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A randomized gossip consensus algorithm on
convex metric spaces

lon Matei, Christoforos Somarakis, John S. Baras

Abstract

A consensus problem consists of a group of dynamic agentssgb& to agree upon certain quantities of
interest. This problem can be generalized in the contexibaf/ex metric spaces that extend the standard notion
of convexity. In this paper we introduce and analyze a raridedngossip algorithm for solving the generalized
consensus problem on convex metric spaces. We study thergamce properties of the algorithm using stochastic
differential equations theory. We show that the dynamics of tstarttes between the states of the agents can be
upper bounded by the dynamics of a stochastitedéntial equation driven by Poisson counters. In additoa,
introduce instances of the generalized consensus algofith several examples of convex metric spaces together
with numerical simulations.

|. INTRODUCTION

Distributed algorithms are found in applications relatedsénsor, peer-to-peer and ad-hoc networks.
A particular distributed algorithm is theonsensugor agreement) algorithm, where a group of dynamic
agents seek to agree upon certain quantities of interestdhaaging information among them, according
to a set of rules. This problem can model many phenomenavimgpinformation exchange between agents
such as cooperative control of vehicles, formation conftotking, synchronization, parallel computing,
etc. Distributed computation over networks has a long hysito control theory starting with the work of
Borkar and Varaiya [1], Tsitsikils, Bertsekas and Athans][226] on asynchronous agreement problems
and parallel computing. A theoretical framework for solytonsensus problems was introduced by Olfati-
Saber and Murray in [16], [17], while Jadbabaie et al. [7]dgd alignment problems for reaching an
agreement. Relevant extensions of the consensus probleendeae by Ren and Beard [19], by Moreau
[13] or, more recently, by Nedic and Ozdaglar [14], [15].

Network topologies change with time (as new nodes join andnoldes leave the network) or exhibit
random behavior due to link failures, packet drops, nodeiriai etc. This motivated the investigation
of consensus algorithms under a stochastic framework [&]], [[11], [18], [20], [21]. In addition to
network variability, nodes in sensor networks operate utiddéted computational, communication, and
energy resources. These constraints have motivated thgndek gossip algorithms, in which a node
communicates with a randomly chosen neighbor. Studiesrafaimized gossip consensus algorithms can
be found in [2], [22].

In this paper we introduce and analyze a generalized rarmbaingossip algorithm for achieving
consensus. The algorithm acts oonvex metric spaceshat are metric spaces endowed witlt@vex
structure We show that under the given algorithm, the agents’ stategarge to consensus with probability
one and in the™™ mean sense. The convergence study is based on analyzingribeids of a set of
stochastic dterential equations driven by poisson counters. Additigndr a particular network topology
we investigate in more depth the rate of convergence of tsé dind second moment of the distances
between the agents’ states. We present instances of theajee@ gossip algorithm for three convex
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metric spaces defined on the set of real numbers, the set gbaminnterval and the set of discrete
random variables. The results of this paper, complementmyious results regarding the consensus
problem on convex metric space, where only deterministioroanication topologies are studied [8], [9].

The paper is organized as follows. Section Il introducesrtan concepts related to convex metric
spaces. Section Il formulates the problem and states our reaults. Sections IV and V give the proof
of our main results, together with pertinent preliminarguks. In Section VI we present an in-depth
analysis of the rate of convergence to consensus (in thedidtsecond moments), for a particular
network topology. Section VIl shows instances of the geimyd consensus algorithm for three convex
metric spaces, defined on the sets of real numbers, compevals and discrete random variables,
respectively.

Some basic notationsGiven W € R™" by [W];; we refer to the i(j) element of the matrix. The
underlying graphof W is a graph of orden without self loops, for which every edge corresponds to a
non-zerg off-diagonal entry of W. We denote byya, the indicator function of the evemt. Given two
symmetric matricedl; and Mo, by M3 > M> (M1 > M) we understand thafl; — M, is a positive definite
(semi-positive definite) matrix. Additionally, bi; < M2 (M1 < My) we understand that, — M1 is a
positive definite (semi-positive definite) matrix.

[I. Convex METRIC SPACES

In this section we introduce a set of definitions and basialtesbout convex metric spaces. Additional
information about the following definitions and results danfound in [23],[24].

Definition 2.1 ([24], pp. 142):Let (X,d) be a metric space. A mapping: X x X x[0,1] — X is said
to be aconvex structur®n X if

d(u,y(x,y,1)) < Ad(u,x) + (1—)d(u,y), Yx,y,ue X andVva € [0,1].

Definition 2.2 ([24], pp.142):The metric spaceX,d) together with the convex structureis called a
convex metric spa¢end is denoted henceforth by the triplat, @, ).

Example 2.1:The most common convex metric space is definedRdntogether with the Euclidean
distance and convex structure given by the standard coraabination operation. Indeed, for amyy, ze
R" and 1 € [0, 1], it follows that||z— (1x+ (1= A)y)|| = [|[A(z—X) + (L= D) (z=-Y)I| < Alz— X| + (L= DIz VI,
where the last inequality followed from the convexity of therm operator.

Example 2.2 ([24]): Let X be the family of closed intervals, that 8= {[a,b] | a<b, a,be R}. For
li =[ai,bi], I} =[aj,bj] and 1 €[0, 1], we define a mapping by y(l;,1j, 1) = [1a + (1-2)aj, Abj + (1-2)bj]
and define a metrid in X by the Hausddf distance, that is

d(li,1j) = maxX|a; —ajl, |b; — bj[}.

Then X,d,y) is a convex metric space.

More examples can be found in [23] and [24]. In Section VIl wgaduce another interesting example
of a convex metric space, defined on the set of discrete ranvdaables taking values in a finite, countable
set of real numbers.

Definition 2.3 ([24], pp. 144):A convex metric spaceX,d,y) is said to haveProperty (C) if every
bounded decreasing net of nonempty closed convex subséishet a nonempty intersection.
Fortunately, convex matric spaces satisfylrgperty(C) are not that rare. Indeed, by Smulian’s Theorem
([3], page 443), every weakly compact convex subset of a &aspace haProperty (C).

The following definition introduces the notion of convex getconvex metric spaces.

Definition 2.4 ([24], pp. 143):Let (X,d,y) be a convex metric space. A nonempty suliset X is
said to beconvexif y(x,y,1) € K, Yx,ye K andVa € [0, 1].

Let P(X) be the set of all subsets &f. We define the set valued mappigg P(X) —» P(X) as

Y(A) = {y(xy,2) | YXye A Vae[0,1]},



whereA is an arbitrary subset of.

In Proposition 1, pp. 143 of [24] it is shown that in a convextmeespace, an arbitrary intersection of
convex sets is also convex and therefore the next definitiakes sense.

Definition 2.5 ([23], pp. 11):Let (X,d,v) be a convex metric space. Thenvex hullof the setAc X
is the intersection of all convex sets 4 containingA and is denoted bgo(A).

Another characterization of the convex hull of a setXins given in what follows. By definind\y, =
V(Am-1) with Ag = A for someA c X, it is discussed in [23] that the set sequefBg}mn=0 iS increasing
and limsug, ., Am exists, and limsug ., Am = liminf y 0 Am = liMm_00 Am = Up_ o Am-

Proposition 2.1 ([23], pp. 12):Let (X,d,y) be a convex metric space. The convex hull of asetX
is given by

coA) = fm A= J A
m=0
It follows immediately from above that \y,.1 = Am for somem, thenco(A) = An.

I1l. PROBLEM FORMULATION AND MAIN RESULTS

Let (X,d,y) be a convex metric space. We consider a set afjents indexed by, with states denoted
by x;(t) taking values onX, wheret represents the continuous time.

A. Communication model

The communication among agents is subject to a communicagbnvork modeled by a directed graph
G=(V,E), whereV ={1,2,...,n} is the set of agents, arld= {(j,i) | j can send information t@ is the
set of edges. In addition, we denote Ny the inward neighborhood of agenti.e.,

Ni={j | (1)) € E},

where by assumption nodeloes not belong to the saf. We make the following connectivity assumption.
Assumption 3.1The graphG = (V,E) is strongly connected.

B. Randomized gossip algorithm

In the following we describe the mechanism used by the agentgpdate their states. Agents can be
in two modes:sleepmode andupdatemode. LetN;(t) be a Poisson counter associated to ageht the
sleep mode, the agents maintain their states unchangedgéutiaexits the sleep mode and enters the
update mode, when the associated couNiét) increments its value. Ldf be a time-instant at which the
Poisson counteN;(t) increments its value. Then &t agenti picks agentj with probability p; j, where
j € Nj and updates its state according to the rule

%i(67) = wxi(t), xj (), 4i), (1)

where; € [0, 1), y is the convex structure ardjcx; pi,j = 1. By xi(t;") we understand the value af(t)
immediately after the instant update at titpewhich can be also written as

x(t)=_lim_ ().

which implies thatx;(t) is a left-continuous function of. After agenti updates its state according to the
above rule, it immediately returns to the sleep mode, unélriext increase in value of the counbé(t).
Assumption 3.2The Poisson countei(t) are independent and with ratg for all i.
A similar form of the above algorithm (the Poisson countees assumed to have the same rates) was
extensively studied in [2], in the case wheXe= R.



We first note that since the agents update their state at mamideoes, the distances between agents are
random processes. Lel(x(t), xj(t)) be the distance between the states of ageatsd j, at timet. We
introduce the following convergence definitions.

Definition 3.1: We say that the agents converge to consemstis probability oneif

Pr(tlim maxd(x(t), xj(t)) = O) =1

—00 |,]

Definition 3.2: We say that the agents converge to consensu¥ imean sensé
lim E[d(x(0). (1) | =0.¥ (.]). i # .

The following theorems state our main convergence results.

Theorem 3.1:Under Assumptions 3.1 and 3.2 and under the randomizedpakgorithm, the agents
converge to consensus ifff mean, in the sense of Definition 3.2.

Theorem 3.2:Under Assumptions 3.1 and 3.2 and under the randomizedpgakgorithm, the agents
converge to consensus with probability one, in the senseefih@ion 3.1.

The above results show that the distances between the agties converge to zero. The following
Corollary shows that in fact, for convex metric spaces Batig Property (C), the states of the agents
converge to some point in the convex metric space.

Corollary 3.1: Under Assumptions 3.1 and 3.2 and under the randomizedpyakgdrithm operating
on convex metric spaces satisfyiRgoperty (C), for any sample pathy of state processes, there exits
X* € X (that depends ow and the initial conditions;(0)) such that

lim d(x(t,). X' (@)) = 0.

In other words, the states of the agents converge to soméegfdime convex metric space with probability
one.

V. PRELIMINARY RESULTS

In this section we construct the stochastic dynamics of #gtor of distances between agents. t;et
be a time-instant at which countdk(t) increments its value. Then according to the gossip algoritat
time t* the distance between agemtand j is given by

d(xi(t"), xj (")) = d(w(xi(ti), xi(t), 4i), X;(t)), with probability pj. 2)
Let 6i(t) be an independent and identically distributed (i.i.dr)dam process, such thBt(6;(t) =1) = pi
for all | e Nj and for allt. It follows that (2) can be equivalently written as
() X (1)) = > wia)=ndCw(xi(t), xi(t), 4i), Xj (1)), 3)
leN;

wherey ., denotes the indicator function. Using the inequality propef the convex structure introduced
in Definition 2.1, we further get

d(xi(t"), xj (")) < 4id(xi(ti), Xj () + (1 - ) Z)({ei(ti)znd(xl(ti),Xj(ti))- (4)
leN;

Assuming that; is a time-instant at which the Poisson courig(t) increments its value, in a similar
manner as above we get that

dOxi(t)), X (t])) < 4;d(xi(t)), xj(t)) + (1= 4;) ZX{Hj(tj):l}d(Xl (t)), xi(t})). (5)
leN;



Consider now the scalarg j(t) which follow the same dynamics as the distance betweentagamd
j, but with equality, that is,

7 = A () + (L= 1) ) xiw=mia (), (6)
leN;
and
() = jmi () + (1= 25) Z){{e,—(t,-):nni,l(tj), (7)
leN;

with 7;,;(0) = d(x(0), x;(0)).

Remark 4.1:Note that the index pair of refers to the distance between two ageintnd j. As a
consequence; ; andn;; will be considered the same objects, and counted only once.

Proposition 4.1: The following inequalities are satisfied with probabilityen

mi,j(t) =0, (8)
mij(t) < ffll?xm j(0), 9
d(xi(1), Xj (1) < i j(1), (10)

for all i # j andt > 0.

Proof: Inequalities (8) and (9) follow immediately, noting that fany sample path of the Poisson
counters,n; j(t) are updated by performing convex combinations of non-egajuantities. To show
inequality (10) we can use an inductive argument. t.die the time instant at which the countsi(t)
increments its value and assume ti@ (ti), x;(ti)) < i j(ti) for all i, j. Immediately aftet;, the new value
of d(xi(t), xj(t)) is given by

dO6 (), X (67) < d0a (1), (1)) + (L =) > xioye)=nd(x(t), (1) <
leN;

< Aimi (i) + (1 - 4) ZX{Hi(ti):l}Uj,l () = mi,j ().
leN;
Therefore after each increment of count¢(t), we get that

d(xi (). X () < mi,j(K).

Using the same argument for all Poison counters, inequéli®y follows. [ |

We now construct the stochasticfférential equation satisfied by j(t). From equations (6) and (7)
we note thaty; j(t) at timet; andt; satisfies the solution of a stochastidfdrential equation driven by
Poisson counters. Namely, we have

dni,j(t) = [—(1—/1i)77i,j(t) +(1=4) Y xiao=mii®) AN+
leN;
—(L= ) i) + (1= 23) D Xi;@=mmim(® | AN; (D). (11)
meN;

Let us now define tha dimensional vecton = (i j), wheren = @ (since {,]) and (j,i) correspond
to the same distance variable). Equation (11) can be comgpadtten as

dpt)= > O @GOMOAND+ > Wi (0;O)nOdN; (D). (12)

(i.])1#] (i,)1#]



where thenx n dimensional matrice®; j(6;(t)) and¥; j(9;(t)) are defined as:

~(1- ) at entry [{. j)(. })] -
Qi j(6i(1) =9 A=Axw@-y atentries [())(,J)], TeN, I #]l#i (13)
0 all other entries
and o
—(1-24)) at entry [(, ))(i, )] o
WPi,i(6;(1) = (1—/lj))({9j(t):m} at entries [(, )(mi)], meNj,m# jm#i (24)
0 all other entries
The dynamics of the first moment of the vecigt) is given by
d
GEI® = > @)+ i 0,00 (15)
(i, 0)i#]
Using the independence of the random procesggs we can further write
d
d—tE{n(t)} = WE({n(t)}, (16)
whereW is anxn dimensional matrix whose entries are given by
—(A-A)ui—(A=2j)y; I=iandm=j
) _ ) (X=A)pipi le Ni, m=j, I #],
WIEn0m =Y (1)) pym |=i, meNj, m#1, (17
0 otherwise

The following Lemma studies the properties of mawik introduced above.
Lemma 4.1:Let W be thenxn dimensional matrix defined in (17). Under Assumption 3.&,ftillowing
properties hold:
(a) LetG be the directed graph (without self loops) correspondinthéomatrixW, that is, a link from
(I,m) to (i, j) exists inG if [W] j),a,m) > 0. ThenG is strongly connected.
(b) The row sums of matri¥V are non-positive, i.e.,

D, Wliam <0, (. ).i #
(I,m),Im
(c) There exits at least one row (j*) of W whose sum is negative, that is,
Z [WI«.jya.m) <O.
(I,m),l#m

Proof: (a) Consider the paths from agento agentl (i = ag,...,ax_1 =1) and from ageng to agent
m (j = bo,...,bk-1 = m). By Assumption 3.1 one can always construct same lengtisdadbm any agent
to another since they belong to the same equivalence classis#&/(17) and dictate and algorithmic proof
which ensures the existence of a path fram)(to (I, m) on G:

forz=0tok-1
If az+]_ * bZ
jump to @z1,b)
else |f bz+]_ * az
jump to @z,bz+1)
else
jump to @z+1,b21)




Note that the last case, the condition essentially meansthiawalker does not move. (We consider
the nodesi(j) and (j,i) as identical). For arbitraryi,(j) and (,m) the result follows.
(b) Consider a rowi(j). For convenience, let us define the following positive acsl

& = (1-Auwi and¢j = (1- )y (18)
We can express the sum of rowj)’s entries as

D Wlipem=-E+E)+& > pu+E Y. pim<

(I,m) leN 1#],m=] meNj,mei | =i
<-(Gi+&)+&i+¢=0.
(c) Consider an arbitrary row,(). The row (, j) would sum up to zero in two cases. In the first case,

i ¢ Nj and j ¢ Nj, which imply
Z piy=1and Z Pjm=1,

leN;,I#].m=j MmN M| =i

and therefore

Z[W](i,j)(l,m) =-(Gi+&)+&i+¢=0.

(I.m)
However, having ¢ Nj and j ¢ N for all i and j would imply the communication grapG = (V,E) to
be disconnected, contradicting Assumption 3.1. In the mgtamse, € Nj and j € Nj and |[Nj| = 1 and
INjl =1 (that is, node has only one neighbor, namejyand j has only one neighbor, namely In this

case
> pi=pj=land > pim=pi=1

leN;,I#).m=j meN|,mei,|=i

and consequently

D W jym = (& +&)) +& +£ =0.

(I.m)
But this case would imply that the nodieand | are separated from all other nodes in the gréggh(V, E),
which would contradict the connectivity Assumption 3.1eféfore, there must exist at least one rotwj()

such that
Z[W](i*’j*)d,m) <0.
(I.m)
[ |
Consider now the matriQ = | + eW, wherel is the identity matrix and is a positive scalar satisfying
the strict inequality 1

O<e< ———
max j(& +&j)

(19)
whereé and&j were defined in (18).
The following Corollary follows from the previous Lemma addscribes the properties of matigx
Corollary 4.1: Matrix Q has the following properties:
(&) The directed graph (without self loops) correspondmgnatrix Q (that is, a link from [,m) to (i, j)
exists if [Q].j),,m > 0) is strongly connected.
(b) Q is a non-negative matrix with positive diagonal elements.
(c) The rows ofQ sum up to a positive value not larger than one, that is,

> [Qpem <1, (L ).

(I,m),Im



(d) There exits at least one row',(j*) of Q which sums up to a positive value strictly smaller than one,

that is,
Z [Ql+j)a,m < 1.

(I,m),Im
Proof: Noting that the directed graph (without self loops) cormsting to matrixQ is identical to
the one corresponding to mati¥, part (a) follows. The diagonal elements @fare given by
[Qli.iyi.j) = L-e(&i +€)).

Using the fact that & e(& +&j) < 1, and the obvious observation that the non-diagonal eltsmare
non-negative, we obtain part (b). The sum of rawj) entries is given by

Z[Q](i,j)(l,m) = 1+€Z[\/\/](i,j)(l,m),
(Lm) (D)
and using parts (b) and (c) of Lemma 4.1, part (c) and (d) ofctiveent Corollary follow, respectively.

[
Remark 4.2:The above Corollary says that the mat(xis an irreducible, substochastienatrix. In
addition, choosingy > max j W it follows that we can find a non-negative, irreducible matp

such thatyQ =1 +Q. Using a result on converting non-negativity and irredilitybto positivity ([12],
page 672), we get that £ Q)" 1 =y"1Q"1 > 0, and therefor® is a primitive matrix. The existence of
v is guaranteed by the fact th@ has positive diagonal entries.
We have the following result on the spectral radiusfdenoted by (Q).
Lemma 4.2:The spectral radius of matri§ is smaller than one, that is,

p(Q) <1

Proof: Let (i, j) denote an entry of matri®. As mentioned in Remark 4.%) is a primitive matrix,
and therefore there exitska(which in our case ism=1), such thaQ* has all entries positive, that is

[Q;7>0, Vi, .
In addition, sinceQ is a substochastic matrix we have that

By part (d) of Lemma 4.2, we have that there exitfasuch that

Z[Q],-‘*,ﬁ< 1

Let us not consider the matri@<+! = QkQ The sum of thé™ row entries of matrixQ*! is given by

_ZQk”] Z [Qr [Z[Q] ]+[Q"] [Z[Q],-—*,g).
j=1 j=1j#j" h=1
But since

it follows that



or _ _ _
219 = D IQ - [Q 5 (1— Z[Q],-:,a].
j=1 j=1 h=1
Additionally, since 0< z'jizl[Qk];j—s 1L Q%5 >0, 2P [QlFr<1, andz'jizl[Qk”]ijj—z 0, it must be that

n
Z[Qk+l]i—’j—< 1, Vi.
ji=1

But this means that the infinity norm 6**! is smaller than one, that is

Il < 1,
or thatp(Q¥*1) < 1, which in turns implies that
p(Q <1
By the Peron-Frobenius Theorem for non-negative, irrddaanatrices ([12], page 673)Q) corresponds
to the positive eigenvalue @, larger than the absolute values of all other eigenvalues. [ ]

V. PROOF OF THE MAIN RESULTS
In this section we prove our main results introduced in $ectil.

A. Proof of Theorem 3.1

We first show that the vectay(t) converges to zero in mean. By Lemma 4.2 we have that thergpect
radius ofQ is smaller than one, that is

p(Q) <1,
wherep(Q) = maxlijgl, with 4i g, i= 1,...,n being the eigenvalues @. This also means that
Re(lio) < 1, Vi. (20)
But sinceW = %(Q— 1), it follows that the real part of the eigenvalues\Wfare given by
1 —
Re(liw) = = (Re(rg)-1) <0, Vi,

where the last inequality follows from (20). Therefore, thexamics

d

g e} = WE{n(V)

is asymptotically stable, and hengét) converges in mean to zero.

We now show that(t) converges i mean, for anyr > 1. We showed above that j(t) converges
in mean to zero, for any# j. But this also implies thag; j(t) converges to zero in probability (Theorem
3, page 310, [5]), and therefore, for ady 0

tIim Pr(mi,j(t) > 6) =0. (21)
Using the indicator function, the quantity (t) can be expressed as
1, () =17, Ox o<y + 1 Ox 061
for any § > 0. Using (9) of Proposition 4.1 we can further write

m,i(t) < Ox i )<y + Masari O >0
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or )
i) <6 xim w<s) + (fTIVJ:le j(O)) X, j()>6)>

where to obtain the previous inequality we used the fact ¢haky<s i t)>s) = 0. Using the expectation
operator, we obtain

Bl (016 Pr (0 < 0+ (e 0) Pren s> o).

Takingt to infinity results in
lim supE{n; j(t)'} < 6", Y6 >0,
t—oo

and sincey can be made arbitrarily small, we have that
tlim E{ni,j(t)r} =0, Vr>1

Using (10) of Proposition 4.1, the result follows.

B. Proof of Theorem 3.2

In the following we show thaf(t) converge to zero almost surely. Equations (6) and (7) sheivwith
probability onen; j(t) is non-negative and that for arty <ty, with probability onen; j(t2) belongs to the
convex hull generated biy m(t1) | for all pairs (,m)}. But this also implies that with probability one

masar, j(t2) < masar, j(ta). (22)

Hence for any sample path of the random procgl$, the sequencémax jnij(t)}=0 is monotone
decreasing and lower bounded. Using the monotone convegieorem, we have that for any sample
pathw, there exitsy{w) such that

Jim maxig j(t, w) = 7(w),
—00 |,J
or similarly
Pr(tlim max; j(t) = ﬁ) =1
—00 ]

In the following we show that) Tnust be zero with probability one. We achieve this by showheg
there exits a subsequence{afax ;i j(t)}=0 that converges to zero with probability one.

In Theorem 3.1 we proved tha(t) converges to zero in thé" mean. Therefore, for any pair, {) and
(I,m) we have tha&{z; j(t)mm(t)} converge to zero. Moreover, since

E{ni,j Omm(t)} < fTiVj:ani, i (O)E{m,m(1)},

and sinceE{n m(t)} converges to zero exponentially, we have tia; j(t)m m(t)} converges to zero
exponentially as well.

Let {t}k=0 be a time sequence such thia& kh, for someh > 0. From above, it follows thaE{||n(ty)|%}
converges to zero geometrically. But this is enough to shawthe sequendg(tk)}k=0 converges to zero,
with probability one by using the Borel-Cantelli lemma (Bnem 10, page 320, [5]). Thereforg,must
be zero. Using (9) of Proposition 4.1, the result follows.
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C. Proof of Corollary 3.1

The main idea of the proof consists of showing that the comdkof the states of the agents converge
to one point, for any sample path of the states processes. beta sample path of the state process and
let {ty}k=0 be the time instants at which the Poisson counters incréesevialues, corresponding to this
sample path. Additionally, lefx be the set of the agents’ states at titpethat isAx = {xj (t), ] = 1...n}.
According to Definition 2.5, Proposition 2.1 and equatiof ¢1 the randomized gossip algorithm, we
have that

Xi(tk+1) € CO(Ax), Vi.

But this also implies the next convex hull’s inclusion

CO(Ax11) S CO(Ay).

From the theory of limit of sequence of sets it follows thatrth exits a sef., such that
limsupco(Ax) = liminf co(Ax) = lim co(Ax) = A,

where Acx = (Nk>0CO(Ax).
Denoting the diameter of the sAk by

diam(Ax) = sudd(x,y) | X,y € A},
from Proposition 2 of [23], we have that
diam(Ax) = diam(co(Ax)).
Additionally, in Theorem 3.2 we showed that
fim d(4(0.x(0) = 0. ¥ (i.))
with probability one and therefore, the same is true for t@ge pathw, that is
Jim d(%i(ti). xj(t) = 0, ¥ (i, J)-

But this means that
kIim diam(Ay) = kIim diam(co(Ax)) =0,

and thereforeliam(A.,) = 0. But since the convex metric space on which the randominedig algorithm
operates satisfiegBroperty (C), and the set#y are bounded and closed, it follows that the Agtis non-

empty. Consequently, there exits a pokif which may depend ow, such thatA,, = x*, and the result
follows.

VI. THE RATE OF CONVERGENCE OF THE GENERALIZED GOSSIP CONSENSUS ALGORITHM UNDER COMPLETE AND UNIFORM
CONNECTIVITY

We note that under our general problem setup it fidalilt to get explicit formulas for the rate of
convergence to consensus, in the first and second momente/dble however to obtain explicit results
for the aforementioned rates of convergence under spessignaptions on the topology of the graph, on
the parameters of the Poisson counters and on the convetuseu

Assumption 6.1The Poisson counters have the same rate, that #su for all i. Additionally, the
parameters used by the agents in the convex structure aes, gt isA; = A, for all i. In the update
mode, each agentpicks one of the rest—1 agents uniformly, that igv; = N —{i} and p; j = n%l for all
j € N;.

The following two Propositions give upper bounds on the rHteonvergence for the first and second
moments of the distance between agents, under Assumption 6.
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Proposition 6.1: Under Assumptions 3.1, 3.2 and 6.1, the first moment of thradies between agents’
states, using the generalized gossip algorithm convergasnentially to zero, that is

E{d(xi(t), xj(1))} < cre”t, for all pairs , j), (23)

wherea; = —% andc; is a positive scalar depending of the initial conditions.

Proof: By Proposition 4.1, with probability one we have that for guair (i, j) d(xi(t), x;j(t)) < i j(t)
and thereforeE{d(x;(t), xj(t))} < E{ni j(t)}. But the convergence dE{n; j(t)} is determined by equation
(16) and in particular by the eigenvalues of mawik which are studied in what follows. From (17) it
immediately follows thaWW is a symmetric matrix and that every diagonal element2¢1— 1)u. Note
the enumeration of the vertex set of graghas {, j) with (i < j). Consider an arbitrary node, {) and
write the element of the corresponding row in the followiraneenient form

(1,2), (1,3), ..., (L,n)
(2,3), (2,4), ..., (2,n)

(=10 (—Li+D), .. G-Ln
(i+1). ... G0

(i=10), .., (i=1n)
(J,j+1), ..., (J,n)
(G+Lj+2), ..., (n=1n)

where we split it with horizontal lines in 5 segments (nungloket through 5 from top to bottom). Following
(17) observe that excluding the diagonal, the matrix hagtgx&i — 2 positive elements in segment 1,
n—i—1 positive elements in segment P+ i—1 positive elements in segment 13;- j positive elements
in segment 4 and 0 positive elements in segment 5. Therdferéotal number of i-diagonal entries in

a row is -h—4. Again, (17) dictates that the value in any positive eleirriswﬁ. As a consequence,
we conclude that the sum of every rowdg = —%, that is obviously the eigenvalue of the right

eigenvectorly, that is the vector of all ones. Noting th&l is symmetric all eigenvalues are real and
by Greshgorin’ theorem (Theorem 7.2.1, page 320, [4]) thestrntie in the circle £2(1—- A)u,r) where

r= 2(1—/1);12%5 is the sum of the non zero ffediagonal elements of the rows. Note that the eigenvalue
a1 lies exactly on the boundary of the circle, in the negativé pkne. This leads us to conclude that
this is indeed the maximum one. Therefore, there exits aipescalarc; which depends on the initial
conditions such that

Efnij(t)} < c1€™, for all (i, j),

from where the result follows. [ |
Proposition 6.2: Under Assumptions 3.1, 3.2 and 6.1, the second moment of ifteandes between
agents’ states, using the generalized gossip algorithmecges exponentially to zero, that is

E{d(xi (1), xj(1))?} < c2€2, for all pair (i, ),

wherea; = _qu(r1]+/112) andc; is a positive scalar depending of the initial distances betwagents.

Proof: As before, by Proposition 4.1, with probability one we havat for any pairi j) d(xi(t), x;(t)) <
n.j(t) and thereforeE{d(xi(t), xj(t))?} < E{ni j(t)%}. But E{ni ()%} < E{llp(t)I?}, for any pair {,j) and
therefore is sfiicient to study the convergence properties of the right-reate of the previous inequality.
Using Ito’s rule we can dierentiate the quantiti(t)||? and obtain

O%Illl(t)ll2 = IZ]: n(t) [ (6i(1) + i j(6(1) + i j(6(1) D (6 ()| AN (1) +



13

£ 0 [W1(0,00) + 100 + ¥ (0,(0) (6 )| ndN; 0,
Ij
from where we get

—E ||’7(t)|| Z E{n(t)’ (DI J(el (1) + @j, J(9| (1) + D; j(9| (1)) @ J(el (t))] n(t) i+
i,

+ D () [i,i(0500) + Wi (0;0) + Wi 03 (1) i i(05(0) | n)
N
Using the independence of the random proeg@$ and Assumption 6.1, we can further write

d ,
GiEln®IP) = ,UZJ: E{n(t) Hy(t)),

where
H = E{® j(6i (1)) + Di,j(6i (1)) + Di,j(6i (1)) i j (6i(1))+

+90,5(0;(1) + ¥i,5(0;(1) + Wi j(0;(1)"Pi (6 (1)}
Using Assumption 6.1, we have

-2 at entry (, j)(i, J)
@i j(6i(1)) + i j(Gi(1) = (1-2)1 x@w=1y atentriesi(j)(,])and (,j)(,]) e Ni,I # ]
0 at all other entries

1 at entry {, )i, j)
Y. (Y _ (1 n2) —Xem=y at entries i j)(I,j) and (, j)(i,]) 1 € Ni,| # |
PuiGOYPLEO) = @=L 00) T at entries K J)(1.]) 1€ Nl # |
0 at all other entries

-2 at entry (’ J)(I’ J)
‘Pi,j(ej(t))+‘Pi,j(9j(t))’ =(1-2) X10(0)=1) at entries i, j)(i,I) and §, (i, ) | € Nj,| £
0 at all other entries

1 at entry (, j)(i, J)

v, (o — (1. n2) —Xxiem=n  atentriesicj)(i,1) and (1), ) | € Nj, 1 #i

Wij(0j(1)"i,;(0;(1) = (1-2) )({gj(tj):” at entries {1)(i.1) | € V.1 #
at all other entries
or
-2 at entry (’ J)(I’ J)
E{®Di j(6i(1) + i j(6i(1)} = (1- 1) il at entries i j)(I,j) and (, ))(i,)) l e Nj,1 # |
at all other entries

[ERN
O

N at entry {, j)(i, )
—Latentriesi(j)(,j) and (,)(i,]) | € Ni,l # |
EL0L @O DGO == I 2 cties ()LD | € M1 # |

at all other entries

O

-2 atentry (,j)(,]))
E{W¥i;(0;(t) +¥i,;0;()} = (1- /1){ i at entries i( j)(i,1) and ¢, 1)(i, ) | e Nj, 1 #1
at all other entries
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1 at entry (. j)(i, )
NG, (. 12 at entries i( j)(i,1) and ,1)(i,]) l e Nj, 1 #1
BV PO O) = A-D% 1 1 at entries 1)(i,1) | € A}, #
at all other entries

O

Summing up the above matrices we obtain thiats a symmetric matrix that has as diagonal elements
guantities of the form

_4(1- )+ (1- 4)2(2+2n 14)]#

and the d&-diagonal, non-zero entries are given by
2

AL-A)—p.

(1= A)——u

Counting the &-diagonal entries on a row we obtaine the same result as inabe of the first moment.
Namely, the number of non-zero anét-diagonal elements on each row im2(2). Also note that the
diagonal elements are negative and that tfiel@gonal and non-zero elements are positive for mp\2.
Therefore each row off sums up to the same value and conseque}HtIIyas an eigenvalue

azz[—4(1—/l)+(1—/l)2(2+2n f+2(n—2)A(1— /1) - 2(1_12)“,

n-4

—1) —1" n-1

corresponding to eigenvectbg. Note thatw, is negative for & A <1 andn> 2. In addition, by Gershgorin’
theorem (Theorem 7.2.1, page 320, [4]), we have that allneajaes belong to the circle centered at
[—4(1 AD+(1- /1)2(2+ 2n- 4)];1 with radius 26-2)A(1- /l) 71 and therefore the eigenvalug dominates
the rest of the elgenvalues eigenvalues that are real dayenw]etry Therefore, we have that

H < asl,

and consequently
—E{llp®)I% < a2E{|n(t)II?)

We can further write that
Ellln(t)I1?) < €2'E{|In(to)II?)

from where the result follows. [ |

Remark 6.1:As expected, the eigenvalues and ap approach zero as approaches infinity, and
therefore the rate of converges decreases. Interestingbgth the first and the second moment analysis,
we observe that the minimum values @f and a2 are attained fonl = O, that is when an awaken agent
never picks its own value, but the value of a neighbor.

VII. T HE GENERALIZED GOSSIP CONSENSUS ALGORITHM FOR PARTICULAR CONVEX METRIC SPACES

In this section we present several instances of the gosgqgritdm for particular examples of convex
metric spaces. We consider three casesXothe set of real numbers, the set of compact intervals and
the set of discrete random variables. We endow each of thetsensth a metricd and convex structure
¥ in order to form convex metric spaces. We show the particialan the generalized gossip algorithm
takes for these convex metric spaces, and give some numgnualations of these algorithms.
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A. The set of real numbers

Let X =R and consider as metric the standard Euclidean norm, thifkig) = ||[x—Vl|2, for anyx,y € R.
A natural convex structure oR is given by

Y(XY,A) = AX+(1-2)y, Vx,ye R,1€[0,1]. (24)
Indeed since for a poirte R
d(zy(x Y, ) = llz= (Ax+ (1= DY)ll2 = [|14(z=X) + (1 - DY(Z=Y)ll2 <
<Aiz=Xl2+ (1= liz=Yll2 = 4d(z X) + (1 - )d(z y),

Y IS a convex structure. Therefo(B, || ||2,¥) is a convex metric space. For this particular convex metric
space, the generalized randomized consensus algorithen ta& following form

Algorithm 1: Randomized gossip algorithm dh

Input: x;(0), Ai, pij

for each counting instant of N, do
Agenti enters update mode and picks a neighpavith probability pj j ;
Agenti updates its state according to

Xi(6") = Aixi(t) + (L - 2)x;(t);

Agenti enters sleep mode;

Note that this algorithm is exactly the randomized gossgm@ihm for solving the consensus problem,
which was studied in [2].

B. The set of compact intervals
Let X be the family of closed intervals, thatds= {[a,b] | —co <a< b < co}. Forx =[a;,bi], xj =[aj,bj]
and A € [0,1], we define a mapping by y(Xi, Xj,1) = [1a + (1 - 2)aj, Abj + (1 - A)bj] and use as metric
the Hausddf distance given by
d(x;, Xj) = max|a; — ajl,|bj — bjl}.

Then, as shown in [24],X,d,y) is a convex metric space. For this convex metric space,ahéamized
gossip consensus algorithm becomes,

Algorithm 2: Randomized gossip algorithm on a set of compact intervals
Input: x;(0), Ai, pij
for each counting instant of N, do
Agenti enters update mode and picks a neighpavith probability pj j ;
Agenti updates its state according to
(6 = [ia(t) + (1 - A)ay(t), Aibi(t) + (1 - 4)bj(t)];

Agenti enters sleep mode;
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C. The set of discrete random variables

In this section we apply our algorithm on a particular conueatric space that allows us the obtain a
probabilistic algorithm for reaching consensus on discesits.

Let S={s1,%,...,Sn} be a finite and countable set of real numbers andef (%) be a probability
space. We denote h¥ the space of discrete measurable functions (random vajiall Q, 7 ,#) with
values inS.

We introduce the operatal: X x X — R, defined as

d(X,Y) = Ep[p(X,Y)], (25)
wherep : R xR — {0,1} is the discrete metric, i.e.

1 x+#
p(x,y)={o oy

and the expectation is taken with respect to the meaBuie is not dificult to note that the operatar
can also be written ad(X,Y) = E[1{xxy;] = Pr(X #Y), wherelx.,y, is the indicator function of the event
{X#Y}.

We note that for allX,Y,Z € X, the operatod satisfies the following properties
(@) d(X,Y) =0 if and only if X =Y with probability one,
(b) d(X,Z2)+d(Y,Z) > d(X,Y) with probability one,
(c) d(X,Y) =d(Y, X),
(d) d(X,Y) >0,
and therefore is a metric oN. The setX together with the operatat define themetric spacgX,d).

Let y € {1,2} be an independent random variable defined on the probalsiiace Q,7,%), with
probability mass functioPr(y = 1) =1 and Pr(y = 2) = 1- 1, whereA € [0,1]. We define the mapping
v XxXx][0,1] — X given by

y(Xq,X2,1) = L=y Xp + 1= Xo, VX1, X0 € X, 1€ [0,1]. (26)

Proposition 7.1: The mappingy is a convex structure oX.
Proof: For anyU, X;,Xs € X and A € [0,1] we have

d(U, w(X1, X2, 1)) = E[p(U, w(X1, X2, )] = E[E[p(U, w(X1, X2, ))IU, X1, X2]] =
= E[E[o(U, 1=y X1 + 1, =21 X2)]1U, X1, X2] = E[2p(U, X1) + (1 - )p(U, X2)] =
= Ad(U, Xg) + (1 )d(U. Xo).

[ |
From the above proposition it follows thaX (d,y) is a convex metric spacd-or this particular convex
metric space the randomized consensus algorithm is sumedain what follows.

Let us now take a closer look to the probabilistic model ofdabeve algorithm. Le#;(t) be independent
random variables with probability distributid?r(é;(t) = j) = pi,j for j € i and for allt, with 3 e, pij=1.
In addition, lety;(t) be a set of independent random variable such Bréf;(t) = 1) = 4; and Pr(y;(t) =
2)=1-;, for all t. Then according to the generalized gossip algorithm, ab &awe instant; at which
the countem\;(t) updates its value, agentuupdates its value according to the formula

X(6) = Xin)=2 ) +Xinw=21 D, Xienw=i1Xi(t). (27)
JeM;

Let (5,75,7?) be a probability space, with; a filtration of & given by
Fr = o (%(9), Ni(9),7i(S).61(,0< s< ti=1,....n),
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Algorithm 3: Randomized gossip algorithm on countable, finite sets

Input: x;(0), Ai, pij
for each counting instant of N do
Agenti enters update mode and picks a neighparith probability p; j ;

Agenti updates its state according to

() = X(tj))  with probability 4;
MG)=\ %) with probability 1- 4

Agenti enters sleep mode;

where we usedr as a symbol for sigma algebra. By (27), it followgt) is adapted to the filtratioff;.
Let us now consider the filtratioff,N = o(Ni(s),0 < s<t,i = 1,...,n), induced by the Poisson counters
Ni(t). In order to accommodate the contribution of the Poissamtars to the probability model of the
algorithm, we must refine the metric proposed in (25). As aseqnence, at each time instant, the distance
between agents is given by

d(xi(0). x{(1)) = Ealo(x (1) X (O)IFM].

where the expectation is taken with respect to the meaﬁu@onsequentlyd(m(t),x,-(t)) is measurable
with respect to the sigma-algebrg.

D. Numerical simulations

In this subsection we present numerical simulations of #regalized gossip algorithm in the case of the
three convex metric spaces previously mentioned. We censicghetwork ofn = 20 nodes, each of which
is equipped with a Poisson counter with ratederived uniformly and independently from the interval
(0,6]. The Poisson counters are independent among agenteeFRudre each agent will be equipped with
a convex parametet which is chosen uniformly and independently from 1 At every ignition time
each agent will connect with any other agent with probabitit= nT11 For each the three convex metric
spaces we present two figures: the first figures show the valuése states, while the second figure
depicts upper bound on of the distances between the agéatss sthat is the quantitieg j(t). Our focus
is on showing that the vector of distances converge to zeddlzat the states converge to the same value
and therefore to simplify the figures’ depiction, all quéies are represented using the black color.

Figure 1 shows a realization of the generalized consengusitlm in the case of the convex metric
space defined on the set of real numbers. We assume that this aggalize their values uniformly from
the interval F2,2]. As expected the distances between the states of thesagemierge to zero and the
states converge to the same value.

Figure 2 shows a realization of the generalized gossip glgorin the case the convex metric space is
defined on the set of closed intervals. We present a samptegpdlhe actual values of the states (which
are intervals of the formg,b;]) together with the corresponding bounds on the distanetwden the
states. We consider the initial intervals to be initialized-2, 2].

Figure 3 shows a realization of the generalized gossip ilhgorin the case the seX is given by the
set of discrete random variables. As in the case of the setabinumbers, the agents initialize their values
uniformly from the interval £2,2], however their values will belong to the qet(0), x2(0),..., X,(0)} for
all time instants. As a consequences, both the states ardidfamces oscillate more, but nonetheless the
distances converge to zero and the states converge to a conahe.

VIII. CoNcLUSIONS

In this paper we analyzed the convergence properties of argéred randomized gossip algorithm
acting on convex metric spaces. We gave convergence reswutmost sure and™ mean sense for the
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Fig. 1. Randomized Gossip Algorithm dR: (a) the values of the states; (b) (upper bounds on the)
distances between the states of the agents.

Gossip Algorithm on Intervals Gossip Algorithm on Intervals - Distances
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Fig. 2: Randomized Gossip Algorithm on Closed Interval§:tfe values of the states (the vertical axis
depicts both ends of the intervalg (), bj(t)] which stand for the agents’ states); (b) (upper bounds on
the) distances between the states of the agents.

distances between the states of the agents. Under spedfimpsons on the communication topology,
we computed explicitly estimates of the rate of convergefacethe first and second moments of the
distances between the agents. Additionally, we introducstances of the generalized gossip algorithm
for three particular convex metric spaces and presentecencah simulations of the algorithm.
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