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ABSTRACT 

The U.S. Army’s joint platform allocation tool (JPAT) is an integer linear program that 

was developed by the Army’s Training and Doctrine Command Analysis Center and the 

Naval Postgraduate School to help inform acquisition decisions involving aerial 

reconnaissance and surveillance (R&S) resources.  JPAT evaluates inputs such as mission 

requirements, locations of available equipment, and budgetary constraints to determine an 

effective assignment of unmanned aerial R&S assets to missions. 

As of September 2013, JPAT is solved using a rolling horizon approach, which 

produces a sub-optimal solution, and requires substantial computational resources to 

solve a problem of realistic size.  Because JPAT is an integer linear program, it is a 

suitable candidate for using decomposition techniques to improve its computational 

efficiency. 

This thesis conducts an analysis of multiple approaches for increasing JPAT’s 

computational efficiency.  First, we reformulate JPAT using Benders decomposition.  

Then, we solve both the original and decomposed formulations using the simplex and 

barrier algorithms with multiple size datasets.  In addition, we experiment with an initial 

heuristic solution and other techniques in our attempts to improve JPAT’s runtime.  We 

find that while Benders decomposition does not result in significant improvements in 

computation time for the instances considered in this thesis, initial solution heuristics and 

other modifications to the model improve JPAT’s performance. 

 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. OBJECTIVES AND APPROACH .................................................................2 
C. SCOPE, LIMITATIONS AND ASSUMPTIONS .........................................2 

D. LITERATURE REVIEW ...............................................................................3 

II. METHODOLOGY ......................................................................................................5 
A. JPAT MODEL OVERVIEW ..........................................................................5 

B. DATA, VARIABLES AND SETS ..................................................................6 
1. Indices and Sets ....................................................................................6 
2. Input Data .............................................................................................7 
3. Calculated Data ....................................................................................8 

4. Positive Integer Variables ...................................................................9 
5. Binary Variables ..................................................................................9 

6. Positive Variables .................................................................................9 
C. ORIGINAL FORMULATION .......................................................................9 

D. A BRIEF OVERVIEW OF BRANCH AND BOUND AND BENDERS 

DECOMPOSITION .......................................................................................12 

E. JPAT MODEL DECOMPOSITION FORMULATION ............................12 
1. Primal Subproblem ............................................................................13 

2. Dual Subproblem ...............................................................................14 
3. Master Problem ..................................................................................15 

III. ANALYSIS .................................................................................................................17 

A. PROBLEM INSTANCES .............................................................................17 
B. SOLUTION APPROACHES ........................................................................19 

C. OUTPUT ANALYSIS ....................................................................................20 
1. Experiment 1a ....................................................................................20 
2. Experiment 1b ....................................................................................21 

3. Experiment 2 ......................................................................................24 

4. Experiment 3 ......................................................................................27 
5. Experiments 4 and 5 ..........................................................................30 
6. Average runtimes for all experiments ..............................................31 

IV. CONCLUSIONS AND RECOMMENDATIONS ...................................................33 
A. SUMMARY OF FINDINGS .........................................................................33 
B. RECOMMENDATIONS FOR USAGE AND IMPLEMENTATION 

OF MODEL ....................................................................................................34 
1. Recommendations ..............................................................................34 

2. Future Work .......................................................................................34 

APPENDIX. RANDOMLY GENERATED DATA FORMULATION ............................35 

LIST OF REFERENCES ......................................................................................................37 

INITIAL DISTRIBUTION LIST .........................................................................................39 



 viii 

 THIS PAGE INTENTIONALLY LEFT BLANK 



 ix 

LIST OF FIGURES 

Figure 1. Three example systems composed of platforms P1, P2, and P3, and 

sensors SN1, SN2, SN3, and SN4......................................................................6 
Figure 2. A configuration consisting of equipment derived from multiple systems .........6 
Figure 3. JPAT's mathematical formulation ....................................................................11 
Figure 4. Approaches used to solve each problem instance from Table 1. .....................20 

Figure 5. Runtimes (seconds) for Experiment 1a across different seeds; “WS” 

indicates that an initial solution (“warm start”) is used ...................................22 

Figure 6. Average runtimes (seconds) for Experiment 1a...............................................22 
Figure 7. Average runtimes (seconds) for Experiment 1b (logarithmic scale) ...............23 
Figure 8. Average runtimes (seconds) for Experiment 1b (outlier removed) .................23 
Figure 9. Average runtimes (seconds) for Experiment 2 (logarithmic scale) .................25 

Figure 10. Average runtimes for Experiments 1a, 1b, and 2 (seconds), using the 

original formulation .........................................................................................25 
Figure 11. Average runtimes for Experiments 1a, 1b, and 2 (seconds), using the 

Benders formulation.........................................................................................26 
Figure 12. Runtimes (seconds) for Experiment 2 across different seeds (logarithmic 

scale); “WS” indicates that an initial solution is used .....................................26 
Figure 13. Runtimes (minutes) for Experiment 3 for indicated transfer periodicity 

(logarithmic scale; “WS” indicates that an initial solution is used. .................28 
Figure 14. Proportion of monthly transfer frequency objective value attained with 

quarterly transfers; “WS” indicates that an initial solution is used .................29 
Figure 15. Proportion of monthly transfer frequency objective value obtained with 

semi-annual transfers; “WS” indicates that an initial solution is used ............29 

 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES 

Table 1. Relative sizes of problem instances considered by TRAC analysts and in 

this thesis. .........................................................................................................18 
Table 2. Average runtimes (in seconds) for each approach. ..........................................31 
 

 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

BCA Budget Control Act 

DoD   Department of Defense 

EODSKED   explosive ordnance disposal scheduling tool 

EODTEU TWO  Explosive Ordnance Disposal Training and Evaluation Unit Two 

FY   fiscal year 

GAMS   General Algebraic Modeling System 

JPAT joint platform allocation tool 

LP linear program 

MIP mixed integer program 

MUVAM maritime UV assignment model 

NAVICP Naval Inventory Control Point 

NPS Naval Postgraduate School 

R&S reconnaissance and surveillance 

SIP model strategic inventory positioning model 

TRAC Training and Doctrine Command Analysis Center 

TRADOC Training and Doctrine Command 

UAV  unmanned aerial vehicle 

UV unmanned vehicle  

VCSA Vice Chief of Staff, Army 

  



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xv 

EXECUTIVE SUMMARY 

The U.S. Army’s joint platform allocation Tool (JPAT) is an integer linear program that 

was developed by the Army’s Training and Doctrine Command Analysis Center and the 

Naval Postgraduate School to help inform acquisition decisions involving aerial 

reconnaissance and surveillance (R&S) resources.  JPAT evaluates inputs such as mission 

requirements, locations of available equipment, and budgetary constraints to determine an 

effective assignment of unmanned aerial R&S assets to missions.  It is currently solved 

iteratively using a rolling horizon approach, which produces a sub-optimal solution, and 

requires substantial computational resources to solve a problem of realistic size.  Because 

JPAT is an integer linear program, it is a suitable candidate for using decomposition 

techniques to improve its computational efficiency. 

This thesis conducts an analysis of the outcome of solving a problem of realistic 

size with multiple approaches.  First, we reformulate JPAT using Benders decomposition.  

Then, we solve both the original and decomposed formulations using the simplex and 

barrier algorithms, and we solve each version with and without a heuristically generated 

initial solution, or “warm start.”  We evaluate the impact of each of the modifications on 

a number of datasets.  In addition, we experiment with different transfer frequencies.  The 

original formulation allows equipment to transfer from one geographic location to 

another every month, while this thesis also considers the impacts of quarterly and semi-

annual equipment transfer frequencies. 

We find that the Benders decomposition formulation has longer runtimes than the 

original formulation in every problem instance tested in this thesis.  We also find that 

when transfers are done every quarter instead of every month, there is a significant 

decrease in runtime, a 99% decrease in some instances, with a 20% average decrease in 

the objective value.  There is a further decrease in runtime when transfers are only 

allowed semi-annually (every 6 months), with an additional 20% average decrease in the 

objective value.  We find that while Benders decomposition does not result in significant 

improvements in computation time for the instances considered in this thesis, initial 

solution heuristics and other modifications to the model improve JPAT’s performance.  
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I. INTRODUCTION 

A. BACKGROUND 

Over the past decade, the Department of Defense (DoD) has spent an estimated $2 

trillion in direct support of the wars in Iraq and Afghanistan (Blimes, 2013, p. 2).  Much 

of this was financed through borrowing and has added significantly to the national debt 

(Blimes, 2013, p. 3).  In an effort to control spending, Congress enacted the Budget 

Control Act (BCA) of 2011 which is aimed at reducing the national debt by $1.2 trillion 

over the next decade.  Mandated by the BCA is a series of automatic spending cuts 

known as the budget sequestration which went into effect on March 1, 2013 and reduced 

the defense budget by 10 percent or approximately $55 billion per year (Harrison, 2012, 

p. 2).  Budget cuts notwithstanding, the Department of Defense still needs to repair and 

replace aging equipment that has been battered from more than a decade of heavy use.  

According to Blimes (2013), 

the Pentagon also faces the task of replacing years of worn-out equipment, 

which will cost more than the amounts appropriated for this purpose. 

Equipment, materiel, vehicles and other fixed assets have depreciated at an 

estimated 6 times the peace-time rate, due to heavy utilization, poor repair 

and upkeep in the field, and the harsh conditions in the region. (p. 3) 

In light of these recent events, the Army is seeking ways to more efficiently use 

its limited budget resources to meet mission requirements.  This goal is outlined in a 

directive issued by the Vice Chief of Staff, Army (VCSA) in September 2011 (Craparo, 

Smead, & Tabacca, 2013, p. 1).  One way to accomplish this is through the use of 

mathematical optimization, which provides a method for informing future acquisition 

decisions based on data available today.  In response to the VCSA directive, analysts 

from the Army’s Training and Doctrine Command Analysis Center (TRAC) and the 

Naval Postgraduate School (NPS) developed the joint platform allocation tool (JPAT).  

JPAT is a mixed-integer linear program (MIP) that evaluates inputs such as mission 

requirements, equipment and sensor locations, costs, and budget constraints to help 

determine an effective assignment, procurement, and retirement schedule of aerial R&S 

assets (Craparo et al., 2013). 
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JPAT is currently solved iteratively using a rolling horizon approach, which 

produces a sub-optimal solution, and requires substantial computational resources to 

solve a problem of realistic size.  Because JPAT is an integer linear program, it is a 

suitable candidate for decomposition techniques such as Benders decomposition, as well 

as other heuristic approaches designed to improve computational efficiency. 

This thesis evaluates a variety of modifications to the JPAT formulation and 

implementation, as described in Chapter II.  Our analysis of the impact of these 

modifications appears in Chapter III.  In Chapter IV, we discuss our findings and 

recommendations for further research.   

B. OBJECTIVES AND APPROACH 

The goal of this thesis is to identify techniques to improve JPAT’s runtime.  To 

accomplish this, we study two types of modifications.  First, we modify the JPAT 

formulation.  We reformulate it using Benders decomposition as described in Chapter II, 

and experiment with restrictions to the problem that may improve its tractability.  The 

second area in which we seek improvement is through manipulating how the solver 

software operates on the problem.  In this approach, we experiment with two different 

algorithms for solving linear programs: the simplex algorithm and a barrier method. The 

simplex and barrier algorithms are explained further in Chapter II.  In addition, we solve 

each formulation both with and without an initial heuristic solution.   

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 

This thesis is based on the existing JPAT model as described in Craparo et al. 

(2013).  While this thesis is unclassified, the actual input data used for JPAT is classified.  

Thus, for this thesis we generate random data that does not necessarily reflect the 

characteristics of the actual data.  In addition, the data sets that we use for this research 

may not be indicative of future data and requirements.  Therefore, the main assumption of 

this thesis is that algorithm performance on randomly generated datasets is reflective of 

performance on the real dataset.  This research also inherits all the assumptions of the 

original JPAT model including the following: JPAT does not consider threats faced by 

equipment from enemy action while performing missions; the only method for removing 
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a system from inventory is through retirement.  The time required to perform a mission 

accounts for only the time an asset is performing the mission, not transit time to and from 

the base of operations.  Transfer time accounts for preparation, travel, and system set up 

time.  Setup time accounts for all pre-flight requirements including fueling, and pre-flight 

checks.  Production rates account for manufacture, assembly, and shipment to the field 

(Craparo et al. 2013).  

D. LITERATURE REVIEW 

As outlined by Craparo et al. (2013, p. 1), mathematical optimization is used 

extensively in military applications to help decision makers determine the most 

economical allocation of scarce financial, personnel, and material resources.  Benders 

decomposition is used to increase computational efficiency in some of these instances 

with varying degrees of success.  This literature review focuses on research in the area of 

capital planning and asset allocation including the use of Benders decomposition and 

other techniques to improve algorithm speed and memory usage. 

Alvarez (2004) uses Benders decomposition to reformulate a DC power-flow 

model to test the reliability of power grids against terrorist attacks.  He also attempts to 

increase the speed of the formulation through the use of several different techniques.  

One technique he tries is “solving the mixed-integer master problem exactly every thk  

iteration only, and solving its easier, linear program relaxation otherwise” (Alvarez, 

2004, p. xviii).  Additional techniques explored are limiting the number of cuts in the 

master problem, using sub-optimal integer solutions of the master problem to solve the 

subproblem, and experimenting with the optimality gap between upper and lower bounds. 

Bessman (2010) uses global Benders decomposition in a defender-attacker model 

to efficiently allocate available resources to interdict potential drug smugglers.  Using the 

attacker model as the subproblem and the linearization of the defender-attacker model as 

the master problem, the author is able to determine the optimal allocation of limited 

interdiction resources over a wide geographic area. 

Jackson (1995) uses a combination of Benders decomposition and Lagrangean 

relaxation referred to as cross decomposition in a facility location problem that ascertains 
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the optimal placement of military units globally.  The author compares the results 

obtained by cross decomposition with the branch and bound method with varying results.  

Cross decomposition is faster for some problems, while the branch and bound method is 

faster for others.  

Explosive ordnance disposal scheduling tool (EODSKED) is a scheduling 

optimization tool that supports Explosive Ordnance Disposal Training and Evaluation 

Unit (EODTEU) Two in developing an optimal personnel training schedule (DeWinter, 

2012).  EODSKED attempts to fulfill all training requirements while constrained by 

units’ deployment schedules and availability of instructors, equipment, and facilities.  

EODSKED then devises a training schedule based on these constraints. 

The Strategic inventory positioning (SIP) model is a mixed integer linear program 

that helps to determine the most cost effective inventory storage locations for Naval 

Inventory Control Point (NAVICP) managed repairable items (Burton, 2005).  With 

global transportation expenses exceeding $400 million annually, SIP is projected to result 

in significant cost savings to NAVICP by strategically locating inventory items in areas 

that minimize transportation costs and distance to end users. 

Duhan (2005) developed the Maritime UV assignment model (MUVAM), an 

integer linear program that assists in the scheduling and allocation of unmanned vehicles 

(UVs) in the maritime environment.  Similar to JPAT, MUVAM takes user inputs such as 

mission types, available equipment, location and priority to find the most efficient UV 

mission assignment schedule. 
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II. METHODOLOGY 

This chapter discusses the original JPAT formulation and the techniques applied 

in the decomposition of the original model.  In addition, we discuss the use of different 

solution algorithms and starting points for the solver. 

A. JPAT MODEL OVERVIEW 

The original JPAT Model is designed by the Army Training and Doctrine 

Command Analysis Center (TRAC) Monterey and the Naval Postgraduate School (NPS) 

to determine the optimal assignment and acquisition schedule for aerial R&S equipment. 

JPAT assigns configurations consisting of one platform and one or more sensors to 

fulfill prioritized mission demands in required geographic locations.  JPAT places greater 

utility on fulfilling higher priority missions and maximizes that utility when assigning 

configurations to fulfill mission demands.  A platform is an unmanned aerial vehicle (UAV) 

that carries a limited payload of sensors.  Each sensor is capable of satisfying one or more 

intelligence (INT) requirements or required sensing tasks such as infrared, optical, radar, 

signals intelligence, etc.  Assets are procured, retired and transferred between geographic 

locations in specific combinations of platforms and sensors.  JPAT refers to these 

combinations as systems.  Each platform has exactly one combination in which it can be 

procured, retired, or transferred and thus makes up exactly one system.  More succinctly, 

only complete systems are distributed to and from locations, while configurations are used to 

fulfill mission demands; see Figures 1 and 2.  Systems can be disassembled after arrival at a 

new geographic location and its sensors can be installed on other platforms to make different 

configurations (Craparo et al., 2013, p. 4). 

JPAT is a discrete time model in which each equipment type has a limited number 

of hours available for missions and transfers between locations in each time step.  The 

available hours reflect the total quantity of each equipment type at each location and not 

each individual piece of equipment.  The time required for routine maintenance is 

accounted for and deducted from the number of available hours, and JPAT is constrained 

to not exceed the number of available hours when assigning equipment to fulfill mission 
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demands.  JPAT also accounts for budgetary constraints.  The total cost of operating, 

maintaining, transferring, procuring, and retiring systems cannot exceed the budget 

for each month.  Unused funds from one month will be available in subsequent 

months until used or until the end of the fiscal year (FY).  In accordance with federal 

government fiscal policies, JPAT does not allow transfer of funds from one FY to another 

(Craparo et al. 2013). 

 

Figure 1.  Three example systems composed of platforms P1, P2, and P3, and sensors 

SN1, SN2, SN3, and SN4 (from Craparo et al., 2013) 

  

Figure 2.  A configuration consisting of equipment derived from multiple systems 

(from Craparo et al., 2013) 

We now present JPAT’s mathematical formulation. 

B. DATA, VARIABLES AND SETS 

The following formulation is adapted from Craparo et al. (2013, pp. 5-7). 

1. Indices and Sets 

, 'l l L   Locations  

m M   Mission demands  

i I    INT (intelligence) types  

r R  Iterations in the rolling horizon model 

, 't t TIME   Time steps  
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( )t T r TIME    Time steps considered in iteration r   

t N TIME    Time steps occurring at the beginning of a fiscal year 

c C    Configurations 

e E    Equipment 

, 'y y Y    Systems 

( )M l  Set of mission demands residing in location l    

( )l m  Location of mission demand m  (each mission demand resides in 

exactly one location)  

( , ')y y REP  Identifies the system y  replacing a retiring system y  

( , , , ')t y l l GP  Identifies systems y  eligible to transfer from location l  to location 

l  at time t   

2. Input Data [Units] 

,e liq  Initial quantity of equipment e  in location l  at time 0  [number of 

items] 

,t md  Number of times mission demand m  is present at time t  [number 

of occurrences]  

, ,m i cok  Number between 0  and 1 indicating the ability of configuration c  

to fulfill INT type i  in mission demand m  [unitless] 

eomc  Operation and maintenance (O&M) cost per month for equipment 

e  [$M] 

ypc    Procurement cost for system y  [$M]  

yrc    Retirement cost for system y  [$M] 

,t yb    Maximum budget for system y  at time t  [$M] 

,t ympr  Maximum production rate of system y  at time t  [number of items] 

mp  Number between 0  and 1 indicating the importance of mission 

demand  m  [unitless] 

,c eec  Number of equipment e  in configuration c  [number of items]  

,y ees  Number of equipment e  in system y  [number of items] 
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ehe  Hours available for transport and missions per time period for 

equipment e .  Accounts for regular maintenance hours, etc. 

[hours] 

mhm  Hours required to perform mission demand m , not including 

equipment-specific setup and takedown time  [hours] 

,m ihi   Hours required for INT type i  in mission demand m  [hours]  

esu  Time to set up, take down, and maintain equipment e  per 

assignment [hours] 

, , 'y l ltransdays  Time required to transfer system y  from location l  to location .l  

Includes actual transit time as well as packing, unpacking, etc.  

[days] 

,m csr  Sorties required in order for configuration c  to fully complete 

mission demand m  [number of sorties] 

tnewyear  1 if time t  is the start of a new year; 0  otherwise [binary] 

yupperbounds  Maximum number of system y  that can ever be distributed, total 

across all time [number of items]  

,t ymr  Total number of system y  that must be retired by time t  [number 

of items]  

yinitial  Number of system y  initially in theater [number of items] 

3. Calculated Data 

,maxt y  Maximum total number of system y  that can have been distributed 

as of time t   [number of items] 

   , ' ',' 1
max min( -

t

t y y y t yt
upperbounds initial mpr


   

, , , 'e y l lht  Hours to decrement from equipment type e  when transporting 

system y  from location l  to location 'l .  Assumes that any 

transfers that require more than 1 month (26 operational days) are 

completed in 1 month.  [hours] 

 

   
, , '

,, , , ' 1,
26

min y l l

e y ee y l l

transdays
ht he es

 
 
 

  
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4. Positive Integer Variables  

, , , 't y l lG  Number of system y  transferring from  location l  to location 'l  at 

time t  

, ,t y lZ  Number of system y  retiring from location l  at time t  

, ,t y lD  Number of system y  distributed to location l  at time t   

5. Binary Variables  

, ,t c lP   1 if sufficient equipment is present to create configuration c  at time 

t  in location l ; 0  otherwise 

6. Positive Variables 

, , ,t m c iX  Number of hours configuration c  is assigned to INT type i  for 

mission demand m  at time t  

, ,t m cS  Number of sorties flown by configuration c  against mission 

demand m  at time t   

, ,t e lQ  Quantity of equipment e  present in location l  at time t  (equation 

(3) in Figure 3 ensures the integrality of this variable) 

tB  Budget rolled over from previous time period at time t  

C. ORIGINAL FORMULATION  

The original JPAT formulation is shown in Figure 3. 

The following explanation is reproduced from Craparo et al. (2013, p. 7). 

 

The objective function (1) maximizes the weighted mission demand 

coverage, weighted by mission demand priority and configuration 

performance.  Constraint set (2) ensures that intelligence requirements are 

not over satisfied by the assigned configurations.  Constraint sets (3-4) 

maintain a record of the quantity of each equipment type available in each 

location, beginning with the initial quantity (4) and updating the quantity 

based on system procurements, retirements, and transfers in subsequent 

time steps (3).   

Constraint sets (5-8) ensure that configurations are employed 

appropriately based on equipment availability.  Constraint set (5) forces 

Pt,c,l to take on a value of zero if any piece of equipment require to 
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construct configuration c is not present in a sufficient quantity in location l 

at time t; otherwise, Pt,c,l is allowed to take on a value of one.  Constraint 

set (6) uses the variables Pt,c,l to control the number of sorties flown by 

configuration c: if Pt,c,l = 0, then configuration c cannot fly any sorties 

against any mission demands in location l at time t.  Otherwise, 

configuration c can fly any number of sorties so long as it does not exceed 

the number of sorties required to completely satisfy the mission demand.  

Constraint set (7) ensures that the time spent covering intelligence 

requirements is appropriate given the number of sorties flown.  Finally, 

constraint set (8) ensures that the hours spent fulfilling mission demands 

and transferring from one location to another do not exceed the “pool” of 

hours available for each equipment type. 

Constraint sets (9-11) ensure that budgetary limitations are observed.  

Constraint set (9) calculates the monthly budget rollover Bt while 

accounting for equipment maintenance, system procurement, and system 

retirement costs.  Because Bt is a nonnegative variable, constraint set (9) 

ensures that the available budget is not exceeded on months that do not 

mark the beginning of a fiscal year.  Likewise, constraint set (10) performs 

this function for months that do mark the beginning of a fiscal year, while 

constraint set (11) sets Bt to zero for months at the beginning of a fiscal 

year. 

Constraint sets (12-13) control distribution and retirement of systems.  

Constraint set (12) ensures that the total number of system y distributed as 

of time t does not exceed the limits posed by system production rates and 

fielding restrictions.  Constraint set (13) ensures that any system y  that 

“upgrades” a system y is not distributed until its predecessor y is retired. 

Finally, constraint sets (14-21) declare variable types. 
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Figure 3.  JPAT's mathematical formulation (from Craparo et al., 2013)  
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D. A BRIEF OVERVIEW OF BRANCH AND BOUND AND BENDERS 

DECOMPOSITION 

In this section, we provide a brief overview of two approaches for solving integer 

linear programs: branch and bound algorithm and Benders decomposition.  The branch 

and bound algorithm first solves the relaxed MIP in order to determine an upper bound 

for a maximization problem.  The next step is to estimate which branches in the solution 

tree may contain a potential optimal solution and which ones do not need to be explored.  

It then explores the branches that were not eliminated to obtain an optimal solution.  

While branch and bound may be able to solve a small problem relatively quickly, it can 

require significantly longer when solving a medium sized or larger problem (Chinneck, 

2010, Chapter 12).  One method used to potentially decrease the runtime of large problem 

instances is Benders decomposition.  In Benders decomposition, the problem is 

reformulated into two separate problems: a relaxed master problem and one or more 

subproblems.  The master problem is often a MIP that is formulated over the discrete 

(“hard”) variables from the original MIP, while the subproblem is often a liner program 

(LP) that solves for the continuous (“easy”) variables (Conejo, Castillo, Minguez, & 

Garcia-Bertrand 2010, pp. 110-119).  For a maximization master problem and a 

minimization dual subproblem, the subproblem is solved initially with a trivial solution 

or guess to obtain a lower bound for the optimal objective value of the original 

formulation.  Then, for the upper bound, the master problem is solved for the integer 

variables given the fixed values of the continuous variables from the subproblem 

(Conejo, et al., pp. 110-119).  After a number of iterations between the master and 

subproblems, the lower and upper bounds converge on the optimal solution to the original 

formulation (Fischetti, Salvagnin, & Zanette, 2008, p. 1).  Termination criteria can be set 

for the maximum number of iterations or the proportional difference between upper and 

lower bounds.  In this thesis, we terminate the problem when the lower bound is within 

10% of the upper bound. 

E. JPAT MODEL DECOMPOSITION FORMULATION 

We now describe the Benders decomposition formulation of the JPAT model.  

JPAT is broken up into a subproblem (described in section III.E.1), and a master problem 
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(described in section III.E.3).  The dual of the subproblem is derived in section III.E.2.  

The master problem primarily models procurement and movement of assets (strategic 

level decisions), while the subproblem assigns assets to fulfill mission demands (tactical 

level decisions) given their fixed locations obtained in the master problem. 

1. Primal Subproblem 

The objective function (22) in the primal subproblem is the same as the objective 

function (1) in the original formulation.  It “maximizes the weighted mission demand 

coverage, weighted by mission demand priority and configuration performance” (Craparo 

et al., 2013).  Constraint sets (23) through (26) in the primal subproblem are largely the 

same as constraint sets (2), and (6) through (8) respectively in the original formulation 

and model low level functionality of equipment when placed in geographic locations.  

Constraint set (27) declares variable types.  The values for , , ( ),t c l m itP , in constraint set (24) 

and , , ,t e l itQ , and , , , ',t y l l itG  in constraint set (26) are held fixed in the subproblem and 

correspond to the optimal values of the master problem variables , , ( )t c l mP , , ,t e lQ , and 

, , , 't y l lG  from the previous problem iteration. 

Equation                        [Dual Variable] 

, ,

, , ,

, ,

( , , , ) 0, 0 , '

'

maximize

t m m i

t m c i

S m m i c

t T m c i d hi m i

i

X
z p ok

hi   

 


                   (22) 

s.t. 

, , 0

, , , , ,

| m i c

t m c i m i t m

c ok

X hi d


       , ,( ( ), , ) | 0, 0t m m it T r m i d hi                
1

, ,t m i         (23) 

, , , , , , ( ),

( ), ( )

t m c m c t m t c l m it

M l l m

S sr d P        
, , ,( ), , ) | 0, 0m i c t m

i

t T r m c ok d      
5

, ,t m c         (24) 

, ,

, , ,

,

t m c m

t m c i

m c

S hm
X

sr
         

, , , ,
( ( ), , , ) | 0, 0, 0

m i c m i t m
t T r m c i ok hi d          

6

, , ,t m c i        (25) 
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, , , ,

, ,

, , ,

( , )| 0, 0, , '| 0,
( ), ( ), 0, 0

, , , , , , ' , , , ',

c e m i c y e

m c t m

m

c e e t m c e

c m ec ok y l esm c
m l m l M l sr d

t e l it e y l l t y l l it
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ec su S he ht

sr
Q G

  

   

  
 
 
 

   

                                    ( ), ,t T r e l                
7

, ,t e l         (26) 

, , , , , 0t m c t m c iS X    ( ), , ,t T r m c i            (27) 

2. Dual Subproblem 

We take the dual of the primal subproblem to obtain the dual subproblem.  

Constraint sets (31) through (34) set continuous positive variables and are the dual 

variables 
1

, ,t m i , 
5

, ,t m c , 
6

, , ,t m c i , and 
7

, ,t e l  that correspond to the primal subproblem 

constraint sets (23) through (26) respectively.  Again, the values for , , ( ),t c l m itP , , , ,t e l itQ , and 

, , , ',t y l l itG  in the objective function (28) are held fixed in the subproblem and correspond to 

the optimal values of the master problem variables , , ( )t c l mP , , ,t e lQ , and , , , 't y l lG  from the 

previous problem iteration. 

Equation                    [Primal Variable]

 
, , , , ,

1 5

, , , , , , , , ( ), , ,

( ), , | 0, 0 ( ), , | 0, 0

minimize
t m m i m i c t m

i

D m i t m t m i m c t m t c l m it t m c

t T r m i d hi t T r m c ok d

z hi d sr d P 
     

 


 

 
,

7

, , , , , , ' , , , ', , ,
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 

 
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i
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, , ,

5 6 7
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1

, , 0t m i      ( ), ,t T r m i            (31) 

5

, , 0t m c                 ( ), ,t T r m c           (32) 

6

, , , 0t m c i                 ( ), , ,t T r m c i            (33) 

7

, , 0t e l      ( ), ,t T r e l             (34) 

3. Master Problem 

The master problem contains all integer variables ( , , , ' , , , , , ,, , ,t y l l t y l t y l t c lG Z D P ) along 

with the continuous variables , ,t e lQ  and tB  as the “hard” variables.  The objective 

function (35) maximizes across all the “hard” variables.  Constraint set (36) ensures that 

the total number of hours used for mission demands and transfers does not exceed the 

total numbers available for each mission demand in each time period.  The values for 

1

, , ,t m i it , 
5

, , , ,t m c i it , and 
7

, , ,t e l it  in constraint set (36) are held fixed in the master problem and 

correspond to the values of the subproblem variables 
1

, ,t m i , 
5

, , ,t m c i , and 
7

, ,t e l  from 

iteration .it   Constraint sets (37) through (42) are largely the same as constraint sets (3), 

(5), (9), (10), (12), and (13) in the original formulation and model high-level decisions of 

where to place assets.  Constraint set (43) ensures that the number of systems retiring 

from each location equals the number required for mandatory retirement.  Constraint set 

(44) ensures that the number of hours used for mission fulfillment and transfers does not 

exceed the total hours available.  Constraint sets (45) through (50) set variable types. 

, , , , ,
maximize  m
P G Z D B Q
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1 5
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III.  ANALYSIS 

In this chapter, we discuss the results of our computational experiments.  For our 

analysis, we experiment with datasets of several different sizes.  Because the number of 

missions, time steps, and configurations were identified as parameters that will be 

increased in future runs of JPAT, we perform experiments to determine the impact of the 

cardinality of each of these sets on JPAT’s runtime.  We begin with a small dataset 

containing 10 missions, 5 time steps, and 5 configurations.  We then conduct 5 

experiments in which we increase the cardinality of each of these sets, as well as the 

percentage of nonzero elements in the okm,i,c parameter, which we refer to as the ok 

density.  We solve each experiment with the techniques described in III.B using IBM’s 

CPLEX solver with General Algebraic Modeling System (GAMS) software version 

24.0.2.  

A. PROBLEM INSTANCES 

To eliminate redundancy in the data and reduce the computational resources 

needed, TRAC performs preprocessing techniques on JPAT’s input data prior to solving 

the model in GAMS.  Specific information on how the preprocessing is performed is 

outlined in Craparo, Smead, and Tabacca (2013, pp. 10-11).  Table 1 displays the 

cardinalities of the parameters that we vary in our experiments and their cardinalities in 

the original and preprocessed datasets.  For each experiment, we use ten different random 

seeds within GAMS to generate data.  The appendix contains a psuedocode 

representation of our data generation procedure.  
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Table 1.   Relative sizes of problem instances considered by TRAC analysts and in this thesis. 

This thesis runs Experiments 1a, 1b, and 2-5. Because the density of the actual okmic parameter is classified, 

we refer only to a baseline density and its variations. 

 

 Original 

dataset 

Preprocessed 

dataset 

Experiment 

1a 

Experiment 

1b 

Experiment 

2 

Experiment 

3 

Experiment 

4 

Experiment 

5 

Missions 2200 250 10 10 10 10 50 250 

Time steps 144 60 5 5 5 20 24 60 

Configurations 20 20 5 5 10 10 10 20 

Ok density* Baseline Baseline Baseline 2X Baseline Baseline Baseline Baseline Baseline 

Random Seed NA NA 1 – 10 1 – 10 1 – 10 1 – 10 1 – 10 1 – 10 

 



 19 

B. SOLUTION APPROACHES 

Figure 4 shows the 24 approaches that we use to solve Experiments 3-5 from 

Table 1.  For Experiments 1a, 1b, and 2, we do not vary the transfer frequencies and use 

only 8 approaches with the transfer frequency held fixed at monthly.  As illustrated, we 

solve the original and Benders formulations using both the barrier and simplex 

algorithms.  We also experiment with an initial solution heuristic that disables transfers 

from one geographic location to another, i.e., , , , ' 0.t y l lG    This provides an initial integer 

feasible solution of varying quality.  Initially, transfers between geographic locations 

occur monthly in the original JPAT model.  For Experiment 3, we analyze the effects of 

restricting the transfer frequencies to only occur quarterly or semi-annually. 

By default, and in our experiments, GAMS generates the MIP model before 

solving each iteration of Benders decomposition.  GAMS can be manipulated to only 

generate the MIP model prior to the first iteration.  Thus, we do not include model 

generation times in our reported runtimes for Benders iterations greater than 1.  Overall, 

the generation times do not have a significant effect on the runtimes and do not change 

the outcome of the experiments.  For both the original formulation and each iteration of 

the Benders master and subproblems, we set a 10% gap between the relaxed MIP and the 

current integer solution as the termination criterion.  We terminate the Benders run when 

the lower bound is within 10% of the upper bound.  In addition, for this analysis, we 

prevent CPLEX from automatically generating cuts. 



 20 

 

Figure 4.  Approaches used to solve each problem instance from Table 1. 

Transfer frequencies are varied only for Experiments 3-5 in Table 1. 

C. OUTPUT ANALYSIS 

1. Experiment 1a 

The experiment is run on a relatively small dataset.  The runtimes for each of the 

10 seeds for the indicated formulation, algorithm, and initial solution status are shown in 

Figure 5.  Note that although we consider ten discrete random seed values, we connect 

the data points corresponding to these values for clarity.  This also occurs in Figures 12, 

14, and 15.  In addition, the x-axis, labeled “Scenario” for these figures, represents the ten 

random seeds used for each experiment.  In each figure these random seeds are sorted in 

increasing order according to their runtimes in the original formulation using the simplex 

method and no initial solution.  Consequently, because some seeds had faster runtimes on 

some experiments than others, the ordering of the ten random seeds on the x-axis varies 

among the indicated figures.  For Experiment 1a, transfers are allowed to occur monthly.  

The average runtimes of the 10 seeds are shown in Figure 6.  As shown, every instance of 

the original formulation is very efficient and reaches a solution in less than 1/3 seconds 

for this experiment.  The Benders formulations exhibit significantly more variability for 

the different seeds than the original formulations do, as displayed in Figure 5.  The 

Benders Original

Barrier Simplex Barrier Simplex

Yes No Yes No Yes No Yes No

Formulation

Algorithm

Initial
Solution

Initial
Solution

Transfer 
Frequency 
(Months)

Algorithm

Initial
Solution

Initial
Solution

Transfer 
Frequency 
(Months)

6

3

1 6

3

1

Transfer 
Frequency 
(Months)

Transfer 
Frequency 
(Months)

6

3

1 6

3

1

Transfer 
Frequency 
(Months)

Transfer 
Frequency 
(Months)

6

3

1 6

3

1

Transfer 
Frequency 
(Months)

Transfer 
Frequency 
(Months)

6

3

1 6

3

1



 21 

Benders formulation requires five times longer to solve the problem using the simplex 

method with no initial solution.  When we solve both formulations with the initial 

solution and the simplex method, the Benders formulation takes six times longer to reach 

an optimal solution than the original formulation.  The original formulation using the 

simplex method with an initial solution is slightly faster than the other versions of the 

original formulation and the fastest overall for this run.  In contrast, the fastest of the 

Benders formulations (the barrier method with an initial solution) requires nearly five 

times as long as the original formulation.  Thus, for small instances, the original 

formulation using the simplex method and an initial solution appears to be the most 

efficient.  For the Benders decomposition formulation, the barrier method with an initial 

solution is fastest at 12% faster than the barrier method with no initial solution. 

2. Experiment 1b 

Figure 7 shows the average solution times for Experiment 1b, which is the same 

as Experiment 1a with a two-fold increase in the ok  density.  As shown, there is a 

significant increase in runtime for the Benders formulations using the simplex method 

and an initial solution; this version requires over two hours to reach a near-optimal 

solution.  These times are skewed by one random seed that takes significantly longer to 

solve when compared to the other nine seeds.  This particular random seed requires 

between 35 and 40 Benders iterations to reach optimality, whereas the other nine seeds 

require on average less than ten Benders iterations. The average solution times are much 

lower when this seed is removed, as shown in Figure 8.  The original formulation again 

performs better than the Benders formulation when the outlier is removed, terminating in 

less than 0.5 seconds.  In contrast, the Benders formulation using simplex and no initial 

solution requires nine times longer to reach a near-optimal solution.  The Benders 

formulation performs best with the barrier method and an initial solution.  However, this 

version requires six times longer than its original counterpart.  The barrier method and 

initial solution do not provide any significant improvements in the original formulation.  

However, for the Benders formulation, the initial solution with the barrier method solves 

the same problem in 1/3 the time required by the barrier method without the initial 

solution. 
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Figure 5.  Runtimes (seconds) for Experiment 1a across different seeds; “WS” indicates 

that an initial solution (“warm start”) is used 

 

 

Figure 6.  Average runtimes (seconds) for Experiment 1a 
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Figure 7.  Average runtimes (seconds) for Experiment 1b (logarithmic scale) 

 

 

Figure 8.  Average runtimes (seconds) for Experiment 1b (outlier removed) 
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3. Experiment 2 

For Experiment 2, average runtimes are shown in Figure 9.  As with Experiments 

1a and 1b, the original formulation performs more efficiently than the Benders 

formulation.  However, the initial solution and barrier algorithms significantly reduce the 

runtimes of the Benders formulation.  When Benders decomposition is used with the 

simplex method, the average runtime is 39 seconds without the initial solution and around 

15 seconds with the initial solution.  This is a 61% improvement in average runtime.  

When the barrier method and the initial solution are combined, the efficiency of the 

Benders decomposition formulation is increased slightly more, to an average runtime of 

10 seconds.  However, the original formulation terminates in much less time, requiring 

less than a second for each version, regardless of the algorithm and initial solution used.   

Comparing the results of Experiments 1b and 2, we see that a two-fold increase in 

the number of configurations results in a larger runtime increase than a two-fold increase 

in ok density does.  Figures 10 and 11 illustrate the differences in solution times for the 

original and Benders decomposition formulations respectively.  These figures illustrate 

that in every instance, the original formulation outperforms the Benders decomposition 

formulation.  To further illustrate this point, Figure 12 shows the variation across all 

seeds for this experiment.  This figure confirms that the original formulation outperforms 

the Benders formulation in all cases.  The blue bar represents the solution times for 

Experiment 1a, while the red and green bars represent solution times for the same data set 

with a two-fold increase in the ok density (Experiment 1b, outlier removed) and the 

number of configurations (Experiment 2), respectively.  As indicated, the number of 

configurations has a greater impact on runtimes than the ok  density does.  Increasing the 

number of configurations has a much greater impact on the Benders formulations than it 

does on the original formulations. 



 25 

 

Figure 9.  Average runtimes (seconds) for Experiment 2 (logarithmic scale) 

 

 

Figure 10.  Average runtimes for Experiments 1a, 1b, and 2 (seconds), using the original 

formulation 
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Figure 11.  Average runtimes for Experiments 1a, 1b, and 2 (seconds), using the Benders 

formulation 

 

 

Figure 12.  Runtimes (seconds) for Experiment 2 across different seeds (logarithmic 

scale); “WS” indicates that an initial solution is used 
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4. Experiment 3 

For Experiment 3, we increase the number of time steps from 5 to 20.  

Additionally, we also vary the allowed transfer frequencies from monthly to quarterly 

(every 3 months) and semi-annually (every 6 months) in order to examine the impact of 

this restriction on problem instances involving relatively long time horizons.   

We have a limited amount of time and computational resources in which to 

conduct our experiments.  Thus, it is sometimes necessary to terminate experiments when 

it appears that no solution is forthcoming in a reasonable amount of time.  This allows us 

to use the available resources to conduct additional experiments.  For this reason, we 

terminate Experiment 3 after a runtime 100 hours with no solution for all Benders 

instances with monthly transfers and for seed ten only for all Benders instances with 

quarterly transfers.   

Figure 13 shows the average runtime (in minutes) for Experiment 3 when 

transfers are allowed to occur monthly, quarterly, and semi-annually.  This figure 

illustrates that there is a significant decrease in runtimes when transfers occur quarterly 

instead of monthly.  There is a further decrease in runtime when transfers are allowed 

semi-annually for all but 1 of the 8 approaches (original formulation using the simplex 

method and an initial solution).  As in Experiment 1b, this can be attributed to one 

random seed that took significantly longer to solve than the other 9.  When this seed is 

removed, the average runtime for quarterly transfers is slightly more than the average 

runtime for semi-annual transfers.  Figure 13 shows the biggest improvements with the 

original formulation.  For instance, the original formulation with the barrier method and 

an initial solution goes from a runtime of 113 minutes for the monthly transfers to a 

runtime of about 2 seconds for the quarterly transfers.  This is a 99.9% improvement in 

runtime.  The original formulation using the barrier method without an initial solution 

goes from a runtime of 271 minutes to a runtime of 2.6 minutes or a runtime 

improvement of over 99%.  Changing the transfer frequency from monthly to quarterly 

also results in reduced runtime for the Benders formulations, which time out at 100 hours 

for the monthly transfers. 
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With this increase in computational efficiency comes a decrease in the optimal 

objective value.  Figures 14 and 15 show the proportion of initial (monthly transfer 

frequency) objective value obtained when using the indicated transfer frequency instead 

of monthly.  As the figures indicate, there is significant variation in the proportion of 

objective values obtained across the different seeds when different transfer frequencies 

are used.  Restricting the transfer frequency could result in mission demands not being 

met while a location is awaiting transfer of equipment, but this is not the case for every 

problem instance. 

 

Figure 13.  Runtimes (minutes) for Experiment 3 for indicated transfer periodicity 

(logarithmic scale; “WS” indicates that an initial solution is used.
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Figure 14.  Proportion of monthly transfer frequency objective value attained with 

quarterly transfers; “WS” indicates that an initial solution is used 

 

Figure 15.  Proportion of monthly transfer frequency objective value obtained with semi-

annual transfers; “WS” indicates that an initial solution is used  
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5. Experiments 4 and 5 

Experiments 4 and 5 are beyond the scope of the tools and time available for this 

research.  Using a monthly transfer frequency, both experiments are run for 400 hours for 

both the original and Benders formulations with no solution reached for any version of 

the problem for either experiment.  Experiment 4 has a significant increase in mission 

demands relative to Experiment 3, as well as a slight increase in time steps.  For 

Experiment 4, the original formulation with a transfer frequency of monthly reaches a 

35% gap between the current MIP solution and the relaxed MIP after 400 hours or nearly 

17 days of runtime.  For Experiment 4 using the Benders formulation and a monthly 

transfer frequency, the problem reaches a 74% gap between the upper and lower bounds 

on the first Benders iteration after 400 hours.  When the transfer frequency is changed to 

quarterly for Experiment 4, no solution is reached using either formulation after 95 hours.  

In this instance, the Benders formulation reaches a 26% gap between upper and lower 

bounds for the first iteration of the master problem, while the original formulation 

reaches a 40% gap between the current MIP solution and the relaxed MIP solution.  

When the transfer frequency is changed to semi-annually, the first five seeds of the 

original formulation reach a solution that is within 10% of the optimal solution, while 

seeds 5–10 time out after 90 hours.  With semi-annual transfers, the Benders formulation 

reaches a near-optimal solution for the first seed only, while the remaining seeds time out 

after 90 hours.  The average runtimes of the solutions we obtained for Experiment 4 with 

semi-annual transfers are shown in Table 2. 

Experiment 5 has a significant increase in missions, time steps and configurations 

to equal that of the preprocessed dataset used for the original JPAT model.  The gaps for 

Experiment 5 are significantly larger than those of Experiment 4.  After 400 hours, the 

original formulation with monthly transfers reaches an optimality gap of 514% for both 

the barrier and simplex algorithms.  The first iteration of the Benders formulations with 

monthly transfers reaches an optimality gap of 520% after 400 hours for both algorithms.  

These problems need to run for several more weeks or perhaps months to reach an 

optimal solution and require further research to accomplish.  In addition, Experiment 5 is 

run for both the original and Benders formulations with transfer frequencies of quarterly 
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and semi-annually.  For the quarterly transfer frequency, the original formulation reaches 

a 175% optimality gap after 330 hours and the Benders formulation reaches a 409% gap 

after 233 hours.  For the semi-annual transfers, the original formulation reaches a 136% 

gap after 260 hours, while the Benders formulation reaches a 160% gap after 100 hours. 

6. Average runtimes for all experiments 

Table 2 summarizes the average runtimes for each of the experiments conducted 

in this research. 

 

Table 2.   Average runtimes (in seconds) for each approach. 

*all 10 seeds timed out after indicated amount of time 

**seed 10 timed out after 100 hours 

***seeds 5 – 10 timed out after 90 hours 

****seeds 2 – 10 timed out after 90 hours 

No Initial Solution Initial Solution No Initial Solution Initial Solution No Initial Solution Initial Solution No Initial Solution Initial Solution

Experiment 1a  

(Monthly transfers)
0.277 0.257 0.311 0.279 1.458 1.519 1.625 1.418

Experiment 1b  

(Monthly transfers)
65.9 1.41 0.39 0.40 2,390 8,239 794 72.0

Experiment 1b 

(Monthly transfers) 

(outlier removed)

0.27 0.31 0.36 0.30 2.21 2.53 4.73 1.78

Experiment 2  

(Monthly transfers)
0.56 0.45 0.70 0.64 40.0 15.4 10.4 10.0

Experiment 3 

(Monthly transfers)
811 31,042 16,289 6,813 100 hrs* 100 hrs* 100 hrs* 100 hrs*

Experiment 3  

(Quarterly transfers)
161.3 12.6 156.9 2.2 36018** 36030** 36003** 36083**

Experiment 3 (Semi-

annual transfers)
1.38 28.86 1.67 1.57 8,455 127.2 55.8 2,578

Experiment 4  

(Monthly transfers)
400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs*

Experiment 4  

(Quarterly transfers)
95 hrs* 95 hrs* 95 hrs* 95 hrs* 95 hrs* 95 hrs* 95 hrs* 95 hrs*

Experiment 4  (Semi-

annual transfers)
300.066*** 100.102*** 2371.956*** 73.054*** 5117**** 3362**** 52474**** 2645****

Experiment 5  

(Monthly transfers)
400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs* 400 hrs*

Experiment 5  

(Quarterly transfers)
330 hrs* 330 hrs* 330 hrs* 330 hrs* 233 hrs* 233 hrs* 233 hrs* 233 hrs*

Experiment 5  (Semi-

annual transfers)
260 hrs* 260 hrs* 260 hrs* 260 hrs* 92 hrs* 92 hrs* 92 hrs* 92 hrs*

Original formulation Benders Decomposition

Simplex Method Barrier Method Simplex Method Barrier Method
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IV. CONCLUSIONS AND RECOMMENDATIONS 

The original JPAT formulation is already very efficient, and the only modification 

identified by this research to significantly increase its efficiency is to reduce the 

frequency of transfers in the model.  Overall, the barrier algorithm performs better than 

the simplex algorithm, and the initial solution improves the performance of both the 

original formulation and the Benders formulation.  This improvement is more significant 

in the Benders formulation than in the original formulation.  Part A of this chapter 

presents a summary of findings.  There are many other techniques that may benefit JPAT 

that we are unable to research further due to time constraints, some of which are 

described in part B of this chapter. 

A. SUMMARY OF FINDINGS 

Overall, the original formulation performs more efficiently than the Benders 

formulation.  However, on larger problem instances than those considered in this thesis, 

the Benders formulations may prove to outperform the original formulation.  We find that 

the barrier method and the initial solution speed up the Benders formulation more than 

the original formulation, and also that the number of configurations has more of an 

impact on solution times than the ok  density does.  The number of time steps causes the 

largest increase in solution times.  Preliminary experiments indicate that an increase in 

the number of systems has a similar increasing effect on runtime as the number of time 

steps does.  This is an area that needs further study as this thesis only conducts a small 

trial experiment varying the number of systems.  This is most likely due to the additional 

model complexity brought about by increasing the number of variables , , , .t y l lG   

We noted a significant decrease in runtimes when transfers are only allowed every 

three time steps (quarterly) instead of every time step (monthly).  However, we find that 

this restriction may result in a significant decrease in the optimal objective value, 

although the magnitude of this decrease varies with the problem instance.  Such a 

restriction could result in unfulfilled mission demands due to lack of equipment available 

at the location needed and the inability to transfer equipment in the current time step.  
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Allowing transfers only every 6 time steps results in a further decrease in runtimes, 

however, at the cost of a greater decrease in objective value obtained.  Further study on 

the effects of placing restrictions on transfers may help increase model efficiency.  One 

promising area for future research involves using the solution to an instance with 

restricted transfer frequency as an initial solution for the original model. 

B. RECOMMENDATIONS FOR USAGE AND IMPLEMENTATION OF 

MODEL 

1. Recommendations 

JPAT has thus far been solved by TRAC without an initial solution and with the 

simplex algorithm using a rolling horizon approach.  The initial solution and barrier 

method are beneficial for some instances, but not for others.  Consequently, this research 

does not uncover a more efficient JPAT formulation that differs from the original 

formulation.  Furthermore, as demonstrated by the variation in runtimes between 

different seeds within the same experiment, JPAT is sensitive to specific input data and 

highly variable in nature.  Thus, it is difficult to make sweeping recommendations based 

on this research.  However, testing these modifications on the original dataset rather than 

on randomly-generated data may result in differing recommendations.  

2. Future Work 

Some potential areas for future research are with different forms of decomposition 

techniques other than Benders decomposition.  Further experimentation with different 

heuristics for initial solutions, including solutions obtained by restricting transfer 

frequencies, may also be beneficial.  Additional areas for further research include testing 

on the original or other non-random datasets, experimenting further with a rolling horizon 

approach, manipulating solver settings, setting solver priorities, and letting a large 

problem run to completion.  
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APPENDIX. RANDOMLY GENERATED DATA FORMULATION 

Following is the psuedocode for generating the random data used in this research. 

,y liqy     max 0, 15,5floor uniform     

,e liq   
, ,y l y e

y

iqy es  

,t md       max 0, 15,5 1,20floor uniform floor uniform      
 

, ,m i cok      , ,0,1 ; ( ), 0,1m i crand uniform if rand okdensity okrun ok uniform      

eomc   0  

ypc    5,50floor uniform     

yrc   0  

,t yb   10,000,000  

mp    min 0,1.2uniform    

,c eec     max 0, 15,5floor uniform     

,y ees     max 0, 15,5floor uniform     

ehe    100 2,5floor uniform    

mhm    ,max , m is i hi  

,m ihi    1,10uniform   

esu    1,4floor uniform    

,m csr    0,4floor uniform    
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tnewyear  , 1,
12 12

t

t t
if ord floor ord newyear else
     

      
     

 0tnewyear   

,t ymr   0  

, , , 'e y l lht   (24,48)uniform  
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