
Proceedings of the ASME 2013 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2013
August 4-7, 2013, Portland, Oregon, USA

DETC2013-13239

DRAFT: CHRONO: A PARALLEL PHYSICS LIBRARY FOR RIGID-BODY,
FLEXIBLE-BODY, AND FLUID DYNAMICS

Toby Heyn

Hammad Mazhar

Arman Pazouki
Daniel Melanz
Andrew Seidl

Justin Madsen
Andrew Bartholomew

Dan Negrut

Simulation Based Engineering Lab

Department of Mechanical Engineering

University of Wisconsin

Madison, WI, 53706

Email: heyn@wisc.edu

David Lamb

US Army TARDEC

Warren, MI 48397

Email: david.lamb@us.army.mil

Alessandro Tasora

Department of Industrial Engineering

University of Parma

V.G.Usberti 181/A, 43100, Parma, Italy

Email: tasora@ied.unipr.it

ABSTRACT

The last decade witnessed a manifest shift in the micropro-

cessor industry towards chip designs that promote parallel com-

puting. Until recently the privilege of a select group of large

research centers, Teraflop computing is becoming a commod-

ity owing to inexpensive GPU cards and multi to many-core

x86 processors. This paradigm shift towards large scale par-

allel computing has been leveraged in Chrono, a freely available

C++ multi-physics simulation package. Chronois made up of a

collection of loosely coupled components that facilitate differ-

ent aspects of multi-physics modeling, simulation, and visualiza-

tion. This contribution provides an overview of Chrono::Engine,

Chrono::Flex, Chrono::Fluid, and Chrono::Render, which are

modules that can capitalize on the processing power of hun-

dreds of parallel processors. Problems that can be tackled in

Chronoinclude but are not limited to granular material dynam-

ics, tangled large flexible structures with self contact, particu-

late flows, and tracked vehicle mobility. The paper presents an

overview of each of these modules and illustrates through several

examples the potential of this multi-physics library.

INTRODUCTION

Over the last decade there has been a manifest trend in the

hardware industry to increase flop/s rates by increasing the num-

ber of cores available on a processor. To a very large extent, the

tide that has risen sequential computing for several decades is

subsiding. The frequency at which cores are operated today has

at best plateaued; in many cases, it went down in an attempt to

tame power dissipation and overheating. Instruction level paral-

lelism advances that ensured respectable gains through pipelin-

ing and out of order execution have largely fulfilled their poten-

tial. The bright spot in this evolving hardware landscape has

been the growing impetus behind parallel computing hardware.

If anything has held steady over the last four decades, it has been

the pace at which transistors are packed per unit area in computer

chips. This trend allows today chip designs that draw on 22 nm

feature length. Intel’s road map calls for 14 nm technology in

2014, 10 nm in 2016, 7 nm in 2018, and 5 nm in 2020. In other

words, the number of transistors per unit area will continue to

double every two years for the current decade. This will trans-

late into immediate access to commodity chips that host multiple

UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 Copyright c© 2013 by ASME

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 JAN 2013

2. REPORT TYPE
Journal Article

3. DATES COVERED
 18-10-2012 to 15-01-2013

4. TITLE AND SUBTITLE
CHRONO: A PARALLEL PHYSICS LIBRARY FOR RIGID-BODY,
FLEXIBLE-BODY, AND FLUID DYNAMICS

5a. CONTRACT NUMBER
W911NF-12-1-0395

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
David Lamb; Hammad Mazhar; Arman PAzouki; Andrew Seidl;
Justin <adsem

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Mechanical Engineering,University of Wisconsin,1308
W. Dayton St.,Madison,WI,53715-1149

8. PERFORMING ORGANIZATION REPORT
NUMBER
; #23631

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi,
48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#23631

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA

14. ABSTRACT
The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that
promote parallel computing. Until recently the privilege of a select group of large research centers,
Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86
processors. This paradigm shift towards large scale par- allel computing has been leveraged in Chrono, a
freely available C++ multi-physics simulation package. Chronois made up of a collection of loosely coupled
components that facilitate differ-ent aspects of multi-physics modeling, simulation, and visualization. This
contribution provides an overview of Chrono::Engine, Chrono::Flex, Chrono::Fluid, and Chrono::Render,
which are modules that can capitalize on the processing power of hun- dreds of parallel processors.
Problems that can be tackled in Chronoinclude but are not limited to granular material dynamics, tangled
large flexible structures with self contact, particulate flows, and tracked vehicle mobility. The paper
presents an overview of each of these modules and illustrates through several examples the potential of this
multi-physics library.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Public
Release

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

compute cores. Given the stagnation in processor operating fre-

quency, an ever growing gap between CPU speed and memory

speed, and the waning of instruction level parallelism gains, it

becomes apparent that the only way we can continue to enjoy re-

duced simulation times or ability to rely on refined models is to

fall back on parallel computing. There are two major directions

in which parallel computing has evolved. The x86 architecture

has defined a solution that evolved as a steady and predictable

process in which the number of cores on a chip increased over

time: AMD produces today 16 core chips, while Intel has 12 core

processors. Leveraging these chips requires a low entry point that

calls for programming against relatively mature libraries such as

OpenMP, MPI, pthreads, cilk, TBB, etc. At memory bandwidths

of 75 GB/s and flop/s rates of 0.3 TFlop/s, this has tradition-

ally represented the conservative choice for entering the parallel

computing arena. With the release of CUDA 1.0 in 2006, Nvidia

offered a second alternative to leveraging parallel computing by

programming the ubiquitous video cards available on millions

of desktops worldwide. This path to parallel computing is less

conventional as it requires one to get familiar with the hardware

layout and memory hierarchy associated with GPUs. Today, an

Nvidia GPU has close to seven billion transistors. Priced at about

$6000, an Nvidia Kepler K20x delivers a memory bandwidth of

250 GB/s and 1.3 TFlop/s by virtue of using more than 2800

Scalar Processors. It is used side by side with a regular CPU pro-

cessor, which means that heterogeneous computing, on the CPU

and GPU, can lead to substantial speed gains. In this framework,

the GPU plays the role of an accelerator by boosting the floating

point performance of the CPU. A similar setup is offered now by

Intel; i.e., CPU plus accelerator, owing to its recent release of the

Knights Corner architecture. A Knights Corner chip has about

60 cores, can deliver up to 320 GB/s and 1 TFlop/s, and uses the

x86 instruction set architecture, which translates into an easier

adoption path provided one is familiar with OpenMP or MPI.

It becomes apparent that in the immediate future, any in-

crease in simulation speed or model complexity in Computa-

tional Science will be fueled by parallel computing. This paper

outlines an ongoing effort in the area of computational mutli-

body dynamics that is motivated by this belief. It starts with

a description of a core simulation engine that aims at simula-

tion of many-body dynamics problems with friction and contact.

Chrono::Engine handles both rigid and flexible bodies and draws

on MPI and/or GPU computing. It then discusses Chrono::Fluid,

a GPU parallel simulation tool that aims at fluid-solid interaction

problems, which is singled out as an application area that has

been largely ignored until recently due to an excessive computa-

tional burden incurred by the simulation of systems of practical

relevance. Finally, the papers outlines a rendering pipeline that is

used for postprocessing of big data. Chrono::Render is capable

of using 320 cores and is built around Pixar’s RenderMan. All

these components combine to produce Chrono, a multi-physics

simulation environment that is designed to take advantage of

commodity parallel computing made available by many-core and

GPU architectures.

Chrono::Engine

The Chrono::Engine software is a general-purpose simula-

tor for three dimensional multi-body problems [1]. Specifically,

the code is designed to support the simulation of very large sys-

tems such as those encountered in granular dynamics, where the

number of interacting elements can be in the millions. Target

applications include tracked vehicles operating on granular ter-

rain [2] or the Mars Rover operating on discrete granular soil.

In these applications, it is desirable to model the granular ter-

rain as a collection of many thousands or millions of discrete

bodies interacting through contact, impact, and friction. Note

that such systems also include mechanisms composed of rigid

bodies and mechanical joints. These challenges require an ef-

ficient and robust simulation tool, which has been developed in

the Chronosimulation package. Chrono::Engine was initially de-

veloped leveraging the Differential Variational Inequality (DVI)

formulation as an efficient method to deal with problems that

encompass many frictional contacts - a typical bottleneck for

other types of formulations [3, 4]. This approach enforces non-

penetration between rigid bodies through constraints, leading to

a cone-constrained quadratic optimization problem which must

be solved at each time step [5]. Chrono::Engine has since been

extended to support the Discrete Element Method (DEM) for-

mulation for handling the frictional contacts present in granular

dynamics problems [6, 7]. This formulation computes contact

forces by penalizing small interpenetrations of colliding rigid

bodies. Various contact force models can be used depending on

the application [8, 9].

The remainder of this section describes the features of

Chrono::Engine, starting with the structure of the code. Next,

several sub-sections describe the use of GPU computing in the

collision detection task, the use of MPI for distributed solution

of large systems, and validation work which has been done to

assess the accuracy of the simulation tool.

Code Structure of Chrono::Engine

The core of Chrono::Engine is built around the concept of

middleware, namely a layer of classes and functions that can

be used by third-party developers to create complex mechanical

simulation software with little effort [10]. Because of this, graph-

ical user interfaces and end-user tools are not the main focus of

the CHRONO::Engine core project; it is assumed that programs

with graphical interfaces are built on top of such middleware, or

should be considered as additional, or optional, modules.

Given the complexity of the project, approaching half a

million lines of code, the software is organized in classes and

namespaces as recommended by the Object Oriented Program-

UNCLASSIFIED 2 Copyright c© 2013 by ASME

ming paradigm, targeting modularity, encapsulation, reusability

and polymorphism. The libraries of Chrono::Engine are thread

safe, fully re-entrant, and include more than six hundred C++

classes. Objects from these classes can be instanced and used to

define models and simulations that run in third party software,

for instance vehicle simulators, CAD tools, virtual reality appli-

cations, or robot simulators.

Chrono::Engine is completely platform-independent, hence

libraries are available for Windows, Linux and Mac OSx, for

both 32 bit and 64 bit versions. Moreover, we followed a modular

approach, splitting the libraries in modules that can be dynami-

cally loaded only if necessary, thus minimizing issues of depen-

dency from other libraries and reducing memory footprint. For

instance, we developed libraries for MATLAB interoperability,

for real-time visualization through OpenGL, for interfacing with

post-processing tools, etc. (see Figure 1).

OpenGL

����������	
�
Chrono Engine

unit_POSTPROCESSunit_MATLAB

MATLAB

Operating System

Irrlicht

unit_OPENGL�����	�	��� unit_PYTHON

Python v3

OpenCASCADE

unit_MPI unit_GPU

CUDA

MPICH2

Chrono libraries

Example C++ program 'A' Example Python programExample C++ program 'B'Examples of use

External

dependencies

FIGURE 1. UML graph of dependencies between module libraries.

Classes and objects have been tested and profiled for fast

execution, in order to achieve real-time performance when pos-

sible. Modern programming techniques have been adopted,

like metaprogramming, class templating, class factories, mem-

ory leak trackers and persistent-transient data mapping. C++

operator overloading has been used to provide a compact alge-

bra to manage quaternions, static and moving coordinate sys-

tems, and OS-agnostic classes are used for logging, stream-

ing/checkpointing and exception handling.

We embraced an intense object-oriented approach, therefore

most C++ objects that define parts of the multi-body model are

inherited from a base class called ChPhysicsItem, which de-

fines the essential interfaces for all items that have some de-

grees of freedom. For example, specialized classes that in-

herit the ChPhysicsItem are the ChBody class, which is

used for 3D rigid bodies as shown in Fig.2, ChShaft, which

is used for 1D concentrated parameter models of power trains,

ChLinkLockRevolute that is a joint between rigid bodies,

and so on. A set of more than thirty mechanical constraints

are part of this class hierarchy. Furthermore, the architecture

is open to further definition of new specialized classes for user-

customized parts and joints. An object of ChSystem class

stores a list of all moving parts and performs the simulation.

FIGURE 2. Class ineritance diagram for objects of ChBody type.

FIGURE 3. Collaboration graph between classes: example for

ChBody and ChSystem.

Each ChPhysicsItem-inheriting class can encapsulate a

variable number of ChLcpVariable objects and/or a vari-

able number of ChLcpConstraint objects, that are fed to the

solver for Cone Complementarity Problems (CCP) at each time

step of the DVI integration; this helps the development of black-

box CCP solvers that are independent from the data structures of

the physical layer. Also, these data structures represent the sparse

data for the model description, which is completely matrix- and

vector-free for the sake of a small memory footprint and fast lin-

ear algebra. Specifically, tthe system matrices for mass, Jaco-

bians, etc. are never explicitly assembled.

The objects of most of the above mentioned classes are man-

aged by smart (shared) pointers with automatic deletion. This

UNCLASSIFIED 3 Copyright c© 2013 by ASME

relieves the programer from the burden of taking care of ob-

ject’s lifetime, given that the relationships between objects can

be quite complex as illustrated in Fig.3. A large portion of the

C++ classes are available also as Python modules; this enables

the use of most simulation features in a scripted environment.

Since novice users are more comfortable with Python than with

C++, the Python interface proved to be optimal for teaching pur-

poses. The Python interface was produced using the SWIG util-

ity, a process that automatically generates the code for the Python

wrapper.

The software architecture has been designed to accommo-

date an expandable system for handling assets (meshes, textures,

CAD models), with multiple paths from pre-processing to post-

processing. To this end, we also provide a C# add-in for a para-

metric 3D CAD package (SolidWorks) that can be used to export

models into Chrono::Engine without programming efforts (see

Fig.4).

�

�����������	�
�
���������	�
�

�����
�	�����

������������������� ������������

���������	��

���

�����������	��

����

�����������

�����

�������

�

�����
����	
����

����������

��������

�

�����
	���	�����

��	����

�����
�	���������

 ��	��!�����
!�""�

#�����$$%������	��&���

�

�

�

������

'�#%!����"�""�

��������	
����

��������
�

��������������
��
���
��
��������
���

��	���������

�����

�� �
���������!��	���!�""�

�����

��(������

FIGURE 4. Network of asset workflows.

Collision Detection in Chrono::Engine

This section describes the collision detection algorithm de-

signed and implemented for the Chrono::Engine package. Recall

that problems of interest are focused on granular dynamics, such

as sand flowing inside an hourglass, a rover running over sandy

terrain, an excavator/frontloader digging/loading granular mate-

Minimum Point

Maximum Point

FIGURE 5. Example of AABB generation for 3D cylinder.

rial, etc. In this context, the collision detection task is performed

on a rather small collection of rigid and/or deformable bodies of

complex geometry (hourglass wall, wheel, track shoe, excava-

tor blade, dipper), and a very large number of bodies (millions

to billions) that make up the granular material. On this scale,

the collision detection task, particularly when dealing with the

granular material, fits perfectly the Single Instruction Multiple

Data (SIMD) computation paradigm. Specifically, the same se-

quence of instructions needs to be applied to every individual

body and/or contact in the granular material. Therefore, a colli-

sion detection algorithm capable of leveraging the SIMD com-

pute power of commodity Graphics Processing Units (GPUs)

was developed and implemented to remove collision detection

as the bottleneck in large granular dynamics simulations.

The parallel collision detection algorithm is separated into

two phases, broadphase, and narrowphase. The broadphase al-

gorithm quickly determines a list of potential contact pairs while

the narrowphase algorithm determines actual contact informa-

tion. A brief outline of the parallel collision detection algorithm

is presented below, for more details see [11, 12, 13].

Broad-Phase Algorithm The Broad-Phase algorithm is

used to compute whether two bodies might be in contact at a

given time. The purpose of the broad-phase algorithm is not to

find actual contact information, but rather to determine if a con-

tact could potentially occur based on the AABBs of the bodies

involved.

An Axis Aligned Bounding Box (AABB) is a special case

of a bounding box that is always aligned to the global reference

frame, simplifying collision detection as the bounding box can-

not rotate. Because of this, the volume enclosed by the bounding

box will always be equal to or greater than the volume of the

shape it encloses. AABB generation is simple and can be easily

paralellized on a per object basis. See Fig. 5 for an example of

AABB computation for a cylinder in 3D space.

Spatial Subdivision Algorithm A high-level overview

of the GPU-based collision detection is as follows. The collision

detection process starts by identifying the intersections between

AABBs and bins (see Fig. 6 for a visual representation of a bin).

UNCLASSIFIED 4 Copyright c© 2013 by ASME

3-Dimensional Grid

Bin

FIGURE 6. Example of 3D space divided into bins.

The AABB-bin pairs are subsequently sorted by bin id. Next,

each bin’s starting index is determined so that the bins’ AABBs

can be traversed sequentially. All AABBs touching a bin are

subsequently checked against each other for collisions.

Narrow-Phase Algorithm Once potential contacts have

been determined from the broad-phase collision detection stage,

the Narrow-Phase algorithm needs to process each possible con-

tact and determine if it actually occurs. To this end an algorithm

capable of determining contacts between convex geometries was

implemented on the GPU. This algorithm, called “XenoCollide”

[14], is based upon Minkowski Portal Refinement (MPR) [15].

Using MPI for distributed Chrono

Chronohas been further extended to allow the use of CPU

parallelism for certain problems. To efficiently simulate large

systems, a domain decomposition approach has been developed

to allow the use of many-core compute clusters. In this approach,

we divide the simulation domain into a number of sub-domains

in a lattice structure. Each sub-domain manages the simulation

of all bodies contained therein. Note that bodies may span the

boundary between adjacent sub-domains. In this case, the body

is considered shared and its dynamics may be influenced by the

participating sub-domains. The implementation leverages the

MPI standard [16] to implement the necessary communication

and synchronization between sub-domains.

This approach enables the simulation of large systems in

two ways. First, it relies on the power of parallel computing

since one compute core can be assigned to each MPI process

(and therefore to each sub-domain). These processes can exe-

cute in parallel, constrained only by the required communication

and synchronization. Second, it allows access to the larger mem-

ory pool available on distributed memory architectures. Whereas

a single node or GPU card may have about 6 GB of memory,

a distributed memory cluster may have on the order of 1TB of

memory, enabling the simulation of vastly larger problems.

Note that the domain decomposition approach currently uses

the discrete element method to resolve friction and contact forces

between elements in the system. The approach also supports con-

straints between bodies in the simulation by considering an as-

sembly of constrained rigid bodies as a unit which must always

be kept together. Therefore, if any body in a chain of constrained

bodies is contained in a given sub-domain, all bodies in the chain

are considered by that sub-domain and used to correctly solve

the constraint equations.

Sub-division and Set-up A pre-processing step is used

to discretize the simulation domain into a specified number of

sub-domains, set up the communication conduits between pro-

cesses, and initialize the sub-domains as appropriate. The sub-

division is based on a cubic lattice with support for arbitrary

sized divisions. The sub-domain boundaries are aligned with

the global cartesian coordinate system, and their locations are

user-specified. Separate MPI processes are mapped to each sub-

domain. Note that at this time, the sub-division is static and does

not change during the simulation. Therefore, the user should be

careful to set up the discretization to maintain the best possible

load balancing.

In terms of communication, each sub-domain in the grid can

communicate with all other sub-domains. These communication

pathways are set up and initialized during the pre-processing step

and persist throughout the simulation.

Note that this implementation relies heavily on inheri-

tance and the class-based structure of Chrono. For exam-

ple, ChSystem is extended to ChSystemMPI by including

the code to perform communication and synchronize the sub-

domains.

Simulation and Communication Each sub-domain is

now represented by a ChSystemMPI object and an associated

MPI process. For example, assume a simulation is discretized

into a set S of m sub-domains. In this case, let S = {A,B,CD}
and m = 4, and map an MPI rank to each sub-domain so that

A is mapped to MPI rank 0, B → 1, C → 2, and D → 3. Each

sub-domain maintains at all times m+1 lists of objects. The first

list contains all objects which are even partially contained in the

associated sub-domain. These are the objects which must be con-

sidered when computing contact forces, for example. The next

m lists contain bodies which are shared with other sub-domains.

In our example, sub-domain B maintains the lists BO, BA,

BB, BC, and BD. BO is the list of all objects that intersect (touch)

sub-domain B, while BA is the list of objects which are in sub-

domain A and B. Note that sub-domain A has a list AB which

should contain the same objects as BA. Further, list BB is not used

but is created for the sake of generality. All lists are maintained

in order sorted by object ID number (see Fig.7).

The sub-domains are now ready for time-stepping. Each

sub-domain X performs collision detection among all objects in

UNCLASSIFIED 5 Copyright c© 2013 by ASME

FIGURE 7. (TOP) Sample 2D simulation domain with four sub-

domains and seven objects. (BOTTOM) Corresponding object lists for

each sub-domain.

list XO and computes the associated collision forces based on the

DEM force model. Then, sub-domain X computes the net force

on each object in list XO, taking into account the contact forces,

gravitational forces, and applied forces.

Next, mid-step communication occurs. Sub-domain X

should send to each sub-domain Y the net force on each body

in list XY . Similarly, X should receive from each Y the net force

on each body in list XY . Finally, X should compute the total force

on each body in list XO. Note that X may receive force contribu-

tions for a given body from any or all of the other sub-domains

in the system.

At this point, each sub-domain X has the true net force on

each body in its list XO. Each sub-domain can advance the state

of its bodies in time by one time step by computing the new ac-

celerations, velocities, and positions of all objects in the sub-

domain given their mass/inertia properties and the set of applied

forces. We perform an end-of-step communication to synchro-

nize object states among sub-domains. All sub-domains which

share a given body should compute its new state identically,

but due to the potential for round-off error we synchronize the

state from the master sub-domain (where the center-of-mass is

located) to all others. The final stage is to process the m + 1

lists in each sub-domain, as objects may enter or leave a given

sub-domain or be shared between a different set of sub-domains,

necessitating updates of the contents of the lists.

Example Simulation In this example we simulate a

Mars Rover type wheeled vehicle operating on granular terrain.

The vehicle is composed of a chassis and six wheels connected

via revolute joints. The wheels are driven with a constant an-

gular velocity of π rad/sec. The granular terrain is composed

of 2,016,000 spherical particles. The simulation is divided into

64 sub-domains and uses a time step of 10−5 sec. A snapshot

from the simulation can be seen in Fig.8. In the figure, note that

the wheels of the rover are checkered blue and white. This sig-

nifies that the master copy of the rover assembly is in the blue

sub-domain and the rover spans into adjacent sub-domains.

FIGURE 8. Snapshot of Mars Rover simulation with 2,016,000 ter-

rain particles using 64 sub-domains. Bodies are colored by sub-domain,

with shared bodies (those which span sub-domain boundaries) colored

white.

Validation and Demonstration of Technology

This section describes a validation effort in which experi-

mental results were compared to simulation results obtained from

Chrono::Engine. To this end, a test rig was designed and fabri-

cated to measure the rate at which granular material flowed out of

a slit due to gravity. Chrono::Engine was used to set up a corre-

sponding simulation to match the experimental results. For more

detail, see [17].

UNCLASSIFIED 6 Copyright c© 2013 by ASME

Experimental Model The experimental set-up consisted

of a fixed base, a movable wall (angled at 45◦), a translational

stage, a linear actuator, and a scale (see schematic in Fig. 9). The

linear actuator was capable of quickly opening a precise gap, out

of which the granular material would flow due to gravity. The

scale recorded the mass of collected granular material as a func-

tion of time. The granular material consisted of approximately

40,000 uniform glass disruptor beads with diameter of 500 mi-

crons. Experiments were performed for gap sizes of 1.5 mm, 2

mm, 2.5 mm, and 3 mm. At least 5 experiments were performed

for each gap size.

FIGURE 9. Schematic of validation experiment. A linear actuator and

translational stage moved the left angled side a fixed amount, opening

a precise gap from which the particles flowed. The mass flow rate was

measured by the scale. Schematic not to scale.

Simulation Model Chrono::Engine was used to build a

model representing the experimental set up described above. In

the model, the trough was represented by four rectangular boxes

of finite dimensions. The motion of the box representing the

angled side was captured from the data sheet of the translational

stage. The granular material was modeled as perfect, identical

spheres with the same mass and coefficient of friction.

The load cell measured the outflow through the gap. In the

simulation, the scale was modeled by counting the number of

spheres below a certain height. The number of spheres multi-

plied by the mass and gravity yielded the weight which was com-

pared with experimental results. A plane was used to contain the

spheres after they had been counted.

In order to save computational time, the simulation was split

into two parts: one representing the process of filling the trough

and the other the opening and measuring process. In this way, the

trough was filled with randomly positioned spheres which were

allowed to settle. Once the kinetic energy of the system was

below 0.001 Joules and had reached a relatively constant value,

the x-, y- , and z-position of each sphere was saved to a file.

The same initial conditions from the settling simulation were

used to perform all of the necessary simulations. At the begin-

ning of each simulation the position data set of the spheres was

loaded into the model and the spheres were created at the same

positions they appeared in the filling process. The motion was

applied to the translating side to achieve the desired gap size,

and the material began to flow.

The simulations setup consisted of 39,000 rigid body

spheres with a radius of 2.5× 10−4 m and a mass of 1.631×
10−7 kg. The following parameters were set for this simulation.

A time step of 10−4 [s] with 500 CCP iterations, and a tolerance

of 10−7 for the maximum velocity correction. Simulations were

generally run for 8 seconds. SI units were used for all parame-

ters.

Procedure Used to Select the Friction Coefficient
The friction coefficient of a certain material is not a constant

value. It can depend on various environmental influences such

as humidity, surface quality, temperature etc. The friction coef-

ficient of glass was an unknown in the validation process and

needed to be determined before further observations could be

done. To achieve this, one experiment at a gap size of 1.5 mm

was performed and multiple simulations with the same setup and

different friction coefficients were performed. The simulation re-

sults were compared to the experimental test results to determine

which friction coefficient resulted in the best match. It was de-

termined that µ = 0.15 most closely matched the experimental

results. This value was used for all subsequent simulations.

Results The weight of the collected granular material is

plotted versus time in Fig. 10 through Fig. 13. The mass flow

rate is proportional to the slope. For example, Fig. 10 shows the

results with a gap size of 3mm and 5 experimental runs (dashed

lines represent experimental data, while the solid red line rep-

resents simulation data). The average slope of the experimental

runs for this test was 1.41E-2 [N/s] and the slope of the simula-

tion was 1.40E-2 [N/s].

The experimental flow rate is based off of the average of sev-

eral experimental runs and the uncertainty of the rates is deter-

mined by a Student’s T distribution with 95% confidence. Based

on an error of less than 2%, the simulated results match the ex-

perimental results well. Despite this, there are several factors that

could be improved upon. Namely, the design of the rig did not

exactly match the simulated trough. The rig was machined from

aluminum, whereas the trough in the simulation had the same co-

efficient of friction as the granular material. Likewise, the sim-

UNCLASSIFIED 7 Copyright c© 2013 by ASME

FIGURE 10. Weight vs time for a gap size of 3 mm.

FIGURE 11. Weight vs time for a gap size of 2.5 mm.

FIGURE 12. Weight vs time for a gap size of 2 mm.

ulation was conducted in essentially vacuum, ignoring any aero-

dynamic forces, while the experiment was performed at ambient

conditions. Lastly, the effects of humidity were not taken into

account by the simulation.

FIGURE 13. Weight vs time for a gap size of 1.5 mm. This was the

test case that was used for calibration.

Chrono::Flex

The Chrono::Flex software is a general-purpose simulator

for three dimensional flexible multi-body problems and provides

a suite of flexible body support. The features included in this

module are multiple element types, the ability to connect these

elements with a variety of bilateral constraints, multiple solvers,

and contact with friction. Additionally, Chrono::Flex leverages

the GPU to accelerate solution of large problems.

Element Types

Chrono::Flex includes two element types implemented us-

ing the Absolute Nodal Coordinate Formulation (ANCF) [18,

19]. The gradient-deficient beam element and the gradient-

deficient plate element are described below.

Gradient-Deficient Beam Elements This implemen-

tation uses gradient deficient ANCF beam elements to model

slender beams, examples of which are shown in Figure 14. These

are two node elements with one position vector and only one gra-

dient vector used as nodal coordinates. Each node thus has 6 co-

ordinates: three components of the global position vector of the

node and three components of the position vector gradient at the

node. This formulation displays no shear locking problems for

thin and stiff beams and is computationally more efficient com-

pared to the original ANCF due to the reduced number of nodal

coordinates [20]. The gradient deficient ANCF beam element

does not describe a rotation of the beam about its own axis so the

torsional effects cannot be modeled.

Gradient-Deficient Plate Elements Much like beams,

numerical difficulties are encountered in the fully parameterized

plate element when the system has very thin and stiff compo-

nents [21]. The high frequencies that are induced along the thin

direction of the element require an extremely small time step, re-

UNCLASSIFIED 8 Copyright c© 2013 by ASME

FIGURE 14. Two models with friction and contact using

Chrono::Flex beam elements: a ball sitting on grass-like beams

and a ball hitting a net.

sulting in longer simulation times. In the case where the aspect

ratio (length divided by thickness) of the element is high, plane

stress assumptions can be made that allow a reduced- order ele-

ment to be accurate. Specifically, Kirchhoff’s plate theory, which

does not account for shear deformation, is used and results in an

element with 36 degrees of freedom, or nodal coordinates, shown

in Figure 15.

FIGURE 15. Two models with friction and contact using

Chrono::Flex plate elements: a cloth hanging on a sphere and a

closed contour shaped like a tire.

Kinematic Constraints

Several types of mechanical joints are modeled in

Chrono::Flex. A spherical joint [22] between two nodes of any

two bodies will require the position vector of each node to be

identical. A revolute joint will have two additional constraints

to the spherical joint constraints. In this case, the gradient vec-

tors of the two nodes will remain in a plane perpendicular to the

axis of revolute joint. There are also additional constraints due to

the element connectivity in each beam. The element connectiv-

ity can be modeled as a fixed joint between the nodes. Here the

common node between two elements is treated as two different

nodes attached to each other through the fixed joint. This fixed

joint requires all the nodal coordinates of the two nodes be iden-

tical. The generalized coordinates of the system change in time

under the effect of applied forces such that these constraint equa-

tions are satisfied at all times. The time evolution of the system

is governed by the Lagrange multiplier form of the constrained

equations of motion.

Solvers

The equations shown in Figure 16 form a system of index-3

Differential Algebraic Equations (DAEs). Although several low

order numerical integration schemes have been effectively used

to solve index-3 DAEs, Chrono::Flex utilizes the Newmark inte-

gration scheme [23]. Originally used in the structural dynamics

community for the numerical integration of a linear set of second

order ODEs, it was adapted for the discretization of DAEs. This

implicit solver was proved to have convergence of order 1 or 2,

depending on the choice of parameters γ and β .

FIGURE 16. The equations of motion for Chrono::Flex.

At each time step, the numerical solution commences by

solving the nonlinear set of equations shown in Figure 17. The

numerical solution of the nonlinear algebraic system falls back

on a Newton-type iterative algorithm that requires the computa-

tion of its sensitivity matrix. Advancing the numerical solution in

time draws on three loops: the outer-most loop marches forward

in time, while at each time step the second loop solves the alge-

braic discretization problem in Figure 17. Each iteration in this

second loop launches a third loop whose role is that of producing

a vector of corrections for the acceleration and Lagrange multi-

pliers. The corrections are computed using the BiCGStab itera-

tive solver [24], which also provides for a matrix-free solution.

A serial solver was implemented using the Armadillo Matrix Al-

gebra Library [25] and a GPU parallel solver was implemented

using CUSP [26], a linear algebra library built on top of CUDA.

Chrono::Flex was validated in [27] as well as in [28] against the

commercial code ADAMS [29], and the nonlinear finite element

analysis code ABAQUS [30].

Chrono::Fluid

The Chrono::Fluid component aims at leveraging GPU

computing to efficiently simulate fluid dynamics and fluid-solid

interaction problems. Fluid-Solid Interaction (FSI) covers a

wide range of applications, from blood and polymer flow to

UNCLASSIFIED 9 Copyright c© 2013 by ASME

FIGURE 17. The discretized equations of motion for Chrono::Flex

(fully implicit).

tanker trucks and ships. Simulation of the FSI problem requires

two components: Fluid and Solid simulations. Simulation of

the Solid phase, either rigid or flexible, in an HPC fashion, is

described in previous sections. To leverage the existing solid

phase simulation, the fluid flow simulation should satisfy some

conditions, introduced by the aforementioned target problems.

First, the fluid flow may experience large domain deformation

due to the motion of the solid phase. Second, the two phases

should be coupled via an accurate algorithm. Third, target

problems may experience free surface as well as internal flow.

Finally, the whole simulation should be capable of an HPC

implementation to maintain the scalability of the code.

Fluid flow can be simulated in either an Eulerian or a Lagrangian

framework. Provided that the interfacial forces are captured

thoroughly, the Lagrangian framework is capable of tracking the

domain deformation introduced by the motion of the solid phase

at almost no extra cost. Smoothed Particle Hydrodynamics

(SPH) [31, 32, 33], its modifications [34, 35], and variations [36]

have been widely used for the simulation of the fluid domain in

a Lagrangian framework. The main evolution equations of the

fluid flow using SPH are expressed as

dρa

dt
= ρa ∑

b

mb

ρb

(va− vb) .∇aWab (1)

dva

dt
=−∑

b

mb

(

(
pb

ρa
2
+

pa

ρb
2
)∇aWab−

(µa +µb)rab.∇aWab

ρ̄2
ab(r

2
ab + ε h̄2

ab)
vab

)

+ fa

(2)

which are solved in conjunction with

dx
/

dt = v (3)

to update the fluid properties. In Eqs. (1) to (3), ρ , v, and

p are local fluid density, velocity, and pressure, respectively, m

is the representative fluid mass assigned to the SPH marker, W

is a kernel function which smooths out the local fluid properties

within a resolution length l = κh, and rab is the distance between

two fluid markers denoted by a and b. Fluid flow evolution

equations, defined by Eqs. (1) to (3), are solved explicitly, where

pressure is related to density via an appropriate state equation to

maintain the compressibility below 1%. To increase the accuracy

and stability of the simulation, an XSPH modification [34] and

Shephard filtering [37] were applied.

FSI with Smoothed Particle Hydrodynamics: A Quick

Overview

A proper choice of fluid-solid coupling should satisfy the

no-slip and impenetrability conditions on the surface of the solid

obstacles. By attaching Boundary Condition Enforcing (BCE)

markers on the surface of the solid objects, the local relative ve-

locity, i.e. at the markers location, of the two phases will be zero

(Fig. 18). The position and velocity of the BCE markers are up-

dated according the motion of the solid phase, which results in

the propagation of the solid motion to the fluid domain. On the

other hand, the interaction forces on the BCE markers are used

to calculate the total force and torque exerted by the fluid on the

solid object.

FIGURE 18. Coupling of the fluid and solid phases. BCE and fluid

markers are represented by black and white circles, respectively.

FSI with Smoothed Particle Hydrodynamics: Prox-

imity Computation The overall simulation of the FSI frame-

work is performed in parallel, where each thread handles the

force calculation of a fluid or BCE marker first, and a rigid body

later. Next, the parallel threads perform the kinematics update of

UNCLASSIFIED 10 Copyright c© 2013 by ASME

the fluid markers, rigid bodies, and BCE markers, respectively.

An essential part of the force calculation stage is the proximity

computation, which will be explained briefly herein.

Proximity computation used in our work leverages the algorithm

provided in CUDA SDK [38], where the computation domain

is divided into bins whose sizes are the same as the resolution

length of the SPH kernel function. A hash value is assigned to

each marker based on its location with respect to the bins. Mark-

ers are sorted based on their hash value. The sorted properties are

stored in independent arrays to improve the memory access and

cache coherency. To compute the forces on a marker, the lists of

the possible interacting markers inside its bin and all 26 neighbor

bins are called. The hash values of the bins are used to access the

relevant segments of the sorted data.

Validation and Demonstration of Technology

The aforementioned FSI simulation engine was used to

validate the lateral migration of cylindrical particles in plane

Poiseuille flow, spherical particles in pipe flow, and particle dis-

tribution in Poiseuille flow of suspension [39, 40]. Due to the

scalability of Chrono::Fluid in both fluid and solid phases, in-

creasing the number of rigid bodies, which translates into de-

creasing the number of fluid particles, does not affect the simula-

tion time. Therefore, the simulation of a highly dense suspension

is possible. Figure 19 shows the result of the simulation of the

flow of suspension including 1,500 particles through a channel.

A similar scenario with 13,000 particles in suspension was suc-

cessfully simulated in Chrono::Fluid.

FIGURE 19. Simulation of rigid bodies inside a fluid flow: Rigid

ellipsoids with their BCE markers are shown in the left image while the

fluid’s velocity contours and rigid ellipsoids at the mid-section of the

channel are shown in the right image.

Chrono::Render

Chrono::Render is a software package that enables simple,

streamlined, and fast visualization of arbitrary data using Pixar’s

RenderMan [41]. Specifically, Chrono::Render contains a hy-

brid of processing binaries and Python scripting modules that

seek to abstract away the complexities of rendering with Ren-

derMan. Additionally, Chrono::Render is targeted for providing

rendering as an automated post-processing step in a remote sim-

ulation pipeline, hence it is controlled via a succinct XML speci-

fication for “gluing” together rendering with arbitrary processes.

As seen in Figure 20, Chrono::Render combines simulation data,

XML describing how to use the data, and optional user-defined

Python scripts into a complex, visually-rich scene to be rendered

by RenderMan.

FIGURE 20. Chrono::Render architecture.

On the Choice of RenderMan

Using RenderMan for rendering is motivated by the scope of

arbitrary data sets and the potentially immense scene complexity

that results from big data; REYES, the underlying architecture

for RenderMan is ideally suited for this task. REYES works by

dividing each surface in the scene into a grid of micropolygons

and shades at the grid vertices [42] (see Figure 21).

This results in tractable rendering for complex scenes be-

cause: (a) only a small portion of the scene needs to be in mem-

ory at any given time; (b) grid-based computation leads to opti-

mal memory access patterns; (c) non-visible objects need not be

loaded into memory; (d) fully-rendered objects can be removed

from memory; and (e) objects are tessellated according to size on

the screen; less complex geometry is dynamically loaded when-

ever possible.

UNCLASSIFIED 11 Copyright c© 2013 by ASME

FIGURE 21. An overview of the REYES Pipeline.

REYES is perfectly suited for parallel processing since it

scales linearly with the number of cores. Considering that

REYES needs only a handful of relevant scene elements at a

time, this data can be parsed into low-memory buckets and dis-

tributed amongst cores for parallel rendering; thus REYES’ low

memory-footprint and efficient concurrent resource usage for

the complex scenes makes it a great renderer for a distributed-

computing platform.

Accessibility of High-Quality Graphics

Although REYES can manage the issue of scene complex-

ity, leveraging this power is difficult without computer graphics

expertise. The guiding principle of Chrono::Render is to make

high-quality rendering available to researchers, most of whom

don’t have the background or bandwidth to spend time learn-

ing how to use complex graphics applications or make sense

of REYES’ intricacies. Consequently, Chrono::Render encapsu-

lates into the XML specification the complicated steps needed to

make interesting visual effects, such as multipass rendering. The

user must only instance the correct XML components to achieve

high-quality renders. The program flow of Chrono::Render is

shown in Figure 22.

FIGURE 22. Chrono::Render execution workflow.

The XML specification allows for the concise expression of

salient features and scene objects. For example, the snippet in

Figure 23 illustrates the XML file that translates a single line

from a CSV data file into a RenderMan sphere using two shaders.

FIGURE 23. Simple XML for a sphere with a Surface and Displace-

ment shader.

Although simple, the render is visually rich. This descrip-

tion is often enough to visualize most generic data, but it cannot

handle all arbitrary visualizations, so in order to maintain gener-

ality we make use of Python scripts and wrappers to enable sim-

plified procedural RenderMan Interface Bytestream generation.

Any XML element can be scripted such that at runtime, the script

output will be piped into the same rendering context. This makes

it possible to perform processing for specialized data as well as

modularize the rendering of specific effects. Obviously this adds

more complexity for defining the scene, but Chrono::Render pro-

vides Python modules with methods and classes intended to ease

this programming as much as possible. Additionally, most of the

Chrono::Render Python modules wrap C++ functions and classes

with the purpose of exploiting speed while still making use of the

syntactical/type-free simplicity of Python. Figure 24 gives an ex-

ample of combining XML with Python scripts to achieve a more

complicated render.

Other Capabilities

Beyond interpreting parameters and data into RenderMan

calls, Chrono::Render provides tools for bootstrapping rendering

projects. Chrono::Render can: (a) construct directory structures

for localizing and managing scene resources; (b) automate dis-

tribution of rendering across a multi-node network; (c) convert

common graphics file formats into RenderMan file formats such

as Wavefront Objs and Mtls to RenderMan RIBs and Shaders;

(d) generate XML for automatically adding parameters to the

scene description for describing advanced visual effects such as

subsurface scattering, ambient occlusion, reflections, etc.; (e)
mesh point-clouds, particularly useful for particle-based fluid

UNCLASSIFIED 12 Copyright c© 2013 by ASME

FIGURE 24. General purpose rendering with Chrono::Render. The

Rover body contains multiple shape descriptions of which are generated

from a Python script. Data is tagged with a name which can be later be

accessed using some of Chrono::Render’s Python functionality.

simulations; and (f) dump the generated RenderMan calls to

disk for reuse.

Chrono:Render is currently available for free download as a

pre-built binary for Linux. Members of the Wisconsin Applied

Computing Center can use this capability remotely as a service

by leveraging 320 AMD cores on which Chrono::Render is cur-

rently deployed.

Conclusions and Future Work

The Chronosimulation package is composed of a collec-

tion of components designed to perform multi-physics simula-

tions leveraging emerging high-performance computing hard-

ware. Chrono::Engine provides support for rigid body dynamics,

focusing on large granular dynamics problems, Chrono::Flex en-

ables simulation of flexible beam and plate elements interacting

through contact and bilateral constraints, while Chrono::Fluid

allows the simulation of fluid flows and fluid-solid interaction

problems. Finally, Chrono::Render provides high-quality visu-

alization of arbitrary simulation data from the other Chrono-

components. These components have been designed to lever-

age high-performance computing hardware whenever possible.

Chrono::Engine supports CPU parallelism through a domain-

decomposition approach, while Chrono::Engine, Chrono::Flex,

and Chrono::Fluid all support GPU parallelism to further im-

prove simulation performance.

While these components provide useful simulation capabil-

ities on their own, ongoing work seeks to further integrate the

various Chronocomponents.

ChronoAvailability

Major releases of the Chrono::Engine software are

available from the Chrono::Engine website at http://

chronoengine.info. Chronoin its entirety can be down-

loaded from http://sbel.wisc.edu/chrono. The latter

site also displays the nightly build status for various platforms

and unit testing results.

ACKNOWLEDGMENT

Financial support for the Wisconsin authors was provided

in part by the National Science Foundation Award 0840442 and

Army Research Office W911NF-12-1-0395. Financial support

for A.Tasora was provided in part by the Italian Ministry of Ed-

ucation under the PRIN grant 2007Z7K4ZB. We thank NVIDIA

and AMD for sponsoring our research programs in the area of

high-performance computing.

REFERENCES

[1] Tasora, A., and Anitescu, M., 2011. “A matrix-free cone

complementarity approach for solving large-scale, nons-

mooth, rigid body dynamics”. Computer Methods in Ap-

plied Mechanics and Engineering, 200(5-8), pp. 439–453.

[2] Heyn, T., 2009. “Simulation of Tracked Vehi-

cles on Granular Terrain Leveraging GPUCom-

puting”. M.S. thesis, Department of Mechani-

cal Engineering, University of Wisconsin–Madison,

http://sbel.wisc.edu/documents/TobyHeynThesis final.pdf.

[3] Anitescu, M., and Tasora, A., 2010. “An iterative approach

for cone complementarity problems for nonsmooth dynam-

ics”. Computational Optimization and Applications, 47(2),

pp. 207–235.

[4] Tasora, A., and Anitescu, M., 2010. “A convex comple-

mentarity approach for simulating large granular flows”.

Journal of Computational and Nonlinear Dynamics, 5(3),

pp. 1–10.

[5] Negrut, D., Tasora, A., Mazhar, H., Heyn, T., and Hahn,

P., 2012. “Leveraging parallel computing in multibody dy-

namics”. Multibody System Dynamics, 27, pp. 95–117.

10.1007/s11044-011-9262-y.

[6] Cundall, P., 1971. “A computer model for simulating pro-

gressive large-scale movements in block rock mechanics”.

In Proceedings of the International Symposium on Rock

Mechanics. Nancy, France.

[7] Cundall, P., and Strack, O., 1979. “A discrete element

model for granular assemblies”. Geotechnique, 29, pp. 47–

65.

[8] Mindlin, R., and Deresiewicz, H., 1953. “Elastic spheres in

contact under varying oblique forces”. Journal of Applied

Mechanics, 20, pp. 327–344.

UNCLASSIFIED 13 Copyright c© 2013 by ASME

[9] Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., and

Scherer, V., 2007. “Review and extension of normal force

models for the discrete element method”. Powder Technol-

ogy, 171, pp. 157–173.

[10] Tasora, A., Righettini, P., and Silvestri, M., 2007. “Ar-

chitecture of the chrono::engine physics simulation mid-

dleware”. In Proceedings of ECCOMAS 2007 Multibody

Conference.

[11] Mazhar, H., Heyn, T., and Negrut, D., 2011. “A scal-

able parallel method for large collision detection prob-

lems”. Multibody System Dynamics, 26, pp. 37–55.

10.1007/s11044-011-9246-y.

[12] Pazouki, A., Mazhar, H., and Negrut, D., 2012. “Parallel

collision detection of ellipsoids with applications in large

scale multibody dynamics”. Mathematics and Computers

in Simulation, 82(5), pp. 879 – 894.

[13] Pazouki, A., Mazhar, H., and Negrut, D., 2010. “Paral-

lel ellipsoid collision detection with application in contact

dynamics-DETC2010-29073”. In Proceedings to the 30th

Computers and Information in Engineering Conference,

S. Fukuda and J. G. Michopoulos, eds., ASME Interna-

tional Design Engineering Technical Conferences (IDETC)

and Computers and Information in Engineering Conference

(CIE).

[14] Snethen, G., 2007. Xenocollide website, Sept.

http://www.xenocollide.com.

[15] Snethen, G., 2008. “Xenocollide: Complex collision made

simple”. In Game Programming Gems 7, S. Jacobs, ed.

Charles River Media, pp. 165–178.

[16] Gropp, W., Lusk, E., and Skjellum, A., 1999. Using MPI:

Portable Parallel Programming with the Message-Passing

Interface, Second Edition. MIT Press.

[17] Melanz, D., Tupy, M., Smith, B., Turner, K., and Negrut,

D., 2010. “On the validation of a differential variational

inequality approach for the dynamics of granular material-

DETC2010-28804”. In Proceedings to the 30th Computers

and Information in Engineering Conference, S. Fukuda and

J. G. Michopoulos, eds., ASME International Design En-

gineering Technical Conferences (IDETC) and Computers

and Information in Engineering Conference (CIE).

[18] Berzeri, M., Campanelli, M., and Shabana, A. A., 2001.

“Definition of the elastic forces in the finite-element abso-

lute nodal coordinate formulation and the floating frame of

reference formulation”. Multibody System Dynamics, 5,

pp. 21–54.

[19] von Dombrowski, S., 2002. “Analysis of large flexible

body deformation in multibody systems using absolute co-

ordinates”. Multibody System Dynamics, 8, pp. 409–432.

10.1023/A:1021158911536.

[20] Gerstmayr, J., and Shabana, A., 2006. “Analysis of thin

beams and cables using the absolute nodal co-ordinate for-

mulation”. Nonlinear Dynamics, 45(1), pp. 109–130.

[21] Dufva, K., and Shabana, A., 2005. “Analysis of thin

plate structures using the absolute nodal coordinate formu-

lation”. Proceedings of the Institution of Mechanical En-

gineers, Part K: Journal of Multi-body Dynamics, 219(4),

pp. 345–355.

[22] Shabana, A. A., 2005. Dynamics of Multibody Systems,

third ed. Cambridge University Press.

[23] Hussein, B., Negrut, D., and Shabana, A., 2008. “Implicit

and explicit integration in the solution of the absolute nodal

coordinate differential/algebraic equations”. Nonlinear Dy-

namics, 54(4), pp. 283–296.

[24] Yang, L., and Brent, R., 2002. “The improved bicgstab

method for large and sparse unsymmetric linear systems on

parallel distributed memory architectures”. In Algorithms

and Architectures for Parallel Processing, 2002. Proceed-

ings. Fifth International Conference on, IEEE, pp. 324–

328.

[25] Sanderson, C., 2010. Armadillo: An open source c++ linear

algebra library for fast prototyping and computationally in-

tensive experiments. Tech. rep., Technical report, NICTA.

[26] Bell, N., and Garland, M., 2012. Cusp: Generic parallel

algorithms for sparse matrix and graph computations. Ver-

sion 0.3.0.

[27] Khude, N., Melanz, D., Stanciulescu, I., and Negrut, D.,

2011. “A parallel gpu implementation of the absolute nodal

coordinate formulation with a frictional/contact model for

the simulation of large flexible body systems”. ASME Con-

ference on Multibody Systemss and Nonlinear Dynamics.

[28] Melanz, D., 2012. “On the validation and applications of

a parallel flexible multi-body dynamics implementation”.

M.S. thesis, University of Wisconsin–Madison.

[29] MSC.Software, 2012. “Adams: Automatic dynamic analy-

sis of mechanical systems”. Ann Arbor, Michigan.

[30] ABAQUS, 2004. “User manual - version 6.5, hibbitt, karls-

son and sorensen”. Inc., Pawtucket, RI.

[31] Lucy, L., 1977. “A numerical approach to the testing of

the fission hypothesis”. The Astronomical Journal, 82,

pp. 1013–1024.

[32] Gingold, R., and Monaghan, J., 1977. “Smoothed parti-

cle hydrodynamics-theory and application to non-spherical

stars”. Monthly Notices of the Royal Astronomical Society,

181(1), pp. 375–389.

[33] Monaghan, J., 2005. “Smoothed particle hydrodynamics”.

Reports on Progress in Physics, 68(1), pp. 1703–1759.

[34] Monaghan, J., 1989. “On the problem of penetration in par-

ticle methods”. Journal of Computational Physics, 82(1),

pp. 1–15.

[35] Dilts, G., 1999. “Moving-least-squares-particle hydrody-

namics i. consistency and stability”. International Journal

for Numerical Methods in Engineering, 44(8), pp. 1115–

1155.

[36] Koshizuka, S., Nobe, A., and Oka, Y., 1998. “Numeri-

UNCLASSIFIED 14 Copyright c© 2013 by ASME

cal analysis of breaking waves using the moving particle

semi-implicit method”. International Journal for Numeri-

cal Methods in Fluids, 26(7), pp. 751–769.

[37] Dalrymple, R., and Rogers, B., 2006. “Numerical modeling

of water waves with the sph method”. Coastal engineering,

53(2), pp. 141–147.

[38] NVIDIA Corporation, 2012. NVIDIA

CUDA Developer Zone. Available online at

https://developer.nvidia.com/cuda-downloads.

[39] Pazouki, A., and Negrut, D., 2012. “Direct simulation of

lateral migration of bouyant particles in channel flow using

gpu computing”. In Computers and Information in Engi-

neering, CIE32, ASME.

[40] Pazouki, A., and Negrut, D., 2012. “Numerical investi-

gation of particle distribution in Poiseuille flow of suspen-

sion”. Langmuir. submitted.

[41] Pixar, 1988, 1989, 2000, 2005. The renderman interface.

Technical specification, Pixar.

[42] Cook, R. L., Carpenter, L., and Catmull, E., 1987. “The

Reyes Image Rendering Architecture”. SIGGRAPH 1987

Proceedings, pp. 95–102.

UNCLASSIFIED 15 Copyright c© 2013 by ASME

