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ABSTRACT

Prognostics, which deals with predicting remaining useful
life of components, subsystems, and systems, is a key tech-
nology for systems health management that leads to improved
safety and reliability with reduced costs. The prognostics
problem is often approached from a component-centric view.
However, in most cases, it is not specifically component life-
times that are important, but, rather, the lifetimes of the sys-
tems in which these components reside. The system-level
prognostics problem can be quite difficult due to the increased
scale and scope of the prognostics problem and the rela-
tive lack of scalability and efficiency of typical prognostics
approaches. In order to address these issues, we develop
a distributed solution to the system-level prognostics prob-
lem, based on the concept of structural model decomposi-
tion. The system model is decomposed into independent
submodels. Independent local prognostics subproblems are
then formed based on these local submodels, resulting in a
scalable, efficient, and flexible distributed approach to the
system-level prognostics problem. We provide a formulation
of the system-level prognostics problem and demonstrate the
approach on a four-wheeled rover simulation testbed. The re-
sults show that the system-level prognostics problem can be
accurately and efficiently solved in a distributed fashion.

1. INTRODUCTION

Prognostics is the process of predicting the end of (useful) life
(EOL) and/or the remaining useful life (RUL) of components,
subsystems, or systems. The prognostics problem itself can
be divided into two distinct problems: (i) the estimation prob-
lem, which determines the current state of the system, and (ii)

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the prediction problem, which, using the current system state
estimate, computes EOL and/or RUL. In this paper, we focus
on a model-based prognostics approach (Orchard & Vachtse-
vanos, 2009; Daigle & Goebel, 2011b; Saha & Goebel, 2009;
Luo et al., 2008). In model-based prognostics, an underly-
ing model of the system, its components, and how they fail
is leveraged, where health state estimation is formulated as
a joint state-parameter estimation problem, typically using a
filtering approach, and prediction is formulated as a simula-
tion problem (Daigle, Saha, & Goebel, 2012).

To the best of our knowledge, all prognostics research to date
has been focused on individual components, and determining
their EOL and RUL, e.g., (Orchard & Vachtsevanos, 2009;
Saha & Goebel, 2009; Daigle & Goebel, 2011a; Celaya et
al., 2011; Bolander et al., 2010; Luo et al., 2008; Bying-
ton et al., 2004). However, in many cases, the desired infor-
mation is the EOL of the system, which is obtained through
system-level prognostics. Generally, the EOL of a system de-
pends on its constituent components and how they interact.
Approaching this problem from the centralized perspective
becomes very difficult, as common (centralized) prognostics
algorithms may not scale to the system level.

In order to address the problems with centralized approaches,
in recent work, we have developed a distributed model-based
prognostics architecture that allows the decomposition of a
large prognostics problem into several independent local sub-
problems from which local results can be merged into a global
result (Daigle et al., 2011; Daigle, Bregon, & Roychoudhury,
2012). Since each local subproblem can be solved indepen-
dently, each can be assigned to a different processing unit
and be solved in parallel. Such a distributed approach is in
contrast to other proposed distributed prognostics architec-
tures in which the global problem is not decomposed and
the computation is distributed onto multiple processing units,
e.g., (Saha, Saha, & Goebel, 2009). Our distributed approach
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scales well and the resulting subproblems are typically small
and easy to solve, resulting in an efficient and flexible dis-
tributed solution to the prognostics problem. Such an ap-
proach has obvious advantages when applied to the system-
level prognostics problem. In this paper, we formulate the
system-level prognostics problem and propose a solution us-
ing this distributed prognostics framework. We apply our
system-level prognostics approach to a rover testbed and pro-
vide results in simulation to empirically demonstrate and val-
idate the approach.

The paper is organized as follows. Section 2 formulates
the system-level prognostics problem and overviews the pro-
posed distributed solution. Section 3 describes the estima-
tion problem, and Section 4 describes the prediction problem.
Section 5 presents the rover case study, and shows prognos-
tics results in simulation. Section 6 concludes the paper.

2. SYSTEM-LEVEL PROGNOSTICS

While most prognostics approaches focus on individual com-
ponents, in most practical cases it is actually the EOL of the
system that must be determined. With this prediction, the
future usage of the system may be optimally planned to max-
imize system life and to schedule system-wide maintenance
activities. It is often important to take a system-level per-
spective of prognostics, because the degradation of individual
components is often coupled, i.e., the way one component de-
grades is dependent on how a connected component degrades.
This may occur, for example, if one component provides the
inputs to another component, in which case, prognostics of
the latter component cannot be performed in isolation.

In this section, we first define the system-level prognostics
problem. We then introduce the system-level prognostics ap-
proach and architecture using a distributed prognostics frame-
work that is based on structural model decomposition.

2.1. Problem Formulation

The goal of system-level prognostics is the prediction of the
EOL and/or RUL of a system. We assume the system model
may be generally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
unknown parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state equation,
y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is the measure-
ment noise vector, and h is the output equation.1 This model
describes both the nominal behavior and faulty behavior, in-
cluding the fault progression functions.

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.

In system-level prognostics, we are interested in when the
performance of a system lies outside some desired region
of acceptable behavior. The desired performance is ex-
pressed through a set of nc constraints, CEOL = {ci}nci=1,
where ci : Rnx × Rnθ × Rnu → B maps a given point
in the joint state-parameter space given the current inputs,
(x(t),θ(t),u(t)), to the Boolean domain B , [0, 1], where
ci(x(t),θ(t),u(t)) = 1 if the constraint is satisfied. If
ci(x(t),θ(t),u(t)) = 0, then the constraint is not satis-
fied, and the behavior of the system is deemed to be un-
acceptable. These deterministic constraints may refer to
component-level, subsystem-level, or system-level specifica-
tions or requirements and define a fixed partition of the state-
parameter-input space into acceptable and unacceptable re-
gions of behavior. When the constraints are violated, it does
not necessarily refer to a hard failure, but any point at which
the operational risk is too large to continue system operation,
or future behaviors of the system will be in some way unac-
ceptable. At this point we say the system has no useful life
remaining.

These individual constraints may be combined into a single
system-level threshold function TEOL : Rnx×Rnθ ×Rnu →
B, defined as

TEOL(x(t),θ(t),u(t)) =
{

1, 0 ∈ {ci(x(t),θ(t),u(t))}nci=1

0, otherwise.

TEOL evaluates to 1, i.e., the system has reached an unac-
ceptable region of behavior, when any of the constraints are
violated. EOL is then defined as

EOL(tP ) ,

inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met (eval-
uates to 1). RUL is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

Note that because x(t) is a random variable, EOL and RUL
must necessarily be random variables also.

2.2. Prognostics Approach

In order to make an EOL or RUL prediction for the system,
the initial state from which to make a prediction is required.
In general, this initial state is not directly observed, and must
be estimated. Therefore, there are two sequential problems
for prognostics: the estimation problem and the prediction
problem. The estimation problem is to find a joint state-
parameter estimate p(x(t),θ(t)|y0:t) based on the history of
observations up to time t, y0:t. This estimate is represented
as a probability distribution because, generally, the system
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state is not directly observed, and there is sensor noise, n(t),
and process noise, v(t). At a given prediction time, tP , the
prediction algorithm uses the joint state-parameter estimate
p(x(tP ),θ(tP )|y0:tP ) and computes p(EOL(tP )|y0:tP ) and
p(RUL(tP )|y0:tP ). Along with the uncertainty in the state-
parameter estimate, process noise and uncertainty in the fu-
ture inputs to the system all contribute to the uncertainty in
the EOL/RUL prediction.

This system-level prognostics problem, consisting of estimat-
ing the system state and then predicting its evolution to EOL,
can be solved using component-level approaches by treating
the entire system as a single component and applying these
approaches directly. However, for a large system, both the es-
timation and prediction problems are correspondingly large.
Due to the large state-parameter dimension, a centralized ap-
proach does not scale well, and can be very inefficient.

Therefore, we propose to decompose the global system-
level prognostics problem into independent local subprob-
lems, such that the solutions to the local subproblems may
be easily merged to form the solution to the global prognos-
tics problem. This forms a naturally distributed approach in
which the local subproblems, since they are independent, may
be solved in parallel, thus providing scalability and efficiency.
Further, the approach allows different algorithms to be em-
ployed on each subproblem. The subproblems often corre-
spond directly to component-level prognostics problems, and
the approach provides a mechanism to combine component-
level prognostics results into system-level results.

In (Daigle et al., 2011), we developed such a distributed solu-
tion to the estimation part of the prognostics problem, based
on the concept of structural model decomposition (Pulido &
Alonso-González, 2004). In recent work, the same concept
was used to decompose the prediction problem (Daigle,
Bregon, & Roychoudhury, 2012). Structural model decom-
position allows one to decompose a system model into a set
of submodels for which local prognostics problems can be
directly defined. The global model of the system, denoted as
M, is defined as follows.

Definition 1 (Model). The model of a system,M, is a tuple
M = (X,Θ, U, Y, C), where X is the set of state variables
of x, Θ is the set of unknown parameters of θ, U is the set of
input variables of u, Y is the set of output variables of y, and
C is the set of model constraints of f , h, and CEOL.

Informally, a model consists of a set of variables and a set
of constraints among the variables. While technically f and
h themselves are (complex) constraints, we represent them
instead as sets of simple constraints. This view is also more
consistent with the way modelers describe f and h, i.e., as sets
of equations, each describing a single state or output variable.

Model decomposition is accomplished by assigning some
variables as local inputs for which the values are known (e.g.,

they are directly measured). In this way, the submodels are
made computationally independent of each other. Within this
scheme, a submodel is then defined as follows.

Definition 2 (Submodel). A submodelMi of a system model
M = (X,Θ, U, Y, C) is a tupleMi = (Xi,Θi, Ui, Yi, Ci),
where Xi ⊆ X , Θi ⊆ Θ, Ui ⊆ X ∪ U ∪ Y , and Yi ⊆ Y are
the state, parameter, input, and output variables, respectively,
and Ci ⊆ C are the submodel constraints.

For distributed prognostics, we find a set of submodels that
satisfy a certain set of properties. For distributed estimation,
the submodels use Ui ⊆ U ∪ (Y − Yi), and we find a set of
minimal submodels such that each Yi is a singleton, and over
all Yi, Yj where i 6= j, Yi ∩ Yj = ∅. So, each submodel uses
some global model inputs and some measured values as lo-
cal inputs, and, in this way, the submodels become decoupled
and may be computed independently from each other. By cre-
ating submodels with one output variable each, we maximize
the number of estimation submodels and the opportunity for
parallelization of the estimation task. By making the sub-
models minimal, they require no constraints or variables that
are not strictly necessary to compute Yi. An algorithm for
computing the set of submodels with these properties is given
in (Daigle et al., 2011), which is based on the model decom-
position algorithms presented in (Pulido & Alonso-González,
2004; Bregon, Biswas, & Pulido, 2012).

For distributed prediction, the submodels use Ui ⊆ UP ,
where UP ⊆ X ∪ U . Here, UP is a set of variables whose
future values can be hypothesized. In the centralized case,
UP = U . We find a set of minimal submodels such that
each submodel has at least one c ∈ CEOL belonging to Ci,
and over all submodels, CEOL is covered. This ensures that
TEOL may be computed for the system; since TEOL is 1
whenever any of the constraints inCEOL are violated, we can
independently evaluate when those individual constraints will
be violated and then take the minimum to obtain the system
EOL. An algorithm for computing the set of submodels with
these properties is given in (Daigle, Bregon, & Roychoud-
hury, 2012). Both decomposition algorithms work in a sim-
ilar way; essentially, they start with a variable or constraint
that must be computed in the local submodel, and then trace
the dependencies backwards until local inputs are reached,
including all variables and constraints found throughout the
search within the submodel.

Note that the problem of defining UP is critical to obtaining
accurate results for system-level EOL in a distributed manner.
On average, the most accurate result will be achieved when
the system model is directly used for prediction, because it
captures all the interdependencies between the components.
In the general case, damage could be progressing in multiple
components, and damage progression in one component may
have an effect on damage progression in another component
due to their coupling. In such cases, for system-level prog-
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Figure 1. Sample system-level prognostics architecture.

nostics the components cannot be decoupled due to these in-
teractions, and the prediction problem cannot be decomposed
into two independent problems, one for each component. It is
only appropriate to neglect these interactions when they are
either negligible or predictable a priori. It will be shown in
Section 5 how this is an important consideration.

2.3. Prognostics Architecture

A sample system-level prognostics architecture based on the
distributed framework is shown in Fig. 1. In discrete time
k, and using a discrete-time version of the model, the dam-
age estimation module takes as input both uk and yk and
splits them into local inputs and outputs for the submodels.
Estimation is performed for each submodel using an appro-
priate algorithm, computing local state-parameter estimates
p(xik,θ

i
k|yi0:k). Some of these local estimates are merged

corresponding to the prediction submodels. For example,
submodelM5 builds its local state using the estimates from
the estimators of M2, M3, and M4. The local predictors
compute local EOL/RUL predictions p(EOLikP |yi0:kP ) and
p(RULikP |yi0:kP ) at given prediction time kP based on the
local EOL constraints. Local predictions are then merged into
global predictions p(EOLkP |y0:kP ) and p(RULkP |y0:kP )
by taking the minimum of the local predictions.

3. DISTRIBUTED ESTIMATION

As described in Section 2, in our distributed estimation
scheme, the local estimator for each submodelMi produces
a local estimate p(xik,θ

i
k|yi0:k), where xik ⊆ xk, θik ⊆ θk,

and yik ⊆ yk. Here, the local inputs used, ui, consist of ele-
ments from both u and y, where measured values are directly
used as local inputs. The estimation problem is decomposed
by finding a set of minimal submodels that together cover the
subset of x and θ required for prediction, by using these local
inputs. This approach to distributed estimation is different
from approaches like the distributed decentralized extended
Kalman filter (Mutambara, 1998) or other estimation fusion

techniques (Sinha et al., 2008) where local estimates are com-
municated between local estimators. Here, local estimators
do not communicate and operate completely independently.

In order to effectively perform joint state-parameter estima-
tion, the system should be observable, among other require-
ments. If the global model is structurally observable, then we
are guaranteed that the local submodels for estimation are as
well (Moya et al., 2010).

Any suitable algorithm may be used for joint state-parameter
estimation. In this paper, we use an unscented Kalman fil-
ter (UKF) (Julier & Uhlmann, 1997, 2004) with a variance
control algorithm (Daigle, Saha, & Goebel, 2012). The UKF
assumes the general nonlinear form of the state and output
equations described in Section 2, but restricted to additive
Gaussian noise.

We summarize the main details of the UKF below, and refer
the reader to (Julier & Uhlmann, 1997, 2004) for details. In
the UKF, distributions are approximated using the unscented
transform (UT). The UT takes a random variable x ∈ Rnx ,
with mean x̄ and covariance Pxx, that is related to a second
random variable y ∈ Rny by some function y = g(x), and
computes the mean ȳ and covariance Pyy using a minimal set
of deterministically selected weighted samples, called sigma
points (Julier & Uhlmann, 1997). X i denotes the ith sigma
point from x and wi denotes its weight.2 The sigma points
are always chosen such that the mean and covariance match
those of the original distribution, x̄ and Pxx. Each sigma
point is passed through g to obtain new sigma points Y , i.e.,

Yi = g(X i)

2Sigma point weights do not directly represent discrete probabilities, so are
not restricted to [0, 1].
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with mean and covariance calculated as

ȳ =
∑

i

wiYi

Pyy =
∑

i

wi(Yi − ȳ)(Yi − ȳ)T .

In this paper, we use the symmetric unscented transform, in
which 2nx+1 sigma points are symmetrically selected about
the mean according to (Julier & Uhlmann, 2004):

wi =





κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

X i =





x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i
,i = nx+1, . . . , 2nx,

where
(√

(nx + κ)Pxx

)i
refers to the ith column of the ma-

trix square root of (nx + κ)Pxx. Here, κ is a free parameter
that can be used to tune higher order moments of the distribu-
tion. If x is assumed Gaussian, then selecting κ = 3 − nx is
recommended (Julier & Uhlmann, 1997).

In the filter, first, ns sigma points X̂ k−1|k−1 are derived
from the current mean x̂k−1|k−1 and covariance estimates
Pk−1|k−1 using a sigma point selection algorithm. The pre-
diction step is:

X̂
i

k|k−1 = f(X̂
i

k−1|k−1,uk−1), i = 1, . . . , ns

Ŷ
i

k|k−1 = h(X̂
i

k|k−1), i = 1, . . . , ns

x̂k|k−1 =

ns∑

i

wiX i
k|k−1

ŷk|k−1 =

ns∑

i

wiYi
k|k−1

with

Pk|k−1 = Q+
ns∑

i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)T ,

where Q is the process noise covariance matrix. The update

step is:

Pyy = R +

ns∑

i

wi(Yi
k|k−1 − ŷk|k−1)(Yi

k|k−1 − ŷk|k−1)T

Pxy =

ns∑

i

wi(X i
k|k−1 − x̂k|k−1)(Yi

k|k−1 − ŷk|k−1)T

Kk = PxyP
−1
yy

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkPyyK
T
k ,

where R is the sensor noise covariance matrix.

Joint state-parameter estimation is accomplished in the UKF
by augmenting the state vector with the unknown parameters,
and the corresponding diagonal elements of the process noise
matrix, Q, are set to nonzero values. In this way, the param-
eter estimates become time-varying and are modified by the
filter using the measured outputs.

The variance values in Q associated with the unknown pa-
rameters determine both the rate of parameter estimation con-
vergence and the estimation performance once convergence
is achieved, therefore, techniques have been developed to
tune this value online to maximize performance, e.g., (Liu &
West, 2001; Orchard, Tobar, & Vachtsevanos, 2009; Daigle,
Saha, & Goebel, 2012). We adopt the approach presented
in (Daigle, Saha, & Goebel, 2012), in which the algorithm
tries to control the variance of the hidden wear parameter
estimate to a user-specified range by modifying the process
noise variance. Effectively, the algorithm increases the vari-
ance when the relative parameter spread is below the desired
level, and decreases it otherwise. With the proper settings,
the parameter estimates converge quickly and track with high
accuracy and precision.

4. DISTRIBUTED PREDICTION

Each local prediction module takes as input local state-
parameter estimates formed from the local estimators, as dis-
cussed in Section 2. The required estimates must be con-
structed from the local estimates of the submodels used for
estimation. A prediction submodel has a set of states Xi

and parameters Θi, and it must construct a local distribu-
tion p(xik,θ

i
k|yi0:k). To do this, we assume that the local

state-parameter estimates may be sufficiently represented by
a mean µi and covariance matrix Σi. For each prediction
submodel Mi, we combine the estimates from estimation
submodels that estimate states and parameters in Xi ∪ Θi

into µi and covariance Σi. If there is overlap in the state-
parameter estimates, i.e., if two submodels both estimate the
same state variable x or parameter θ, then this may be re-
solved by a number of techniques, e.g., taking the estimate
with the smallest variance, or taking an average. Note that,
due to the decomposition into independent local submodels,
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Algorithm 1 EOL Prediction

Inputs: {(xi(j)
kP

,θ
i(j)
kP

), w
i(j)
kP
}Nj=1

Outputs: {EOLi(j)
kP

, w
i(j)
kP
}Nj=1

for j = 1 to N do
k ← kP
x
i(j)
k ← x

i(j)
kP

θ
i(j)
k ← θ

i(j)
kP

Predict ûi
k

while T i
EOL(x

i(j)
k ,θ

i(j)
k , ûi

k) = 0 do
Predict ûi

k

θ
i(j)
k+1 ∼ p(θ

i
k+1|θ

i(j)
k )

x
i(j)
k+1 ∼ p(x

i
k+1|x

i(j)
k ,θ

i(j)
k , ûi

k)
k ← k + 1
x
i(j)
k ← x

i(j)
k+1

θ
i(j)
k ← θ

i(j)
k+1

end while
EOL

i(j)
kP
← k

end for

we recover only an approximation to the joint posterior dis-
tribution as would have been found by a global estimator. In
particular, covariance information is lost due to the decou-
pling and will appear as zeros in the merged covariance ma-
trix. As shown in (Daigle et al., 2011) and as will be seen in
Section 5, the approximation still results in accurate predic-
tions.

Given the mean and covariance information, we represent the
distribution with a set of sigma points derived using the un-
scented transform. Then, as in (Daigle & Goebel, 2010), each
sigma point is simulated forward to EOL, and we recover the
statistics of the EOL distribution given by the sigma points.

The prediction algorithm is executed for each submodel i, de-
riving local EOL predictions using its local threshold func-
tion based on the local EOL constraints. The pseudocode for
the prediction procedure is given as Algorithm 1 (Daigle &
Goebel, 2011b). For a given submodelMi, each sigma point
j is propagated forward until T iEOL(x

i(j)
k ,θ

i(j)
k ) evaluates to

1. The algorithm hypothesizes future inputs ûik.

Each prediction submodel Mi computes a local EOL/RUL
distribution, i.e., p(EOLikP |yi0:kP ) and p(RULikP |yi0:kP ).
The system EOL is determined by the minimum of all the
local distributions, since TEOL of the system is 1 whenever
any of the local constraints are violated, and each local distri-
bution is associated with a subset of these constraints. Specif-
ically, for m prediction submodels,

p(EOLkP |y0:kP ) = min({p(EOLikP |yi0:kP )}mi=1).

To compute this, we sample from each local EOL distribution
and take the minimum of the local samples. This is repeated
many times and the statistics of the global EOL distribution
are computed.

5. CASE STUDY

In this section, we apply our system-level prognostics ap-
proach to a four-wheeled rover testbed developed at NASA
Ames Research Center. We develop a model of the rover, and
demonstrate the approach using simulated scenarios.

5.1. Rover Modeling

The rover model was originally presented in (Balaban et al.,
2011). In this section we summarize the main features and
include some extensions to the model.

The rover consists of a symmetric rigid frame with four
independently-driven wheels. The wheel speeds are governed
by

ω̇FL =
1

JFL
(τmFL − τfFL − τglFL + τgrFL) (c1)

ω̇FR =
1

JFR
(τmFR − τfFR − τglFR − τgrFR) (c2)

ω̇BL =
1

JBL
(τmBL − τfBL − τglBL + τgrBL) (c3)

ω̇BR =
1

JBR
(τmBR − τfBR − τglFR − τgrBR) (c4)

The F , B, L, and R subscripts stand for front, left,
back, and right, respectively. Here, for wheel w ∈
{FL,FR,BL,BR}, Jw denotes the wheel inertia; τmw =
kτ iw is the motor torque, where iw is the motor current and
kτ is an energy transformation gain; τfw = µfwωw is the
wheel friction torque, where µfw is a friction coefficient;
τglw = rwµgls(vw − v) is the torque due to slippage, where
rw is the wheel radius, µgls is a friction coefficient, vw is the
translational wheel velocity, and v is the translation velocity
of the rover body; and τgrw = rwµgrwω cos γ is the torque
due to the rotational movement of the rover body, where µgrw
is a friction coefficient, ω is the rotational velocity of the rover
body, and γ = arctan l/b with l being the rover length and b
being its width.

We consider here friction-based damage progression in the
motors, resulting in an increase in motor friction over time,
which will lead to an increase in power consumption. For
wheel w, µfw is governed by (Daigle & Goebel, 2011b)

µ̇fFL = νfFL µfFL ω
2
FL (c5)

µ̇fFR = νfFR µfFR ω
2
FR (c6)

µ̇fBL = νfBL µfBL ω
2
BL (c7)

µ̇fBR = νfBR µfBR ω
2
BR, (c8)

where for wheel w, νfw is an unknown wear coefficient.

The translational velocity v of the rover is described by

v̇ =
1

m
(FglFL + FglFR + FglBL + FglBR) , (c9)

6
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Figure 2. Rover forces.

where m is the rover mass, and for wheel w, Fglw =
µglw(vw − v) is the force due to slippage. The rotational
velocity ω is described by

ω̇ =
1

J
(d cos γFglFR + d cos γFglBR − d cos γFglFL

− d cos γFglBL − dFgrFL − dFgrFR − dFgrBL
− dFgrBR). (c10)

Here, J is the rotational inertia of the rover, d is the distance
from the center of the rover to each wheel, and for wheel w,
Fgrw = µgrwω is the force due to the rotational movement of
the rover body. The rover forces are illustrated in Fig. 2.

The wheels are driven by DC motors with PI control that sets
the voltages V applied to the motors. The motor currents are
governed by

i̇FL =
1

L
(VFL − iFLRFL − kωωFL) (c11)

i̇FR =
1

L
(VFR − iFRRFR − kωωFR) (c12)

i̇BL =
1

L
(VBL − iBLRBL − kωωBL) (c13)

i̇BR =
1

L
(VBR − iBRRBR − kωωBR). (c14)

Here, L is the motor inductance, kω is an energy transforma-
tion term, and for wheel w, R is the motor resistance. The
voltages applied to the motors are determined by the con-
trollers, where for wheel w, Vw = P ∗ (uw − ωw) + I ∗ eiw,
where P is a proportional gain, uw is the commanded wheel
speed, I is an integral gain, and eiw is the integral error term.
The integral error terms are governed by

ėiFL = uFL − ωFL (c15)
ėiFR = uFR − ωFR (c16)
ėiBL = uBL − ωBL (c17)
ėiBR = uBR − ωBR. (c18)

The motor windings heat up as current passes through them.

The temperature of the windings for the motors are governed
by

ṪdFL =
1

Jd

(
i2FLR− hdFL(TdFL − TmFL)

)
(c19)

ṪdFR =
1

Jd

(
i2FRR− hdFR(TdFR − TmFR)

)
(c20)

ṪdBL =
1

Jd

(
i2BLR− hdBL(TdBL − TmBL)

)
(c21)

ṪdBR =
1

Jd

(
i2BRR− hdBR(TdBR − TmBR)

)
, (c22)

where Jd is the thermal inertia of the windings, and for wheel
w, hdw is a heat transfer coefficient, and Tmw is the motor
surface temperature. It is assumed that heat is lost only to
the motor surface, and that winding resistance R is approx-
imately constant for the temperature range considered. The
surface temperature of the motor for wheel w is given by

ṪmFL =
1

Js
(hdFL(TdFL − TmFL)− haFL(TmFL − Ta))

(c23)

ṪmFR =
1

Js
(hdFR(TdFR − TmFR)− haFR(TmFR − Ta))

(c24)

ṪmBL =
1

Js
(hdBL(TdBL − TmBL)− haBL(TmBL − Ta))

(c25)

ṪmBR =
1

Js
(hdBR(TdBR − TmBR)− haBR(TmBR − Ta)),

(c26)

where Js is the thermal inertia of the motor surface, and for
wheel w, haw is a heat transfer coefficient, and Ta is the am-
bient temperature. Heat is transferred from the windings to
the surface and lost to the environment.

The batteries, which are connected in series, are described
by a simple electrical circuit equivalent model that includes a
large capacitanceCb in parallel with a resistanceRp, together
in series with another resistanceRs.3 The battery charge vari-
ables qi are governed by

q̇1 = −V1/Rp1 − (iFL + iFR + iBR + iBL) (c27)
q̇2 = −V2/Rp2 − (iFL + iFR + iBR + iBL) (c28)
q̇3 = −V3/Rp3 − (iFL + iFR + iBR + iBL) (c29)
q̇4 = −V4/Rp4 − (iFL + iFR + iBR + iBL). (c30)

3We use a simple model here only for demonstration purposes. More detailed
battery models for prognostics can be found in the literature, e.g., (Saha &
Goebel, 2009).
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Submodel Xi Θi Ui Yi Ci

M1 q1 Cb1, Rs1 i∗b V ∗
1 c27,c31,c35

M2 q2 Cb2, Rs2 i∗b V ∗
2 c28,c32,c35

M3 q3 Cb3, Rs3 i∗b V ∗
3 c29,c33,c35

M4 q4 Cb4, Rs4 i∗b V ∗
4 c30,c34,c35

M5 TdFL, TmFL hdFL, haFL i∗FL T ∗
mFL c19,c23,c36,c40

M6 TdFR, TmFR hdFR, haFR i∗FR T ∗
mFR c20,c24,c37,c41

M7 TdBL, TmBL hdBL, haBL i∗BL T ∗
mBL c21,c25,c38,c42

M8 TdBR, TmBR hdBR, haBR i∗BR T ∗
mBR c22,c26,c39,c43

M9 iFL, eiFL ∅ uFL, ω
∗
FL i∗FL c11,c15,c36,c44

M10 iFR, eiFR ∅ uFR, ω
∗
FR i∗FR c12,c16,c37,c45

M11 iBL, eiBL ∅ uBL, ω
∗
BL i∗BL c13,c17,c38,c46

M12 iBR, eiBR ∅ uBR, ω
∗
BR i∗BR c14,c18,c39,c47

M13 ωFL, v, ω, µfFL νfFL i∗FL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗

FL c1,c5,c9,c10,c36,c45,c46,c47
M14 ωFR, v, ω, µfFR νfFR i∗FR, ω

∗
FL, ω

∗
BL, ω

∗
BR ω∗

FR c2,c6,c9,c10,c37,c44,c46,c47
M15 ωBL, v, ω, µfBL νfBL i∗BL, ω

∗
FL, ω

∗
FR, ω

∗
BR ω∗

BL c3,c7,c9,c10,c38,c44,c45,c47
M16 ωBR, v, ω, µfBR νfBR i∗BR, ω

∗
FL, ω

∗
FR, ω

∗
BL ω∗

BR c4,c8,c9,c10,c39,c44,c45,c46

Table 1. Estimation Submodels

The available sensors measure the voltages of the batteries,

V ∗1 = q1/Cb1 −Rs1 ∗ (iFL + iFR + iBR + iBL) (c31)
V ∗2 = q2/Cb2 −Rs2 ∗ (iFL + iFR + iBR + iBL) (c32)
V ∗3 = q3/Cb3 −Rs3 ∗ (iFL + iFR + iBR + iBL) (c33)
V ∗4 = q4/Cb4 −Rs4 ∗ (iFL + iFR + iBR + iBL), (c34)

the battery current,

i∗b = iFL + iFR + iBR + iBL, (c35)

the motor currents,

i∗FL = iFL (c36)
i∗FR = iFR (c37)
i∗BL = iBL (c38)
i∗BR = iBR, (c39)

the motor surface temperatures,

T ∗mFL = TmFL (c40)
T ∗mFR = TmFR (c41)
T ∗mBL = TmBL (c42)
T ∗mBR = TmBR, (c43)

and the wheel speeds,

ω∗FL = ωFL (c44)
ω∗FR = ωFR (c45)
ω∗BL = ωBL (c46)
ω∗BR = ωBR. (c47)

Here, the ∗ superscript indicates a measured value.

We are interested in predicting when any of the rover batter-
ies are at their voltage threshold, beyond which the batteries
will be damaged (Saha & Goebel, 2009). The constraints are

given as

V1 > V − (c48)

V2 > V − (c49)

V3 > V − (c50)

V4 > V −, (c51)

where the voltage threshold is given by V − = 9.6 V, and for
battery i, Vi = qi/Cbi−Rsi∗(iFL+iFR+iBR+iBL). We are
also interested in when the motor temperature gets too high.
The motor windings are designed to withstand temperatures
up to a certain point, after which, the insulation breaks down,
the windings short, and the motor fails (Balaban et al., 2010).
The constraints are given as

TmFL < T+
m (c52)

TmFR < T+
m (c53)

TmBL < T+
m (c54)

TmBR < T+
m , (c55)

where the temperature limit is given by T+
m = 70◦ C. The

rover cannot be operated when any of these constraints, c48–
c55, are violated.

In the general case, we consider uncertainty in the friction
wear parameters νfFL, νfFR, νfBL, and νfBR; the heat
transfer coefficients hdFL, hdFR, hdBL, hdBR, haFL, haFR,
haBL, and haBR; the battery capacitances Cb1, Cb2, Cb3, and
Cb4; and the battery resistancesRs1,Rs2,Rs3, andRs4. Sen-
sor and process noise were estimated based on data from the
actual rover testbed.

5.2. Results

To demonstrate the validity of the approach, we describe
two scenarios for system-level prognostics of the rover. In
the first, the rover is operating nominally without any faults
present, and in the second, friction damage is progressing
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Submodel Xi Θi Ui Yi Ci

M17 q1 Cb1, Rs1 iFL, iFR, iBL, iBR ∅ c27,c48
M18 q2 Cb2, Rs2 iFL, iFR, iBL, iBR ∅ c28,c49
M19 q3 Cb3, Rs3 iFL, iFR, iBL, iBR ∅ c29,c50
M20 q4 Cb4, Rs4 iFL, iFR, iBL, iBR ∅ c30,c51
M21 TdFL, TmFL hdFL, haFL iFL ∅ c19,c23,c52
M22 TdFR, TmFR hdFR, haFR iFR ∅ c20,c24,c53
M23 TdBL, TmBL hdBL, haBL iBL ∅ c21,c25,c54
M24 TdBR, TmBR hdBR, haBR iBR ∅ c22,c26,c55

Table 2. Prediction Submodels Using Motor Currents as Local Inputs

on one motor. In both cases, the rover travels between var-
ious waypoints, moving at an average speed of 0.5 m/s. The
unknown parameters are initialized incorrectly (with around
10% error) so that the local estimators must converge to the
true values. In both cases, the estimation step is performed
in a distributed manner using the set of submodels derived
by using measured values as local inputs, shown in Table 1.
For example, submodelM1 computes an estimate of V ∗1 us-
ing the measured value of i∗b as a local input, and using the
minimal set of constraints to do this. For the prediction sub-
models, as will be shown, the correct submodels to use de-
pends on the scenario, and illustrates when and when not the
prediction step can be decomposed.

5.2.1. Nominal Operation

We first consider a scenario involving nominal, fault-free op-
erations. In this case, EOL occurs around 3 h. An RUL pre-
diction is made every 500 s. With the rover traveling at an
average speed of 0.5 m/s, the motor currents average to about
0.15 A each and so the total current draining from the four
batteries is 0.6 A. Since these values do not vary much dur-
ing nominal operation, we can use the motor currents as local
inputs for the model decomposition. These submodels are
shown in Table 2. Note that the estimates from the estima-
tion submodels M1–M8 are used directly in the prediction
submodelsM17–M24, respectively, and that estimation sub-
modelsM9–M16 are not necessary. Note also that the pre-
diction submodels do not compute any outputs, rather, their
goal is to compute EOL constraints (e.g.,M17 computes c48).

The system-level prediction results are shown in Fig. 3. Pre-
dictions from the battery submodels are shown in Fig. 4. In
this case, the motor temperatures reach a steady-state that is
below the temperature threshold, so only the batteries have an
impact on system EOL, which is the minimum of the EOLs
predicted for the battery submodels. In particular, it is the
first and fourth batteries (corresponding to M17 and M20,
respectively) that discharge the fastest, as shown explicitly in
Fig. 4. The figures show the means of the predicted RUL
distributions, the true RUL, RUL∗, and an accuracy cone of
α = 10% around it. In Fig. 3, we show both the system-
level predictions using the distributed approach with M17–
M24 and the centralized approach using the global predic-
tion model M0. The global prediction model contains all

the states, parameters, and constraints given in the previous
subsection, minus the output constraints, and uses the com-
manded wheel speeds (known a priori) as hypothesized in-
puts. Since the currents are also known a priori, the system-
level prediction can be decomposed, and the predictions made
using the local submodels closely match those made using the
global model, as shown in the figure.

We use the relative accuracy (RA) metric (Saxena et al., 2010)
for prediction accuracy. Averaged over all predictions, RA is
97.48% for the distributed approach and 98.74% for the cen-
tralized approach. Using relative standard deviation (RSD) as
a measure of spread, and averaged over all prediction points,
RSD is 0.40% for the distributed approach and 0.43% for
the centralized approach. The distributed approach is only
slightly less accurate but has better precision. Here, both ap-
proaches are very accurate since the system state-parameter
estimates are very accurate, and there is only a small amount
of error associated with assuming a constant average mo-
tor current or wheel speed. Correspondingly, the prediction
spread is relatively small because the uncertainty in the state-
parameter estimate is very small.

5.2.2. Friction Damage Progression

We now consider a scenario in which for the front-left motor,
there is nonlinear friction damage progression with νfFL =
1 × 10−4 s. As a result of the continuously increasing fric-
tion, the current drawn by the motor increases as well in order
for the motor controller to maintain the same desired wheel
speed. Hence, the total current drawn from the batteries is
increased, and EOL occurs around 2 h. Because iFL is con-
stantly changing, and in a way that is dependent on the motor
state, it cannot be predicted a priori, and so cannot be used as
a local input because the resulting predictions will not be ac-
curate. Therefore, we require a submodel that estimates iFL,
and we so employ submodels using as local inputs average
values for the remaining motor currents, average commanded
wheel speeds, and average rover translational velocity v and
rotational velocity ω. The prediction submodels for this case
are shown in Table 3. For comparison, we demonstrate also
prediction using M17–M24, and, for this strategy, at each
prediction point the average value of current measured over
the last minute is used as the future hypothesized value. Of
course, this will not yield accurate results since future values
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Submodel Xi Θi Ui Yi Ci

M25 q1, iFL, eiFL, ωFL, µfFL Cb1, Rs1, νfFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c5,c11,c15,c27,c48
M26 q2, iFL, eiFL, ωFL, µfFL Cb2, Rs2, νfFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c5,c11,c15,c28,c49
M27 q3, iFL, eiFL, ωFL, µfFL Cb3, Rs3, νfFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c5,c11,c15,c29,c50
M28 q4, iFL, eiFL, ωFL, µfFL Cb4, Rs4, νfFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c5,c11,c15,c30,c51
M29 TdFL, TmFL, iFL, eiFL, ωFL, µfFL hdFL, haFL, νfFL uFL, v, ω ∅ c19,c23,c52,c11,c15,c1,c5
M30 TdFR, TmFR hdFR, haFR iFR ∅ c20,c24,c53
M31 TdBL, TmBL hdBL, haBL iBL ∅ c21,c25,c54
M32 TdBR, TmBR hdBR, haBR iBR ∅ c22,c26,c55

Table 3. Prediction Submodels Using Commanded Wheel Speeds and Rover Velocities as Local Inputs
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Figure 3. System RUL prediction performance under nominal
conditions with α = 0.1.

of the current will actually be larger. Note that the predic-
tion submodels used in this case do not correspond directly to
those used for estimation. So, when constructing the estimate
forM25, for example, it takes the estimates fromM1,M9,
andM13.

The system-level prediction results are shown in Fig. 5. Al-
though the increased friction causes the temperature of the
front-left motor to increase, it is still the batteries discharging
that dominates the system-level EOL in this case. We show
the predictions usingM17–M24,M25–M32, and the global
modelM0. ForM25–M32, average values of v = 0.5 m/s
and ω = 0 rad/s are used. Here, the predictions using the lat-
ter two approaches are virtually identical (the predictions us-
ingM25–M32 are hidden under those forM0), and fairly ac-
curate. In contrast, as expected, the predictions usingM17–
M24 are very inaccurate, and only converge towards the true
RUL at the very end. This quite effectively demonstrates
that, in this scenario, it is incorrect to use the front-left mo-
tor current as a local input for predictions, since it cannot be
predicted independently from the front-left motor submodel,
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Figure 4. Individual battery submodel RUL prediction per-
formance under nominal conditions with α = 0.1.

and therefore a submodel that itself predicts this current is
required to obtain accurate predictions.

Here, RA averages to 58.95% usingM17–M24, 94.24% us-
ing M25–M32, and 94.32% using M0. RSD averages to
0.76% using M17–M24, 1.62% using M25–M32, 1.73%
using M0. Here, we also observe an increase in prediction
spread using the centralized approach with only a slight in-
crease in accuracy over the distributed approach.4 Overall,
accuracy and precision are both decreased compared to the
nominal scenario because there is more uncertainty in the
state-parameter estimate, specifically, that dealing with the
estimate of νfFL. This uncertainty in the state-parameter es-
timate contributes to the additional uncertainty in the RUL
predictions.

4The RSD for M17–M24 is the lowest because those submodels do not
include the motor friction component, so do not have the additional uncer-
tainty associated with the estimation of the wear parameter.
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Figure 5. System RUL prediction performance with friction
damage progression with α = 0.1.

6. CONCLUSIONS

In this paper, we formulated the system-level prognostics
problem and proposed a distributed solution based on struc-
tural model decomposition. Using a four-wheeled rover as
a simulation-based case study, we demonstrated the effec-
tiveness of the approach. Most importantly, the distributed
approach allows for, in many practical circumstances, the
decomposition of the system-level prognostics problem into
component-level prognostics problems and provides a mech-
anism to merge local prognostics results into a system-level
result. Further, since the local subproblems are independent,
this allows component experts to focus on prognostics solu-
tions for their components. However, we showed also that
this approach is not always possible if accurate results are de-
sired, since in some cases the prediction problem cannot be
so easily decomposed, and it depends crucially on correct as-
sumptions about what variables may serve as local inputs for
the prediction problem.

Although in this paper we focused on the model-based prog-
nostics paradigm, our approach is flexible in that data-driven
algorithms may be used also, once the local subproblems are
defined. For example, in previous works, structural model
decomposition was used to automatically design gray box di-
agnosis models that were implemented using different data-
driven techniques (for instance, state space neural networks
in (Pulido, Zamarreno, Merino, & Bregon, 2012) or machine
learning techniques in (Alonso-Gonzalez, Rodrı́guez, Prieto,
& Pulido, 2008)). By decomposing the system-level prob-
lem into independent subproblems through structural model
decomposition, we can apply similar ideas to solve each prog-

nostics subproblem by using the most appropriate technique,
whether it is a model-based, data-driven, or hybrid approach.

An important direction of future work is in algorithms for
optimal placement of sensors for model decomposition, be-
cause the level of model decomposition that can be achieved
is dependent on the number of sensors and where they are
placed. This results in the most efficient decomposition of
the system-level prognostics problem. Current work also
addresses combining the distributed prognostics framework
with a distributed diagnostic approach for integrated diag-
nostics and prognostics (Bregon, Daigle, & Roychoudhury,
2012).
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