 
variables. The multivariate adaptive regression spline method (MARS, Friedman, 1991) can be 
viewed as a multivariate generalization of Smith's (1982) strategy. 

An approximating (qth order regression) spline function jq(x) of n variables (x = {XIl···, xn}) 
is defined analogously to that for one variable. The n-dimensional space Rn is divided into a set 

of disjoint regions and within each one jq(x) is taken to be a polynomial in n variables with the 
maximum degree of any single variable being q. The approximation jq(x) is constrained so that 
it and all its derivatives to order q - 1 are everywhere continuous. This places constraints on the 

approximating polynomials in separate regions along the (n-I-dimensional) region boundaries. As 
in the univariate case, the approximation is most easily constructed by choosing a basis function 
set (of n-variables) that spans the space of all qth order n-dimensional spline functions given the 
particular set of chosen regions. The approximation is then obtained by fitting the coefficients of 
this expansion to the data. 

For n > 2 (and usually for n = 2) the disjoint regions defining the spline approximation 
are taken to be tensor products of disjoint intervals on each of the variables, delineated by knot 

locations. Thus, placing Kj knots on each of the variables (1 ~ j ~ n) produces IIj=l(Kj + 1) 
regions. A basis function set that spans the space of spline functions over this set of regions is the 

tensor product of the corresponding univariate spline bases associated with the knot locations on 

each of the variables 
1(1+q K .. +q n 

jq(x) = L ... L ak1,···k .. II BW(xj). (6) 
kl =0 k .. =0 j=l 
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Here {Bi~) ( x j)} f;;=o is the basis function set for a qth order spline approximation given the locations 
of the Xj knots on Xj (1 ~ j ~ n). The size of this tensor product basis (6) and thus the number 
of coefficients to be estimated in a (linear least squares) fit to the data is 

n 

I1(Xj+q+1). (7) 
j=l 

For cubic splines (q = 3) with Xj = 5 knots (only) on each variable there are 59,049 coefficients to 
be estimated in five dimensions. In six dimensions (n = 6) that number is 531,441, while for n = 10 
it is 3.5 X 109 • This exponential increase in both estimation and computational complexity with in­
creasing dimension (for the same level of refinement) is a reflection of the "curse-of-dimensionality" 
(Bellman, 1961). Gargantuan training samples are required for straightforward tensor product 
spline approximations in high dimensions. 

The multivariate adaptive regression spline (MARS) strategy employs the tensor product rep­
resentation (6) with the truncated power basis (3), and considers a very large number [Xj < O(N)] 

'" 
of eligible knot locations on each variable. In analogy with the Smith (1982) strategy, each of the 
(Xj + q + 1)n basis functions so derived is taken to be a candidate "variable" to be potentially 
selected through a statistical variable subset selection procedure. 

As in the univariate (n = 1) case, this multivariate adaptive spline strategy can be motivated 
from geometrical considerations. The goal is to choose a good set of regions to define the spline ap­
proximation for the problem at hand [target function I(x) (1)]. Both statistical and computational 
considerations restrict their number to be very small relative to that generated by a complete tensor 
product of univariate intervals. Selecting a small subset of basis functions from those representing 
the complete tensor product has the effect of producing a spline approximation on a corresponding 
(small) set of (larger) regions, each of which is a selected union of regions from the original tensor 
product. 

The attractive aspects of such a procedure are far more dramatic in the multivariate case than 
in univariate (n = 1) settings (Smith, 1982). First (and foremost) its adaptability, which can be 
useful in univariate fitting, is absolutely crucial in approximating all but the simplest functions of 
high dimensional arguments. The procedure automatically chooses the approximating regions in 
the n-dimensional predictor variable space. As a consequence it chooses the number of (distinct) 
variables that enter into each corresponding basis function (interaction order). It also chooses which 
particular variables comprise the basis functions that enter the model, thereby providing automat~c 
variable subset selection. Candidate basis functions involving predictor variables unrelated to the 
response are less likely to be selected. Moreover, this variable subset selection aspect is a local 
property; namely, in any local region of the predictor variable space, basis functions defining its 
subregions are most likely to involve only the variables most strongly associated with the response 
in that particular region. This local variable subset selection property, along with the ability to 
automatically adjust the relative amount of smoothing in each local region of the n-dimensional 

predictor space, provides considerable flexibility to parsimoniously approximate a wide range of 
functions. 

A consequence of the basis function subset selection implementation is the ease with which 
constraints can be applied to the solution. Basis functions in the candidate tensor product pool 
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that violate any (user supplied) constraints are simply made ineligible for selection. For example, 

if an additive model 
n 

j(x) = L h(Xj) (8) 
j=l 

(no interactions among the variables) was potentially thought to be adequate, all candidate basis 
functions involving more than one variable would be made ineligible for inclusion in the model 
(Friedman and Silverman, 1989). Just as easily one could limit interactions to particular variables, 
and even limit the particular other variables with which they are permitted to interact. 

A feature of approximations based on tensor product functions is the straightforward ability 
to handle predictor variables of different types. Predictor variables that assume values in different 
kinds of sets are easily incorporated into the same regression model. So far it has been assumed 
that they all have values on real intervals. For these types of variables ordinary spline functions 
(3) are appropriate. For periodic variables that assume values on a circle (direction, months of 
the year) periodic splines form an appropriate basis. (Periodic splines are spline functions that 
are constrained to have the same values at both ends of the interval.) The full multivariate tensor 
product basis over all the variables would then contain mixtures of both types of univariate basis 
functions in some of its candidates to be selected. The basis functions themselves take on real 
(interval) values, but their arguments can assume values on any index set. This ability to handle 
and/or mix variables of different types is at the heart of the approach proposed below for modeling 
with variables that assume unorderable categorical values. The task is to find appropriate (real 
valued) basis functions for such variables to be incorporated into a MARS strategy. 

There are two basic problems that limit the straightforward application of the MARS strategy 
outlined above; they are computational feasibility and model selection. The total number of can­
didate basis functions in the full tensor product is O(Nn) which, except for very small values for 
both quantities (n, N), would require prohibitive resources to compute and store. Implementing the 
procedure as it is described above would require O(Nn) (partial) linear-least-squares fits to enter 
each new basis function. In order for the procedure to be practical, a computationally feasible 
algorithm is necessary. This is described in Section 2.2. 

Model selection also presents a difficult problem. Like all variable selection procedures that 
use the data response values to choose a subset, MARS is a highly nonlinear fitting procedure. This 
provides it with its power and flexibility but causes all of the usual model selection criteria for linear 
procedures to be inappropriate (see Breiman, 1989). Of these only ordinary cross-validation imple­
mented by explicitly refitting with observations removed (Stone, 1974) or (explicit) bootstrapping 

(Efron, 1983) survive as statistically viable alternatives. Model selection based on cross-validation, 
and an approximate criterion that is more rapidly computable, are described in Section 2.3. 

In addition to these two basic problems, there are a large number of "engineering details" 
concerning the implementation that while having no direct bearing on the fundamental ideas, 
nonetheless have a substantial impact on performance. These are discussed in Friedman (1991). 

2.2. MARS Algorithm. This section presents a brief overview of the MARS algorithm that 

is described .in full detail in Friedman (1991). The goal is to provide a computationally feasible 
approach that approximates the basis function subset selection procedure outlined in the previous 

section. It chooses a (relatively small) subbasis, based on the data at hand, from the (very large) 
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n-variable complete tensor product spline basis (6) with knots at every distinct marginal data value. 
One representation for these basis functions is 

Km 

Bm(x) = II[Skm(Xv(k,m) - tkm)1+. (9) 
k=1 

Here J(m is the number of factors (interaction order) in the mth basis function, Skm assumes only 
two values, Skm = ±1, and indicates the (left/right) sense of the truncation, v(k, m) labels the 
predictor variables, 1 :::; v(k,m) :::; n, and tkm is a knot location on each of the corresponding 
variables. The exponent q is the order of the spline approximation. This "two-sided" truncated 
power basis (9) is equivalent to the tensor product truncated power basis (3) (6) when the monomials 

{xjH:~ 3=1 on each variable, and an overall constant Bo(x) = 1, are included. 
The MARS algorithm uses a forward/backward stepwise strategy to produce a set of basis 

functions (9). The forward part is an iterative (recursive) procedure. Each iteration simultaneously 

constructs an expanded list of basis functions to be considered and then decides which ones to 

enter at that step. Each iteration adds two new basis functions to the current model. This forward 
stepwise procedure is continued until a relatively large number of basis functions are included, 

in a deliberate attempt to overfit the data (Breiman, Friedman, Olshen, and Stone, 1984). A 
final appropriately sized basis function set is then selected through a backward stepwise variable 
subset selection procedure using the basis functions produced by the forward algorithm as candidate 
"variables." The model selection criterion used with the backward stepwise procedure is described 
in Section 2.3. 

The forward stepwise procedure begins with one basis function in the model 

Bo(x) = 1. (lOa) 

After the Mth iteration there are 2M + 1 functions 

(lOb) 

in the model, each of the form (9). The (M + l)st iteration adds two new basis functions 

B2M+I(X) = Bl(M+l)(X)[+(Xv(M+l) - tM+I1+ 
q • 

B2M+2(X) = Bl(M+I)(X)[-(Xv(M+l) - tM+I)]+ 
(10c) 

Here Bl(M+I) (x) is one ofthe 2M + 1 basis functions already chosen (9) (lOb), 0 :::; l(M + 1) :::; 2M, 
v(M + 1) is one of the predictor variables (not represented in Bl(M+I)(X)), and tM+l is a knot 
location on that variable. The three parameters l(M + 1), v(M + 1), and tM+I defining the two 
new basis functions are chosen to be those that provide the most improvement in the fit of the 
(new) model to the data 

N 2M 

(l(M + 1), v(M + 1), tM+I) = argmin L {Yi - L amBm(x) 

{ 
i}·~·lt+2 i=1 m=O 

"m 0 

- a2M+I Bl(X)[+(xv - t)1+ - a2M+2 Bl(X)[-(Xv _ t)n } 2 

8 

(10d) 



Since B l (M+l) (x) has the form given by (9) the two new basis functions B2M+1(X) and B 2M+2(X) 

will also have that form. Their interaction levels ](2M+l and ](2M+2 will be one higher than 

](l(M+l) , the interaction level 0 : Bl (M+l)(x).For example, if i(M + 1) = 0 (lOa) then two additive 
(main effect) terms are entered into the model. If i(M +1) = 0 (lOa) happens to be chosen at every 
iteration, then the result will be an additive model (8) (sum of functions each of a single variable). 
Interaction effects are produced by choosing l(M + 1) > O. 

Although the forward/backward stepwise MARS algorithm produces a basis function subset of 
the form given by (9), and was motivated by the basis functjon (variable) subset selection strategy 
described in the previous section, it is not equivalent to that strategy. The MARS algorithm must 
enter basis functions of low interaction order before it can (construct and) enter basis functions of 
higher interaction level. It can, of course, later delete the low order interaction terms through the 
backward stepwise part of the procedure. A faithful implementation of the multivariate adaptive 
regression spline strategy (Section 2.1) would however allow any basis function in the complete 
tensor product basis to enter at any stage. Especially with small to moderate training samples 
and a large number of variables, the MARS algorithm is likely to favor the entering of lower order 
interaction terms compared to a faithful rendering of the adaptive spline strategy. This bias toward 
producing models with relatively low order interactions can represent a strong statistical advantage 
in those cases where the true underlying function f(x) (1) is not dominated by interactions of the 
very highest order. The strength ofthis bias is inversely proportional to the training sample size. For 
small samples the MARS algorithm will try to produce models involving lower order interactions, 
whereas for larger sample sizes, it will more favorably entertain higher order interactions as potential 
candidates. 

2.3. Model Selection. The forward stepwise MARS algorithm is iterated until Mmax (tensor 
product spline) basis functions are synthesized. An important aspect of the MARS strategy is to 
choose this number to be substantially larger than would be optimal, and then to delete excess 
basis functions. The deletion strategy is a standard linear regression backward subset selection 
procedure with the Mmax basis functions representing the stock of "variables" to be potentially 
selected/deleted. The motivation for this strategy lies in the (suboptimal) greedy nature of the 
forward stepwise algorithm. At each iteration it produces two new basis functions using only those 
that have already been produced in earlier iterations. Thus, the simpler basis functions synthesized 
early may tend to be highly suboptimal and not very useful when used in conjunction with more 
complex ones produced in later iterations. Their main contribution in this case is to serve as ingre­
dients (factors) for developing the later basis functions. In order to provide adequate opportunity 
for the possible synthesis of these more complex (higher interaction order) basis functions, the 
forward stepwise procedure is allowed to produce an excess number of basis functions, which then 
compete (on an equal basis) with the earlier ones for inclusion in the final model. 

In order to implement this type of model selection, a criterion is required that estimates (future) 
lack-of-fit on representative data not part of the training sample. The model that minimizes this 

criterion, when used with the deletion strategy described above, is taken to be the final function 
estimate. Since the MARS procedure is highly nonlinear, only criteria based on sample reuse such 

as cross-validation (Stone, 1974) or bootstrapping (Efron, 1983) can be (strictly) justified. The 
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· .. - cross:'validation criterion is 0 -· 

(11) 

where the dependence of the criterion (and model) on the number of basis functions M is explicitly 

indicated. Here (11) iM\i is the M basis function model considered in the backward stepwise 
deletion process, estimated with the ith (training) observation removed. Due to the hierarchical 

structure of the set of models considered with the stepwise strategy, this criterion (11) can be 
evaluated for all (0 ::; M ::; Mmax) models with the same computation required for the evaluation 
of just one of them (the largest). 

The cross-validation criterion (11) requires the entire modeling procedure to be reapplied 
N times, each with one of the observations removed. It is often approximated by an analogous 
procedure (F-fold cross-validation), that reapplies the modeling F < N times with (approximately) 
N / F different observations being removed each time. [F = 10 is often used - see Breiman et al. 
(1984).] Friedman (1991) proposed an approximation to (11) that requires only one evaluation of 
the model. It is a modification of the generalized cross-validation (GCV) criterion proposed by 

Craven and Wahba (1979) for use in conjunction with linear fitting methods 

(12) 

The numerator of (12) is the lack-of-fit on the training data and the denominator represents an 
(inverse) penalty for increasing model complexity C(M). This criterion can be (strictly) motivated 
for linear fitting where the basis function expansion is prespecified and only the (linear) expansion 
coefficients are adjusted to best fit the data. In this case C(M) = M, the number of parameters 
being fitted. The proposed modification (Friedman, 1991) for the more general case, where both 
the basis function set and the expansion coefficients are data determined, is to increase the "cost­
complexity" C(M) to reflect the additional degree to which the model is being fit to the data; 

C(M) = M· (d/2 + 1) + 1 (13) 

where here (13) M is the number of nonconstant basis functions in the model iM(X) (12) being 

considered. The quantity din (13) represents an additional contribution by each basis function to 
the overall model complexity resulting from the (nonlinear) fitting ofthe basis function parameters 

i, v, an t (10d) to the data at each iterative step. Its contribution for each basis function is d/2 
since each such nonlinear fit gives rise to two basis functions. 

The quantity d in (13) can be regarded as a smoothing parameter of the procedure. Larger 
values result in fewer basis functions being retained thereby producing smoother estimates. An 
optimal value can be estimated through cross-validation. This is equivalent to cross-validating the 

number of basis functions M (11) since there is a one-to-one correspondence between a value for d 

and the size of the corresponding model produced in any particular situation. A possible advantage 
to using d is that its value should be more stable across situations involving differing sample sizes 
since N is explicitly accounted for in the penalty (12). 

10 



0 " 00 The modified °GCV criterion (12) (13) is motivated by crd hoc heuristics and can only be 

justified to the extent that it performs well in model selection. Simulation results (Friedman, 1991) 
indicate that this is the case over a wide variety of situations using d = 3. The advantage over cross­
validation is computational; the MARS algorithm need only be applied once. In many situations 
(problem size-computing platform) cross-validation is routinely feasible. In those cases for which 
it is not, the modified GCV criterion (12) (13) represents a computationally feasible alternative, 
especially for initial exploratory work. 

2.4. Interpretation. Applying the MARS procedure produces a model in the form of an 
expansion in (two-sided) tensor product basis functions (9) 

M Km 

j(x) = ao + L am II [Skm(XtI(k,m) - tkm)n· (14) 
m=l k=l 

It can be directly used to estimate missing response values y given a set of predictor variables 
x = (Xl,' ' ·,Xn ). In this form however it is of little interpretive value. One can increase its value 
for interpreting the nature of the target function f(x) (1) by a simple rearrangement of terms: 

j(x) = ao + L fi(Xi) + L /;j(Xi, Xj) + L !;jk(Xi, Xj, Xk), .. ·. (15) 
Km=l K m =2 K m =3 

The first sum in (15) collects together all basis functions that involve only one variable (J(m = 1). 
Each function fie Xi) in that sum is itself a weighted sum of spline basis functions, namely those 
that involve Xi (and only Xi). Thus each !;(Xi) is a spline representation of a univariate function 
(2) (3). If its argument, Xi, does not appear in any higher order products (J(m > 1), then the 
contribution of Xi to the model is additive (main effect) and can be viewed by simply plotting 

!;(Xi) versus Xi. 

The second sum analogously collects together all basis functions involving two (and only two) 
variables (J(m = 2). Each !;j(Xi,Xj) is the weighted sum of those basis functions involving both 
Xi and Xj, but no other variables. These functions (if present) represent two-variable interactions 
between Xi and Xj, and when added to the corresponding main effect functions (if any) 

(16) 

yield a tensor product spline representation of a bivariate function. If neither Xi nor Xj appear 
in higher order interactions, then (16) represents their joint contribution to the model that can 
be visually interpreted by viewing a contour or perspective mesh plot of fij(Xi,Xj) against its 
arguments. Joint contributions from variables involved in higher (than two) variable interactions 
(if any) are constructed in an analogous manner by combining their highest order interaction terms 

with the corresponding lower order ones that are present in the model (14) (15). These contributions 
however are not readily viewable through standard graphical techniques. 

The representation of the MARS model given by (15) is called the AN OVA decomposition 

since it breaks up the model into main (additive) effects and interaction effects of various orders. 
Each individual function in (15) is called an "AN OVA function" and is an expansion in tensor 

product spline functions involving identical predictor variable sets. (Since the locations of each 
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of the ANOVA functions can be arbitrarily defined, they are each individually translated to have 
zero minimum value, and the additive constant ao (15) is adjusted appropriately.) The AN OVA 
decomposition identifies the variables that enter the model, whether they contribute additively or 
are involved in interactions, the order of the interaction effects and the particular variables that 
participate in them. 

In many situations the best fitting MARS model is additive (8) or involves at most two variable 
interactions (Km ::; 2). In these cases the model (AN OVA decomposition (15») can be fully viewed 
graphically as described above. When interactions involving more than two variables are required, 
their contributions are not readily amenable to straightforward graphical representation, and the 
entire model cannot be simultaneously graphically viewed. It is still possible however to construct a 
sequence of views of the MARS model that collectively provides insight into the (intrinsically) high 
dimensional dependence. The idea is to (judiciously) choose a subset of the variables so that when 
their values are simultaneously fixed, the functional dependence of the MARS model on the com­
plement variables involves at most two-variable interactions which can be viewed graphically. By 
examining the changing nature of these graphs as the values of the selected (conditioning) variables 
are changed, one can often gain some insight into the multivariate functional relationship. Due 
to the simple tensor product representation of the MARS model (14) such a strategy is especially 
straightforward to implement. 

Let z be a d-dimensional vector (d < n) in the predictor variable space whose components are 
a subset of {Xl,···, x n }. A d-dimensional "slice" of the predictor space (Friedman, 1991) is defined 
by assigning (simultaneous) values to the components of z. Let z be the (n - d)-dimensional vector 
whose components are the variables complement to those defining z. The MARS model along the 
slice is a function of z: 

M Km 

j(z) = ao + L am II bkm(X1I(k,m) I z) (17) 
m=l k=l 

where the factors hm are the truncated power spline functions in (14) conditioned on the values 
in z. If v(k, m) ¢ Z, bkm is unaffected by conditioning on Zj otherwise it evaluates to a constant 
multiplying the coefficient am. Thus, the sliced model (17) has the same (tensor product) form 
as any MARS modelj it has a corresponding AN OVA decomposition that can be interpreted and 
graphically visualized as discussed above. 

For maximal interpretive value the particular variables defining the slice z must be chosen with 
care. They should simultaneously meet two goals: their number should be as small as possible, 
and the resulting sliced model j(z), on the complement set z, should be as simple as possible. 
In any case, it must involve no more than two-variable interactions for convenient viewing. This 
requires (at a minimum) that all the slicing variables each be involved in three or more variable 
interactions and preferably not with each other. This information is directly available from the 
ANOVA decomposition of the full (unsliced) MARS model so that the choice for the best slicing 
variable subset is usually readily apparent (see Section 4.5). 

2.5. Degree-of-Continuity. One of the properties that characterizes a spline approximation 
is its order q (14). The approximation and its derivatives to order q - 1 are constrained to be 
continuous. There are important statistical and computational considerations involved with this 
choice in the context of an adaptive spline strategy. These are discussed in detail in Friedman 
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(1991). The strategy outlined there is to use q = 1 (piecewise-linear) splines to construct an 
initial model (lOe) (lOd) (14) . The discontinuous (first) derivatives thereby produced are then 
smoothed by using the initial model to derive an analogous piecewise-cubic basis with continuous 
first derivatives. An important aspect of this strategy is that derivatives are smoothed separately 
within each ANOVA function (15) [see Friedman (1991), Section 3.7]. 

3.0. Categorical Variables. The MARS procedure described above and in Friedman (1991) 
assumes that all predictor variables are ordinal; that is, there is an order relation among and a 
notion of distance between their possible values. The definition of a spline function (3) considers its 

argument to be ordinal. Not all predictor variables of interest are of this type. For example, periodic 
variables do not take on values that are orderable, but there is a distance relation between them. 
After ordinal variables, the most commonly occurring type of variable is nominal or categorical. 
Such variables assume a discrete set of values 

(18) 

that are neither orderable nor possess a distance relation; two categorical values are either equal or 
they are not equal. In some situations all predictor variables are of this type, while in others both 
ordinal and categorical variables are present. In either case, it is important to be able to model 
predictive relationships involving categorical variables. 

Consider first the case of a single variable x that is categorical (18) and one would like to 
estimate f(x) = E(y I x) (1). The simplest and unbiased estimate is 

(19) 

with the average in (19) taken over the training data. These values (19) are the least-squares 
estimates of the coefficients in the basis function expansion 

K 

j(x) = LakI(x = Ck), (20) 
k=l 

where the basis functions are indicator ("dummy") variables of the categorical variable taking ~n 
each of its values. This (function) estimate will be accurate (low variance) to the extent that 
all categorical values are represented adequately with sufficient number of counts in the training 
data. If not, then accuracy (mean squared error on future data) may be improved by using biased 
estimates in the hope that the increased bias-squared will be more than offset by reduced variance. 

One such class of biased estimators regularizes the least-squares estimates (19) by shrinking them 
toward the global response mean [James and Stein (1961); see also Gu and Wahba (1991)]. This 
reduces the global variability of the function estimate. 

In estimating functions of an ordinal -variable, regularization is generally introduced through 

smoothing rather than global shrinking; estimates in local neighborhoods are shrunk towards each 
other to reduce local variability. This will be successful to the extent that the target function f(x) 
(1) is itself smooth in the sense that its value is relatively stable (compared to the noise f(X)) 
in local regions. The goal of an adaptive smoother such as MARS is to choose the size of these 
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regions to include the largest number of counts for given variation of the target function. In this 
way the smoothness of I(x) is exploited to achieve maximal variance reduction for a given increase 
in bias-squared. 

A local neighborhood represents a particular (contiguous) subset of values of an ordinal vari­
able. Smoothness is defined as relatively low variability ofthe target function I(x) when values of 
x are restricted to lie in this subset. Smoothness of the dependence of a function on a categorical 
variable can be analogously defined, namely low variability of the target function when its argument 
is restricted to particular subsets of its values. (The notion of a contiguous subset however has 
no meaning in this case.) This defines a smooth function I( x) on a categorical variable x as one 
whose values tend to cluster about a relatively small number of different values, as x ranges over 
its complete set of values (18). This definition of smoothness depends on the variability of I(x) 
within such clusters but not between them. A categorical variable "smoothing" procedure would 
attempt to discover the particular subsets of x values corresponding to each of the clusters and 
then produce as its function estimate the mean response value within each one. 

Let A1 ,' • " AL be subsets of the set of values (18) realized by a categorical variable x 

1 ~ l ~ L, (21) 

and take as the function estimate the basis function expansion 

L 

j(x) = Latl(x E Ai), L ~ J(, (22) 
i=l 

where the coefficients {adf are estimated by least-squares. If L = J( then (22) is equivalent to 
the unbiased estimate (20) (provided the subsets span all values of x (18», whereas for L < J( 

smoothing (bias) has been introduced. For a given L the goal is to choose the subsets A1 ,' • " AL 
to best fit the training data. The value chosen for L is the one that minimizes future prediction 
error as estimated through some model selection criterion (see Section 2.3). 

This procedure can be implemented in direct analogy to an adaptive spline strategy, with the 
basis functions (22) (indicator functions over subsets of categorical values (18) (21» playing the 
role of the truncated power spline functions (2) (3). One considers all basis functions of the form 

l(x E A), (23) 

where A ranges over all possible subsets of (18), as candidate "variables" to be selected through a 
statistical variable subset selection procedure. The result of this variable (basis function) selection 

procedure will be a model of the form (22) with the (categorical value) subsets A1 ," " AL , and 
their number L, automatically estimated from the data. 

This correspondence between spline basis functions (3) for ordinal variables and indicator 
functions over value subsets (23) for categorical variables forms the central idea leading to the gen­

eralizations described below. Both delineate subsets of values for their respective type of variable: 
indicator functions directly, and spline functions through the knot locations. Also, both restrict 
the form of the function estimate to be regular within each subset of values: a constant for the 
indicator functions, and low (qth) order polynomials for splines. 
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Consider now the case where there are n predictor variables x = (x},···, xn) all of which are 
categorical. (In this situation the data can be thought of as an· n-way contingency table giving the 
average response value and number of counts in each cell.) Proceeding in direct analogy with the 
ordinal case, a set of basis functions can be derived by taking the tensor product over all of the 
variables of the univariate basis functions (23) defined on each one 

1 $ j $ n. (24) 

An adaptive strategy would consider all of the basis functions in this complete tensor product as 
candidate "variables" to be selected through a variable subset selection procedure. The MARS 
algorithm that approximates this strategy would be the same as that described in Section 2.2 with 
the replacement in (lOc) (lOd) of the truncated power spline basis functions by indicator functions 

over the categorical variable subsets 

[+(Xv - t)n - I(xv E A) 

[-(xv - t)]~ - I(xv rt. A). 
(25) 

The lack-of-fit of the resulting model (lOd) is minimized with respect to i, v, and the subset A. 
Here (25) indicator functions take the place of spline functions and (categorical) value subsets take 
the place of knot locations on the respective predictor variables. The forward/backward stepwise 
procedure and model selection (Section 2.3) are the same. The resulting model has the form 

M Km 

j(x) = ao + L am IT I(xv(k,m) E Akm) (26) 
m=l k=l 

in analogy with (14), which has a corresponding ANOVA decomposition (Section 2.4) that can be 
interpreted in the same manner as in the ordinal case. The corresponding curve and surface (16) 
plots would be replaced by one and two way tables (see examples below). Also, slicing can be 
implemented (Section 2.4) to explore higher order interaction effects in exactly the same manner 
as for ordinal variables. 

Finally, consider the case of n predictor variables, no of which are ordinal and nc that are 
categorical. (The target function I(x) (1) can be regarded as an nc-way contingency table, each 
cell of which represents a (different) function of the no ordinal variables.) Spline basis functions 
(3) are defined for each of the ordinal variables and subset indicator functions (24) for each of 
the categorical variables. The tensor product of these respective functions over all of the variables 
forms a basis in the n = no + nc dimensional predictor space. These serve as candidate "variables" 
for a variable (basis function) subset selection strategy. 

The MARS algorithm for mixed ordinal and categorical variables is a straightforward gener­
alization of that for either all ordinal (10) or all categorical variables (10) (25). Optimization with 
respect to the previous basis function Bl(X) (already in the model) is done in the same manner. 

The type of factor multiplying it (lOc) (lOd) will depend on the type of variable Xv that is being 
considered to serve as the factor argument: spline factor (lOc) (lOd) for an ordinal variable or 
subset indicator function (24) (25) for a categorical variable. For a spline factor (ordinal variable) 
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optimization is performed with respect to the knot location t (lOd) whereas for an indicator fac­
tor (categorical variable) it is with respect to the corresponding subset of categorical values. The 
resulting joint optimization with respect to the predictor variable X l1 and the parameter of its cor­
responding factor will give rise to the best factor (of either type) to multiply Bt(x) (lOc) (10d), 
which itself may be a mixture of spline and indicator factors. The entire optimization (10d) over 
£, v, and t or A produces the next pair of basis functions (lOc) to include in the model at the 
(M + l)st iteration. As in the all ordinal (or all categorical) case, this forward stepwise procedure 
for synthesizing basis functions is continued until a relatively large number Mmax are produced. 
Then a backward stepwise procedure is applied using a model selection criterion in exactly the 
same way as described in Section 2.3. 

3.1. Computation. The principal computational issue in an implementation of the MARS 
algorithm centers on the minimization of the lack-of-fit criterion (10d) (25) jointly with respect to 
all expansion coefficients and the parameters associated with the two new basis functions (knot 
location or categorical value subset). Optimization with respect to the other parameters (l and v) 
is done by repeated (nested) applications of this (interior) minimization procedure. An important 
concern is that the computation increase only linearly with the training sample size N since this is 
generally the largest parameter of the problem. For the case of optimizing with respect to a knot 
location (ordinal variable), Friedman (1991) presented least-squares updating formulae requiring 
computation of OeM N), where 2M is the number of basis functions currently in the model. 

For a categorical variable X l1 the optimization is done jointly with respect to the expansion 
coefficients and subsets of its values (18) (21) 

(27) 

Here (27) {Bmex)}5M are an orthonormalized set of basis functions that span the same (function) 
space as {Bm(X)}5 M (lOb). For a given subset A, minimization of (27) with respect to the coef­
ficients {am }5M

+l requires computation O(MN). Once this optimization has been performed for 
one subset, it can be computed rapidly for any other subset with computation proportional only to 
M. This is because the minimum (27) for any given subset A (21) can be computed directly from 
the quantities 

N N 

2: Yi Bt(Xi)I(x l1i = Cj) and 2: Bm (Xi)Bt(Xi)I(x l1i = Cj), 0 $ m $ 2M. (28) 
i=l i=l 

These quantities can be evaluated once and for all at the beginning. Calculation of A* (27) by 
complete enumeration over all possible subsets would therefore require computation proportional 
to 

(29) 

For K ;s 10 this does not present a serious computational burden. For substantially larger values 

of K, however, the associated exponential growth (29) reduces the viability of this approach. The 
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categorical value subset optimization problem (27) is equivalent to a least-squares variable subset 
selection using {Bt(x)I(xv = Cj)}f~1 (18) as the set of candidate "variables" to be potentially 
entered. The complete enumeration strategy mentioned above is equivalent to an "all subsets" 
variable selection method, for which powerful branch and bound algorithms exist (see Hocking 
(1977)) that, while still requiring exponential time, dramatically reduce computation. Use ofthese 
algorithms can double or triple the size (K) of the candidate set that is computationally feasible. 
An alternative approach is to employ an (approximate) stepwise variable subset selection procedure. 
Such a procedure does not necessarily produce an optimal subset, but usually produces a reasonably 
good one. Also, it is not essential that an optimal subset be found for any particular basis function 
since basis functions entered later have the opportunity to (at least partially) compensate for 
suboptimalities present in earlier ones. In addition, given the (suboptimal) stepwise nature of the 
other aspects of the MARS algorithm there may be little gain in applying an exact procedure in 
this one part. 

Using a stepwise strategy in (27) reduces the computation to O[M(N + K2)] so that the total 
computation associated with the MARS algorithm is in this case is proportional to 

M!ax [nN + a t KI] 
3=1 

(30) 

where N is the sample size, n is the total number of predictor variables, Mmax is the (maximum) 
number of basis functions produced by the forward stepwise algorithm, {Kj}~e are the number of 
values associated with each of the ne categorical variables, and a is a proportionality constant. Since 
in the pure ordinal variable case the computation is proportional to nN M!ax (Friedman, 1991), 
the additional computational burden associated with the introduction of categorical variables is 
small except for very large values of Kj ('" 100). 

3.2. Interpretation. Applying the modified MARS procedure for mixed ordinal and categorical 
variables produces a model in the form of a tensor product expansion 

M ](em 

j(x) = ao + L am IT I(xv(i,m) E Aim) 
m=1 t=1 

1(om 
(31) 

. IT [Skm(Xv(k,m) - tkm)]~' 
k=1 

Here (31) the categorical and ordinal factors for each basis function have been separately collected 
together. Each basis function may involve only ordinal variables (I(em=O) , only categorical variables 
(Kom = 0) or mixtures of both (Kem > 0 and Kom > 0). An AN OVA decomposition (15) of such 
a model can be obtained in the same manner as in the pure ordinal case (Section 2.4). It provides 
information as to which predictor variables (ordinal and/or categorical) enter the model, whether 
their respective contributions are additive (main effects) or involve interactions with other (ordinal 

or categorical) :variables, and which variables participate in the interactions. Because of the tensor 
product representation (31) of the model, "slicing" can be implemented and exploited in the same 
manner as when all variables are ordinal (Section 2.4) . 
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Interpretational problems arise however when one tries to graphically visualize such a model 
(31). These problems occur when interactions between ordinal and categorical variables are present. 

In the absence of such interactions there is no problem. The categorical and/or ordinal parts can be 
visualized separately using curves and/or surfaces to view the respective ordinal contributions, and 
one and/or two way tables to study the contributions from the categorical variables. The problem 
is that cures and surfaces are not appropriate for representing functions of categorical variables, and 
tables are not very useful for viewing smooth relationships on ordinal variables. Thus neither type 

of representation is suitable for simultaneously representing model contributions that intrinsically 

depend on both (categorical-ordinal interactions). 
The tensor product nature (31) of a MARS model permits it to be decomposed in a manner that 

can aid in interpreting categorical-ordinal interactions. This "categorical-ordinal decomposition" 
of a MARS model is achieved by rearranging the terms, and the factors within each term, in a 

manner similar to that of the ANOVA decomposition. The model (31) can be reexpressed as 

M [(om 

j(x) = ao + L Lm(xe)am II [Skm(Xll(k,m) - tkmn (32a) 
m=l k=l 

with 
[(em 

Lm(xe) = II I(x lI(l,m) E Alm). (32b) 
l=l 

Here Lm(xe) collects together the dependence ofthe mth term on its categorical variables Xc (if any, 

Kem > 0). Each Lm(xe) evaluates to either zero or one depending an a logical (and-or) condition 
on the values of the categorical variables comprising its argument. (For Kem = 0, Lm(xc) = 1 
by definition). The "or" (V) condition is within each variable Xll(l,m) and is given by the explicit 
subset of values Alm . The "and" condition (1\) is between the variables. Let 

then the logical condition is 
[(em Jim 

/\ V (X lI(l,m) = Cjlm), 
l=l j=1 

(33) 

(34) 

and Lm(xc) is an indicator function of the truth of (34). This can be easily interpreted by listing 
the variables and the corresponding subset values 

{ { } Jlm }[(em V(l,m), cjlm j=1 l=1 . (35) 

Owing to the hierarchical nature of models produced by the MARS algorithm several of the 

Lm(x) (32b) are likely to be identical. Let 

{Ll(Xe)}:!e1 = {unique Lm(xe)} (36) 

be the set of unique categorical factors appearing in the MARS model (31) (32). Then the model 

can be recast as 
Me 

j(X) = aO + fo(xo) + fe(xc) + L Ll(Xe)!t(Xo). (37) 
l=1 
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Here (37) 
](om 

fo(xo) = L am II [Skm(X 1J(k,m) - tkm)n (38a) 
](cm=O k=l 

is the contribution (if any) involving purely ordinal variables, 

fe(xe) = L amLm(xe) (38b) 
Kom=O 

is the contribution (if any) involving purely categorical variables, and the sum in (37) characterizes 
the categorical-ordinal interactions (if any). Each h(xo) (37) is a function of ordinal variables only 
and is the (weighted) sum of the ordinal factors multiplying each Ll(xe) (36) in the MARS model 
(32a) 

Kom 

h(xo) = L am II [Skm(X 1J(k,m) - tkm)n· (38e) 
me{L,} k=l 

Equation 37 is the "categorical-ordinal decomposition" of the MARS model (31). It is com­
prised of a pure ordinal contribution fo(xo), a pure categorical contribution fe(x c), and interactions 
between both types of variables (sum in (37)). Each of the functions appearing in this decompo­
sition (fo(xo), fe(xe), {h(xo)}~c) is an expansion in tensor product basis functions of the form 
produced by MARS. They each have their own individual ANOVA decompositions that can be 
interpreted and visualized as described above, fo(x o) and each h(xo) by viewing curves and sur­
face plots, and fe(x e) through one- and two-way tables. One can regard fo(x o) and fc(xe) (if 
either or both are present) as the "base" or pure contributions of the ordinal and/or categorical 
variables (respectively), and the (ordinal) functions {h(xo)}ttc as being conditionally added to 
the model based on the combination of values of certain categorical variables (34-37). The logical 
condition Ll(xe) (34) leading to the conditional inclusion of h(xo) is easily interpreted from the 
corresponding list of categorical variables and corresponding value subsets (35). 

The categorical-ordinal decomposition (37) is most useful as an interpretational tool when the 

number of terms Me in the sum in (37) is not large, and the h(xo) appearing there tend to involve 
(ordinal) variables different from each other ({fdxo)}l'#) and from fo(xo). When this is not the 
case, (37) can often be too unwieldy to provide a great deal of insight into the nature of j(x); 
the model is intrinsically too high dimensional to be easily visualized. When this happens, slicing 
(Section 2.4) can often be of value. As discussed in Section 2.4, the goal of slicing is to reduce 
the dimensionality of the model by conditioning on a judiciously chosen subset of the variables 
so that the resulting model on the complement variables is easier to interpret. In the presence of 
interactions between categorical and ordinal variables interpretability includes the requirement that 
the complement variables all be of one type, either all categorical or all ordinal. This requirement is 
in addition to those discussed in Section 2.4. All the necessary information for choosing the smallest 
variable subset for slicing that meets these requirements is contained in the ANOVA decomposition 

(15) of the full MARS model (31). (See illustration in Section 4.5.) 
3.3. Nested Variables. In some problems one has predictor variables that are meaningful only 

when some other (categorical) predictor variable takes on values within a particular subset. For 
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example, a treatment variable x j may have three possible values: medication, therapy, or surgery. 
Associated with each of these values is a distinct set of other variables (ordinal or categorical) that 
characterize each corresponding treatment, and only have meaning if that particular treatment was 
applied. These latter variables are said to be nested within the treatment variable, each to the 
corresponding value for which it has meaning. Formally let Xj ("nestor") take on J(j categorical 
values 

Xj E {Clj" ,cJ(jj} 

and consider another variable Xv ("nestie") that has meaningful values only when Xj E Avj, where 

(39) 

In this case Xv can only enter the approximating model j(x) interacting with Xj. Purely additive 
(main) effects involving only Xv are not meaningful. Also, interactions between Xv and other 
variables have no meaning unless they also involve X j in each such interaction. Due to the tensor 
product form of MARS approximations (31), this type of variable nesting is straightforward to 

implement. 
In order for nested variables to be treated properly one must ensure that each one only con­

tributes to the model when its value has meaning, as defined by the corresponding value of its 

nestor. In the context of MARS modeling this constraint can be met by requiring that any basis 
function (31) involving a nested variable Xv in one of its factors also involves a factor of the form 
[(Xj E A), where Xj is the variable to which Xv is nested, and A ~ AVj (39). This ensures that any 
basis function involving Xv will have the value zero when values of Xv have no meaning. This in 
turn can be accomplished through a minor modification to the forward stepwise part of the MARS 
algorithm (Sections 2.2 and 3.0); when a factor involving a nested variable Xv is being considered in 
the optimization loop, only previous basis functions Bt(x) that include a factor [(Xj E A), A ~ AVj 

(39), are made eligible to multiply it, and its complement (lOc) (25). Although this modification 
alone properly constrains the MARS model with respect to nested variables, it places them at a 

competitive disadvantage to other (nonnested) variables in entering the model due to the forward 
stepwise (greedy) nature of the MARS algorithm (Section 2.2). 

Unlike other variables, nested variables are not permitted to enter additively (main effect), but . 
must wait for their nestors to enter, before they can enter the model at all. It is not unusual for 

a nested variable to have considerably more predictive power than its nestor variable, especially 
when the sole purpose of the nesting is to define the existence of values for the nestie (missing 
values - Section 3.4). In order to place nested variables on an equal footing with other variables in 
the context of the MARS algorithm, it is necessary to regard interactions with their nestors on the 
same level as main effects for other variables. This motivates a slightly more involved modification 

of the basic MARS algorithm for handling nested variables. 
At each [(M +l)st] iteration ofthe basic MARS algorithm (Sections 2.2 and 3.0) one considers 

multiplying a basis function Bt(x), entered at a previous iteration, by a factor b(xv I p) (and its 

complement b(xv I p)) involving one of the predictor variables Xv. If Xv is ordinal b(xv I p) is a 
truncated power spline function (3) (lOc) and the parameter p is an (optimized) knot location. If 
it is categorical b(xv I p) is an indicator function (25) and p is an (optimized) value subset. All 
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possible pairings of variables-and previous basis functions 

(40) 

are considered. The best pairing gives rise to two new basis functions (lOc) (25) to be entered into 
the current model. The modification to this strategy for nested variables is as follows. Whenever a 
factor b(xv I p) involves a nested variable Xv, each previous basis function Bl(X) (40) is examined. 
If it contains a factor l(xj E A) involving xv's nestor variable Xj, and the corresponding value 
subset has the property A ~ AVj (39), then ~he pairing [Bl(X), b(xv I p)] is treated in the usual 
manner. If Bl(X) contains such a factor, but with A ~ Avj , then the pairing is made ineligible to 
be a solution. If Bt(x) does not contain a factor involving xv's nestor, Xj, then it is provisionally 
modified to include it 

( 41) 

before being paired with b(xv I p) (40). IT this particular pairing turns out to be the best one 
(solution) then (up to) four (rather than two) new basis functions are entered into the model at 
this iteration in analogy with (lOc) (25). They are: 

Bl(x)I(Xj E AVj) 

Bl(x)l(xj rt AVj) 

Bl(x)l(xj E Avj)b(xv I p) 

Bl(x)l(xj E AVj)b(xv I p). 

(42) 

The second basis function in (42) need not be entered at this step if it already exists in the model. 
This modified strategy (41) (42) ensures that all basis functions involving a nested variable Xv 

will be zero when the value for Xv is not defined. This in turn ensures that the final approximation 
j(x) (31) will exhibit a dependence on Xv only when its value is defined. Introduction ofthe partial 
"look ahead" feature (41) for nested variables into the MARS algorithm gives nested predictors the 
same opportunity to enter the model as other (nonnested) ones. Putting the (first) two additional 

basis functions (42), not involving Xv, into the model is necessary to preserve the full generality 
of the forward stepwise procedure. They are available to serve as ingredients for the construction 
of future basis functions in later iterations. If they turn out not to be needed they will likely be 
removed during the backward stepwise basis function deletion part of the procedure (Section 2.3). 
This strategy also ensures that a MARS model involving nested variables has the same form (31) 
as any ordinary MARS model. Thus all interpretational tools such as the AN OVA decomposition 
and slicing (Section 2.4) and the categorical-ordinal decomposition (Section 3.2) can be directly 
used in the same manner as described above with no special consideration being needed for the 
nested nature of some of the variables. 

3.4. Missing Values. One of the most useful applications of variable nesting in MARS is in 
dealing with missing values among the predictor variables. In many problems one is forced to do 

prediction and/or training in the presence of incomplete data; values for some (or many) of the 
predictor variables are missing. Tlus often has serious consequences for many learning (regression) 
procedures, either severely degrading their performance or rendering their application impossible. 
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One method that is often used is to replace each missing value with the mean of the corresponding 
variable over the training data. In the case of linear modeling this removes the influence of that 

variable for the observations missing its value without distorting the function estimate itself (slope 
values). For nonlinear modeling however this is not the case and such an approach can lead to 
severe distortion of the model estimate. Another standard method for treating missing values is to 
delete all training observations that are incomplete. In a problem with ten predictor variables, each 
one of which (independently) stands a 20% chance of having a missing value, roughly 10% of the 
observations will be complete. This strategy would then delete 90% of the information, even though 
only 20% of it was missing. (Also such a strategy provides no mechanism for doing prediction with 
missing values.) It is important that the degree of reduced performance in the presence of missing 
values bear some reasonable relation to the amount of information that is actually missing. In 
particular if there are strong associations among certain sets of predictors the information loss, if 

one (or more) of them is missing, is small since the same information is present in the remaining 

others that are highly correlated with it. A missing value strategy should be able to take advantage 
of such redundancy to mitigate the damage associated with missing values. 

Missing values among the predictor variables can be handled through variable nesting (Section 

3.3). One introduces an additional indicator (dummy) variable X lI' for each (original) variable X lI 

with missing values. These new variables indicate the presence of a (nonmissing) value for each 
corresponding original variable 

_ {O if Xv is missing, 
Xv' - 1 otherwise. 

(43) 

Each original variable Xv (with missing values) is nested within its corresponding indicator variable 

Xv' to the value XlI ' = 1 [Avv' = {1}, (39)]. The strategy for variable nesting described above 
(42) ensures that the approximation j(x) (31) will exhibit a dependence on each variable Xv with 
missing values only when a value for that variable is present (xv, = 1). The partial "look ahead" for 
nested variables (41) ensures that variables with missing values compete for entry into the model 
on the same basis as those with no missing values to the extent that their values are present. 

This strategy also allows variables that are highly associated with one another to act as "sur­
rogates" for each other (Breiman, et at., 1984) when their values are missing. This opportunity is 
provided by the introduction of the second basis function in (42). This ensures that every time a 

basis function involving a variable X ll with missing values is entered [Bt(x)I(xv' = 1)b(xv I p)], a 
corresponding basis function BI.(x)I(xv' = 0) is also entered. This latter basis function can then 
serve (in future iterations of the forward stepwise algorithm) as a multiplier to create a basis func­

tion of the form Bt(x)I(xv' = O)b(xu I p). If Xu is highly associated with Xv then this new basis 
function will serve as a surrogate for the original one when Xv is missing. If Xu also has missing 
values, this latter basis function will have the form 

BI.(x)I(xv' = O)I(xu' = 1)b(xu I p) 

(42) and Xv and Xu will serve as surrogates for each other. In this case an additional basis function 

Bt(x)I(xv' = O)I(xu' = 0) 
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is also produced (42) that enables the creation of future basis functions to serve as surrogates when 
both Xv and Xu are missing. In all cases if these extra basis functions turn out not to be useful 
they will likely be deleted in the backward stepwise part of the procedure (Section 2.3). 

This missing value strategy allows (in principle) the MARS algorithm to produce a different 
model for each possible combination of missing values among the predictor variables. If there 
are m variables with missing values that enter the model, there are potentially 2m such models. 
Each of these models will be highly correlated, however, sharing many factors and basis functions 
in common. When the model is to be evaluated (response prediction) with some combination of 
the predictor values missing, the appropriate model for that missing combination is automatically 
selected and evaluated provided that the corresponding (missing) dummy variables {xv, }:;~':+1 are 
included with the predictor variable vector. 

Each of the separate models produced for different combinations of missing values can be 
identified through categorical-ordinal decomposition (37). They can be separately produced for 
interpretation through the slicing technique (Section 2.4) . Each corresponding slicing vector z 
(17) would simultaneously condition on all of the missing dummy variables {xv, }:t~ thereby 
producing a function involving only the original variables. The particular model associated with a 
given missing/nonmissing combination is specified by setting the corresponding (missing-dummy) 
components of the slicing vector to 0/1. For interpretational purposes the most useful model is 
likely to be the one corresponding to no missing values since it exhibits the dependence on all of 
the (original) predictor variables that enter the model. This model is obtained by setting all of the 
(missing-dummy) components of the slicing vector to one 

(44) 

This model can then be interpreted in the identical manner as any other that does not involve 
missing values through the ANOVA and categorical-ordinal decompositions, and further slicing (if 
necessary) on selected (original) variables. 

The missing value strategy outlined above does not assume that the probability of missing 

values for a predictor variable is independent of the response value, values of it or other predictor 
variables, or the fact that other predictor variables have missing values. If the missing probabilities 
change with different response values then there will be predictive information in the missing­
dummy variables {xv,} :t~. Since these are treated on an equal basis with the other variables, 
they are eligible to enter by themselves (main effect) or in interactions with other variables that 
are not (necessarily) nested to them. The MARS procedure in this way automatically attempts 
to use any information present in the missing frequencies (even when nonmissing values of their 
corresponding (original) variable may have no association with the response). 

This approach to missing values does assume that the relative missing frequencies in the 
training data are representative of those in future data to be predicted. If not, some loss in 
efficiency (predictive power) will result. In this sense the procedure treats missing values like any 
other predictor variable values. If the design produced by the training data is not representative of 
the joint distribution of future data, reduced predictive power will likely result. In particular the 
procedure does not produce a model corresponding to missing values in a predictor variable if that 
variable has no missing values in the training data. If a predictor has too few missing values in the 
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training data, compared to future data (to be predicted), then the algorithm will devote too little 
effort in producing a model for those missing values. On the other hand, if it has correspondingly 
too many missing values, too much effort will be devoted to this situation at the expense of other 
aspects of the model. 

If the frequency of missing values for a predictor variable is too high in the training data there 
is nothing that can be done. There is an inherent loss of information in this case. On the other 
hand, if it is known (or suspected) that missing values in future data will be more likely than that 
represented in the training data, remedial action is possible by increasing the sample size through 
resampling. One can produce an additional sample of training data by randomly drawing (with 
replacement) observations from the original training sample and flagging predictor variables as 
being missing. The training procedure (MARS algorithm) is then applied to the combined data set 
consisting of the original data and the additional (randomly) selected data. 

This resampling procedure consists of first specifying the fraction of missing values desired for 
each predictor variable in the final training sample (original plus resampled data). The starting 
sample is the original training data. Each predictor variable for which the fraction of missing data 
in the current (original plus so far resampled) data set is less than that specified is considered. An 
additional observation is drawn at random from the current sample and then added to the sample 
with that variable flagged as missing. This is repeated until the fraction of missing values for that 
variable is increased to the prespecified level. This resampling is then applied to the next variable 
with too few missing values in the current sample, and so on. Repeated passes are made over the 
variables in this manner until the procedure converges with the fraction of missing values on each 
variable in the resulting total sample being (nearly) equal to their pre specified values. 

Unlike missing values that appear naturally in the original data, this resampling scheme pro­
duces (by construction) missing values independently at random. If this is not the case in future 
data, some potential prediction accuracy may be lost. If one has knowledge of the dependencies of 
missing value probabilities on the other aspects of the problem, this could be incorporated into a 
(modified) resampling scheme. 

3.5. Other Strategies. In this section an attempt is made to provide some insight into the 
MARS approach by comparing and contrasting it to other commonly used methods for regression 
modeling with categorical variables. These are the "dummy variable" technique, projection, and 
recursive partitioning. 

The "dummy variable" technique treats all of the variables as ordinal. Each categorical variable 
is transformed to a set of ordinal variables by introducing an indicator function for each of its 
potential values. Thus, categorical variable Xi with J(i values is transformed to J(i Oil-valued 
ordinal variables. If there are nc categorical variables, then this produces 

"dummy variables" that are combined with the intrinsically ordinal variables, thereby producing a 
set of variables that are entirely ordinal. The primary limitation of this approach is that it provides 
no "smoothing" on the categorical variables (see Section 3.0). If there are only a few categorical 
variables (nc small) each of which takes on only a few values (all J(i small) then this lack of the 
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ability to smooth may not be a serious limitation. On the other hand, for high dimensiqnal (multi­
way) tables (nc not small) and/or some of the categorical variables taking on more than a few 
values (l(i not small) smoothing becomes essential to moderate the high variance associated with 
the inherent sparseness of the contingency table associated with the categorical variables. 

With the projection technique regularization (smoothing) is introduced (only) through pro­
jection. The regression model for the corresponding multi-way table is taken to be the sum of 
lower dimensional tables. No smoothing is done within these low dimensional components. As a 
result the model usually is limited to (one dimensional) main effects, and sometimes (if there is 
sufficient data) selected two-variable interactions. Projection methods have been highly successful 
in modeling low dimensional tables (n < 2) especially when the corresponding number of cells is 

tV 

not too large. Success has been more limited when it has been applied to high dimensional sparse 
tables with many cells. 

The limitations of the projection approach when applied to large sparse contingency tables 
center on its singular ability to smooth only by projection. Even if a high dimensional table can be 
well approximated by a sum of lower dimensional ones (weak higher order interactions) additional 
smoothing within each low dimensional table can often be beneficial, especially if they contain many 
cells. If an adequate model requires higher order interaction effects then smoothing only by low 
dimensional projection is at a strong disadvantage. In problems involving mixed categorical and 
ordinal variables, the ordinal variables are discretized into a relatively small number of values and 
treated as categorical, unless interactions between ordinal and categorical variables are not allowed. 
The limitations discussed above thereby apply to this situation as well. In addition, this approach 
does not produce approximations with a continuous dependence on the ordinal variables, nor does 
it attempt to take advantage of any continuity properties of the target function with respect to 

them. 
Recursive partitioning methods such as CART (Breiman, Friedman, Olshen, and Stone, 1984), 

AID (Morgan and Sonquist, 1963), and CHAID (Kass, 1980), are specifically intended for applica­
tion in situations involving a large number of variables, some, many, or all of which are categorical 
- possibly taking on many values. All variables are basically treated as categorical. Ordinal vari­
ables are discretized into intervals. (With some recursive partitioning methods (CART, AID) this 
discretization is done adaptively as part of the procedure to improve goodness-of-fit to the training 
data.) With recursive partitioning smoothing is performed by clustering; there is no smoothing 
by projection. The corresponding n-way table is partitioned into smaller subtables by recursively 
splitting it into blocks (clusters). The function estimate is taken to be a constant within each such 
block. Each subtable is divided into two (or more) smaller tables by a split(s) on one ofthe predic­
tor variables. (The procedure begins with the original full contingency table.) For ordinal variables, 
potential splits divide the (current) range into two intervals. For categorical variables all possible 
splits of the current set of values into two (or more) subsets are considered. Each split optimizes 
the goodness-of-fit of the current model (conditioned on previous splits) jointly with respect to 

the splitting variable and corresponding parameter (split point or categorical value subset). This 
partitioning continues until further splitting fails to improve the model. The result is a piecewise 
constant approximation of the target function I(x) (1). 

Recursive partitioning methods have met with considerable success, especially in situations 
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where the projection approach tends to fail. These are large sparse multi-way tables for which 
the target function involves high order interaction effects. This is due to the fact that the ap­
proximations it produces must intrinsically involve higher order interactions in order to capture 
multivariable dependencies. Each split of a subtable on a new variable, not yet used to delineate 
that subtable, introduces a higher order interaction effect involving an additional predictor vari­
able. Thus, as the recursive partitioning proceeds, higher and higher order interactions are thereby 
introduced. This strongly limits the ability of recursive partitioning to provide good approxima­

tions in (often occurring) situations where the target function is dominated by main effects and/or 
interactions of low order compared to the number of predictor variables n. 

Unlike both projection (with categorical-ordinal interactions) and recursive partitioning, the 
MARS approach produces strictly continuous approximations with respect to the ordinal variables. 
It thereby attempts to use to advantage any such continuity present in the target function. When 
applied with categorical variables it can be viewed as a hybrid between the (complementary) ap­

proaches represented by projection and recursive partitioning. It can simultaneously smooth both 
by projection and clustering. It directly (and adaptively) estimates how much of each to do in any 
particular situation based on the training data. In situations characterized by high order interac­

tions, it will tend mainly to use clustering, whereas in cases where the target function is dominated 
by low order interactions, especially involving highly structured dependencies, the smoothing will 

tend to be mostly by projection. MARS modeling contains pure projection and recursive partition­
ing approximations as (extreme) special cases; it has the potential ability to introduce smoothing 
entirely by clustering or entirely by projection if dictated by the data. The hope is that it will be 

competitive in these extreme cases, and in addition provide superior performance in those situations 
that form the large spectrum of problems in between them. 

4.0. Illustrative Examples. In this section, applications of the MARS approach to several 

data sets involving both ordinal and categorical variables are presented. The first two examples are 
artificially generated so that the results can be compared with the known truth. Data for the third 
example is taken from a sample survey, whereas the fourth and fifth use data presented in Andrews 
and Herzberg (1985). The goal is to illustrate the type of information that can be obtained from 
this kind of analysis. 

4.1. Artificial Data. The purpose of this example is to explore the ability of MARS to 
simultaneously smooth both by clustering and projecting. There are two categorical and two 

ordinal variables. Each of the categorical variables, Xl and X2, (randomly) assume ten values 
(0-9) independently from a uniform distribution. The ordinal variables (X3 and X4) are randomly 

generated from a joint uniform distribution with values in the range zero to one. The target function 
is taken to be 

if Xl = even and X2 = even 
if Xl = odd and X2 = even 
if Xl = even and X2 = odd 
if Xl = odd and X2 = odd. 

(45) 

The values of the categorical variables (Xl and X2) can be viewed as forming a 10 X 10 contingency 
table. The target function (45) is a particular function of the ordinal variables (X3 and X4) in each 
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of the 100 cells of this table. Values of the response y were generated by adding (independent 
homoscedastic) normal noise to the target function 

Yi = !(Xi)+ O'£i, i = 1,N, (46) 

with £i '" N(O, 1) and the value of 0' (= .36) chosen so that the signal to noise ratio var(f)/var(£) 

is 3/l. 
Obtaining even a reasonable estimate of !(X3,X4) (45) separately in each cell of the 10 x 10 

(Xl, X2 )-contingency table would require a moderate number (fV 100) of observations in each one. 
The overall sample size would thereby have to be quite large (fV 10000). The hope is that the 

MARS procedure can take advantage of the fact that the target function (45) involves only three 
varia.ble interactions, and more importantly, that its dependence on the categorical variables is very 
smooth; it depends only on the (even/odd) parity of their (categorical) values. 

Table 1 displays the ANOVA decomposition (Section 2.4) of the model obtained by applying 
MARS to (45) (46) with a sample of two hundred (N = 200) observations. The first line gives the 
GCV estimate (12) of the squared multiple correlation coefficient R2 for the fit using the optimal 
complexity parameter d = 8.59 (13) estimated by 20-fold cross-validation. The cross-validated 
estimate of the corresponding goodness-of-fit was CV = 0.84 so that the GCV estimate appears 
here to be somewhat pessimistic. The MARS model has seven ANOVA functions (15) that involve 
two-variable interactions in all four variables and a three-variable interaction between variables 1,3, 
and 4. The second column of Table 1 gives the standard deviation of each AN OVA function; this is 
a measure of the relative importance of each one. The third column provides another such measure 
by giving the Rbcv of the MARS model with the corresponding ANOVA function removed. This 
can be compared to that for the full model (first line) to gauge the contribution of each respective 
ANOVA function. The fourth column gives the number of basis functions comprising each AN OVA 
function and the last column gives the variables associated with each one. 

Table 1 
ANOVA Decomposition of the MARS Model on 

the Artificial Data of Section 4.1 

Rbcv (full model) = .72 

ANOVA standard # basis 
function deviation \Rbcv functions variables 

1 .78 .29 1 1 
2 .29 .69 1 2 
3 .62 .54 2 1 4 
4 .64 .51 1 1 3 
5 .92 .22 2 2 3 
6 .27 .66 1 2 4 
7 .40 .69 2 1 3 4 

One sees from Table 1 that the resulting MARS model on these data involves interactions 

involving at most three variables. Furthermore the three-variable ANOVA function (last line) 
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seems to De making a fairly small contribution. Reapplying MARS to these data restricting the 
model to involve at most two-variable interactions gives a (20-fold) cross-validated Rbv = 0.77 
(compared to 0.84 for full MARS modeling); restricting the model to be additive (no interactions) 
yields Rbv = 0.44. Thus, the three-variable interaction component of the model appears to be 
making a small but nonnegligible contribution, whereas the two-variable interactions appear to be 

crucial. 
Figure 1 shows (graphically) the categorical-ordinal decomposition (37) of the full MARS 

model. It consists of three functions of X3 and/or X4. The first fa(X3) (upper left) is a function 

only of X3 and the second 14(X4) (upper right) is a function only of X4. The bottom two frames 
show a function of X3 and X4, fa4(X3,X4), from opposite perspective views. Each of these functions 
is conditionally added to the model depending on the values of Xl or X2. The corresponding logical 
condition is indicated below the frames of the respective functions. As can be seen, the MARS 

estimate for these data is 

with fa, 14, and fa4 shown (respectively) in Figure 1. The (scaled) predictive squared error 

(47) 

with 

f = J l(x)d4
x, 

of this approximation is pse(j) = 0.048 as estimated from 5000 additional data points generated 
according to (45). Thus, the approximation accounts for about 95% of the variance of the target 
function (45) over the range of the predictor variables. The individual function estimates (f3, 
14, fa4) shown in Figure 1 bear a reasonable resemblance to the corresponding ones in the target 
function (45). This can be judged by reference to Figure 2 which shows the corresponding estimate 

j(x) for N = 400 observations. The predictive squared error for this (latter) estimate is pse(/) = 
0.024. 

This example indicates that the MARS approach is able to exploit to advantage highly smooth 
dependencies on both ordinal and categorical variables with smoothness on categorical variables 
defined as in Section 3.0. Of course, this example is purposely contrived to be favorable for the 
MARS strategy in order to illustrate this point. Target functions with a lower degree of smoothness 
will give rise to estimates that are either less accurate or require larger training samples for com­

parable accuracy. Similarly, simpler and/or smoother functions will be easier to estimate. For this 
example the categorical/ordinal decomposition (37) provided a fairly interpretable representation 

of the approximation. This is because it involves a relatively small number of (ordinal) functions 
{!l(x)} (37) which is a consequence of the form of the target function (45). Not all (successful) ap­

plications of the MARS procedure result in such parsimonious categorical-ordinal decompositions. 

For these (more complicated) situations the categorical-ordinal decomposition is less useful as an 
interpretational tool and the "slicing" approach (Section 2.4) becomes (relatively) more valuable 

for interpreting the multivariate nature of the approximation. 
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4.2. Missing Values. The purpose of this example is to test the missing value strategy based 
on variable nesting described in Section 3.4. The data are artificially generated so that the relative 

information loss caused by presence of missing values can be gauged. There are ten predictor 

variables (all ordinal) uniformly generated in [0,1]. The target function was taken to be (Friedman 

and Silverman, 1989) 

(48) 

and the response variable obtained by adding standard normal noise 

Yi = l(Xi) + €i, €i '" N(O, 1), (49) 

to produce a sample of N = 200 (1 :5 i :5 200) training observations. The target function is 
seen to be additive in the first five predictor variables with the second five (noise variables) being 

unrelated to the response. The (true) target function accounts for R2(J) = 0.86 of the variance of 

the response. 
Table 2 shows summary results from a Monte Carlo study consisting of 100 independent repli­

cations of .. ,.(48) (49). For each replication the predictor variables {Xi}i°o, as well as the noise {€i}i°o, 
were independentlY regenerated. The rows of Table 2 give results for each of four situations. The 

first is for the target function (48). The second is for the MARS estimate with no missing values. 

The third row represents the case where each of the ten predictor variables is replaced by a miss­

ing value independently with 20% probability. Thus on average each training observation has two 

missing predictor values, and only 21 (ofthe 200) observations in the training sample are complete 

(no missing values). The situation represented by the fourth row of Table 2 is the same as for 

the third except that a simple correlational structure is introduced among the predictor variables. 

After they have been independently generated, the last five (X6 - XIO) are recalculated as 

Xi+5 +- 0.9Xi + O.lxHs, i = 1,5 (50) 

and then missing values are assigned as described above. This introduces a strong association 

between the pairs Xi and Xi+5 (1 :5 i :5 5) but no other associations among the predictor variables. 

The columns of Table 2 give three summary statistics ofthe MARS solutions computed over the 

100 replications for each of the situations represented by the rows. (The quantities in parentheses 

are the respective standard deviations of the corresponding quantities over the 100 replications. 
The corresponding standard error on each statistic in Table 2 is one tenth this standard deviation.) 

These statistics were obtained by generating an independent set of 5000 ("test") observations 

according to (48) (49) for each respective situation (missing values), and computing from them the 

corresponding quantities from the MARS solutions based on the 100 independent training samples, 

each of size N = 200. The entries in Table 2 thereby reflect the expected performance accuracy 

over future data not part of the training data. The first column of Table 2 is the squared multiple 

correlation coefficient on future data for which predictor values are missing by the same mechanism 

as that for the corresponding training data. The second column gives the corresponding (scaled) 

predictive squared error (47) which reflects target function (48) prediction error (squared) in the 
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presence of missing values in the (test) observations to be predicted. The third column gives this 
same quantity but for future (test) observations that are complete (no missing values). This last 
quantity reflects the accuracy of the actual function (48) estimate and thereby provides information 
as to the accuracy loss solely due to missing values in the training data, as opposed to those in future 
test data as well. It is also important because this is the expected accuracy of the estimated MARS 
model for no missing values, produced by slicing the missing ("dummy") variables {xv' = IH~ (44). 
As discussed in Section 3.4, it is this model that is most useful for interpretation. 

Table 2 
Performance of Mars with Missing Values in Both 

Training Data and Future (Test) Data 

situation R2 (all) pse (all) pse (no missing) 

true model .86 0 0 
no missing .84 (.01) .025 (.01) .025 (.01) 

20% missing (no correlation) .45 (.10) .48 (.12) .078 (.04) 

20% missing (correlation) .67 (.04) .22 (.04) .064 (.02) 

Examination of Table 2 indicates considerable loss in prediction accuracy when predictor vari­

able values are missing at this very high (20%) rate (row 3). On average each observation to be 

predicted has one important predictor variable (Xl,"', xs) missing; many have more than one. 
Results shown in the third column however indicate that most of this information loss is due to 
missing values in (test) observations to be predicted and not estimation error due to missing values 

in the training data. While the former error increases by a factor of 19 (column 2), the latter 
increases only by a factor of three (column 3) and is still fairly small. Comparing the third and 
fourth rows of Table 2 one sees that the missing value strategy is able to use "surrogate" infor­
mation to advantage. The (function) prediction error (column 2) is reduced by over a half by 
using information in correlated variables when predictors are missing (row 4). This illustrates that 

the MARS missing value strategy has been at least partially successful in encoding this surrogate 
information. Note that on average each future test observation has a 20% chance that both an 

important predictor variable {xiH and its surrogate (Xi+S) will both be missing. In this case there. 
is no additional surrogate information due to the way these particular data (50) were generated. In 
many settings with observational data however there are often strong associations among variable 
subsets of higher cardinality. At least in principle, the MARS missing value strategy should be able 
to capture this to further reduce prediction error. 

In the preceding example, the same (probabilistic) mechanism produced missing values in both 
the training data and future (test) data to be predicted. As noted in Section 3.4, this may not 
always be the case. In particular, a resampling strategy (on the training data) was proposed to 
improve accuracy if a larger fraction of missing values was expected in future test data than was 

present in the training sample. This resampling approach is now examined in the same context as 

the preceding example (48) (49). In this case each training sample (N = 200) had no missing values. 
The resampling scheme described in Section 3.4 was then applied to derive (much larger) training 
samples with each (of the ten) predictor variables having a prespecified fraction p of their values 
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mIssmg. (Examples with p = 10%, 15%, and 20% were run.) MARS was then applied to these 
larger training sets with (induced) missing values. The resulting MARS models were then used 

to predict 5000 newly generated test observations (48) (49) with each predictor variable missing 
independently at random with 15% probability. 

Table 3 shows summary statistics over 100 replications of this procedure. The first and third 
columns give the squared multiple correlation coefficient between the model predictions and the test 
dataj the second and fourth show the corresponding (scaled) predictive squared error (47) of the 
function (48) estimate. The first two columns are for the case of no (population) associations among 
the predictor variables, while the last two are for the correlational structure given by (50). (As in 
Table 2, the quantities in parentheses are the respective standard deviations of each corresponding 
quantity over the 100 replications.) 

The results shown in Table 3 indicate that prediction accuracy with (15%) missing data in­
creases as one increases the number of missing values in the training data through resampling, 
although there seems to a somewhat diminishing return for the largest number. More striking is 
the decrease in variability of this quantity with increasing (resampled) training data. The only 
price paid for this is increased computation. In this particular example where there are no missing 
values in the original training data (of size N) and the fraction of missing values for all (n = 10) 
predictor-variables is p, the size of the final resampled training data set is approximately N / (1-p)n. 

The results of Table 3 also indicate the "surrogate" effect (last two columns)j associations among 
the predictor variables are used to advantage by this strategy to reduce information loss in the 
presence of missing predictor values. 

Table 3 
Performance of MARS on Predicting with 15% 

Missing Values Using Training Data Resampling 

training no correlation correlation 
% missing R2 pse R2 pse 

10 .47 (.26) .46 (.30) .68 (.11) .21 (.13) 
15 .56 (.10) .35 (.12) .76 (.04) .12 (.04) 
20 .61 (.03) .29 (.03) .78 (.01) .10 (.02) 

4.3. Sample Survey Data. The data for this example came from questionnaires filled out 
by shopping mall patrons throughout the San Francisco Bay Area (Impact Resources, Columbus, 
Ohio). Among the questions asked were 14 that involved demographic information. Table 4 lists 
these variables and their possible values. Variables marked with a "*,, are considered categorical, 
whereas the others are treated as ordinal variables. In this exercise the response is taken to be 
household income, :1:6, with the predictors being the other 13 variables listed in Table 4. Data from 
N = 1371 questionnaires were used for this analysis. 
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Table 4 
Demographic Variables used in Sample Su.rvey Example 

with Their Possible Values (Section 4.3) 

*1. sex (male / female) 
*2. marital status (married / living together-not married / divorced or separated / widowed / 

single-never married) 

3. age (14-17 / 18-24/25-34/35-44/45-54 / 55-64/ over 65) 
4. education (grade 8 or less / grades 9-11 / graduated high school / 1-3 years of college / college 

graduate / graduate study) 
*5. occupation (professional-managerial/sales worker / factory worker, laborer, driver / clerical, 

service worker / homemaker / student / military / retired / unemployed) 
6. annual household income « $10K / $10K-$15K / $15K-$20K / $20K-$25K / $25K-$30K / 

$30K-$40K / $40K-$50K / $50K-$75K / > $75K) 
7. how long in Bay Area « 1 year / 1-3 years / 4-6 years / 7-10 years / > 10 years) 

*8. dual incomes (if married) (not married / yes / no) 
9. persons in household 

10. fraction in household under 18 
*11. household status (own / rent / live with family) 
*12. type of home (house / condo / apartment / mobile home / other) 
*13. ethnic classification (american indian / asian / black / east indian / hispanic / pacific islander 

/ white / other) 
*14. language spoken in home (english / spanish / other) 

* = categorical 

Applying MARS, restricting the maximum number of interacting variables to one, two, and 

three, respectively yielded cross-validated R&v of .44, .45, and .43. Since these estimated future 

prediction errors are all quite similar, the additive (no interaction) model is chosen for interpreta­
tion. Table 5 gives the ANOVA decomposition for this model. It is seen to involve six of the 13 

predictor variables; two of them are ordinal (age and education) and the other four are categorical. 
Since there are no interactions the ANOVA and categorical-ordinal decompositions are equivalent. 
Figure 3 gives the respective contributions of age and education to the model for household income. 
Not surprisingly, income grows monotonically with both (accounting for the contributions of the 
other variables), linearly with education and with a decreasing slope as age increases. Table 6 gives 

the functions of the categorical variables entering into the additive MARS model. (Note that all 

functions are translated to have zero minimum value.) Even though the sample size is fairly large, 
a substantial amount of smoothing has been applied to these estimates, as well as to those for the 

ordinal variables (Figure 3). This is likely due to the high noise level. 
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function 
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3 
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Table 5 

ANOVA Decomposition of the MARS Model 
for the Sample Survey Data (Section 4.3) 

Rbcv(full model) = 0.414 

standard # basis 
deviation \Rbcv functions variable 

.36 .409 1 age 

.48 .402 1 householder status 

.68 .376 2 occupation 

.61 .381 1 marital status 

.42 .403 1 education 

.30 .409 1 type of home 
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Table 6 

Additive Contributions of the Categorical Variables 
Selected by the MARS Model on Househould Income 

(Section 4.3) 

Householder status: fn(xn) 

own 0.99 
rent 0.0 
live with family 0.0 

Occupation: fs(xs) 

professional - managerial 1.73 
sales worker 1.05 
military 1.05 
factory worker, laborer, driver 0.68 
clerical, service worker 0.68 
homemaker 0.68 
student 0.0 
retired 0.0 
unemployed 0.0 

Marital status: h(X2) 

married 1.22 
living together - not married 1.22 
divorced or separated 0.0 
widowed 0.0 
single - never married 0.0 

Type of horne: !I2(X12) 

house 0.68 
condominium 0.68 
other 0.68 
apartment 0.0 
mobile home 0.0 

The MARS model for household income based on these data contains few surprises. The 

dependence on marital status probably reflects the fact that the response variable is household 

rather than individual income. The association with type of home and householder status is likely 
a reversal of cause and effect in that income probably dictates these variables rather than vice 

versa. One possible surprise is that military income appears relatively high after accounting for 

other variables that entered the model. Another possible surprise is that certain variables (sex, 
ethnic classification) do not contribute to household income with sufficient strength to gain entry 
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into the model (again after accounting for those that do enter). 

4.4. Social Grooming Habits of River Otters. These data are taken from Table 54.1 of Andrews 
and Herzberg (1985). They consist of N = 394 observations on the grooming habits of North 
American river otters. Each observation involves watching a specific pair of animals for a period 
of time. There are 14 different otters arranged in five groups. All animals within a group were 
observed simultaneously. The (response) variable of interest is the frequency of grooming. Table 
7 lists the five predictor variables for this study. Four are categorical and one (time observed) is 

ordinal. 
Applying MARS to these data, restricting the maximum number of interacting variables to 

be 1, 2, 3, 4, and 5 (no restriction), respectively produced (20-fold) cross-validated R'bv of 0.42, 
0.40, 0.51, 0.48, 0.48. Thus, MARS modeling favors an approximation involving three-variable 
interactions. Table 8 shows the AN OVA. decomposition of this model. The relative importance of a 
variable (Table 8) is defined as the square root of the GCV (12) ofthe model with all basis functions 
involving that variable removed, minus the square root of the GCV score of the corresponding full 
model, scaled so that the relative importance of the most important variable (using this definition) 
has a value of 100. Table 8 tends to confirm that three-variable interactions are important to the 
model, and indicates that the sex of the recipient is substantially less influential than the other 

variables in predicting grooming frequency. 

Table 7 

Predictor Variables for North American Otter Data 

(Section 4.4) with Their Possible Values 

variable 

1. group 

2. season 
3. time observed 
4. sex of groomer 

5. sex of recipient 

values 

A/B/C/D/H 
breeding/ non breeding 

minutes 

female/male 

female/male 
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function 
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Table 8 

ANOVA Decomposition of the MARS Model 
for River Otter Data (Section 4.4) 

Rbcv(full model) = 0.52 

standard # of basis 
deviation \Rbcv functions variables 

1.58 0.48 2 group 

0.74 0.50 1 time 
1.95 0.43 1 time, groomer 

1.59 0.48 1 group, recipient 

2.32 0.42 2 group, season, time 
1.24 0.48 1 season, time, groomer 

Relative variable importance: 

group 

100 

season 

67 

time 

88 

groomer 

58 

recipient 
26 

Table 9 and Figure 4 give the categorical-ordinal decomposition (37) of this model. Table 9 
shows the pure categorical contribution fc(xc) which is an interaction between the group and sex of 
the groomer. Since there is only one ordinal variable (time observed), all ofthe other contributions 
to the categorical-ordinal decompostion fo(xo), {h(xo)} (37) are functions of that single variable. 
Figure 4 shows these contributions. There is a nearly negligible pure ordinal contribution fo(xo) 
(upper left frame) and there are four categorical-ordinal interactions {h(xo)}t of various strengths. 

The nearly linear dependence of all of these could be more readily understood if the response variable 
were in fact the total number of grooming incidents observed, rather than grooming frequency (as 
reported). One would expect this number to increase linearly with observation time if the length 

of each grooming incident tended not to depend on observation time. The slope of the linear 
dependence would then be an estimate of the grooming rate. As indicated in Figure 4, this rate 
has a fairly strong dependence on the other (categorical) variables. The most marked increase in 
grooming rate is for otters in group D during the breeding season (middle left frame), irrespective 
of the sex of the groomer or recipient. The otters in group D are adult siblings; whereas none of 
the other groups contain similarly related animals. 
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Table 9 

Pure Categorical Contribution to the Categorical-Ordinal 
Decomposition ofthe MARS Mode.l for the 

lliver Otter Data (Section 4.4) 

groomer 
group female male 

A 0.0 0.0 
B 4.5 4.5 
C 0.0 0.0 
D 15.0 5.9 
H 0.0 0.0 

4.5. Auto Insurance in Sweden. The data for this example are from Andrews and Herzberg 
(1985), Table 68.1. It consists of data concerning Swedish third party motor insurance for 1977 
presented as a large four-way contingency table. The predictor variables are given in Table 10. Two 
of the variables (zone an make) are categorical, and the other two (travel and bonus) are taken to 
be ordinal. The response variable for this study is the number of claims per number insured (x105). 
Each cell of the contingency table was weighed in proportion to the number of insured, thereby 
taking each policy as an observational unit; the response can be interpreted as the probability of a 
claim per policy (x105). 

Table 10 
Predictor Variables for the Swedish Auto Insurance Data 

(Section 4.5) with Their Possible Values 

1. Kilometers traveled per year (1: < 1000 / 2: 1000-15000/3: 15000-20000/4: 20000-25000 

/ 5: > 25000) 

2. Geographical zone (1: Stockholm, Goteborg, Malmo / 2: other bigger cities / 3: smaller cities 
in south / 4: rural areas in south / 5: smaller cities in north / 6: rural areas in north / 7: 
Gotland) 

3. Claims bonus (1-7: number of years since last claim or start of policy, plus one) 

4. Make of auto (1-8: different specified car models) 

Since the claims bonus (X3) reflects frequency of previous claims, it should indirectly capture 

all risk factors (at least in principal). It is of interest to see to what extent (if any) the other 
three observed variables can be used to increase prediction accuracy. Figure 5 shows a MARS 
regression of the response on claims bonus. The cross-validated Rhv = 0.41 for this model indicates 
moderate predictability based· on this variable alone. The estimated response dependence is seen 
to monotonically decrease with increasing claims bonus, with the highest slopes at the extremes. 

Applying MARS to these data incorporating all four predictor variables (Table 10) yielded a model 
with Rhv = 0.77 that involved three-variable interactions. Restricting the model to two-variable 
interactions also gave an Rbv = 0.77, whereas further restricting it to be additive (no interactions) 
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resulted in a model ·with R~v = 0.65. Thus, including the other variables (with claims bonus) 
seems to substantially improve predictive ) rformance. 

Table 11 presents the ANOVA decomposition of the two-variable interaction model. The 

last AN OVA function (interaction between zone and make) is seen to make at best a very minor 
contribution to the model. Its standard deviation is much smaller than the others, and its removal 

imperceptibly (to two significant digits) decreases R~cv' Rerunning MARS prohibiting interactions 
between zone and make gives a cross-validated Rbv = 0.77 indicating further the lack of importance 

of this ANOVA function. Claims bonus is seen to be the most important predictive variable in the 

model with zone and make making substantial contributions. Distance traveled seems to have 
somewhat less importance. 

Table 11 

ANOVA Decomposition of the MARS Model for the 

Swedish Car Insurance Data (Section 4.5) 

R~cv(full model) = 0.78 

ANOVA std. dev. # of basis 
function (x10-2 ) \R~cv functions variables 

1 3.5 0.57 3 bonus 
2 1.9 0.72 2 make 
3 1.6 0.74 2 zone 
4 0.54 0.75 1 travel 
5 1.6 0.68 5 bonus, make 

6 0.90 0.75 3 zone, bonus 
7 0.28 0.78 1 zone, make 

Relative variable importance: 

travel zone bonus make 

21 40 100 57 

After removing the last ANOVA function, the resulting model's interaction effects all involve 

claims bonus. Furthermore, for fixed values of this variable the resulting model on the other 

variables is seen from the AN OVA decomposition (Table 11), to be additive. This suggests that 

choosing this variable for slicing (Section 2.4) would give rise to interpretable additive (sliced) 
models. 

The contribution of distance traveled to the MARS model is seen to be additive (Table 11) so 

that it does not interact with claims bonus. This makes its contribution the same irrespective of 
the value of the claims bonus variable. Figure 6 shows this contribution. The response estimate is 

seen to have a (weak) linear dependence on travel. Note however that this variable is a ( discretized) 

nonlinear function of the actual kilometers traveled (Table 10). 

Figure 7 shows a graphical representation of the (additive) sliced model on (categorical) make 

and zone for three different values (slices) of claims bonus. These represent the smallest, middle, 
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and largest values of this va.riable. One sees a marked dependence on the two categorical variables 
especially for : ne smallest claims bonus value. Some automobile makes are associated with a much 
higher claims risk than others, and some geographical zones seem more dangerous than others. 
As the claims bonus increases the overall predictive importance of make decreases but the relative 
contributions of each of its values stays roughly the same. Its magnitude is changing, but not its 
"shape." The contribution of zone to the model as claims bonus increases exhibits a somewhat 
different behavior. The claims risk associated with most geographical zones stays the same (in 
absolute value) as the claims bonus changes. A dramatic exception is zone 1 and to a lesser extent 

zones 4 and 6. 

The diminishing relative predictive value of both the make and zone variables as claims bonus 
increases might have to do with the inherent nature of the latter variable. A large claims bonus 
indicates a good driving record for a long time, at least in terms of insurance claims, thereby provid­
ing a reliable forecast of (good) future behavior. On the other hand, a small claims bonus indicates 
either a recent claim (possibly indicating bad future behavior) or a new policy (no information at 
all). It may be that the relative lack of information provided by this variable when its value is 
small leaves more variance for the other variables to explain there, giving them the potential to be 
relatively more helpful. As claims bonus increases in value, it indirectly captures the contributions 
of the other variables to policy risk, causing them to be less needed. 

Further support for this interpretation is presented in Figure 8. The upper frame shows the 
average squared residual (ASR) from the regression of policy risk on claims bonus alone (Figure 
5), as a function of claims bonus. The lack-of-fit is seen to decrease monotonically for increasing 
values of claims bonus. The ASR for the lowest bonus value is five times larger than at the highest 
bonus-value. Thus, claims bonus alone is an increasingly good predictor of (lower) policy risk as 
the bonus value increases. The lower frame of Figure 8 shows the average squared residual from 
the full MARS model (Table 11) on all of the variables (Table 10), again as a function of claims 
bonus. Although the ASR is monotonically decreasing here as well, the effect is far less dramatic. 
The gain in prediction accuracy achieved by the full model, over that of one based on claims bonus 
alone, is clearly (much) larger for smaller values of claims bonus. 

5.0. Discussion. The examples in the previous sections illustrate the need for being able 
to do regression modeling in situations involving both ordinal and categorical predictor variables 
and the ability of MARS to accomplish it. The second example (Section 4.2) indicates that MARS 
can be successfully applied in situations involving (possibly many) missing predictor values. The 
analyses indicate that the MARS approach may have the potential to serve as a useful adjunct to 
other commonly used methods. It may also prove to be competitive for the analysis of large sparse 
contingency tables where all of the variables are categorical. The principal features of this approach 
are strictly continuous approximations with respect to the ordinal variables, and the ability to 
smooth simultaneously both by clustering and projection on the categorical variables. This should 
help improve accuracy over existing methods in some situations. In addition, interpretational tools 
like the ANOVA and categorical-ordinal decompositions, as well as slicing, provide some ability to 
probe the (multivariate) nature of the derived approximation (function estimate), thereby providing 
some insight into the predictive relationship. 
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The amount of (correct) insight that is gained depends on the power of the interpretational 
tools to probe the approximation and the degree to which the approximation reflects the properties 

under study of the target function. This latter concern is one of statistical inference. The MARS 

procedure described here is a fairly complex highly nonlinear method. As such, it is unlikely that 

inferential tools based on linear fitting can serve even as useful approximations. Sample reuse 
methods (so far) provide the best hope for gauging the reliability of inferences concerning the 
target function based on the derived approximation. Cross-validation (Stone, 1974) can provide 

an unbiased estimate of prediction accuracy and bootstrapping (Efron and Tibshirani, 1986) can 
be used to judge the stability (under sampling fluctuations) of any aspect of the model. The 
computational properties of the MARS procedure permit it to be used in conjunction with these 

sample reuse methods, except perhaps for very large problems on small computers. 

A Fortran program implementing the MARS procedure is available from the author. 
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Figure Captions 

Figure 1: Categorical-ordinal decomposition of the MARS model for the artificial data example 
of Section 4.1 using N = 200 observations. 

Figure 2: Categorical-ordinal decomposition of the MARS model for the artificial data example 
of Section 4.1 using N = 400 observations. 
Figure 3: Additive contributions of age and education to the MARS model for household income, 
using the sample survey data of Section 4.3. 

Figure 4: Categorical-ordinal interactions of the MARS model for the grooming frequency of 
North American river otters, Section 4.4. 

Figure 5: MARS estimate of the dependence of policy risk on claims bonus alone, for the Swedish 
auto insurance data, Section 4.5. 

Figure 6: Additive contribution of distance traveled to the MARS model for the Swedish auto 

insurance data of Section 4.5. 
Figure 7: MARS model for Swedish auto insurance data, Section 4.5, along three slices on claims 

bonus. Left/right frames are the respective contributions of make and zone. The top/middle/bottom 
frames are for slices on claims bonus = 1, 4, and 7 respectively. 
Figure 8: Average squared residual as a function of claims bonus for two MARS models on the 
Swedish auto insurance data, Section 4.5. Upper frame is for a model based on claims bonus alone, 
whereas the bottom frame is for the MARS regression on all of the variables. 

42 



III III 
N N 

0 0 
N N 

"'! "'! -
C! C! -
III III 
c:i c:i 

C! 
0 

0 
c:i 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

X3 X2 = odd 

o 
Xl = odd 

FIGURE 1 

43 



an 
N ~ ~--------------------------------, 

o 
N 

an 
ci 

o 
ci 

0.0 0.2 0.4 0.6 0.8 

a 

C! 
N 

~ 

C! -
~ 
0 

C! 
0 

1.0 

X2 = odd 

Xl = odd 

FIGURE 2 

44 

0.0 0.2 0.4 0.6 0.8 1.0 

x4 



LO 
.,.... 

o 
.,.... 

LO 
o 

o 
o 

LO 

o 

U') 

o 

o 
o 

1 2 

1 

3 

2 3 

FIGURE 3 

4 

age 

education 
45 

5 6 7 

4 5 6 



pure ordinal 

o ------------------------------------

o .... 

o 

o 

100 

group = D 
season = B 

100 

group ;. B 
season = B 

100 

200 300 400 

200 300 400 

200 300 400 

time 

o 

o 

FIGURE 4 

lit: 

groomer = F 

100 200 

season = B 
recipient = F 

100 200 

300 400 

300 400 



FIGURE 5 

FIGURE 6 

N -0 

0 -0 

~ 
0 

~ 
0 

~ 
0 

~ -0 

C! 
0 

2 3 4 5 

travel 



N 

o 

N 
q 
o 

q 
o 

q 
o 

N 

0 

0 

0 

00 q 
0 

~ 
0 

C!! 
0 

N 
0 
0 

q 
0 

2 

2 

2 

\' , 
4 

i' , 
4 

4 

6 

make 

r , 
6 

make 

6 

make 

FIGURE 7 

N -0 

0 

0 

I!! 
0 

~ 
0 

C!! 
0 

N 
q 
0 

:3 
8 

bonus = 1 

N -0 

0 -0 

I!! 
0 

~ 
0 

C!! 
0 

~ 
0 

q 
0 

8 

bonus = 4 

N -0 

0 -0 

I!! 
0 

~ 
0 

C!! 
0 

N q 
0 

q 
0 

8 

bonus = 7 
48 

i ~ Ii 

2 3 4 5 6 7 

zone 

1 , Ii 
I , 

2 3 4 5 6 7 

zone 

t r r i 

2 3 4 5 6 7 

zone 



FIGURE 8 
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